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The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria
for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting
signals of various precursor proteins that are transported along different import pathways. Aside from the
well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of
the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly
binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket
(M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the
presequence-containing precursor Mdl1 but not the ADP/ATP carrier (AAC). Hence Tom70 contributes to the
presequence import pathway by recognition of the targeting signal of the Mdl1 precursor.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Survival of eukaryotic cells depends on the presence of functional
intracellular organelles. Amongst them, mitochondria are crucial to
provide energy and essential iron-sulfur clusters. To fulfill these
functions, mitochondria import nuclear-encoded proteins in a post-
translational manner [1-4]. Additionally, co-translational import might
be relevant for a set of precursor proteins [5,6]. Transport of the precursor
proteins to their various sub-mitochondrial compartments involves
several different import pathways [1,3]. In recent years, it became
clear that a regulation of these import pathways is important for
the integration of cellular signals, such as the adaptation to nutrients
and progression through the cell cycle [4,7].

A major target of regulation is the translocase of the outer
mitochondrial membrane (TOM complex), the general entry gate for
almost all imported proteins. The import pathways of the different
substrate classes converge at the TOM complex, which contains several
receptor subunits. Tom20 and Tom22 recognize the N-terminal targeting
signal (presequence) of precursor proteins destined for the mitochondrial
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matrix. The subsequent transport of these precursors through the TOM
complex is then mediated by the small Tom5 and the channel-forming
Tom40 [8-11]. The presequence is characterized by its ability to form an
amphipathic a-helix. The net positive charge of the presequence is
essential for the membrane potential driven transport of the precursor
across the inner membrane, a process that is mediated by the pre-
sequence translocase of the inner membrane (TIM23 complex) [4]. In
addition to the presequence, directing the precursor to the mitochondrial
matrix, these substrates can also contain transmembrane segments that
lead to their insertion into the inner mitochondrial membrane. This
occurs by lateral release from the TIM23 complex but may also involve
export of transmembrane segments from the matrix into the inner
membrane by the OXAT1 insertase [12,13].

One precursor that is transported along this import route is the ABC
transporter Mdl1. After import of its N-terminus and lateral release of
the first two transmembrane segments, the following two transmem-
brane domains are initially imported into the matrix. Subsequently,
OXAT1 inserts them into the inner membrane from the matrix side
while transmembrane segments five and six are again laterally released
from the TIM23 complex [ 13]. After assembling into a homodimer, Mdl1
facilitates the ATP-dependent export of peptides (6-20 amino acids)
from the mitochondrial matrix into the intermembrane space [14]. As
MdI1 does not transport random peptides, it is thought to have specific
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substrates yet to be elucidated [15]. Other substrates, which are sorted
into the inner membrane by the combined action of TIM23 and OXA1
include MdI2 and Shd4 [16,17].

A third receptor of the TOM complex, Tom70, recognizes proteins of
the carrier family, which contain multiple transmembrane segments
and utilize internal targeting signals. Tom70 recognizes these signals
in the precursor as well as the substrate-associated Hsp70 chaperones
and subsequently releases the chaperones in an ATP dependent manner
[18-20]. Upon translocation across the TOM complex and arrival in the
intermembrane space, the hydrophobic carrier substrates engage with
the hexameric complexes of the small Tim proteins. These guide the
precursor to the carrier translocase (TIM22 complex), which facilitates
membrane potential-dependent insertion into the inner mitochondrial
membrane [1,21]. Substrates of the carrier pathway include not only
the ADP/ATP carrier (AAC) and the phosphate carrier, but also subunits
of inner membrane protein translocases (Tim23, Tim17, Tim22).

In addition to the contribution to carrier protein import, Tom70 has
also been implicated in the import of presequence-containing proteins
[22-25], though this contribution of Tom70 has been controversial
[26-28]. In the last years, significant structural insight into Tom70
revealed that the tetratricopeptide repeats (TPR) 1-3 in the N-terminal
part of the protein bind to the C-terminal EEVD motif of Hsp70 and
Hsp90 [20,29]. By contrast, a pocket in the C-terminal domain containing
TPR4-11, was proposed to function as the potential binding cleft for the
hydrophobic carrier substrates [20,29,30].

In the present study we utilized presequence photo-peptides to
characterize presequence-binding sites in the TOM complex. We identi-
fied Tom70 as a presequence receptor and mapped the binding site to
the previously proposed carrier substrate-binding pocket. Identification
of a point mutant in this binding groove functionally demonstrated the
recognition of presequence peptides by this binding site. The specific
impairment of presequence-containing MdI1 import, but not of carrier
substrates, indicates that Tom70 contributes to presequence import by
specific recognition of the targeting signal within a subset of presequence
substrates.

2. Materials and methods
2.1. Yeast strains and growth conditions

Saccharomyces cerevisiae YPH499 was used as the wild-type strain
and was cultured in YPG medium (1% yeast extract, 2% peptone, 3%
glycerol) at 30 °C. In the background of the genomic deletion of
TOM70 described earlier [31], TOM71 was deleted using a kanamycin
marker. The resulting Tom70A/ tom71A was transformed with
pRS416 containing no insert (tom70A/ tom71A) or wild-type
TOM70 (promotor, ORF and terminator). The M551R mutant was
generated using site-directed mutagenesis of the wild-type TOM70
plasmid and also transformed into the genomic TOM70 deletion
strain. The tom70A/ tom71A, wild-type (TOM70) and TOM70M>51R
cells were grown on selective medium lacking uracil (0.67% yeast
nitrogen base, 3% glycerol, 0.07% complete supplement mixture without
uracil). Mitochondria were isolated as described before [32].

2.2. Photo cross-linking and mass spectrometric analysis of photo-adducts

In organello photo cross-linking with pL;9B and pS;¢B was carried
out as described earlier [33]. Essentially, mitochondria were suspended
in import buffer lacking BSA (250 mM sucrose, 10 mM MOPS/KOH,
80 mM KCl, 2 mM KH,PO,4, 5 mM MgCl,, 5 mM Methionine, pH 7.2) at
1 pg/ul and incubated with 2 uM of photo-peptide for 10 min on ice
prior to UV irradiation for 30 min on ice. A halogen vapor lamp was
combined with a filter to avoid protein-damaging wavelengths below
300 nm [34]. Samples were analyzed by SDS-PAGE and Western
blotting.

For purification of photo-adducts 1.6 pug/ul mitochondria were photo
cross-linked with 2 uM photo-peptides as described above. Subsequently,
mitochondria were washed with SEM buffer (250 mM sucrose, 20 mM
MOPS/KOH, 1 mM EDTA, pH 7.2) and resuspended in lysis buffer
(50 mM Tris/HCI pH 7.4, 1% SDS, 1 mM EDTA, 6 M urea) at 10 pg/pl.
After incubation for 10 min at 25 °C the solubilizate was diluted to
1 pg/ul with lysis buffer lacking urea and SDS but containing 0.1% Triton
X-100, 2 pg/ml leupeptin and 2 mM 4-(2-aminoethyl)benzenesulfonyl
fluoride hydrochloride. Following centrifugation the supernatant was
loaded on streptavidin-agarose (Thermo Scientific) and bound proteins
were eluted by incubation with protein loading buffer (2% SDS, 10%
glycerol, 60 mM Tris/HCl, pH 6.8, 0.01% bromphenole blue, and 1%
2-mercaptoethanol) at 95 °C for 15 min.

Wild-type Tom70 (residues 43-622) was expressed in Escherichia
coli BL21 from pET-19b with a N-terminal 10x His-tag essentially as
described before [28]. M551R Tom70° was generated by site-directed
mutagenesis and purified in the same way.

In vitro photo cross-linking was carried out using 4.5 pg purified
wild-type protein and 5 uM pL;oB with the same cross-linking procedure
described above.

Identification of cross-linked residues was performed after in-gel
digestion using trypsin, reverse phase chromatography and mass
spectrometric analysis (LC MALDI MS/MS) as described previously
[33]. Fragment ion mass spectra were converted into merged data files
of the mgf format, which were analyzed with StavroX 3.4.11, a software
tool for identifying cross-linked peptides with mass spectrometry [35].
Mass precision of precursor and fragment ions were set to 20 ppm and
0.7 Da, respectively, and only a-, b-, and y-type ions with a signal to
noise ratio above 1.5 were considered for comparison with theoretical
fragment ion masses. Three missed tryptic cleavages were allowed.
Selection of candidate cross-link spectra for further manual validation
was based on score and distribution of false-positive hits from a decoy
dataset.

2.3. Modeling of Tom70-presequence interaction

The structure of the pL;9B photo-peptide was modeled using the
Abalone (http://www.biomolecular-modeling.com/Abalone/index.
html) program assuming o-helical conformation. The C-terminal
amino acids used as affinity tags were not modeled and the BPA residue
has been modeled as a Tryptophan residue. Open and semi-open
conformations of Tom70 (PDB ID: 2GW1) have been modeled based
on superposition with Tom71 structure in the open state (PDB ID:
3LCA) [20,30]. Prior to docking calculations, conformations of protein
side chains were optimized and remodeled using prepack protocol
as implemented in the Rosetta FlexPepDock application [36]. Blind
docking calculations have been set up using MGLTools software [37].
Initial blind docking was performed against Tom70 in both open and
semi-open states using AutoDock Vina [38], keeping rotatable bonds
of larger side chains (Arg, Leu, Trp, Met, Trp) flexible during docking.
Several runs of AutoDock Vina were performed with altered exhaustive-
ness parameter values (16, 32 and 64). The distance limits for the spatial
restraints provided by the cross-links have been estimated conserva-
tively, assuming that amino acid side chains are fully extended and
cross-links take place at the atom most distal to the Cot atom. For methi-
onine and isoleucine side chains, the maximal distance spanned was
estimated as 4.7 A and 4.5 A, respectively. These values were added to
the maximal distance spanned by BPA (9.6 A), resulting in 14.3 A for
Met-BPA and 14.1 A for Ile-BPA cross-links [39].

The docking results were initially filtered based on Co—Cax distances
calculated between the BPA residue (modeled as Trp) and Met216,
Met551 and 1le604 using a range of 5.0 to 16.0 A. Analysis of docking
calculations revealed that decoys fulfilling constraints from cross-
linking experiments were obtained for the semi-open conformation of
Tom70. However, several docking models of pL;gB to Tom70 in
the open conformation were similar to those obtained for semi-open
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state, but with distances to Met216 exceeding the 15 A limit. Those
models have been included in the cluster analysis. Decoys corresponding
to cluster center served as a starting orientation for high resolution
docking using the FlexPepDock protocol as implemented in Rosetta
software [36] using the semi-open conformation of Tom70. For each
starting orientation, 1000 decoys have been generated and energetically
scored and filtered by the constraints obtained from chemical cross-
linking. The best decoys were then selected based on Rosetta score.

2.4. SPR analysis

SPR studies were carried out on a Reichert SR 7500 DC biosensor
with NiHC1000m sensor chips obtained from Xantec Bioanalytics
(Duesseldorf, Germany) [40]. Binding assays were performed in
running buffer containing 50 mM HEPES pH 7.4, 150 mM NaCl and
50 uM EDTA, at a flow rate of 40 pl/min. Ligands (Tom70 variants)
were immobilized onto the left channel of a Ni?"-activated sensor
chips at a flow rate of 30 pl/min, to a surface density of 3500-4000 p
RIU. The right channel served as a reference channel. Increasing concen-
trations of synthetic presequence peptide pCox4 and the control peptide
SynB2 [33] were injected to both channels and the difference between
the left and right channel was recorded. All analyte injections were
further referenced by subtracting the average response of two buffer
(blank) injections. Equilibrium binding and kinetic analysis were
performed using Scrubber 2.0 (BioLogic Software).

2.5. Miscellaneous

Precursor proteins were radiolabeled and imported according to
published procedures [33,41]. Quantifications of autoradiograms were
carried out using ImageQuant TL (GE Healthcare). BN-PAGE, SDS-PAGE
and Western blotting were performed according to standard procedures.
Proteins were detected using fluorescent dye coupled secondary
antibodies (LI-COR) using a FLA-9000 scanner (GE Healthcare) or
by enhanced chemiluminescence. Colloidal coomassie staining was
performed according to [42].

3. Results and discussion
3.1. Identification of a direct interaction between presequences and Tom70

Tom5, Tom20, Tom22 and Tom40 represent known presequence
receptors of the TOM complex [4]. By contrast, the contribution of
Tom70 to presequence import has remained controversial. In this
study we set out to identify and characterize new presequence binding
sites in the TOM complex using photoaffinity-labeling. To this end we
utilized presequence photo-peptides based on the aldehyde dehydroge-
nase (pALDH) from rat, modified with a biotin and a His tag at the
C-terminus, and a benzoyl-phenylalanine (BPA) on either the hydro-
phobic (pL;9B) or hydrophilic (pS;6B) side of the amphipathic helix
(Fig. 1A) [33]. We could previously show that these modifications
neither altered the targeting capacity of the presequence peptides nor
impaired the mitochondrial integrity [33]. UV-activation of the BPA
moiety in proximity to a target protein generates covalent linkages
(primarily carbon-carbon bonds), which are sufficiently stable to be
subsequently analyzed by mass spectrometry and hence allow mapping
of the cross-linked residues.

In organello photo cross-linking of these photo-peptides with isolated
wild-type mitochondria and subsequent Western blot analysis revealed
photo-adducts with known presequence binding partners, such as
Tim50 and Tom40, while proteins that do not display presequence
recognition physiologically did not form covalent adducts with the
photo-peptides (Fig. 1B) [11,33]. Interestingly, we observed photo-
adducts between presequence peptides and Tom70, which were not
as evident as in the case of smaller proteins due to the smaller relative
size shift. To demonstrate that the widened Tom70 band obtained in

lanes 2 and 3 (Fig. 1B) contained photo-peptide adducts, we isolated
the photo-adducts using streptavidin-agarose following in organello
photo cross-linking (Fig. 1C). The established and characterized photo-
adducts of Tom40 and Tim50 were specifically isolated. In addition,
Tom?70 photo-adducts were recovered by this affinity purification.

Collectively, these results show that Tom70, the receptor of
carrier proteins with internal targeting signals, can be cross-linked
to presequence photo-peptides in organello, indicating a specific rec-
ognition event.

3.2. Identification of the presequence binding site in Tom70

Since the cross-linking radius of BPA is relatively large, these
experiments cannot exclude that the presequence is bound by another
receptor and cross-linked to Tom70 due to a favorable orientation of the
cross-linker. In order to establish whether the photo-adduct formation
observed in organello occurred due to direct presequence binding by
Tom70, we purified the cytosolic domain of Tom70 from E. coli (Fig. 2A
lane 1). In vitro cross-linking of this domain with pL;oB allowed efficient
generation of preparative amounts of the covalent photo-adducts
(Fig. 2A lane 2). As both peptides showed a similar cross-linking efficien-
cy, we restricted our analysis to the interaction with pL;B. Following
trypsin digestion, LC MALDI MS/MS analysis, and data analysis with
StavroX, we identified several candidate cross-linked peptides (Table 1).
In-depth manual validation of the mass spectra revealed significant ad-
ducts of pL;9B to Met216, Met551, 1le604 and Met617, and the annotated
fragment ion mass spectrum for Met551 is shown as an example in
Fig. 2B.

Wau and Sha previously reported the crystal structure of Tom70
(resolved amino acids 94-607) [20]. Structural analysis revealed that
the cross-linked residues are exclusively located on the buried surface
forming a groove (Fig. 2C and D). While the crystal structure of Tom70
represents the closed conformation of the receptor, structures of
its paralog, Tom71, revealed that the N- and C-terminal domains
can change their relative position, exposing the groove to the solvent
[20,29,30,43,44]. Taking this flexibility into account, we modeled
Tom70 in the open state, performed blind docking of the presequence
peptide to this model and selected those decoys which fulfilled our
cross-linking constraints (see Materials and methods). This analysis
revealed that a presequence peptide would fit into the groove present
in Tom70 in the open conformation (Fig. 2D). However, as Met216 is
located at the outer rim of the groove and the distance between the
BPA and Met216 is larger than 15 A under these conditions, we
additionally modeled a semi-open state of Tom70 with Met216 located
on the grooves wall. In this state the N- and C-terminal domains are
moved slightly towards each other as compared to the open state
(Fig. 2E). This conformation satisfies all cross-linking constraints at
the same time.

Taken together, the analysis of the cross-linking sites revealed that
presequences bind to a groove in Tom70. Binding of presequence
peptides to Tom70 is direct and independent of other Tom subunits.
Furthermore, due to the short length of the peptides used here, we
can exclude the possibility that the mature portion of the protein
mediates this binding. While the initial report on the structure of
Tom?70 highlighted the hydrophobic nature of the groove, subsequent
structural studies revealed that the positional flexibility of the N- and
C-terminal domains relative to each other disrupts this hydrophobic
patch and exposes several polar residues [29,30]. It seems that this
modulation of the binding cleft is required for the recognition of
presequences as only the semi-open and open conformation of Tom70
could accommodate the presequence peptide and fulfill the cross-
linking constraints. These conformations would allow presequence
binding while at the same time the N-terminal domain would be available
for the interaction with Hsp70 (R171 in Fig. 2C-E). These results are in
line with earlier speculations that binding of Hsp70/Hsp90 could prevent
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Fig. 1. Identification of a Tom70-presequence interaction. A) lllustration of the utilized synthetic photo-peptides. They are based on the rat alhdehyde dehydrogenase presequence containing a
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and Western blotting. PA, photo-adducts. C) Photo cross-linking as in B, subsequently photo-adducts (PA) were affinity-isolated using streptavidin agarose. Eluates were analyzed as in B.

Asteriks — unspecific signal.

Tom70/Tom71 from returning to the closed conformation and hence
allow substrate binding [29,30].

3.3. Quantitative analysis of presequence binding to Tom70

While the cross-linking analysis allowed us to demonstrate the
direct binding of presequence peptides to a presequence binding site in
Tom70, this methodology does not allow for a quantitative assessment
of the interaction. Therefore, we used purified wild-type cytosolic domain
of Tom70 to determine its affinity to the presequence of the cytochrome ¢
oxidase subunit 4 (pCox4) using surface plasmon resonance (SPR).
Binding of pCox4 to Tom70% reflected a bimolecular interaction with
an affinity of 2.3 uM (Fig. 3A). Similar affinities have previously been
determined for the presequence/Tim50 interaction [40]. Interestingly,
the affinity of Tom20 to pALDH was reported to be ten-fold lower,
however using a different methodology [9]. The control peptide SynB2
did not bind to Tom70, supporting the notion that the presequence
recognition is a specific binding event (Fig. 3B and C).

In order to confirm the physiological relevance of presequence
binding by Tom70, we screened a wide variety of different mutations in
the binding cleft. Amongst them, the Met551 to Arg exchange resulted
in a soluble protein that could be efficiently purified from E. coli.
Met551 was identified as the most prominent cross-linked residues in
our mass spectrometric analysis (Fig. 2C) and is in close proximity to
the presequence helix in the interaction model (Fig. 2D). SPR analysis
with the pCox4 peptide showed a reduced presequence binding affinity
of this mutant (Fig. 3D). As expected, the control peptide SynB2 showed
no interaction with Tom70M>!R (Fig. 3E and F).

In summary, Tom70 binds directly to pCox4 peptides in vitro with an
affinity of 2.3 uM and the M551R mutation reduces Tom70's presequence
affinity ten-fold (Fig. 3G).

3.4. Mutation of Met551 in Tom70 selectively affects Mdl1 import

In order to investigate the functional impact of the decreased
presequence binding to Tom70M>>'R on protein import, we generated
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C) Structural model of yeast Tom70 (PDB ID: 2GW1; residues 94-607) as cartoon (left). Amino acids found to be photo cross-linked to the presequence peptides are colored in orange (Met216,
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tation of a possible binding mode of pL;9B (green) to Tom70. The open, binding competent, state of Tom70 was generated by homology modeling using the open Tom71 structure (3LCA). In this
conformation, the N-terminal domain folds away from the C-terminal segment. The a-helical presequence peptide was docked using AutoDock Vina and resulting structures were selected
based on the distance constraints obtained from the photo cross-linking analysis (Met-BPA 14.3 A; lle-BPA 16.1 A). Following cluster analysis a few selected initial docking models were refined
using FlexPepDock and the obtained decoys were energetically scored. The best model is presented. Left side shows a similar orientation as in C, on the right side the molecule is turned
backwards to look down the presequence helix. Residue 19 in pL;¢B is colored in yellow. E) Surface representation of the binding of pL;¢B to the semi-open state of Tom70, which was generated
by homology modeling using the open Tom71 structure. The binding mode of the presequence peptide is the same as in D, only that the N-terminal domain of Tom70 was moved towards the
C-terminal domain. In this state all cross-link constraints, including the distance to Met216, are satisfied.
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Table 1

StavroX analysis of the photo-adducts generated between Tom70°“ and pL;oB in Fig. 2A. After digestion with trypsin, the peptides were subjected to LC MALDI MS/MS analysis and the
fragment ion mass spectra were analyzed as described in the Materials and methods Section. Only candidate cross-link spectra with a StavroX score larger than 25 were considered for manual
validation. In the validation process, candidates represented by spectra that did not clearly point to a single cross-linked residue or contained numerous unassignable signals of considerable
abundance were excluded from further study (colored in gray). The measured and calculated masses, deviations, the tryptic fragments of Tom70 and the identified cross-linked residues are

shown. B represents carbamidomethyl-cystein.

Score m/z z Mass (meas.) Mass (calc.) Dev (ppm) Tom70 peptide From To Site in Tom70
264 1598.878 1 1598.878 1598.872 3.67 [IGLAQMK] 546 552 Met551
108 1769.003 1 1769.003 1768.996 3.94 [KIQETLAK] 603 610 1le604
94 1415.700 1 1415.700 1415.699 1.01 [EQGLM] 613 617 Met617
47 2565.253 1 2565.253 2565.255 —1.08 [GQMNFILQNYDQAGK] 404 418

30 1631.837 1 1631.837 1631.846 —5.51 [VVEMSTK] 151 157

29 1402.715 1 1402.715 1402.715 0.07 [QAMSK] 214 218 Met216
25 3457.646 1 3457.646 3457.710 —18.41 [EDPVFYSNLSABYVSVGDLK] 130 149

22 1476.739 1 1476.739 1476.712 18.12 [NDFDK] 479 483

22 1126.619 1 1126.619 1126.637 —16.18 [IR] 594 595

22 1126.619 1 1126.619 1126.637 —16.18 [LR] 611 612

18 1767.993 1 1767.993 1768.012 —10.49 [ALELK] 125/158 129/162

17 3070.478 1 3070.478 3070473 1.65 [GQMNFILQNYDQAGKDFDK] 404 422

a tom70A/tom71A strain containing an empty plasmid or plasmids
encoding wild-type or mutant Tom70. While the function of Tom71
remains unclear, we wanted to exclude a possible compensation by
Tom71 due to its high sequence identity (53%) and similarity (70%) to
Tom70 [45]. Isolation of mitochondria from these strains and analysis
of the steady state protein levels revealed that the M551R mutation
did not affect the stability of Tom70 (Fig. 4A). Furthermore the levels
of other TOM components or control proteins were not affected by the
mutation.

The main function of Tom70 is the recognition of carrier substrates
and the release of chaperones bound to them, before their transfer to
the Tom40 channel. In the absence of tom70A/ tom71A the import and
assembly of carrier substrates, such as AAC, is significantly reduced
(Fig. 4B) [46-49]. By contrast, the import of typical presequence-
containing substrates does not depend on Tom70/ Tom71. In fact
import of Su9-DHEFR (a fusion protein consisting of the presequence of
Neurospora crassa subunit 9 of the ATP synthase and mouse dihydrofolate
reductase) is stimulated in the tom70A/ tom71A (Fig. 4C). This inverse
correlation between the import of TIM23 (presequence) and TIM22
(carrier) substrates has been observed before but the explanation
remains elusive [33,50-53]. By contrast to the tom70A/ tom71A,
tom70M>51R supported import and assembly of AAC with the same
efficiency as the wild-type (Fig. 4D). This is in line with the unaltered
steady state levels of Tim23, a TIM22 substrate (Fig. 4A). Furthermore,
matrix import of the model presequence substrate Su9-DHFR into
tom70M>>1R mitochondria was not affected (Fig. 4E). Since we used
pCox4 in our SPR analysis, we also imported the Cox4 precursor into
WT, tom70A/ tom71A and tom70M>>'™® mitochondria (Fig. 4F). The
import of the matrix protein Cox4 showed no defect in these strains,
similar to Su9-DHFR.

Carrier substrates are characterized by the presence of multiple
transmembrane segments and depend on cytosolic chaperones for
their import. We therefore reasoned that even though Tom70 does
not influence the import of model matrix proteins (such as Su9-DHFR
or Cox4) [54], it could affect the import of presequence-containing
substrates which contain multiple transmembrane segments. The
ABC transporter Mdl1 is a presequence-containing protein with six
transmembrane segments and was previously shown to be imported by
TIM23 and inserted into the inner membrane by TIM23 and OXA1 [13,
14,17,55]. Confirming our assumption, the import of radiolabeled MdlI1
was strongly reduced in tom70A/ tom71A mitochondria (Fig. 4G).

In order to delineate a possible Tom70 chaperoning effect [54], from
bona fide presequence binding, we tested import into the tom70™>>1R
mutant, which showed no AAC import defect but a decrease in
presequence binding in vitro (Fig. 4D and 3G). Interestingly, the
MdI1 import efficiency was only ~50% in the tom70M>>'R mutant
mitochondria (Fig. 4G and H).

Collectively, these results demonstrate that a single point mutation
in the binding cleft in Tom70 decreases the presequence binding in
vitro and selectively reduces import of the presequence-containing
membrane protein Mdl1.

In line with previous reports, presequence recognition by Tom70
is not essential for general presequence import, as matrix targeted
precursors are not affected by the M551R mutation or the deletion of
TOM?70. However, import of an inner membrane protein, as exemplified
by MdI1 that contains several transmembrane segments, is facilitated
by presequence recognition by Tom70. Several arguments support
this: I) Tom70 binds directly to presequence peptides with its binding
groove, in this case irrespective of a mature segment. II) MdI1 import
depends on Tom?70. III) The M551R mutation does not affect carrier
import but selectively reduces Mdl1 import efficiency and presequence
recognition in vitro. We conclude that Tom70 can recognize presequences
of a limited set of presequence-containing precursors, as exemplified by
Mdl1, and thereby stimulates their mitochondrial import.

4. Conclusion

Our study reveals that the cytosolic domain of Tom70 is capable of
binding presequence peptides, both in vitro and in organello. This direct
interaction is mediated through the binding groove constituted by the
C-terminal domain containing TPR 4-11 and requires a semi-open or
open conformation. Transition between the closed and open state in-
volves movement of the N-terminal domain away from the C-terminal
domain. During this conformational change, the helix A7 swings away
from the binding cleft (Fig. 5). In the semi-open conformation the cleft
is wide enough to accommodate a helical ligand, which based on our
docking analysis partially overlaps with the position of helix A7 in the
closed state. It will be interesting to investigate the physiological
relevance of a possible auto-inhibition mechanism by helix A7
and the impact of Hsp70 binding on the conformational state of
Tom?70.

Assingle point mutation (M551R), which introduces an extra positive
charge in the binding groove, decreased presequence binding affinity
ten-fold. The mutant protein supports wild-type import of carrier
proteins, but revealed a specific requirement of presequence recognition
for the import of the inner membrane protein Mdl1. Hence the
recognition of carrier substrates and contribution to presequence
import are distinct features of the Tom70 structure.
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Fig. 3. Characterization of the Tom70-presequence interaction. A) Purified, His-tagged, cytosolic domain of wild-type Tom70 was immobilized on a chip and the SPR response was recorded
after injection of the indicated concentrations of Cox4 presequence peptide (pCox4). A typical sensogram is shown. Recorded response, black lines; kinetic fit k, and kg, orange lines. Kp is
indicated as mean + SEM (n > 3). B) SPR response recorded for binding of the control peptide SynB2 to Tom70%“. Experiment performed as in A. No binding was observed; accordingly no
affinity constant was determined. C) Equilibrium binding isotherms of maximal response vs. analyte concentration are shown for wild-type Tom70° and pCox4 or SynB2 (data fitting for a
one to one interaction). D) Interactions of M551R Tom70? with pCox4 was recorded and a kinetic fit was devised as for A. E) SPR response recorded for binding of the control peptide
SynB2 to M551R Tom70, Processed as in A. F) Equilibrium binding isotherms of M551R Tom70° and pCox4 or SynB2. G) Comparison of the equilibrium binding isotherms of binding
of pCox4 or SynB2 to wild-type or M551R Tom70.
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Fig. 4. Mutation of Tom70's presequence binding site specifically affects Mdl1 import. A) Steady state analysis of isolated tom70A/ tom71A, wild-type (TOM70) and tom70M>>'R
mitochondria. Indicated amounts were analyzed by SDS-PAGE and Western blotting. B) Import and assembly of radiolabeled AAC in isolated tom70A/ tom71A and wild-type (TOM70)
mitochondria for the indicated times. The reactions were stopped by dissipation of the membrane potential (Ays) and proteinase K treatment. Samples were analyzed by BN-PAGE
and autoradiography. AAC, - assembled dimer of AAC. C) Import of radiolabeled Su9-DHFR into isolated tom70A/ tom71A and wild-type (TOM70) mitochondria for the
indicated times. The reactions were stopped by dissipation of the membrane potential (As) and proteinase K treatment. Samples were analyzed by SDS-PAGE and autoradiography.
m, mature protein. D) Import and assembly of radiolabeled AAC into isolated wild-type (TOM70) and tom70™>>'® mitochondria as described in B. AAC, - assembled dimer of AAC. E) Im-
port of radiolabeled Su9-DHEFR into isolated wild-type (TOM70) and tom70™>>'R mitochondria as described in C. F) Import of radiolabeled Cox4 into isolated tom70A/ tom71A, wild-type
(TOM70) and tom70M>>'R mitochondria for the indicated times. The reactions were stopped by dissipation of the membrane potential (Als) and proteinase K treatment. Samples were
analyzed as in C. m, mature protein. G) Import of radiolabeled MdI1 into tom70A/ tom71A, wild-type (TOM70) and tom70™>>'R mitochondria as described in F. m, mature protein. H)
Quantification of the Mdl1 import efficiency as performed in G. Import efficiency after 20 min in the wild-type was set to 100% (mean + SEM, n = 3).
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lle604

Fig. 5. Differences between the closed (left, 2GW1), semi-open (middle, homology model based on the open Tom71 structure, 3LCA, and relative movement of the N-terminal to the C-terminal
domain) and open (right, homology model based on the open Tom71 structure, 3LCA) state of Tom70 shown with surface (top) or cartoon representation (bottom). Residues identified to be
cross-linked to pL;oB are colored in orange, Arg171 (purple) represents the Hsp70 binding site. The transition from the closed to the open sate involves displacement of helix A7 (red). While it
partially occupies the binding groove in the closed state, it contributes to the wall of the groove in the semi-open and open state.
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