Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A miniature head−mounted two−photon microscope: High−resolution brain imaging in freely moving animals

MPG-Autoren
/persons/resource/persons93373

Helmchen,  Fritjof
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;
In Vivo Microscopy of Cortical Dynamics, Max Planck Institute for Medical Research, Max Planck Society;
Cortical Two Photon Imaging, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons128986

Denk,  Winfried
Department of Biomedical Optics, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Helmchen, F., Fee, M. S., Tank, D. W., & Denk, W. (2001). A miniature head−mounted two−photon microscope: High−resolution brain imaging in freely moving animals. Neuron, 31, 903-912. doi:10.1016/S0896-6273(01)00421-4.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0019-A043-7
Zusammenfassung
Two−photon microscopy has enabled anatomical and functional fluorescence imaging in the intact brain of rats. Here, we extend two−photon imaging from anesthetized, head−stabilized to awake, freely moving animals by using a miniaturized head−mounted microscope. Excitation light is conducted to the microscope in a single−mode optical fiber, and images are scanned using vibrations of the fiber tip. Microscope performance was first characterized in the neocortex of anesthetized rats. We readily obtained images of vasculature filled with fluorescently labeled blood and of layer 2/3 pyramidal neurons filled with a calcium indicator. Capillary blood flow and dendritic calcium transients were measured with high time resolution using line scans. In awake, freely moving rats, stable imaging was possible except during sudden head movements