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On the Finite Volume Multigrid Method:
Comparison of Intergrid Transfer Operators

K. S. Kang

Abstract — In this paper, we consider finite volume multigrid methods on triangular
meshes with control volume based intergrid transfer operators. We review the error
analysis of the finite volume methods and the convergence analysis on the multigrid
method. For several different triangulations, we investigate the error reduction factors
of the multigrid method as a solver, and also as a preconditioner in the Preconditioned
CGM and GMRES solvers. We also study the scaling properties of the finite volume
multigrid method on a High Performance Computer. We identify that the intergrid
transfer operator based on the trial function space has the best properties.
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1. Introduction

A finite volume method is a preferred method for the computational fluid dynamics (CFD)
researcher because it has energy conservative properties which are required for CFD problems
and are hard to ensure by a finite element method [7, 8, 19]. Numerical analysis of the finite
volume method is more difficult than that of the finite element method, because, in general,
the finite volume method uses two different function spaces: a trial space and a test space.
To overcome the difficulty of such an analysis, many authors use the comparison analysis of
the finite element method with a one-to-one corresponding relations between function spaces
[9, 10, 11, 13, 18].

Multigrid methods are well known as an efficient solution technique for many problems
including elliptic and hyperbolic partial differential equations, non-linear problems, and even
systems of algebraic equations which are not derived from any spatial discretization of a
partial differential equation ([1, 3, 4, 5, 6, 14, 15, 17, 20]). The number of operations of the
multigrid method depends on the number of degrees of freedom (DoF) times the number of
levels (log of the number of DoF). In many areas the multigrid method is regarded as an
essential algorithm and it is applied to many different problems.

The multigrid algorithm of the linear finite element method on triangle meshes is a well
analyzed problem [2, 4]. Because the discretized linear system of the finite volume method
for the Poisson problem is the same as for the finite element method (with a different right
hand side) and the convergence of the finite element multigrid method is well analyzed, few
authors consider the convergence analysis of the finite volume multigrid method [12]. It can
be easily seen that the analysis result of the finite element multigrid method applies to the
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finite volume multigrid method with the natural injection on the trial function spaces as an
intergrid transfer operator. Instead of the natural injection, we can use different intergrid
transfer operators as in [21] for vertex-centered and cell-centered methods on rectangular grid
and as in [5] for the linear finite element discretization. Another approach to define intergrid
transfer operators for the finite volume multigrid method is based on the test function spaces
which are defined on dual partitions, i.e., control volumes. This approach on the P, non-
conforming finite element space has good properties to apply for non-linear problems, but
has a poor convergence reduction factor [17]. The test function spaces of the finite volume
methods are not nested themselves, so the multigrid method with the control volume based
intergrid transfer operators was analyzed in different approaches ([12, 16, 17]).

In this paper, we consider two different intergrid transfer operators on triangular meshes
which are based on the test function spaces of the non-overlapping and overlapping finite
volume methods. We compared these two intergrid transfer operators with the natural
injection operator which is based on the trial function space. The multigrid method with
the intergrid transfer operators based on the trial function space has the best convergence
rate, except on a uniform mesh on which the multigrid method with the non-overlapping
control volume based intergrid transfer operator has a better convergence rate.

Nowadays massively parallel computers are used to solve and/or simulate huge problems.
By the nature of the multigrid method and the nature of parallelization, the W-cycle and
variable V-cycle multigrid methods are not preferred to be used on massively parallel com-
puters. On the other hand the V-cycle multigrid method is widely used and achieves very
good scaling properties. The scaling properties of the multigrid method highly depends on
the system architecture. In this paper, we investigate them for the finite volume multigrid
method on the HPC-FF machine at the Jilich Supercomputer Center (JSC).

This paper is organized as follows. The finite volume method and its error analysis results
is summarized in section 2. In section 3, T'wo intergrid transfer operators are considered and
the results of the convergence analysis for the finite volume multigrid method are summa-
rized. In section 4, we report the results of numerical experiments of the multigrid method
as a solver and as a preconditioner of the Krylov subspace methods and show the scaling
properties of the multigrid method on the HPC-FF machine.

2. Model problem and its discretizations

In this section, we review the finite volume element (FVE) method on a general triangular
mesh. The FVE method can be explained by the trial and the test function spaces. Usually,
the trial function space is defined on a primal triangulation and the test function space is
defined on a dual triangulation (control volume). Depending on the definition of the control
volumes, the FVE methods are classified as non-overlapping and overlapping methods.

Let H*(Q) be the usual Sobolev spaces with L?*-norm where s is a non-negative integer.
Let (-, -) denote the L?(Q2) and |- ||, and |- |s denote the H* norm and semi-norm respectively.
As usual, W** is the Sobolev space with L>®-norm.

We consider a second-order elliptic problem with the Dirichlet boundary condition

_V.AVu=f, inQ,

1
u=0, on Jf, (1)

where € R? is a bounded polygonal domain with boundary 99, f € L*(Q), and the
symmetric coefficient matrix A € (W%>°(Q))?*? is uniformly elliptic, i.e., there exist positive
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Figure 1. The primal and dual triangulations.

constants ayg, a; > 0 such that

aox'x < XAz, y)x < arx’yx, (z,y) €Q, x € R%

It is well known that (1) has a unique solution.

By taking an integral of (1) over any control volume V € € with a Lipschitz boundary
and using the Gauss Divergence Theorem on the left-hand side, (1) is transformed to the
following primitive form (or surface integral form):

Find v € H'(Q) such that, for any volume V € Q with the Lipschitz boundary,

—/W(AVu)-nda:/Vfdx, (2)

where n is an outward normal unit vector on 9V'.

In general, discretization based on the primitive form can preserve some conservation
law. This is quite important in CFD, and is one of the reasons for its popularity.

First, we consider the primal discretization on which the trial function space is defined.
Let hy and Ty, = 7Ty be given, where 7Ty is a partition of €2 into triangles and hg is the
maximum diameter of the elements of 7y. For each integer 1 < k < J, let hy = 27%hy
and the sequence of triangulations 7,, = Tj be constructed by the nested-mesh subdivision
method, i.e., let T be constructed by connecting the midpoints of the edges of the triangles
in 7Tx—1, and let 7,, = T; be the finest grid. We define the trial function spaces as the
piecewise linear finite element spaces

Vi = {v € C°%(Q) : vk is linear for all K € T;},

for k=0,...,J.

Next, we construct the non-overlapping dual partition 7,”" by choosing any interior
point Q of K € T, and connect it with the mid-points of edges of K. In this paper, we are
particularly interested in the case when @ is the circumcenter (which are the respective
midpoint of the either circumscribed circle of K') or centroid (intersection of its medians) of
the triangle K. The dual partition associated with the circumcenter of the triangle forms the
so-called Voronoi mesh and the dual partition with the centroid is in common use in CFD and
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forms the so-called Donald mesh. In order to keep the circumcenter from lying outside of the
triangle, we assume that no interior angle of any triangle in 7 is larger than 90°. Carrying
out the construction control volumes K 5" which is the surrounded area by connecting the
mid—point of edge and QK(M1Q2M2Q3M3Q4M4Q5M5Q1M1 for Pg n ﬁgure ].) for every
node in the primal partition, we obtain the dual partition for the domain as 7, = UK".
Another approach is the overlapping dual partition which integrates all triangles which have
Py as a vertex, i.e., the area surrounded by P, P, P3P, P; P, in figure 1. We denote the control
volume of node P by K5 and the dual partition by 7, = UK 5°.

To define the non-overlapping FVE problem, we need a finite set of the control volumes
T." which has the same cardinality of Vi. Then the discrete FVE problem of (2) can be
written as follows: Find u,;" € Vj such that, for all K5" € 7",

(AVu,") - ndo = / fdx.

*,1
KP

/8K;;”\8K;;"maﬂ
We define associated test function spaces Y,"™ as the space of piecewise constant functions:
k

V" ={2e L*Q): 2

Kk is a constant function for all K" € T,7"}.

Obviously, we have
}/0*,77, ¢ }/vl*,n ¢ . ¢ Yj,’n
Define bilinear forms on the spaces Vi, x Y™, for each k, as follows,

by (ug, vg) = — (AVuy,) - nupdo

K;,7L€7—I:,n /8[(;’"\8[(;’"(789

= — Z vk(P)/a (AVuy) - ndo.

K5nheTsn K;"\@K;’"ﬂaﬂ
P k

Then the non-overlapping finite volume discretization equation of (1) can be written as:
Find u5" € V; such that

by (uy" vy) = F*"(vy) = (f,vs), forallv; € Y™ (3)

To define the overlapping FVE problem, we have the following relation when A is the
identity matrix

3 K;’ o

2
—/ (AVwy,;?) -ndo = - fdx.
IR

But, we need to modify the bilinear form [9] for general A. The discrete FVE can be written
as follows: Find u;” € Vj such that, for all K3° € 7.,

1
— AVu;?) -ndo + = /AVU*’O ‘n.do =
[IROCARTSEEDS e

cCE (K

fdx

KP
where
[AVw] - n, = (AVwg+e) -n, — (AVwg-¢) - ng,

with K+¢, K¢ denoting two triangles having interior edge e as a common edge and n, the
normal vector of e € E;°(K*¢), and E;°(Kp°) = {e is an edge : P € e} in figure 2.
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Figure 2. The triangles K¢ and K¢ with common side e and E;"°(K5°) with dotted line.

Let test function space Y, be the space of piecewise constant functions on Kp° € 7,7,
Le., for all v € Y, | we have

v= Z v(P) Xk

*,0 *,0
K5oeT;

where x e is a characteristic function associated with the control volume K. Then define
bilinear forms on the spaces Vj, x Y,"°, for each k, as follows,

*,0 *,0 1 *,0
b vp) = Y we(P)S - / (AVi?) -ndo + > / AV ] - n.do

K;;,oe,]—k*,o 8K}§0 EGE;’O(K;’O)
Then the overlapping finite volume discretization equation of (1) can be written as: Find
u’° € V; such that
* * * 1 *
bJ7O(UJ’O7UJ) =F ’O(UJ) = g(f7 Uj), VUJ S YJ7O. (4)

From (3) and (4), we can write same notation for the non-overlapping and overlapping
FVE and denote by % both *x,n and %, o if not specified.
We introduce the one-to-one transfer operators 7' : Vi, — Y, and 2 : Vi, — Y% by

N Ng,
*,M fo) ]‘ *,0
Yevw(x) = ka(Pj)Xj’ (), por(x) = Z gvk(Pj)Xj’ (z), Vzeq,
j=1 j=1

where P; is a nodal point of the domain and xj is a characteristic function associated with
the dual element K ]*3], €Ty, j=1,...,Ni. Then we can define a bilinear form

ap(v,w) = b (v, yw) for all v,w € Vj
and rewrite (3) and (4) as
ay(uy,vy) = F*(vv;), Yus €V (5)
Remark 2.1. Let ax(v,w) = 3 o7 (AVv, V)i be a bilinear form over the spaces H'(12)
and Vj, by the finite element method. If A is piecewise constant, the we have, for all v, w € V,
ar (v, w) = ag(v, yw),

i.e., the system from the finite element method and the finite volume element methods, both
the non-overlapping and the overlapping, are only different in the source term (right-hand
side of equation).
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Figure 3. Notation for the intergrid transfer operator.

Using the analysis presented in [9] and [13], we get the following error estimations for
the non-overlapping and overlapping FVE method.

Theorem 2.1. If u € H*(Q) and u% are the solutions of (2) and (5). Then a constant
C' exists, independent of hy, such that

[ = willa; < Chyllullz

where || - ||a, s a energy norm with the bilinear form a;(-,-).
Furthermore, assume that f € H'(Q) and A € W?*. Then a constant C exists, inde-
pendent of hy, such that
lu —ujllo < CRI(l[ull2 + [1£11)-

3. Intergrid transfer operators and convergence of the multigrid
methods

In this section, we consider the intergrid transfer operators for the finite volume multigrid
method. Then we review the convergence analysis results of the multigrid method with these
intergrid transfer operators.

First, we consider the case of the trial function spaces Vi. It is well known that the
piecewise linear finite element spaces V}’s are nested and there are natural injection operators
Iy : Vi1 — V4.

To define the intergrid transfer operator I, we denote by P; the vertex of T;_; and by
P;; the vertex of Ti. The vertex P; of Tj_; is a vertex of T, so we denote it by P;; in Ty as
shown in figure 3. The mid-point of the edge P;P; in 7 is a vertex of 75 and is denoted
by Pjjas shown in figure 3.

From the definition of V}, and the fact that V,_; C V}, we have

(P, = v(P), ifi=j
T LR +u(B)), i

Then we have
ap(lyw, [yw) = a_1(w,w), for all w € Vj_4 (6)

for any bilinear form ag(-,-) : Vi x Vi — R. We consider the following finite element
discretization equation of (1); Find u; € V; such that

aJ(UJ,UJ) = (f, UJ), for all vy € VJ. (7)

Let Ay (k=0,...,J) be the matrix representations of the form a(-,-) on Vi x V; with
respect to a certain discrete inner product (-, ). Define Py_q : Vi, — Vi1 by

(Ap—1Proqw, v)p—1 = (Agw, [v)g, forallv € Vi and w € Vj (8)
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and the restriction operator P | : V;, — Vi by
(P)w,v)p_1 = (w, [1v)g, forallv eV, ; and w € V.
Now the discretization (7) can be written in the above notation as
Ajuy = [, (9)

where f; is the vector representation of f. We describe the V-cycle multigrid algorithm of
(9). Let Ry be any smoothing operator such as the Jacobi and Gauss-Seidel iterations. Then
the V-cycle algorithm is defined as follows:

Multigrid Algorithm. Set By = Aal. For k > 1 define By, : Vi, — V. in terms of Bj_;
as follows. Let g € V.

1. Set 2 = 0.
2. Define z! for [ =1,...,m by 2! = 27! + Ry(g — Agx'™1).
3. Set Brg = 2™ + B 1P} (g — Apz™). O
From the definition of P,_1, we have
P) A=Ay 1Py
Let K;, = I — R, Aj.. Then we have, for m = 1,
(I — ByAp)x =[(I — Py_1) + (I — Br_1Ax_1)Pr_1| Ky,

For the convergence analysis of the multigrid algorithm, one needs to impose some conditions
on the smoother [4, 5, 12], i.e.

1. There is a constant C'r such that

(u, u)g

;) < Cp(Ryu,u)y, for all u € Vj, (C.1)
k

where R, = (I-K ZK k)Agl and )\ is the largest eigenvalue of A;. Here the superscript
“T” denotes the adjoint with respect to the inner product a(-,-).

2. Let Ty, = (I — Kj)Py. There exists a positive constant § < 2 independent of & such
that
ag(Tyu, Tru) < Oag(Tru,u) for all u € V. (C.2)

Then we have the well-known convergence theorem on the V-cycle multigrid algorithm
[12].

Theorem 3.1. Let V}, be the piecewise linear finite element space and let the intergrid
transfer operator I, satisfy (6), and let Ry be any smoother satisfying (C.1) and (C.2). Then
there exists a 6 < 1 such that the following estimation holds

la;(I — ByAj)v, (I — ByA;)v)| < 6%ay(v,v), for allv € V.
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Figure 4. Control volumes of non-overlapping (left) and overlapping (right) control volume. x:fine grid

vertices, o:coarse grid vertices.

Next, we consider the intergrid transfer operators based on the control volumes which
might not satisfy (6). It is easily verified that the piecewise constant finite dimensional
spaces Y} are non-nested, so we define the intergrid transfer operator @)} : i1 — Y}, by the
following volume based equations:

Nk_1

Ky N K3
Qiv(P) =" N‘ - v —u(P),
i=1 Zi:l |KP1-HKP|

where P is a node point of 7, and the P; are node points of 7;_;.
From the following relation of function spaces V}, and Y}, for all &

V% ——ZE—> }2

TI,: TQ;

Vk—1
Vier — Y

we define intergrid transfer operators I} : Vi_1 — Vj, as I} = 7,;1622%,1.
We consider the non-overlapping control volume based intergrid transfer operators ;" :
Vi—1 — Vj as in figure 4 (left). From the definition of the control volume, we have

Ni_1

S 1K N K = |G

i=1
and

e v(F;), ifi=j

]k7 U(}%j) = P .

aou(F;) + anv(Py) + apv(Py) + asv(Py),  if i # )

where ap + oy + s +a3 =1, ap = 0 for k =0,1,2,3, and Py and Pj are the vertex points
of triangles which have the vertexes P; and P;.

Remark 3.1. If @ is a center of triangle elements, then we easily see that I, is the same

operator with the natural injection operator I because as = a3 =0 and ag = a3 = %
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In the same way, we define the overlapping control volume based intergrid transfer op-
erators I, : Vi1 — V}, for the overlapping control volume as in figure 4 (right). Then we
have

ey = {10+ ot
LWw(P) +0(P)) + azo(Py) + ago(Py), ifi# j
where the P, in the case ¢« = j are the vertex of the triangles which have the vertex F;,
Yo =3, a;p 20, a0+ a3 =13, and ap >0 and ag > 0.

Remark 3.2. From the definition of I;"" and I;’°, we can easily see the boundedness of
the intergrid operators, i.e.,

ap(Liv, [;v) < Cag_q1(v,v) forallv e V. (10)

with the equivalence relation of the bilinear forms. In convergence theorems of the multigrid
method for the V-cycle in [5], the constant C' has to be less than two. But, the constant C'
can be estimated only for the special cases. The convergence of the multigrid method for the
W-cycle and the boundedness of the condition number of the variable V-cycle with these
intergrid operators can be proved in much the same way as in [5].

Now, we focus on a convergence analysis of the V-cycle multigrid method. For this
purpose, we adopt and use results by [12] who consider the case of the non-overlapping finite
volume element method with the natural injection Ij.

We consider the bilinear form aj (-, -) of the finite volume method as a perturbed bilinear
form of ax(-,-) on Vi x Vi. We denote the difference between the two bilinear forms by

dp(w,v) = ag(w,v) — ap(w,v) w,v € Vj,
and assume the perturbation condition
|di(w,v)] < Chyllwlh[lolly,  w,v eV, (P.1)
for a certain hy which depends on the problem.

Lemma 3.1. The bilinear forms a*(-,-) based on the non-overlapping and overlapping
control volumes satisfy the condition (P.1).

Proof. A proof for the non-overlapping FVM can be found in [12]. For the overlapping FVM,
we have

i (w,0)| < C Y hyfwh glvlx < Chiflwlllolly

KeTy
by Lemma 5.2 in [9] and the equivalence of the norms. O

Let A; be the matrix representation of a; with respect to (-,-)x. Then, in parallel with
ai(-,-), we define R; and K using A in place of Ax. These matrices R and K} are related
with a smoothing operator in the multigrid method and the assumption

|k (K — Kp)w, v)| < Chillwllal|vlla, w, v, € Vi, (P.2)

used and proved in [12].
We define P, : Vi, = Vi1 by

ay_1(Pr_jw,v) = ap(w, Iyv) for all w e Vi, v € Vi_;. (11)

Then we have the following Lemma and theorem (see [12]) for the multigrid method for
the FVE with the natural injections I; as the intergrid transfer operators.



10 K. S. Kang

Lemma 3.2. For w € Vi, v € Vi1, for all k > 1, we have
|a—1(P_yw,v) = ap-1(Pp1w, v)| < Chyllw|[1][v]]1.

Theorem 3.2. Assume the multigrid algorithm for the original problem (7) has the con-
vergence property given in Theorem 3.1. Suppose that the Ry, satisfy (P.2). Then there exists
an hg such that for all hy < hyg,

las (I — B5A%)v, (I — B5A%)v)| < (6%)%ay(v,v), for allv € Vy,

where 0 =6 +chy <1 and 6 is as in Theorem 3.1.
From now on, we consider the control volume based intergrid transfer operators ;. In
the same way, we define P;_, : Vi, — Vi1 by

ap—1(P;_jw,v) = ap(w, [;v) forallwe Vi, v e V. (12)

Remark 3.3. The operators P} _; in (11) and (12) are different. The multigrid operator
By is defined with smoother operator Ry, i.e.,

I—BiA,=[(I—-P; )+ (I— Br1Ax 1P} ))|K;.

So we don’t require the assumtion (P.2).

Then we have the following lemma for I} based on (non-overlapping and overlapping)
control volumes.

Lemma 3.3. For w € Vi, v € Vj_1, we have
@kt (Piy0,) = axo1 (Pecyw, 0)] < ChJlwlls ol (13)
based on (non-overlapping and overlapping) control volumes .
Proof. For w € V}, and v € Vj._1, we get

ap—1(Py_qw,v) — ap_1(Pr_1w,v) = ag(w, Ixv) — ax(v, [;v)
= ag(w, [yv) — aj(w, v) + ajp(w, [yv) — ai(w, [[v) + aj(w, [}v) — ap(w, [v)  (14)

= di(w, Iv) + ap(w, [yv) — ap(w, [;v) — di(w, I} v)

with the definition of P,_; in (8) and P}, in (12).
From the Lemma 3.1 and (10), we have

|di(w, Ixv) = di(w, Lv)| < Chyllw]1[[o]ls- (15)

From the facts .
o= / vde  and Q)° = —/ vdz,
K;;n 3 K;;o
we can extend the domain of @} to L? and have the following properties [9]; for any v €
H'Y(9Q),
o = Qxvllo < Challvlly, [l —wvllo < Chaflv]]1- (16)
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Let ¢ = y,_1v, then we have,

|ak(w, Iv) — ai(w, Iv)| = [b(w, q) — by (w, Qrq)]

= Z/ AVw - ng(P)do —
OK%

KLeTy

> [ ave-n@Q(Pie

KLeTy

=1> > / AVw -n(q — Qrq)ds
O(KpNK},)

Kp€eTy Kp €Tk

=1 > / V- AVw(q — Qzq)dx

* *
KpeTy Kp €T ¥ KPOER,

< OlAfsollwll1llg — Qrallo < Cllwl1||vr-—1v — Qrve-10]l0

From (16) and the boundedness of @)} on any Sobolev norms, we deduce

[Ve-1v — Qpyr—1vllo < [[v — h—1vllo + J[v — Qxvllo + [[Qrv — Qpyr—1v]lo
< COhg||v]ly + [J[v = e—1v]lo < Chy||v]]1,

ie.,
|ai(w, Irv) — ag(w, Iiv)| < Chy|wlli]o]- (17)

From (14), (15), and (17), we have (13). O

By using the Lemma 3.3, we can prove Theorem 3.2 for the multigrid method of the
bilinear form ag(-,-) with the intergrid transfer operator I. Futhermore, we know that
Theorem 3.2 is satisfied for the multigrid method of the bilinear form aj(-,-) with the
intergrid transfer operator I}.

4. Numerical results and scaling properties

In this section, we report numerical experiments on the convergence behavior of the finite
volume multigrid methods and the scaling properties on a high performance computer.

The HPC-FF machine was dedicated to the European Fusion community and located
at Jilich Supercomputing Centre (JSC), Germany. It was made by 1080 computer nodes
of two Intel Xeon X5570 (Nehalem-EP) quad-core processors with 24 GB memory (DDR3,
1066 MHz) and connected by Infiniband Mellanox ConnectX QDR HCA. So it had 8640
cores in total and 87.3 Tera Flops Linpack performance.

For numerical experiments, we consider three different triangles: a right triangle whose
circumcenter lies on the longest edge, a regular triangle whose circumstance and centroid
are coincident, and a general triangle. So we consider the three following triangulations; a
uniform right triangulation of the unit square domain as depicted in figure 5 (left), an uniform
regular triangulation of the regular hexagon domain as depicted in figure 5 (middle), and
an unstructured triangulation of the square domain as depicted in figure 5 (right). As test
problems, we choose A to be the identity matrix.

In the numerical experiment, we use two pre-and post-smoothings in the multigrid algo-
rithm. As a smoothing operator, we use the Gauss-Seidel iteration which is well-known and
simple to implement. In Section 3, we estimated an error reduction factor 0* with respect
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Figure 5. Domains and their triangulations: unit square(left), hexagon (middle), unstructured (right).

to the energy norm. But, we need to know the exact solution to get such error reduction
factor. Instead, we use a residual error r = b — Az which can be computed easily without
the exact solution in implementation. We consider an average error reduction factor d,,

8y = (HT"HO)R, r. =B — Ax,, fork=0,...,n.

I70llo

Also, we know that a required number of iterations n is related with the average error
reduction factor to reach a given relative residual error, i.e., ||r,|lo < 107%]|rolfo,

n = —101log d,,.

On each discretized domain, we consider three different solvers, the V-cycle multigrid
method as a solver (MG), the preconditioned conjugated gradient method (PCGM) with
the V-cycle multigrid preconditioner (CGM), and the preconditioned restart GMRES with
the V-cycle multigrid preconditioner (GMRES). The CGM method can only be used for
symmetric and positive definite systems and the PCGM has to use the energy norm and the
multigrid preconditioner has to be symmetrical. The GMRES method can be used for any
system which includes non-symmetric or non-positive definite systems, but it requires more
memory, so we use the restart GMRES method which does not guarantee convergence, but
converges for most of the problems.

Among many non-overlapping control volumes, we consider the circumcenter based con-
trol volume because the intergrid transfer operators with the centroid coincide with the
natural injections. We tested three intergrid transfer operators, namely, the natural injec-
tions I, the non-overlapping intergrid transfer operators I,”" with the circumcenter, and the
overlapping intergrid transfer operators Iy. For the discretization with regular triangula-
tion (for the regular hexagonal domain), two intergrid transfer operators Iy, and I, are the
same. So the results for only two intergrid transfer operators are reported for the hexagonal
domain. For the unit square domain, we have

v(F;), ifti=7
I"v(Py) = ¢ sv(B;) + 50(F;), if i # j and on edge with parallel to z- or y-axis
T0(PB) + 3u(Py) + sv(Py) + 3u(Py), if i # j and on slanted edge
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i.e., the same with the bilinear finite element multigrid on a square mesh. For the case with
same areas for all discretizations, such as the unit square domain and the regular hexagonal

domain, we have
Iou(P,) s0(P) 4+ > 5=v(Py), if i = j and m is the number of neighboring vertexes
V\L55) = e - .
EOT 3u(P) + Ju(P) + do(Pe) + Fu(Py), ifi#

We depict the average error reduction factor with the required number of iterations in
figure 6 and the solution times in figure 7. We use different symbols for three intergrid
transfer operators, i.e., the solid line for I, ¢ ¢ ¢ for I;”", and e e e for I,”°.

First, we depict the average error reduction factor according to the number of levels when
the finest level is fixed. The numerical results show that the required number of iterations
is bounded and does not increase rapidly. The non-overlapping covolume based intergrid
transfer operator I,”" has different behaviors depending on the triangulation, i.e., it gave
the best performance for the unit square domain, the same for the hexagon domain, and
the worst performance for the unstructured triangulation. I is better than the overlapping
covolume based intergrid transfer operator I,

Next, we investigated the weak scaling property of the multigrid method. It is hard
to fix the number of operations per core for the multigrid method because the number of
operations increases in different rates when the number of the degrees of freedom (DoF) of
the finest level is increased. So we considered its semi-weak scaling property, i.e., the number
of the DoF per core on the finest level is fixed. We tested a problem with 131,000 DoF per
core and depicted it in figure 7.

The solution times of the solvers with I;”" are the fastest on the unit square domain and
slower than the solvers with [ on the unstructured triangulation. The multigrid method
with I, is the slowest solver and has poorer weak scaling properties than with I and ;"
for all three cases. The numerical results in figure 7 show that the multigrid methods with
I, and I;”" have a good weak scaling property up to 1000 cores for all cases.

5. Conclusions

We considered two different intergrid transfer operators based on non-overlapping and over-
lapping control volumes on three different triangular meshes and compared with the one
based on the trial function space. The multigrid method with the intergrid transfer operator
based on the trial function space has the best convergence rate, except on the uniform mesh
on which the multigrid method with the non-overlapping control volume based intergrid
transfer operator has a better convergence rate. We also showed that the multigrid method
with these intergrid transfer operators has a good weak scaling property up to 1000 cores
for all cases.
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