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Even though neutrinos are neutral particles and interact only via the exchange of weak gauge
bosons, charged leptons and quarks can mediate a coupling to the photon field beyond tree level.
Inside a relativistically strong laser field nonlinear effects in the laser amplitude can play an impor-
tant role, as electrons and positrons interact nonperturbatively with the coherent part of the photon
field. Here, we calculate for the first time the leading-order contribution to the axial-vector–vector
current-coupling tensor inside an arbitrary plane-wave laser field (which is taken into account exactly
by employing the Furry picture). The current-coupling tensor appears in the calculation of various
electroweak processes inside strong laser fields like photon emission or trident electron-positron pair
production by a neutrino. Moreover, as we will see below, the axial-vector–vector current-coupling
tensor contains the Adler-Bell-Jackiw (ABJ) anomaly. This occurrence renders the current-coupling
tensor also interesting from a fundamental point of view, as it is the simplest Feynman diagram in
an external field featuring this kind of anomaly.

PACS numbers: 12.15.Lk,12.20.Ds,13.15.+g

I. INTRODUCTION

As different neutrino mass eigenstates exist [1–7], only
the lowest one is stable and all others can, in principle,
decay radiatively [8–13]. However, due to the smallness
of the available phase space and the Glashow-Iliopoulos-
Maiani (GIM) suppression mechanism (i.e. cancella-
tions between contributions from different fermion gener-
ations) [13, 14] the neutrino life time is much larger than
the age of the universe (the electromagnetic properties of
neutrinos in vacuum are discussed in [15–20]).

Nevertheless, a neutrino can emit photons inside strong
electromagnetic background fields, which catalyze the
decay. For example, strong magnetic fields encoun-
tered in various astrophysical situations substantially re-
duce the neutrino life time [21–27] (see also [28], where
the Coulomb field has been investigated). Inside back-
ground fields also the production of electron-positron
pairs – which is not possible in vacuum due to energy-
momentum conservation – is feasible under certain cir-
cumstances [29–35].

Moreover, neutrino properties like their mass and their
magnetic moment are modified by electromagnetic back-
ground fields [36–38]. Implications for neutrino oscilla-
tions have been studied in [39–42] and the possibility for
spin light has been pointed out in [43, 44].

The presence of electromagnetic background fields
could also be exploited to create neutrinos, e.g. via pho-
ton splitting [45–47], scattering [48–50] or the trident pro-
cess [51] (for a review of electroweak processes in electro-
magnetic background fields see [52, 53]).

It is an interesting question whether the emission of
photons by neutrinos or other processes like electron-
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positron pair production could be investigated in a lab-
oratory experiment using high-power lasers (see Fig. 1).
To shed light on the feasibility of this idea, the special
case of a circularly polarized, monochromatic plane-wave
laser field has been analyzed in [55–57] (see also [58]). As
lasers field are naturally produced with linear polariza-
tion and the hightest intensities can only be achieved
by using short laser pulses, it is desirable to generalize
these results accordingly. In the present paper we will
therefore consider a plane-wave laser field with arbitrary
polarization and pulse shape.

Inside plane-wave laser fields the probability for a neu-
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FIG. 1. a) Photon emission and b) trident electron-positron
pair production by a neutrino inside a strong, plane-wave
laser field (mediated by the neutral current, i.e. Z boson
exchange). For an electron neutrino also the charged current
must be taken into account (W boson exchange, see Fig. 4).
c) The total trident pair-production probability is related to
the imaginary part of the neutrino self-energy diagram (see
e.g. [30, 54] for details). The double lines denote here elec-
tron and positron states, which are dressed by the laser field
(time axis from right to left).
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trino process depends primarily on the laser intensity and
the neutrino energy. A convenient gauge- and Lorentz-
invariant measure for the laser field strength is given by
the parameter ξ = |e|E0/(mωc), where E0 is the elec-
tric field amplitude and ω the central angular frequency
of the laser (e < 0 and m denote the electron charge
and mass, respectively). In the regime ξ & 1 the in-
teraction between the background field and the electron
and the positron, must be taken into account exactly by
solving the Dirac equation in the presence of the back-
ground field [59–63]. For a plane-wave field this is pos-
sible analytically and one obtains the Volkov states as
single-particle states [64, 65]. Working in momentum
space, the only necessary modification of the Feynman
rules is the replacement of the free vertex by the so-
called dressed vertex (i.e. −ieγµ → Γµ for QED; see
App. A and e.g. [63, 66] for more details). Unlike in vac-
uum, four-momentum is conserved only up to a multiple
of the laser four-momentum at the dressed vertex, which
changes the kinematics of the processes.

It is well known that for ξ � 1 the formation region
for single-vertex processes primed by the laser field is
much smaller than the laser wavelength, such that the lo-
cal constant-crossed field approximation is applicable [59,
62]. Therefore, the case of a constant-crossed background
field (studied e.g. in [30, 57, 67, 68]) is particularly in-
teresting and provides the order of magnitude for the ex-
pected probabilities. Inside a constant-crossed field the
probability depends nontrivially only on the quantum-
nonlinearity parameter χ = (2Eν/mc

2)(E0/Ecr), where
Eν denotes the energy of the incoming neutrino and
Ecr = m2c3/(~|e|) = 1.3 × 1016 V/cm the critical field
strength of QED [69–71] (the expression of χ given here
assumes a head-on collision and neglects the neutrino
mass).

As the nonlinear-quantum parameter is inversely pro-
portional to the cube of the electron (positron) mass
(χ ∼ m−3), nonlinear quantum effects caused by muon or
tau leptons are strongly suppressed for reasonable param-
eters and ignored here. Correspondingly, the symmetry
between different lepton generations is broken and the
GIM mechanism does not apply. Furthermore, the laser
provides additional energy and momentum to the reac-
tion, which enlarges the available phase space. Due to
these two reasons the probability for photon emission by
neutrinos inside a plane-wave field is strongly enhanced
in comparison with the vacuum case (note that the laser
field also affects tree-level processes like the decay of a
muon [72, 73]). Nevertheless, since the enhancement is
primed by an electromagnetic exchange of photons be-
tween an electron/positron loop and the laser, we ex-
pect that the probabilities for nonlinear neutrino pro-
cesses inside laser fields still contain the suppression fac-
tor (m/MZ,W )4 ∼ 10−20 and an experimental observa-
tion is challenging (MZ ≈ 91 GeV and MW ≈ 80 GeV
denote the mass of the Z and the W boson, respectively
[1]).

By combining accelerator-based neutrino beams with

γ5γµ γν
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a) Current-coupling tensor Tµν5 (q1, q2)

γµ γν

q1 q2

b) Polarization tensor Tµν(q1, q2)

FIG. 2. a) The leading-order Feynman diagram for the cou-
pling between the vector current (γµ-vertex) and the axial-
vector current (γ5γµ-vertex), see Eq. (14). b) The current-
coupling tensor Tµν5 (q1, q2) is closely related to the polariza-
tion tensor Tµν(q1, q2), which was considered e.g. in [66, 88–
92], see Eq. (13). Solid lines indicate fermions, double lines
Volkov states (which take the plane-wave background field ex-
actly into account), wiggly lines photons and dashed lines the
axial-vector current.

energies in the GeV range [74–83] with strong optical
lasers (ξ ∼ 102−3) [84–87], the nonlinear quantum regime
χ & 1 could be entered, where also the production of real
electron-positron pairs via the trident process becomes
feasible [29–35]. As the energy and momentum required
to bring the electron-positron pair on shell are provided
by the laser field, the probability for trident pair produc-
tion even exceeds the one for photon emission if χ & 1
(the corresponding Feynman diagram contains only two
interaction vertices, see Fig. 1).

In order to calculate the probability for neutrino pho-
ton emission or trident pair production (via the opti-
cal theorem), the coupling between the vector current
(γµ-vertex) and the axial-vector current (γ5γµ-vertex)
described by the tensor Tµν5 (q1, q2) must be determined
(see Fig. 2). For a constant background field it has been
investigated in [93–100]. In the present paper an arbi-
trary plane-wave laser field is considered as background
field (see Sec. II B) and a triple-integral representation
for Tµν5 (q1, q2) is derived, which can be transformed into
a double-integral representation using the relations given
in [54]. Special attention is payed to the Ward-Takahashi
identity, which contains a contribution due to the Adler-
Bell-Jackiw (ABJ) anomaly (see Fig. 3) [101, 102]. The
anomalous term is calculated explicitly by applying a
suitable regularization procedure.

The present paper is organized as follows: In Sec. II
the interaction between neutrinos and photons inside
a plane-wave background field is considered and it is
shown how the axial-vector–vector current-coupling ten-
sor Tµν5 (q1, q2) (see Fig. 2) appears naturally in the elec-
troweak sector of the standard model if plane-wave back-
ground fields are taken into account. The calculation
of Tµν5 (q1, q2) is then presented in Sec. III, followed by a
detailed discussion of the ABJ anomaly in Sec. IV. Subse-
quently, various important special cases like a constant-
crossed and a circularly polarized, monochromatic field
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a) Anomalous triangle diagram
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b) Leading-order expansion in the external field

FIG. 3. a) The axial-vector anomaly in vacuum QED is
caused by the triangle diagram. b) As for weak external
fields Aµ(φ) (denoted by ⊗) the leading-order field-dependent
contribution to the current-coupling tensor Tµν5 (q1, q2) [see
Eq. (14)] corresponds to the triangle diagram, one also ex-
pects an anomalous term in the Ward-Takahashi identity for
Tµν5 (q1, q2) [see Eq. (45)]. Here, solid lines indicate the vac-
uum states and double lines dressed Volkov states for the
charged fermions, wiggly lines photons and dashed lines the
axial-vector current.

are considered in Sec. V and compared with known ex-
pressions from the literature. Finally, summary and con-
clusions are provided in Sec. VI.

From now on we use natural units ~ = c = 1 and
Heaviside-Lorentz units for charge [α = e2/(4π) ≈ 1/137
denotes the fine-structure constant], the notation agrees
with [66].

II. NEUTRINO-PHOTON INTERACTIONS
INSIDE STRONG LASER FIELDS

As neutrinos are neutral particles, their interaction
with photons must be mediated by loop diagrams which
contain electrically charged particles (see Fig. 4). At the
loop level the quantization of the electroweak sector of
the standard model involves “unphysical” degrees of free-
dom, i.e. particles which appear only in loops but not as
free, asymptotic states [103, 104]. These are the unphysi-
cal scalar Higgs particles, present if the calculation is per-
formed in a renormalizable gauge (from the Higgs dou-
blet, which consists of four scalar fields, only one degree
of freedom corresponds to the physically observable Higgs
particle) and the Feynman-Faddeev-Popov ghosts, which
appear in the quantization of a nonabelian gauge the-
ory [105, 106]. Therefore, the complete set of Feynman
rules for the electroweak sector of the standard model
after symmetry breaking is rather large [107–110]. For-
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a) Z boson exchange b) W boson exchange

νν

γ

c) Local limit (Fermi description)

FIG. 4. Neutrino-photon interaction vertex. a) The electron-
positron loop interacts via the neutral current with all neu-
trino flavor states. b) Electron neutrinos also couple via the
charged current to electrons and positrons. c) In the local
limit (exchanged momentum much smaller than the weak
gauge-boson mass) the effective four-point Fermi interaction
is obtained. The double lines denote dressed electron and
positron states which take into account exactly the laser field
(time axis from right to left).

tunately, the leading-order contribution (with respect to
the electroweak mass scale) to the neutrino-photon cou-
pling inside a plane-wave background field is given by
only two diagrams, which are shown in Fig. 4 (see also
[17, 57]).

Due to the existence of neutrino oscillations we know
that neutrinos have a finite mass [1–7, 111]. The left-
handed neutrino mass eigenstates νrL (r = 1, 2, 3) are re-
lated by the unitary Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix Uαr (which is also simply called neu-
trino mixing matrix) ναL = Uαr νrL [1, 112–114] to the
left-handed flavor neutrino eigenstates ναL (α = e, µ, τ).
As neutrinos are produced via the charged current as
left-handed flavor eigenstates, the nature of their right-
handed component (required for the construction of a
mass term in the Lagrangian) is not determined so far,
i.e. the neutrino could be either a Dirac or a Majorana
particle. At high energies, however, the neutrino mass
can usually be neglected and with a reasonable experi-
mental precision it is not possible to distinguish between
Dirac and Majorana neutrinos. Correspondingly, we can
assume in the following that the neutrino is a massless,
left-handed Dirac particle as originally postulated in the
standard model.

A. Lagrangian density

After electroweak-symmetry breaking the Lagrangian
density, which describes the interaction between the pho-
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ton field Aµ and the various fermion fields ψf , is given
by [1, 104]

LEM
L = eAµJµEM,

JµEM = −ψ̄eγµψe +
2

3
ψ̄uγ

µψu −
1

3
ψ̄dγ

µψd + . . .
(1)

[the index f = e, µ, τ, . . . labels the type of fermion field
(quarks and leptons), Dirac spinor indices are suppressed
(note that we use the convention e < 0)]. Correspond-
ingly, we obtain

LZ
L = − g

2 cos θW
ZµJ

µ
Z ,

JµZ = ψ̄f
[
g(f)
v γµ + g(f)

a γµγ5
]
ψf

(2)

for the interaction with the Z boson field Zµ. Here g = g2

and g′ = g1 = g tan θW are the fundamental coupling
constants for weak isospin and hypercharge, respectively,
which are (after the symmetry breaking) related to the
electron charge e and the Fermi constant GF by −e =
g sin θW and GF = (g2

√
2)/(8M2

W ) ≈ 1.17×10−5 GeV−2,
respectively (at tree level the gauge-boson masses obey
MW = MZ cos θW , θW is called the weak mixing or

Weinberg angle). The constants g
(f)
v and g

(f)
a depend

on the type of fermion. For the charged leptons we ob-

tain g
(e,µ,τ)
v = −1/2 + 2 sin2 θW and g

(e,µ,τ)
a = −1/2,

for the (massless) neutrinos g
(νe,νµ,ντ )
v = g

(νe,νµ,ντ )
a =

1/2 and for the quarks g
(u,c,t)
v = 1/2 − (4/3) sin2 θW

g
(d,s,b)
v = −1/2 + (2/3) sin2 θW , g

(u,c,t)
a = −g(d,s,b)

a = 1/2
[note that we use the same notation for γ5 as in [65]
and [104], i.e. the projection operators PL for the left-
handed and PR for the right-handed component are given
by PL = (1 + γ5)/2 and PR = (1− γ5)/2, respectively].

Finally, the Lagrangian density, which describes the
interaction between the complex W boson field W+

µ [the

plus is part of the symbol name, we also define W−µ =

(W+
µ )†] and the first lepton generation can be written as

LW
e = − g

2
√

2
[W+

µ J
µ
W,e +W−µ (JµW,e)

†],

JµW,e = ψ̄νeγ
µ(1 + γ5)ψe.

(3)

From Eqs. (1)-(3) one obtains the interaction vertices
between the fermions and the electroweak gauge fields of
the standard model [104, 107]; they contain both vector
(γµ) and axial-vector (γµγ5) couplings.

After quantization the propagators for the weak gauge
bosons are (in position space and Feynman gauge) given
by [104]

iGµνZ,W (x− y)

=

∫
d4p

(2π)4

−igµν

p2 −M2
Z,W + i0

e−ip(x−y). (4)

If the exchanged momenta are much smaller than the
weak mass scale MZ,W ∼ 100 GeV, one can neglect the

momentum dependence in the denominator in Eq. (4)
(local limit). After taking the momentum integrals, the
propagators are then given by

iGµνZ,W (x− y) = i
gµν

M2
Z,W

δ4(x− y) (5)

(see Fig. 4c). Physically, this means that the Z and the
W boson are too heavy to propagate a significant dis-
tance and we obtain essentially Fermi’s description for
the weak force [115, 116].

B. Plane-wave background fields

In the following we will consider an external plane-wave
laser field described by the field tensor

Fµν(φ) = ∂µAν(φ)− ∂νAµ(φ) =
∑
i=1,2

fµνi ψ′i(φ), (6)

φ = kx (the prime denotes the derivative with respect to
the argument). Here, Aµ(φ) denotes the four-potential
and

fµνi = kµaνi − kνa
µ
i , (7)

fµi ρf
ρν
j = −δija2

i k
µkν , kµf

µν
i = 0 (8)

(k2 = kai = a1a2 = 0). We also introduce the integrated
field tensor

Fµν(φ) =

∫ φ

−∞
dφ′ Fµν(φ′) =

∑
i=1,2

fµνi ψi(φ). (9)

Correspondingly, the scalar functions ψi(φ) describe the
shape of the laser field. They are arbitrary (differen-
tiable) functions, restricted only by the physical require-
ment that the external field is of finite extent and has no
dc component [i.e., ψi(±∞) = ψ′i(±∞) = 0, with ψi(φ),
ψ′i(φ) vanishing fast enough at infinity]. Furthermore,
we assume (without restriction) that |ψi(φ)| , |ψ′i(φ)| . 1.
This implies that the field strength is measured by the
following (classical) intensity parameters

ξi =
|e|
m

√
−a2

i . (10)

Calculations with plane-wave background fields become
particularly transparent if light-cone coordinates are used
[63, 117, 118]

v− = vk, v+ = vk̄, vI = ve1, vII = ve2 (11)

(vµ is an arbitrary four-vector, I and II are also summa-
rized as ⊥). Here, we require that the four four-vectors
kµ, k̄µ, eµ1 and eµ2 form a light-cone basis [see App. C and
Eq. (32) of Ref. [66] and Ref. [119]].

More details can be found in Refs. [60–63] and in the
recent review articles [59, 120–123].
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C. Z boson exchange

In the local limit the matrix element for the emission of
a photon with four-momentum qµ and polarization four-
vector εµ by a neutrino due to Z boson exchange (see
Fig. 4a) is given by [25]

iMZ(p′, q; p) =
2GF√

2
ūν,p′γµPLuν,p

× 1

e

[
g(e)
v Tµν(p− p′, q) + g(e)

a Tµν5 (p− p′, q)
]
ε∗ν (12)

(we use the same conventions for matrix elements as in
[54]). Here uν,p and uν,p′ are the Dirac spinors for the in-
coming neutrino with four-momentum pµ and the outgo-
ing neutrino with four-momentum p′µ, respectively. Fur-
thermore, Tµν(q1, q2) denotes the polarization tensor (see
Fig. 2 and [66, 88–92])

Tµν(q1, q2) =

∫
d4p d4p′

(2π)8
tr Γµ(p′, q1, p)

× /p+m

p2 −m2 + i0
Γν(p,−q2, p

′)
/p
′ +m

p′2 −m2 + i0
(13)

and Tµν5 (q1, q2) the axial-vector–vector current-coupling
tensor

Tµν5 (q1, q2) =

∫
d4p d4p′

(2π)8
tr Γµ(p′, q1, p)γ

5

× /p+m

p2 −m2 + i0
Γν(p,−q2, p

′)
/p
′ +m

p′2 −m2 + i0
, (14)

which will be calculated in Sec. III [the final result is given
in Eq. (58); for the definition of the dressed vertex Γµ

see App. A]. Note that Tµν5 (q1, q2) is actually a pseudo-
tensor and that in our definition the electron charge e is
taken as the coupling constant for both vertices [this is
the reason for the prefactor 1/e appearing in Eq. (12)].

Furthermore, the appearance of g
(e)
v and g

(e)
a in Eq. (12)

is related to the electron-positron loop and is independent
of the neutrino species which interacts with the photon.

Despite the fact that the electron and the positron are
the lightest charged fermions, also the muon, the tau and
the various quarks contribute to the loop which couples
the photon with the Z boson (see Fig. 4a). To calcu-
late the contribution of the other charged fermions to
this loop, the electron (positron) mass and charge ap-
pearing in 1

eT
µν(q1, q2) and 1

eT
µν
5 (q1, q2) must be re-

placed accordingly and the Z boson coupling constants

g
(e)
v,a → g

(f)
v,a adjusted. As discussed in the introduction,

the nonlinear interaction with the background field can
be neglected for fermions with a mass well above the
electron (positron) scale (for reasonable field strengths of
the background field). However, the contribution of all
fermions in each generation is needed for the cancellation
of the axial-vector anomaly. As the anomalous contribu-
tion to 1

eT
µν
5 (q1, q2) is independent of the fermion mass

and proportional to the square of the electric charge [at
one loop in the presence of a plane-wave, see Eq. (55)],
this cancellation (for each fermion generation) can be
seen from the relation

1

2

[
− (−1)2 + 3 (2/3)

2 − 3 (−1/3)
2 ]

= 0 (15)

(all gauge-symmetry anomalies must cancel in the stan-
dard model, otherwise it would be nonrenormalizable
[124]).

D. W boson exchange

For electron neutrinos also the exchange of a W boson
contributes to the photon-emission matrix element (see
Fig. 4b). Applying the local limit for the W boson prop-
agator, we obtain the following expression for the matrix
element

iMW (p′, q; p) =
4GF√

2

∫
dp4

1dp
4
2

(2π)8

∫
d4x e−i(p−p

′)x

× ūν,p′γρPLMν(p1, p2, q;x)ε∗ν γρPLuν,p, (16)

where

Mν(p1, p2, q;x) = iEp1,x
/p1

+m

p2
1 −m2 + i0

× Γν(p1,−q, p2)
/p2

+m

p2
2 −m2 + i0

Ēp2,x. (17)

Using the identities given in App. B for an arbitrary 4×4
matrix Γ in spinor space, we obtain

γρPLΓγρPL = −2rµγ
µPL, (18)

where

rµ = 1
2 trPRγµΓ = 1

2 tr γµPLΓ. (19)

Therefore, we can write the matrix element for the W
boson exchange diagram as [see Eq. (16)] [25]

iMW (p′, q; p) =
2GF√

2
ūν,p′γµPLuν,p

× 1

e

[
Tµν(p− p′, q) + Tµν5 (p− p′, q)

]
ε∗ν (20)

(note that it only contributes for electron neutrinos). In
the local limit it has the same structure as the one for
the Z boson exchange given in Eq. (12). The anomaly,
however, must drop also for this diagram if one first per-
forms the calculations by employing the full W boson
propagator in Eq. (4) [25].

III. CURRENT-COUPLING TENSOR

In the previous section it was shown how the axial-
vector–vector current-coupling tensor Tµν5 (q1, q2) (see
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Fig. 2) arises in the calculation of neutrino-photon in-
teractions inside strong laser fields. Now, we will exam-
ine Tµν5 (q1, q2) closer and derive a compact triple-integral
representation for it. After applying the Feynman rules
[59–63], we obtain the following expression [see Eq. (14)]

Tµν5 (q1, q2) =

∫
d4p d4p′

(2π)8
tr Γµ(p′, q1, p)γ

5

× /p+m

p2 −m2 + i0
Γν(p,−q2, p

′)
/p
′ +m

p′2 −m2 + i0
(21)

(for the definition of the dressed vertex Γρ see App. A).
Note that Tµν5 (q1, q2) is equivalent to the tensor

T̃µν5 (q1, q2) =

∫
d4p d4p′

(2π)8
tr Γµ(p′, q1, p)

× /p+m

p2 −m2 + i0
Γν(p,−q2, p

′)γ5 /p
′ +m

p′2 −m2 + i0
, (22)

which is obtained by interchanging the vector-

and the axial-vector current vertex [T̃µν5 (q1, q2) =
T νµ5 (−q2,−q1)].

The current-coupling tensor Tµν5 (q1, q2), which we con-
sider here, differs from the polarization tensor Tµν(q1, q2)
[see Eq. (13)] only by the insertion of γ5 (i.e. by the
trace). Hence, the calculation of Tµν5 (q1, q2) is related to
the one of Tµν(q1, q2) carried out in [66] and we will focus
here mainly on the differences between both derivations.
At first sight one may think that the small modification
of the trace should only affect the technical details of the
calculation. However, it is responsible for several impor-
tant qualitative changes like the appearance of the ABJ

anomaly in Tµν5 (q1, q2), which we will discuss now in de-
tail.

An important consequence of the additional γ5 in the
trace of Tµν5 (q1, q2) is the fact that only an odd number of
couplings to the background field are allowed if the back-
ground field is treated perturbatively (this follows from a
generalization of Furry’s theorem, see e.g. [125]; for the
polarization tensor only an even number of couplings is
possible). Accordingly, the tensor structure of Tµν5 (q1, q2)
is different from thatof Tµν(q1, q2) [see Eq. (54)] and the
vacuum contribution to Tµν5 (q1, q2) vanishes (see Fig. 3).
Furthermore, we will see that no infinities are encoun-
tered and Tµν5 (q1, q2) does not need to be regularized.

In order to determine Tµν5 (q1, q2) we insert the
dressed vertex (see App. A) into Eq. (14) [we will de-
note the vertex integrals associated with Γµ(p′, q1, p)
and Γν(p,−q2, p

′) by d4x and d4y, respectively] and ob-
tain

Tµν5 (q1, q2) = 4 (−ie)2

∫
d4p d4p′

(2π)8

∫
d4xd4y

×
1
4 tr

[
· · ·
]µν
5

(p2 −m2 + i0)(p′2 −m2 + i0)
eiST , (23)

where

iST = i(p′ − p− q1)x+ i(p− p′ + q2)y

+ i

∫ kx

ky

dφ′
[
epµp

′
νF

µν(φ′)
(kp)(kp′)

+
e2(kp− kp′)
2(kp)2(kp′)2

pµp
′
νF

2µν(φ′)

]
(24)

and the trace in Eq. (23) is given by

1

4
tr
[
· · ·
]µν
5

=
1

4
tr
[
γαa

αµ + iγαγ
5bαµ

]
γ5(/p+m)

[
γβc

βν + iγβγ
5dβν

]
(/p
′ +m) = im2[(bαµc ν

α )− (aαµd ν
α )]

− i(pp′)[(aαµd ν
α ) + (bαµc ν

α )] + i(pαp
′
β + pβp

′
α)(bαµcβν + aαµdβν)− iερσαβpρp′σ(bαµdβν − aαµcβν), (25)

where

aαµ = Gαµ(kp′, kp; kx), cβν = Gβν(kp, kp′; ky),

bαµ = Gαµ5 (kp′, kp; kx), dβν = Gβν5 (kp, kp′; ky)
(26)

[the additional γ5 in Eq. (25) exchanges the vector and
the axial-vector current in comparison with the polariza-
tion tensor].

Next, we employ the proper time parametrization for
the propagators

1

p2 −m2 + i0

1

p′2 −m2 + i0
= (−i)2

∫ ∞
0

ds dt

× exp
[
i(p2 −m2 + i0)s+ i(p′2 −m2 + i0)t

]
(27)

(the pole prescription i0 will be dropped in the exponents
and can be restored by substituting m2 → m2 − i0). In
the final representation we change the proper-time inte-
grals in the following way∫ ∞

0

ds dt f(s, t) =
1

2

∫ +1

−1

dv

∫ ∞
0

dτ τ f̃(τ, v) (28)

(note that terms odd in v in the resulting function f̃(τ, v)
can be dropped), where

τ = s+ t, v =
s− t
s+ t

, µ =
st

s+ t
=

1

4
τ(1− v2). (29)

After including the parametrization (27) in Eq. (23) and
by adding the source terms ipµj

µ+ip′µj
′µ to the resulting
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phase in the same equation, we apply the replacements

pµ −→ (−i)∂µj , p′µ −→ (−i)∂µj′ (30)

to the trace given in Eq. (25), use modified light-cone
coordinates [see Eq. (C11) in [66]] and define

λµ = − m(kq)

(kp)(kp′)

∑
i=1,2

ξiΛ
µ
i

∫ kx

ky

dφ′ ψi(φ
′),

Λ = − m2(kq)

2(kp)(kp′)

∑
i=1,2

ξ2
i

∫ kx

ky

dφ′ ψ2
i (φ′),

(31)

Ii = − 1

2kqµ

∫ kx

ky

dφ′ ψi(φ
′),

Ji = − 1

2kqµ

∫ kx

ky

dφ′ ψ2
i (φ′)

(32)

(see App. C for more details). Finally, we obtain the
following structure for the current-coupling tensor

Tµν5 (q1, q2) = 4(−ie)2

∫
d4p d4p′

(2π)8

∫
d4xd4y

× (−i)2

∫ ∞
0

dsdt
1

4
tr[· · · ]µν5 eiS

′
T , (33)

where the full phase including the proper-time exponents
and the source terms is given by

S′T = S̃T + pµj
µ + p′µj

′µ,

S̃T = (p2 −m2)s+ (p′2 −m2)t+ ST
(34)

(if no explicit argument is present, the prime is a part
of the symbol name and does not indicate a derivative).
After taking most of the integrals we obtain the result
[see Eq. (64) in [66]]

Tµν5 (q1, q2) = −2iπe2 δ(−,⊥)(q1 − q2)

∫ ∞
0

ds dt

×
∫ +∞

−∞
dx−

1

(s+ t)2

1

4
tr [· · ·]µν5 eiS

′
T

∣∣∣
j=j′=0

, (35)

where x− = kx = φ and the trace is given in Eq. (25)
with the replacement in Eq. (30) and

iS′T = i
[
(q+

2 − q
+
1 )x− −m2(s+ t) +

st

s+ t
q2
2

− 1

s+ t
(t q2j − s q2j

′)− 1

4(s+ t)
(j + j′)2

− 1

2(s+ t)
(j + j′)λ− 1

4(s+ t)
λ2 +Λ

]
(36)

[note that, since no confusion can arise, we use the same
symbol for the phase before and after the mentioned in-
tegrals are taken, see Eqs. (33) and (34) and Eqs. (35)
and (36)].

Due to the momentum-conserving delta functions in
Eq. (35) we will simply write qµ whenever qµ1 and qµ2 can
be used interchangeably.

To obtain a symmetric expression with respect to the
external momenta qµ1 and qµ2 we will perform below the
shift

z− = x− + µq− (37)

and use z− as integration variable.

A. Ward-Takahashi identity

According to Noether’s theorem the gauge invariance
of the QED Lagrangian implies electric charge conserva-
tion. More specifically, if the spinor field ψ(x) obeys the
Dirac equation

[i/∂ − e /A(x)−m]ψ(x) = 0 (38)

[here Aµ(x) denotes the classical background field], the
vector current is conserved

∂µj
µ(x) = 0, jµ(x) = ψ̄(x)γµψ(x). (39)

After changing to momentum space

jµq =

∫
d4x e−iqxjµ(x), (40)

the current conservation law is expressed by∫
d4x e−iqx[∂µj

µ(x)] = iqµj
µ
q = 0. (41)

Therefore, one expects that the polarization tensor
Tµν(q1, q2) obeys the following homogeneous Ward-
Takahashi identity

q1µT
µν(q1, q2) = 0, Tµν(q1, q2)q2ν = 0, (42)

which is indeed the case [66].
Correspondingly, the divergence of the axial-vector

current

jµ5 (x) = ψ̄(x)γµγ5ψ(x) (43)

should be given by

∂µj
µ
5 (x) = 2mi ψ̄(x)γ5ψ(x). (44)

After applying Eq. (A9) to the definition of Tµν5 (q1, q2)
[see Eq. (14)] we obtain the following Ward-Takahashi
identity for the tensor Tµν5 (q1, q2)

q1µT
µν
5 (q1, q2) = T ν5 (q1, q2) + Tν5(q1, q2),

Tµν5 (q1, q2)q2ν = −Tµ5 (−q2,−q1),
(45)

where we defined

T ν5 (q1, q2) = 2m

∫
d4p d4p′

(2π)8
tr I(p′, q1, p)γ

5

× /p+m

p2 −m2 + i0
Γν(p,−q2, p

′)
/p
′ +m

p′2 −m2 + i0
(46)
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and the so-called anomalous contribution

Tν5(q1, q2) =

∫
d4p d4p′

(2π)8

×
[
tr Γν(p,−q2, p

′)I(p′, q1, p)γ
5 /p+m

p2 −m2 + i0

− tr I(p′, q1, p)Γ
ν(p,−q2, p

′)γ5 /p
′ +m

p′2 −m2 + i0

]
.

(47)

Furthermore, we introduced the dressed scalar vertex
I(p′, q, p) [see Eq. (A4)].

Based on Eq. (44) one expects that the anomalous con-
tribution to the Ward-Takahashi identity vanishes. If
the relations given in Eq. (A10) are formally applied to
Eq. (47) as in Sec. II.E of [66], it looks like this is re-
ally the case. However, a closer analysis reveals that
the intermediate expressions are divergent and the re-
quired formal manipulations cannot be justified. In fact,
as shown in Sec. IV, the anomalous contribution does not
vanish and is given by

Tν5(q1, q2) = −iπe2δ(−,⊥)(q1 − q2)

× 4e

∫ +∞

−∞
dx− ei(q

+
2 −q+

1 )x− qµF
∗µν(kx). (48)

The phenomenon that quantum fluctuations can spoil the
results expected from the classical symmetries of the La-
grangian has first been observed in [101, 102] and, as
we have mentioned, is known as ABJ anomaly (see also
[126–128], [129] for a discussion using the Feynman path
integral and e.g. [60, 130, 131] for a textbook discussion).

Unlike the anomalous contribution the calculation of
T ν5 (q1, q2) [see Eq. (46)] is much less involved. Due to
the identity [see Eq. (A4)]

I(p′, q, p)γ5

= −ie
∫
d4x

(
γ5 − 1

2
G3F

∗ρσ
x iσρσ

)
eiSΓ(p′,q,p;x) (49)

we only have to change the trace in Eq. (25) to

1

4
tr
[
· · ·
]ν
5

=
1

4
tr 2m

(
γ5 − 1

2
G3F

∗ρσ
x iσρσ

)
× (/p+m)

(
γβc

βν + iγβγ
5dβν

)
(/p
′ +m)

= 2im2
[
(p− p′)βdβν +G3(p− p′)αF∗xαβcβν

−G3(p+ p′)αFxαβd
βν
]
. (50)

Since the action of the derivatives on kj and kj′ gives
no contribution, we obtain the replacement rules [see
Eq. (30)]

pµ −→ (−i)∂µj −→ −
1

s+ t

(
tqµ2 +

1

2
λµ
)
,

p′µ −→ (−i)∂µj′ −→
1

s+ t

(
sqµ2 −

1

2
λµ
)
,

(51)

implying

(p− p′)µ −→ −qµ2 , (p+ p′)µ −→ vqµ2 −
1

τ
λµ. (52)

After applying them and noting that terms linear in v
vanish [see Eq. (28)], we can replace the trace in Eq. (50)
by

1

4
tr
[
· · ·
]ν
5
−→ 2im2G3

[
(F∗xq)

ν − (F∗yq)
ν
]

(53)

for the calculation of T ν5 (q1, q2) [see Eq. (46)].

B. Tensor structure

Due to the inhomogeneous Ward-Takahashi identity
[see Eq. (45)] the tensor structure of Tµν5 (q1, q2) is
more complicated than that of the polarization tensor
Tµν(q1, q2). Using the complete sets qµ1 , Qµ1 , Λ∗µ1 , Λ∗µ2
and qν2 , Qν2 , Λ∗ν1 , Λ∗ν2 (see App. C for more details) we
obtain the following expansion

Tµν5 = Tµν5 + d1Λ∗µ1 Λ∗ν2 + d2Λ∗µ2 Λ∗ν1 + d3Λ∗µ1 Λ∗ν1
+ d4Λ∗µ2 Λ∗ν2 + d5Qµ1Qν2 + d6Qµ1 Λ∗ν1
+ d7Qµ1 Λ∗ν2 + d8Λ∗µ1 Qν2 + d9Λ∗µ2 Qν2

+ d10q
µ
1 Λ∗ν1 + d11q

µ
1 Λ∗ν2 + d12q

µ
1Qν2 , (54)

where Tµν5 (q1, q2) contains the contribution from the
anomaly, i.e. [see Eq. (48)]

Tµν5 (q1, q2) = −iπe2δ(−,⊥)(q1 − q2) 4e

∫ +∞

−∞
dx−

× ei(q
+
2 −q+

1 )x− 1

kq
[kµ(qF ∗)ν(kx) + (qF ∗)µ(kx)kν ] .

(55)

As expected from Furry’s theorem [125], the coefficients
d1 − d5 and d12 (which contain an even power of the
external field tensors fµνi ) vanish and only d6 − d11 are
different from zero.

C. Determination of the coefficients

Having determined the contraction of Tµν5 (q1, q2) with
qµ1 and qµ2 explicitly, we can restrict us to the contrac-
tion from the set k, Λ∗1 and Λ∗2 (or alternatively k, Λ1

and Λ2, see App. C) if we analyze the general trace given
in Eq. (25). This means that, in order to complete the
calculation of Tµν5 (q1, q2), we can ignore the action of
the derivatives on kj and kj′ and also terms in the trace
which are e.g. proportional to Fµν , F∗µν , F2µν , (FF∗)µν ,
(F∗F)µν , F2µρvρ, vρF

2ρν , where vµ is an arbitrary four-
vector. In particular, we see that the terms aαµd ν

α and
bαµc ν

α can be ignored and therefore also the action of
the derivatives on the term in the exponent which is
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quadratic in the sources. If the derivatives act on the
non-quadratic source-terms in the exponent, we obtain
the replacement rules

pαp′β + pβp′α −→ −2µ

τ
qα2 q

β
2 +

1

2τ2
λαλβ

− v

2τ
(qα2 λ

β + λαqβ2 ),

pαp′β − pβp′α −→ 1

2τ
(qα2 λ

β − qβ2 λα).

(56)

Finally, we can replace the trace given in Eq. (25) by
(terms linear in v do not contrubute after the integration)

1

4
tr
[
· · ·
]µν
5
−→ i

{
e

kq

[
qµ2 (F∗yq)

ν − (F∗xq)
µqν2
]

+
1

2τ
εµνρσq2ρλσ

}
(57)

[as long as only contractions with k and Λi/Λ∗i are con-
sidered, which also means that the anomaly does not con-
tribute, see Eq. (48)].

D. Final result

Using the relations given in App. C we obtain the fol-
lowing representation for the tensor Tµν5 (q1, q2)

Tµν5 (q1, q2) = Tµν5 (q1, q2)− iπe2 δ(−,⊥)(q1 − q2)

×
∫ +1

−1

dv

∫ ∞
0

dτ

τ

∫ +∞

−∞
dz−

[
a6Qµ1 Λ∗ν1 + a7Qµ1 Λ∗ν2

+ a8Λ∗µ1 Qν2 + a9Λ∗µ2 Qν2 + a10q
µ
1 Λ∗ν1 + a11q

µ
1 Λ∗ν2

]
eiΦ,

(58)

where the anomalous contribution Tµν5 (q1, q2) is given in
Eq. (55) and the coefficients read

a6 = imξ1

[
W1 + U1

m2

q2
1

τ

µ

]
eiτβ ,

a7 = imξ2

[
W2 + U2

m2

q2
1

τ

µ

]
eiτβ ,

a8 = −imξ1V1e
iτβ , a10 = imξ1U1

m2

q2
1

τ

µ
eiτβ ,

a9 = −imξ2V2e
iτβ , a11 = imξ2U2

m2

q2
1

τ

µ
eiτβ .

(59)

Here, the phases are given by

eiΦ = exp
{
i
[
(q+

2 − q
+
1 )z− + µq1q2 − τm2

]}
, (60)

eiτβ = exp
[
iτm2

∑
i=1,2

ξ2
i (I2

i − Ji)
]
, (61)

where [see Eq. (32)]

Ii =
1

2

∫ +1

−1

dλψi(kz − λµkq),

Ji =
1

2

∫ +1

−1

dλψ2
i (kz − λµkq).

(62)

In the preexponent we have introduced the following sym-
bols

Ui = ψi(kx)− ψi(ky),

Vi = ψi(kx)− Ii, Wi = ψi(ky)− Ii,
(63)

where kx = kz−µkq, ky = kz+µkq and µ = 1
4τ(1−v2).

Alternatively, the result in Eq. (58) can be written as

Tµν5 (q1, q2) = Tµν5 (q1, q2)− iπe2 δ(−,⊥)(q1 − q2)

×
∫ +1

−1

dv

∫ ∞
0

dτ

τ

∫ +∞

−∞
dz−

[
a′6Q

µ
1 Λ∗ν1 + a′7Q

µ
1 Λ∗ν2

+ a8Λ∗µ1 Qν2 + a9Λ∗µ2 Qν2 + a′10k
µΛ∗ν1 + a′11k

µΛ∗ν2
]
eiΦ,

(64)

where

a′6 = imξ1W1e
iτβ , a8 = −imξ1V1e

iτβ ,

a′7 = imξ2W2e
iτβ , a9 = −imξ2V2e

iτβ ,

a′10 = imξ1U1
m2

kq

τ

µ
eiτβ ,

a′11 = imξ2U2
m2

kq

τ

µ
eiτβ .

(65)

The last two terms (a′10 and a′11) are responsible for the
inhomogeneous Ward-Takahashi identity [see Eq. (45)
and Eq. (46)].

IV. ADLER-BELL-JACKIW ANOMALY

We will show now explicitly that the anomalous con-
tribution Tν5(q1, q2) [see Eq. (47)] to the Ward-Takahashi
identity for the current-coupling tensor Tµν5 (q1, q2) [see
Eq. (45)] is different from zero.

As pointed out in Sec. III A, the formal application of
the relations given in Eq. (A10) to Eq. (47) would prove
that Tν5(q1, q2) = 0. However, this procedure leads to
divergent expressions and a more careful analysis reveals
that the obtained result would be incorrect. To deter-
mine the anomalous contribution we rewrite Eq. (47) as

Tν5(q1, q2) = lim
ε→0

4(−ie)2

∫
d4p d4p′

(2π)8

∫
d4xd4y

× (−i)
∫ ∞

0

ds
[ 1

4
tr[· · · ]ν5AeiS̃T︸ ︷︷ ︸

t=ε

− 1

4
tr[· · · ]ν5BeiS̃T︸ ︷︷ ︸
s=ε,t=s

]
,

(66)
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where the phase S̃T is defined in Eq. (34) and the traces
are given by

1

4
tr[· · · ]ν5A =iG3

[
(pµF

∗µν
x − pµF∗µνy )

+G1 p
ρF∗xρµF

µν
y +G3 p

ρFxρµF
∗µν
y

]
,

(67a)

1

4
tr[· · · ]ν5B =iG3

[
(p′µF

∗µν
x − p′µF∗µνy )

+G1 p
′ρF∗xρµF

µν
y −G3 p

′ρFxρµF
∗µν
y

]
,

(67b)

with Gi = Gi(kp
′, kp).

Although we need to exponentiate here only one scalar
propagator [see Eq. (47)], we artificially add a second
term in the exponent (multiplied by a quantity ε which
will be later sent to zero), in order to recover exactly the
same structure as in Eq. (34). Also note that the traces
in Eq. (67a) and Eq. (67b) can be formally obtained from
Eq. (50) by setting p′µ = 0 and pµ = 0, respectively,
and by dividing by 2m2 and −2m2, respectively. To
match the first and the second contribution in Eq. (66),
we changed the name of the integration variable t → s
(after the replacement s→ ε) in the second expression.

In order to determine the first and the second con-
tribution to Eq. (66), respectively, we need to apply the
following replacements to Eq. (33)

(−i)
∫ ∞

0

dt→ 1, t→ ε, tr[· · · ]µν5 → tr[· · · ]ν5A,

(−i)
∫ ∞

0

ds→ 1, s→ ε,
t→ s, tr[· · · ]µν5 → tr[· · · ]ν5B .

(68)

In this way, the final result can then be obtained from
Eq. (35).

The replacements given in Eq. (68) imply that τ = s+t
and µ = st/(s+ t) are mapped to the same quantity in
both expressions, but v = (s− t)/(s+ t) changes its sign

τ(t→ ε) = τ(s→ ε, t→ s) = s+ ε,

µ(t→ ε) = µ(s→ ε, t→ s) =
sε

s+ ε
,

v(t→ ε) = −v(s→ ε, t→ s) =
s− ε
s+ ε

.

(69)

We note that due to the relation ky = kx + 2µkq [see
Eq. (57) in [66]], the distance (here in phase) between
the two vertices tends to zero as ε→ 0. A similar regular-
ization procedure for the axial-vector vertex is also com-
monly used in the calculation of the vacuum amplitude
(see e.g. chapter 19 of [130] for a textbook discussion).

To use Eq. (35) we have to apply the replacement rules
given in Eq. (51). Firstly, we note that λµ does not con-
tribute, as it would only give a non-vanishing contribu-
tion after contraction with the first line of each trace in
Eq. (67) which then cancel pairwise. Correspondingly, we
can focus on the contribution due to qµ2 . As the second

and the third line of each trace cancel both pairwise, we
focus on the first line. Using the following representation
for the delta function

lim
ε→0

∫ ∞
0

dx
ε g(x)

(x+ ε)2
= lim
ε→0

∫ ∞
0

dy
g(εy)

(y + 1)2
= g(0) (70)

[g(x) is assumed to be sufficiently regular], we finally ob-
tain the result given in Eq. (48).

V. SPECIAL FIELD CONFIGURATIONS

In this section the general expression given in Eqs. (58)
and (64) is used to derive compact representations for
the current-coupling tensor Tµν5 (q1, q2) for three impor-
tant special field configurations: a constant-crossed field,
a relativistically strong, linearly polarized plane-wave
background field (quasistatic limit) and a monochro-
matic, circularly polarized plane-wave background field.
When possible, the result is compared with existing rep-
resentations from the literature.

A. Constant-crossed field

From Eq. (58) we can derive the result for a constant-
crossed field, which is characterized by

ψ1(φ) = φ, ψ2 = 0, (71)

(the latter condition corresponds to ξ2 = 0 and we will
write ξ = ξ1 in the following). For a constant-crossed
field the field tensor is given by

Fµν = fµν1 = fµν . (72)

Since ψ2 = 0 the following functions vanish

I2 = J2 = U2 = V2 = W2 = 0 (73)

and due to the simple form of ψ1

I1 = kx+ µkq, J1 = (kx+ µkq)2 +
1

3
(µkq)2,

U1 = −2µkq, V1 = −µkq, W1 = µkq.
(74)

Finally, we obtain the following explicit expression for
the tensor Tµν5 (q1, q2) in a constant-crossed field

Tµν5 (q1, q2) = Tµν5 (q1, q2)− 2iπ2e2 δ4(q1 − q2)×

×
∫ +1

−1

dv

∫ ∞
0

dτ

τ

[
b̃c6QµΛ∗ν1 +b̃c8Λ∗µ1 Qν+b̃c10q

µΛ∗ν1
]
eiΦc ,

(75)

where the coefficients are given by

b̃c6 = iξmkq
[ 1

w
− 2m2

q2

]
τeiτβc ,

b̃c8 = iξmkq
1

w
τeiτβc ,

b̃c10 = iξmkq (−2m2/q2)τeiτβc ,

(76)
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the phases read

iΦc = −iτa, a = m2

[
1− 1

4
(1− v2)

q2

m2

]
,

iτβc = − i
3
τ3b, b = m6χ2

[
1

4
(1− v2)

]2 (77)

and the anomaly Tµν5 (q1, q2) [see Eq. (55)] becomes

Tµν5 (q1, q2) = i(2π)4δ4(q1 − q2)

×
(
− e3

8π2m2

)
4
m2

kq
[kµ(qF ∗)ν + (qF ∗)µkν ] . (78)

Above, we introduced the quantum-nonlinearity param-
eter

χ = −e
√
qF 2q

m3
= ξ

√
(kq)2

m2
. (79)

Due to the overall momentum-conserving delta function
we define

qµ = qµ1 = qµ2 , Qµ = Qµ1 = Qµ2 =
kµq2 − qµkq

kq
. (80)

Using the relation

b̃c6QµΛ∗ν1 + b̃c10q
µΛ∗ν1 =

e

ξmkq
(b̃c6 − b̃c10) qµ(F ∗q)ν

− e

ξmkq

q2

kq
b̃c6 k

µ(F ∗q)ν (81)

we can rewrite Eq. (75) as

Tµν5 (q1, q2) = Tµν5 (q1, q2) + i(2π)4δ4(q1 − q2)

×
[
τ̃1Qµ(F ∗q)ν + τ̃2k

µ(F ∗q)ν + τ̃1(F ∗q)µQν
]
, (82)

where

τ̃1 = +
e3

8π2m2

∫ +1

−1

dv
1

w

(w
χ

)2/3

f(ρ),

τ̃2 = − e3

8π2m2

∫ +1

−1

dv 2
m2

kq

(w
χ

)2/3

f(ρ)

(83)

[ 1
w = 1

4 (1−v2), ρ =
(
w
χ

)2/3
(1− q2

m2
1
w )] and the anomaly is

given in Eq. (78). Furthermore, the Ritus functions are
defined by [62, 132]

f(x) = i

∫ ∞
0

dt exp
[
− i
(
tx+ t3/3

)]
= πGi(x) + iπAi(x), (84a)

f1(x) =

∫ ∞
0

dt

t
exp (−itx)

[
exp

(
− it3/3

)
− 1
]
, (84b)

where Ai and Gi are the Airy and Scorer function, respec-
tively [133]. Note that in Ritus’ work the normalization

of the Airy function is different and also changes [see [62],
App. C and [134], Eq. (B5)].

Since all nonvanishing functions are even in v, it is
possible to apply the following change of variables∫ +1

−1

dv = 2

∫ 1

0

dv =

∫ ∞
4

dw
4

w
√
w(w − 4)

. (85)

The final result given in Eq. (82) coincides with the
one given in Eq. (4.24) of [97], apart from the anoma-
lous contribution in the vector index [see Eq. (45)], which
automatically drops out by performing the calculations
within the wordline formalism as in [97]. If evaluated
on the mass shell (i.e. for q2 = 0), it also agrees with
Eq. (15) in [95].

B. Linear polarization

We consider now a linearly polarized plane-wave field

ψ1(φ) = ψ(φ), ψ2 = 0 (86)

(ξ = ξ1, fµν = fµν1 ) in the quasistatic limit defined by
ξ →∞ while [see Eq. (79)]

χ = −e
√
qf2q

m3
= ξ

√
(kq)2

m2
(87)

is kept constant. In the optical regime (photon energy
ω0 ∼ 1 eV) the condition χ & 1 usually requires ξ �
1, which means that the quasistatic limit is in general
sufficient to analyze strong-field experiments with optical
lasers (it neglects the recollision contribution considered
in [135], though).

For a linearly polarized background field we obtain

I2 = J2 = U2 = V2 = W2 = 0 (88)

and using the relation |kq| = m2χ/ξ it is sufficient to
consider the leading-order contribution to the following
quantities

I2
1 − J1 = −(1/3)(µkq)2

[
ψ′(kz)

]2
+O(µkq)3,

U1 = −2µkqψ′(kz) +O(µkq)2,

V1 = −µkqψ′(kz) +O(µkq)2,

W1 = +µkqψ′(kz) +O(µkq)2.

(89)

If we insert these relations into Eq. (64), the remaining
calculation is very similar to the one for a constant-
crossed field (see Sec. V A), the essential change is the
replacement χ → χ(kz) = χ |ψ′(kz)|. The final result is
given by

Tµν5 (q1, q2) = Tµν5 (q1, q2) + i(2π)4δ(−,⊥)(q1 − q2)×

× 1

2π

∫ +∞

−∞
dz−ei(q

+
2 −q+

1 )z− ψ′(kz)
[
τ ′1Q

µ
1 (f∗q)ν

+ τ ′1(f∗q)µQν2 + τ ′2k
µ(f∗q)ν

]
(90)
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where

τ ′1 = +
e3

8π2m2

∫ +1

−1

dv
1

w

[
w

|χ(kz)|

]2/3

f(ρ),

τ ′2 = − e3

8π2m2

∫ +1

−1

dv
2m2

kq

[
w

|χ(kz)|

]2/3

f(ρ)

(91)

and 1
w = 1

4 (1− v2), ρ =
[

w
|χ(kz)|

]2/3
(1− q1q2

m2
1
w ). Further-

more, the anomaly reads [see Eq. (55)]

Tµν5 (q1, q2) = i(2π)4δ(−,⊥)(q1 − q2)

× 1

2π

∫ +∞

−∞
dz− ei(q

+
2 −q+

1 )z− ψ′(kz)

×
(
− e3

8π2m2

)
4
m2

kq
[kµ(qf∗)ν + (qf∗)µkν ] .

(92)

Note that for ψ′(φ) = 1 the result given in Eq. (90) co-
incides (as required) with the one for a constant-crossed
field [see Eq. (82)].

C. Circular polarization

Also for a circularly polarized, monochromatic back-
ground field

ψ1(φ) = Re eiφ, ψ2(φ) = Im eiφ, ξ1 = ξ2 = ξ (93)

the result given in Eq. (64) simplifies considerably and
we obtain

Tµν5 (q1, q2) = Tµν5 (q1, q2)− iπe2 δ(−,⊥)(q1 − q2)×

×
∫ +1

−1

dv

∫ ∞
0

dτ

τ

∫ +∞

−∞
dz−

[
a+

1 Q
µ
1 Λ̃ν+ + a−1 Q

µ
1 Λ̃ν−

+ a+
2 Λ̃µ+Qν2 + a−2 Λ̃µ−Qν2 + a+

3 k
µΛ̃ν+ + a−3 k

µΛ̃ν−
]
eiΦ,

(94)

where the anomaly is given in Eq. (55) and

a+
1 =

1

2
(a′6 − ia′7) =

1

2
imξ(W1 − iW2)eiτβ ,

a−1 =
1

2
(a′6 + ia′7) =

1

2
imξ(W1 + iW2)eiτβ ,

a+
2 =

1

2
(a8 − ia9) = −1

2
imξ(V1 − iV2)eiτβ ,

a−2 =
1

2
(a8 + ia9) = −1

2
imξ(V1 + iV2)eiτβ ,

a+
3 =

1

2
(a′10 − ia′11) =

1

2
imξ

τm2

µkq
(U1 − iU2)eiτβ ,

a−3 =
1

2
(a′10 + ia′11) =

1

2
imξ

τm2

µkq
(U1 + iU2)eiτβ ,

(95)

iτβ = iτm2ξ2
[
sinc2(µkq)− 1

]
,

iΦ = i
[
(q+

2 − q
+
1 )z− + µq1q2 − τm2

] (96)

and

Λ̃µ± = Λ∗µ1 ± iΛ
∗µ
2 (97)

(the star is part of the symbol, both Λ∗µ1 and Λ∗µ2 are real
four-vectors). Furthermore,

W1 + iW2 = −A, W1 − iW2 = −A∗,
V1 + iV2 = −B, V1 − iV2 = −B∗,
U1 + iU2 = −C, U1 − iU2 = −C∗

(98)

where

A = eikz [sinc(µkq)− cos(µkq)− i sin(µkq)] ,

B = eikz [sinc(µkq)− cos(µkq) + i sin(µkq)] ,

C = eikz 2i sin(µkq)

(99)

and therefore

−W1 = I1 − ψ1(kz + µkq) = ReA,

−W2 = I2 − ψ2(kz + µkq) = ImA,

−V1 = I1 − ψ1(kz − µkq) = ReB,

−V2 = I2 − ψ2(kz − µkq) = ImB,

−U1 = ψ1(kz + µkq)− ψ1(kz − µkq) = ReC,

−U2 = ψ2(kz + µkq)− ψ2(kz − µkq) = ImC.

(100)

We can now take the integral in dz− and obtain

Tµν5 (q1, q2) = Tµν5 (q1, q2)− i(2π)4 e2

8π2
×

×
∫ +1

−1

dv

∫ ∞
0

dτ

τ

[
Tµν5+ δ(q1 − q2 + k)

+ Tµν5− δ(q1 − q2 − k)
]
eiΦcp , (101)

where

iΦcp = −iτm2
{

1 + ξ2[1− sinc2(µkq)]
}

+ iµq1q2, (102)

Tµν5± = (λ±1 Q
µ
1 + λ±3 k

µ)Λ̃ν± + λ±2 Λ̃µ±Qν2 (103)

and

λ±1 = −1

2
imξ [sinc(µkq)− cos(µkq)± i sin(µkq)] ,

λ±2 = +
1

2
imξ [sinc(µkq)− cos(µkq)∓ i sin(µkq)] ,

λ±3 = ∓mξ τm2 sinc(µkq).

(104)

Correspondingly, the result is in agreement with the one
obtained in [55–57].

VI. CONCLUSION

In the present paper the axial-vector–vector current-
coupling tensor Tµν5 (q1, q2) [see Fig. 2 and Eq. (14)] has
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been considered for the first time in the presence of a gen-
eral plane-wave background field (arbitrary polarization
and pulse shape). The (pseudo-)tensor Tµν5 (q1, q2) ap-
pears in the calculation of various electroweak processes
inside strong laser fields like photon emission by neutri-
nos [see Fig. 1 and Eq. (12)]. We derived a triple-integral
representation for Tµν5 (q1, q2) [see Eqs. (58) and (64)],
which can even be converted into a double-integral repre-
sentation (see [54] for details). In particular, the anoma-
lous contribution to the Ward-Takahashi identity [see
Eq. (45)] due to the Adler-Bell-Jackiw (ABJ) anomaly as-
sociated with the axial-vector current has been calculated
explicitly [see Fig. 3 and Eq. (48)]. Finally, we special-
ized the obtained general expression to three important
types of background plane waves and confirmed agree-
ment with the corresponding results available in the lit-
erature: a constant-crossed field [see Eq. (82)], a relativis-
tically strong, linearly polarized plane-wave background
field [see Eq. (90)] and a monochromatic, circularly po-
larized plane-wave background field [see Eq. (101)].
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Appendix A: Dressed vertex

A strong plane-wave background field can be taken into
account exactly by using dressed states for the charged
particles. In momentum space this implies that the free
vertex must be replaced by the so-called dressed vertex
(see e.g. [63, 66] for more details). Using the Ritus Ep
matrices [62, 63]

Ep,x =

[
1 +

e/k /A(kx)

2 kp

]
eiSp(x),

Ēp,x =

[
1 +

e /A(kx)/k

2 kp

]
e−iSp(x)

(A1)

which contain the Volkov action

Sp(x) = −px−
∫ kx

−∞

[
e pA(φ′)

kp
− e2A2(φ′)

2 kp

]
dφ′, (A2)

we define the dressed vector (Γρ) and scalar (I) vertices
by

Γρ(p′, q, p) = −ie
∫
d4x e−iqx Ēp′,xγ

ρEp,x, (A3)

I(p′, q, p) = −ie
∫
d4x e−iqx Ēp′,xEp,x. (A4)

They can be decomposed in the following way [66]

Γρ(p′, q, p) = −ie
∫
d4x

[
γµG

µρ(kp′, kp; kx)

iγµγ
5Gµρ5 (kp′, kp; kx)

]
eiSΓ , (A5a)

I(p′, q, p) = −ie
∫
d4x

[
1 +

G3

2
σαβFαβ(kx)

]
eiSΓ ,

(A5b)

where we introduced the phase

SΓ = SΓ(p′, q, p;x) = −Sp′(x)− qx+ Sp(x)

= (p′ − q − p)x+

∫ kx

−∞
dφ′
[epµp′νFµν(φ′)

(kp)(kp′)

+
e2(kp− kp′)
2(kp)2(kp′)2

pµp
′
νF

2µν(φ′)
]

(A6)

and the following tensors

Gµρ(kp′, kp; kx) = gµρ +G1F
µρ
x +G2F

2µρ
x ,

Gµρ5 (kp′, kp; kx) = G3F
∗µρ
x ,

(A7)

G1 = G1(kp′, kp) = −e kp+ kp′

2kp kp′
,

G2 = G2(kp′, kp) =
e2

2kp kp′
,

G3 = G3(kp′, kp) = −e kp− kp
′

2kp kp′
.

(A8)

Finally, we note that the dressed vector and scalar ver-
tices are related by [63]

qρΓ
ρ(p′, q, p)

= (/p
′ −m)I(p′, q, p)− I(p′, q, p)(/p−m) (A9)

and we obtain∫
d4p′′

(2π)4
I(p, q′, p′′)Γµ(p′′, q, p′) = −ieΓµ(p, q + q′, p′),∫

d4p′′

(2π)4
Γµ(p, q, p′′)I(p′′, q′, p′) = −ieΓµ(p, q + q′, p′).

(A10)

Appendix B: Gamma algebra

Any 4×4 matrix Γ in spinor space can be decomposed
into five fundamental constituents [66, 136]

Γ = c11 + c5γ
5 + cµγ

µ + c5µiγ
µγ5 + cµνiσ

µν , (B1)

where

c1 =
1

4
tr 1Γ, c5 =

1

4
tr γ5Γ, cµ =

1

4
tr γµΓ,

c5µ =
1

4
tr iγµγ

5Γ, cµν =
1

8
tr iσµνΓ.

(B2)

Instead of the vector and the axial-vector current one can
also use the left- and the right-handed current

cµγ
µ + c5µiγ

µγ5 = lµγ
µPL + rµγ

µPR, (B3)
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where the chirality projectors for the left and the right-
handed component are given by

PL =
1

2

(
1 + γ5

)
, PR =

1

2

(
1− γ5

)
(B4)

(note that we define γ5 = −iγ0γ1γ2γ3 as in [65]). The
coefficients cµ, c5µ and lµ, rµ are related via

lµ = cµ + ic5µ, rµ = cµ − ic5µ (B5)

and

cµ =
1

2
(lµ + rµ), c5µ =

i

2
(rµ − lµ). (B6)

Therefore, the coefficients for the left- and the right-
handed current can be determined from the following
traces

lµ =
1

2
trPLγµΓ, rµ =

1

2
trPRγµΓ. (B7)

Finally, we note the following contraction identities

γρ1γρ = 4, γργ5γρ = −4γ5,

γργµγρ = −2γµ, γρ(iγµγ5)γρ = 2(iγµγ5),

γρ(iσµν)γρ = 0.

(B8)

Appendix C: Summary of important relations

To obtain a simple structure we expanded the polar-
ization tensor Tµν(q1, q2) using the two complete sets qµ1 ,
Qµ1 , Λµ1 , Λµ2 and qν2 , Qν2 , Λν1 , Λν2 [91], where

Λµ1 =
fµν1 qν

kq
√
−a2

1

, Λµ2 =
fµν2 qν

kq
√
−a2

2

,

Qµ1 =
kµq2

1 − q
µ
1 kq

kq
, Qµ2 =

kµq2
2 − q

µ
2 kq

kq
.

(C1)

They have the following properties

ΛiΛj = −δij , kΛi = qiΛj = QiΛj = 0,

Q2
1 = −q2

1 , Q2
2 = −q2

2 , qiQi = 0.
(C2)

Since Tµν5 (q1, q2) includes F∗µν [while Tµν(q1, q2) con-
tains Fµν ] it is more natural to expand Tµν5 (q1, q2) using
the two complete sets qµ1 , Qµ1 , Λ∗µ1 , Λ∗µ2 and qν2 , Qν2 , Λ∗ν1 ,
Λ∗ν2 where

Λ∗µ1 =
f∗µν1 qν

kq
√
−a2

1

, Λ∗µ2 =
f∗µν2 qν

kq
√
−a2

2

. (C3)

The (pseudo) four-vectors Λ∗µi have similar properties as
the four-vectors Λµi [compare with Eq. (C2)]

Λ∗iΛ
∗
j = −δij , kΛ∗i = qiΛ

∗
j = QiΛ∗j = 0. (C4)

Thus, Λµi and Λ∗µi span the same subspace and we obtain
the following scalar products

ΛiΛ
∗
i = 0, Λ∗1Λ2 =

qΛ5

kq
, Λ1Λ∗2 = −qΛ5

kq
, (C5)

where we defined the pseudo four-vector

Λµ5 =
εµνρσkνa1ρa2σ√
−a2

1

√
−a2

2

=
qΛ5

kq
kµ, (C6)

which obeys

Λ2
5 = Λ5k = Λ5Λ1 = Λ5Λ2 = 0, (qΛ5)2 = (kq)2 (C7)

[beside being a pseudo four-vector Λµ5 is proportional to
kµ]. Thus, we obtain the identities

Λµ1 =
kq

qΛ5
Λ∗µ2 , Λµ2 = − kq

qΛ5
Λ∗µ1 . (C8)

We note the following relations

fµi ρf
ρν
j = −δija2

i k
µkν , f∗µi ρf

∗ρν
j = −δija2

i k
µkν , (C9)

f∗µρi fiρν = fµρi f∗iρν = 0,

fµρ1 f∗ ν2ρ =
√
−a2

1

√
−a2

2 k
µΛν5 ,

f∗µρ1 f ν
2ρ = −

√
−a2

1

√
−a2

2 Λµ5k
ν ,

fµρ2 f∗ ν1ρ = −
√
−a2

1

√
−a2

2 k
µΛν5 ,

f∗µρ2 f ν
1ρ =

√
−a2

1

√
−a2

2 Λµ5k
ν

(C10)

which imply

Fµνx Λiν = −m
e
kµξiψi(kx),

F∗µνx Λ1ν = −m
e

Λµ5 ξ2ψ2(kx),

F∗µνx Λ2ν =
m

e
Λµ5 ξ1ψ1(kx)

(C11)

and

F∗µνx Λ∗iν = −m
e
kµξiψi(kx),

Fµνx Λ∗1ν =
m

e

qΛ5

kq
kµξ2ψ2(kx),

Fµνx Λ∗2ν = −m
e

qΛ5

kq
kµξ1ψ1(kx).

(C12)

Correspondingly, we obtain the canonical choices F↔ Λi
and F∗ ↔ Λ∗i (especially for linearly polarized back-
ground fields the appearance of Λµ5 is unnatural, since
its definition involves both aµ1 and aµ2 ).

We also note that

εµνρσkρqσ = −qΛ5 (Λµ1 Λν2 − Λµ2 Λν1) (C13)
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and

Fµρx Fyρν =
m2

e2
kµkν

∑
i=1,2

ξ2
i ψi(kx)ψi(ky),

F∗µρx Fyρν = −m
2

e2
ξ1ξ2 Λµ5kν ×

×
[
ψ1(kx)ψ2(ky)− ψ1(ky)ψ2(kx)

]
,

Fµρx F∗yρν =
m2

e2
ξ1ξ2 k

µΛ5ν ×

×
[
ψ1(kx)ψ2(ky)− ψ1(ky)ψ2(kx)

]
.

(C14)

Using these relations we can show that for j = j′ = 0

λµ = −2mτ
∑
i=1,2

Λµi ξiIi,

Fµνx λν = 2
m2

e
τkµ

∑
i=1,2

ξ2
i ψi(kx)Ii,

F∗µνx λν = −2
m2

e
τΛµ5 ξ1ξ2

[
ψ1(kx)I2 − ψ2(kx)I1

]
, (C15)

Λiλ = 2mτξiIi,

eqFxλ = 2kq τm2
∑
i=1,2

ξ2
i ψi(kx)Ii,

Λ∗iµkνε
µνρσqρλσ = 2mτkq ξiIi,

Λ∗1µΛ∗2νε
µνρσqρλσ = 0,

Λ1µkνε
µνρσqρλσ = 2mτξ2I2 qΛ5,

Λ2µkνε
µνρσqρλσ = −2mτξ1I1 qΛ5,

Λ1µΛ2νε
µνρσqρλσ = 0 (C16)

and

eΛiµF
µν
x qν = mkq ξi ψi(kx). (C17)
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