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Zusammenfassung

Die vorliegende Arbeit betrachtet verschiedene nichtlineare elektrodynamische und
elektroschwache Prozesse, die in starken Laserfeldern auftreten können; ein Schwer-
punkt liegt auf Kurzpulseffekten. Insbesondere erfolgt eine numerische Berechnung
der Impulsverteilung für photonenproduzierte Elektron-Positron-Paare und eine
semiklassische Interpretation ihrer charakteristischen Eigenschaften. Durch den
Beweis des optischen Theorems ergibt sich eine kompakte Doppelintegraldarstel-
lung für die totale Paarerzeugungswahrscheinlichkeit, die numerisch ausgewertet
wird. Die Einbeziehung des exponentiellen Zerfalls der Photonenwellenfunktion
in einer ebenen Welle erfolgt durch Lösen der Schwinger-Dyson-Gleichungen in
führender Ordnung unter Anwendung der quasistatischen Näherung. In diesem
Zusammenhang wird der Polarisationsoperator für eine ebene Welle untersucht
und seine Ward-Takahashi-Identität überprüft. Eine klassische Analyse zeigt, dass
photonenproduzierte Elektron-Positron-Paare unter bestimmten Bedingungen re-
kollidieren können. Die auf solche Rekollisionen zurückführbaren Beiträge zum
Polarisationsoperator werden identifiziert und sowohl analytisch als auch numerisch
berechnet. Darüber hinaus wird die Existenz einer nicht-trivialen Dynamik des
Elektronenspins in ultrakurzen Laserpulsen nachgewiesen, die auf Quantenfluktua-
tionen zurückzuführen ist. Abschließend erfolgt eine Betrachtung des Austauschs
von schwachen Eichbosonen, der für Neutrino-Photon Wechselwirkungen essenziell
ist. Insbesondere wird der Tensor, welcher die Kopplung zwischen dem Axialvektor-
und dem Vektorstrom beschreibt, berechnet und die sogenannte Adler-Bell-Jackiw
(ABJ) Anomalie untersucht.

Abstract

Various nonlinear electrodynamic and electroweak processes in strong plane-wave
laser fields are considered with an emphasis on short-pulse effects. In particular,
the momentum distribution of photoproduced electron-positron pairs is calculated
numerically and a semiclassical interpretation of its characteristic features is
established. By proving the optical theorem, compact double-integral expressions
for the total pair-creation probability are obtained and numerically evaluated.
The exponential decay of the photon wave function in a plane wave is included
by solving the Schwinger-Dyson equations to leading-order in the quasistatic
approximation. In this respect, the polarization operator in a plane wave is
investigated and its Ward-Takahashi identity verified. A classical analysis indicates
that a photoproduced electron-positron pair recollides for certain initial conditions.
The contributions of such recollision processes to the polarization operator are
identified and calculated both analytically and numerically. Furthermore, the
existence of nontrivial electron-spin dynamics induced by quantum fluctuations is
verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is
considered, which is essential for neutrino-photon interactions. In particular, the
axial-vector–vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw
(ABJ) anomaly investigated.
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Summary of the Notation

Physical constants

c 2.998× 1010 cm/s speed of light in vacuum
~ = h/(2π) 6.582× 10−16 eV s reduced Planck constanta

µ0 4π × 10−7 N/A2 magnetic permeability
of vacuum

ε0 = 1/(µ0c
2) 8.854× 10−12 F/m electric permittivity

of vacuum
me 511.0 keV/c2 electron massb

mµ 105.7 MeV/c2 muon mass
mτ 1.777 GeV/c2 tau mass
|e| 1.602× 10−19 C elementary chargec

nc = ~/(mc) 3.862× 10−11 cm reduced Compton
wavelength (electron)

α = e2/(4πε0~c) 1/137.0 fine-structure constant
GF /(~c)3 1.166× 10−5 GeV−2 Fermi coupling constant

a ~c = 197.3 MeV fm
b Normally, we denote the electron mass simply by m.
c Note that e = − |e| < 0 denotes the electron charge as in Ref. [LL82].

Tab. 1: Summary of the most important physical constants used in this thesis.
For more precise numerical values see Ref. [MTN12].

The notation employed in this thesis agrees with Landau and Lifshitz [LL82],
except that for charge Heaviside-Lorentz units are used1, i.e. α = e2/(4π) ≈ 1/137.
Furthermore, we set ~ = c = 1 in most equations (c and ~ are sometimes reinstated
for clarity).
Four-dimensional space-time indices are denoted by lowercase Greek letters

(µ, ν . . .), taking the values 0, 1, 2, 3 and three-dimensional space indices by low-
ercase Latin letters (i, j, . . .), taking the values 1, 2, 3 or equivalently x, y, z. The
Einstein summation convention is always implicitly assumed for all types of
repeated indices which appear only on one side of an equation. The metric
gµν = gµν = diag (+,−,−,−) is used to raise and lower Lorentz indices aµ = gµνa

ν ,
the unit and the totally anti-symmetric tensor are denoted by δµν = gµρgρν =
diag(1, 1, 1, 1) (δµµ = 4) and εµνρσ (ε0123 = −ε0123 = 1), respectively. Scalar prod-
ucts of two four-vectors are denoted by ab = aµbµ = aµgµνb

ν , they are sometimes
enclosed with brackets for clarity (ab) = aµbµ. For contractions of second-rank
tensors and vectors the following matrix notation is often used: aTb = aµT

µνbν ,
(T1T2)µν = Tµ1 ρT

ρν
2 , T 2µν = TµρT ν

ρ , (Ta)µ = Tµνaν , (aT )µ = aνT
νµ. The Lorentz

index of the Dirac gamma matrices (see App. D) is treated as a four-vector index,
e.g. γTγ = γµTµνγ

ν .
Dirac spinor indices are denoted by lowercase Latin letters (a, b, . . .), taking the

values 1, 2, 3, 4 and are normally suppressed [ūp′γµup = (up′)∗aγ0
abγ

µ
bc(up)c].

1Note that the replacement ε0 → 1 is not sufficient, in addition one also has to “rescale” the
magnetic field BSI = 1

c
BHL. This ensures that the electric and the magnetic field have the

same units.
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Notation

Common symbols

gµν = diag (+,−,−,−) space-time metric
δµν , δij unit tensors (Kronecker symbols)
εµνρσ, ε0123 = −ε0123 = 1 totally antisymmetric tensors
εijk, ε123 = 1
ai = (a1,a2,a3) three-vector (bold Latin letters)
aµ = (a0,a) four-vector (italic Latin letters)
(a× b)i = εijkajbk cross product
ab = aibi scalar product of two three-vectors
ab = aµb

µ = a0b0 − ab scalar product of two four-vectors
xµ = (t,x) = (t, x, y, z) four-position vector
d4x = dx0dx1dx2dx3 four-dimensional volume element
∂µ = ∂/∂xµ = (∂/∂t,∇) four-dimensional differentiation operator
∂µxν = gµν defining relation for the four-derivative
∇ = (∂1, ∂2, ∂3) three-dimensional differentiation operator
� = ∂2 = ∂µ∂µ D’Alembert operator
∆ = ∇2 Laplace operator
f ′(x) derivative with respect to the argumenta

[A,B] = AB −BA commutator
{A,B} = AB +BA anticommutator
T [µν] = 1

2(Tµν − T νµ) anti-symmetric part of a tensor
T (µν) = 1

2(Tµν + T νµ) symmetric part of a tensor
T ∗µν = 1

2ε
µνρσTρσ dual tensorb

A†, AT, A−1 Hermitian conjugate, transpose, inverse
A† = A Hermitian matrix or operator
A† = −A anti-Hermitian matrix or operator
A† = A−1 unitary matrix or operator
γ = 1/

√
1− (v/c)2 relativistic Lorentz factor

γµ Dirac gamma matrices (see App. D)
γ5 = −iγ0γ1γ2γ3 fifth gamma matrix
σµν = (γµγν − γνγµ)/2 commutator of two gamma matrices
1 unit matrix in spinor space
/a = γµaµ Feynman’s slash notation
ψ̄ = ψ†γ0 Dirac conjugated spinor
M̄ = γ0M †γ0 Dirac conjugated matrix
ψ̂, â, â† Fock-space operators are written with hat
δ(x) Dirac delta function
δ(3)(x) = δ(x1)δ(x2)δ(x3) three-dimensional Dirac delta function
δ(4)(x) = δ(x0)δ(3)(x) four-dimensional Dirac delta function
i0 = iε, ε→ 0+ Limiting procedure for propagators
tr, det trace/determinant of a matrix or operator
<; = real/imaginary part of a complex number
a If no explicit argument is present (e.g., for f ′), the prime is a part of the symbol
name and does not indicate a derivative.

b If the tensor contains complex entries, (Tµν)∗ denotes the complex conjugate.

Tab. 2: Summary of commonly used (mathematical) symbols and how they are
defined here. The symbols and definitions used for special mathematical functions
agree with those in [Olv+10]. More details can be found in the appendices.
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Notation

Special symbols

εp =
√
M2 + p2 energya

εµ polarization four-vector of a photon
pµ = (p0,p) four-momentum vectorb

kµ = ω(1,n) laser-photon four-momentum
φ = kx laser phase at the space-time point xµ

Fµν background field tensor Eq. (1.17)
ψi(φ) laser shape functions
aµi laser field-strength four-vectors Eq. (1.18)
fµνi constant background field tensors
Aµ background four-potential Eq. (1.19)
ξi, ξ classical intensity parameters Eq. (1.20)
χi, χ quantum-nonlinearity parametersc Eq. (1.21)

Fµν(φ, φ0) integrated field tensor Eq. (1.29)
Fµν(φ)
k̄µ conjugate laser four-momentum Eq. (1.31)

v−, v+, vI, vII light-cone components of vµ (⊥ = I, II) Eq. (1.37)
δ(−,⊥)(a) delta function in light-cone coordinates Eq. (1.42)
Λµ1 , Λµ2 Lambda four-vectors associated with qµ Eq. (1.48)

Ep,x = Ep(x), Ritus matrices Eq. (1.55)
Ēp,x = Ēp(x)

Γρ(p′, q, p) dressed vertex Eq. (1.67)
SΓ quantities related to

the dressed vertex

Eq. (1.69)
Gµρ, Gµρ5 Eq. (1.70)
G1, G2, G3 Eq. (1.71)
Gρ(p′, q, p) nonsingular part of the dressed vertex Eq. (1.79)

ti invariant transverse momenta Eq. (1.83)
w third invariant momentum parameter Eq. (1.84)
w̄ conjugated momentum parameter Eq. (1.86)

G0, Gj,l master integrals Eq. (1.89)
Qµ1 ,Q

µ
2 four-vectors associated with qµi Eq. (3.35)

Λ∗µ1 , Λ∗µ2 Dual lambda four-vectorsd Eq. (C.4)
Λµ5 pseudo four-vector associated with kµ Eq. (C.7)

f(x), f ′(x), f1(x) Ritus functions Eq. (F.1)
a For a particle with mass M and momentum p.
b The four-momentum is on shell if p2 = M2, implying p0 = εp.
c In Chap. 5 a different notation is used, see Eq. (5.14).
d The star is part of the symbol.

Tab. 3: Summary of important symbols which are frequently used in the text.
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Introduction

At present the Standard Model of particle physics describes all observed quantum
phenomena with an outstanding precision. Its long lasting success story culminated
in the recent discovery of the Higgs boson at the LHC [ATLAS12; CMS12], which
confirmed the generation of particle masses via spontaneous symmetry breaking
in the electroweak sector. Nevertheless, many fundamental questions remain
unanswered and most physicists believe that the Standard Model represents only
the low-energy limit of a more complete “grand unified theory” (GUT). Similar to
the unification of the electric and the weak force for energies higher than the weak
scale (∼ 102 GeV), it is expected that above a hypothetical GUT scale (∼ 1016 GeV)
also the strong and the electroweak force are described on a common footing.
Finally, a “theory of everything” should also comprise a quantum description of
gravity at the Planck scale (∼ 1019 GeV).
In the past, many extensions of the Standard Model have been considered.

However, it is rather unpredictable which approach is heading in the right direction,
as nearly all measurements carried out so far are consistent with the predictions
of the Standard Model1. Therefore, our effort to attain a deeper understanding of
nature would certainly benefit from an unexpected experimental finding. In order
to provide the Standard Model a possibility to fail, it is desirable to test it in yet
unexplored parameter regions.

An approach complementary to ordinary collider-based experiments are investi-
gations of highly nonlinear or even nonperturbative phenomena. The probably
most prominent example is the confinement phase of QCD, which is not very well
understood so far. In the present thesis, we consider nonlinear electrodynamic and
electroweak processes inside strong laser fields. The calculated probabilities often
experience a nonperturbative coupling between electrons (or positrons) and the
background field or require the simultaneous absorption of many laser photons
within the formation region of the process. Notably, most of our predictions could
be tested either with existing technology or at planned near-future laser facilities by
colliding high-energy electrons, positrons, photons or neutrinos with ultra-strong
laser pulses.
The peak electric field strength E0 and the angular frequency ω are the two

most important parameters of a laser pulse. According to the Lorentz force law, a
constant electric field with field strength E0 can transfer the energy ε ∼ |eE0ct|
to an electron during the time t in the relativistic regime (e denotes the electron
charge) [LL87]. For on-shell electrons the characteristic time scale t is set by
the angular frequency ω of the laser (t ∼ 1/ω). Correspondingly, an electron at
rest becomes relativistic within one laser cycle (ε ∼ mc2) if the classical intensity
parameter ξ = |e|E0/(mcω) is of order unity (ξ is both gauge and Lorentz
invariant, see Chap. 1). Here and in the following we focused on electrons, as they
represent the lightest electrically charged particles (all considerations apply equally

1We assume here that neutrino masses are taken into account. Notable exceptions are the
anomalous magnetic moment of the muon [Hag+07] and the size of the proton [Poh+13].
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= + + + + · · ·

Fig. 1: Perturbative expansion of the dressed electron/positron propagator with respect
to the external field Aµ ∼ E0/ω (denoted by ⊗). For each additional coupling we obtain
one more vertex/free propagator, which multiplies the probability amplitude with a factor
∼ ξ in the perturbative regime.

to positrons). Correspondingly, they set the scale at which nonlinear QED effects
become important.

In the so-called relativistic regime ξ & 1, which corresponds to the intensity I &
1018 W/cm2 for optical lasers (ω ∼ 1 eV), a perturbative expansion of the S-matrix
with respect to the background laser field breaks down (note that, e.g., the laser
system described in [Yan+08] achieves the intensity 2×1022 W/cm2 for ω = 1.55 eV,
which corresponds to ξ ≈ 70). The threshold ξ & 1 can be understood qualitatively
from a comparison of two Feynman diagrams which differ by only one external field
interaction (see Fig. 1): Each coupling to the background field adds a factor eAµ
and each additional propagator a factor ∼ 1/m to the transition amplitude
(Aµ ∼ E0/ω denotes the four-potential of the field and the propagator is evaluated
heuristically for zero momentum). Therefore, we expect that in the regime ξ � 1
the probability to absorb n photons from the laser field scales as ∼ ξ2n, which is
indeed observed in actual calculations [Di+12; Rit85]. Accordingly, the exchange
of multiple laser photons starts to play an important role for relativistically strong
background fields (ξ & 1).
The present thesis devises special attention to the strong-field regime ξ � 1,

which is particularly interesting from a theoretical point of view. Besides, it is
accessible experimentally with existing optical petawatt laser systems. Since the
first experimental realization of an optical laser in 1960 [Mai60], the available laser
peak intensities steadily increased due to a continuous flow of innovations like the
chirped pulse amplification technique [MTB06; SM85]. Nowadays various optical
petawatt laser systems are operating all over the world, capable of producing
intensities in the range of 1020− 1022 W/cm2 [Chu+13; Gau+10; Kir+12; Sun+10;
Wan+11; Yu+12].

Furthermore, multi-petawatt laser systems are under construction, with en-
visaged intensities up to ∼ 1023−25 W/cm2 [Kor+11]. Among them are the
APOLLON-10P laser [Ché+12], the Extreme Light Infrastructure [ELI], the
Vulcan 10 PW laser [Lya+11] at the Central Laser Facility [CLF], and the Exawatt
Center for Extreme Light Studies [XCELS]. In the near future, these facilities will
provide unique opportunities for studying quantum processes inside ultra-strong
electromagnetic background fields. In order to describe experiments carried out in
the nonlinear regime ξ & 1, the coherent part of the photon field must be taken into
account exactly in the calculations. This is possible in the Furry picture [Fur51],
i.e. by expanding the electron/positron field operator using dressed (Volkov) states
(see Chap. 1) [LL82; Vol35].

So far we considered only the classical intensity parameter ξ, which admits
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a straightforward interpretation for real electrons and positrons. However, an
electromagnetic background field also acts on virtual particles, which are always
present in the form of quantum fluctuations. Owing to the equivalence of mass
and energy and the Heisenberg uncertainty relation, an electron-positron pair with
energy ε & mc2 can spontaneously appear in the vacuum for a short time τ . ~/ε.
Pictorially speaking, the vacuum contains many virtual electron-positron pairs
with a life time on the Compton scale τc = ~/(mc2) ≈ 1.3 × 10−21 s. According
to the above classical considerations, an electric background field can bring a
virtual electron-positron pair on shell if it reaches the QED critical field strength
Ecr = m2c3/|e| ~ ≈ 1.3 × 1016 V/cm. This process is called spontaneous or
Schwinger pair creation from the vacuum [Sch51]; it was first suggested by Sauter
[Sau31] as an explanation for the Klein paradox [Kle29]. Even if the Dirac sea
picture is obsolete, it is often employed to illustrate Schwinger pair creation as
a tunneling process from the occupied negative-energy states to the positive-
energy continuum. As the definition of the critical field involves the reduced
Planck constant ~, it represents a genuine quantum scale which does not admit a
completely classical explanation.

Unfortunately, the laser intensity Icr = 4.6× 1029 W/cm2, which corresponds to
the QED critical field strength Ecr, is not attainable in the near future. Therefore,
several catalyzing mechanisms for vacuum pair production below the Schwinger
limit have been considered. One suggested possibility is the so-called assisted
Schwinger mechanism [DGS09; SGD08], where a strong, low-frequency and a weak,
high-frequency field are combined. Pictorially speaking, the effective tunneling
barrier is reduced by absorbing several photons from the high-frequency field
[Di+09]. Alternatively, the critical field is attainable in a boosted Lorentz frame
even if the laser pulse has a subcritical intensity in the laboratory. This approach
is considered here, namely pair creation induced by high-energy gamma photons
(nonlinear Breit-Wheeler process [BW34]). However, the energy ~ωγ of the incom-
ing gamma photon must substantially exceed the thresholdmc2 in order to produce
an ultra-relativistic electron-positron pair. More precisely, the threshold condition
for nonlinear Breit-Wheeler pair production is given by χ & 1, where χ denotes
the quantum-nonlinearity parameter [χ = (2~ωγ/mc2)(E0/Ecr) for a head-on
laser–high-energy photon collision, see Chap. 1].

Due to the unitarity of the S-matrix, the total electron-positron photoproduction
probability is related to the imaginary part of the polarization operator, which
describes photon forward scattering (see Chap. 3 and Ref. [3]). By proving this
so-called optical theorem for arbitrary plane-wave background fields, we obtain
compact double-integral expressions for the total nonlinear Breit-Wheeler pair-
creation probability (see Chap. 2 and Ref. [4]). Our numerical calculations indicate
that pair-production probabilities of the order of ten percent could be reached
for the collision between a single GeV photon and a strong optical laser pulse
(GeV photons are available from Compton backscattering [Mur+14; SPring8]; they
could also be produced in an all-optical setup by employing electron wakefield
acceleration [ESL09; Lee+06; Phu+12; Pow+14; Wan+13]). So far only the E-144
experiment at SLAC was dedicated to nonlinear QED processes in strong laser
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fields. In this experiment, nonlinear Compton scattering [Bul+96] and electron-
positron pair creation via the trident process [Bur+97] were observed by colliding
a 46.6 GeV electron beam with relativistically intense optical laser light. According
to our findings, the nonlinear Breit-Wheeler process is a promising candidate for
the first direct conversion of light into matter using a light-by-light scattering
experiment.
As the probability for pair creation is substantial for next-generation laser pa-

rameters, a straightforward application of perturbation theory becomes inadequate
and also the exponential decay of the photon wave function must be taken into
account. In vacuum, the modifications induced by loop diagrams are usually small,
which is the reason why they are called radiative corrections. Inside a strong back-
ground field, however, the exact wave functions defined via the Schwinger-Dyson
equation are unstable. Correspondingly, the polarization operator (which describes
quantum fluctuations for photons, see Chap. 3 and Ref. [3]) and the mass operator
(which describes quantum fluctuations for electrons and positrons, see Chap. 5 and
Refs. [1] and [2]) are of central importance for a unitary time evolution. Especially
in the regime where cascade reactions are expected [BK08; Bul+10a; Bul+13;
Elk+11; Fed+10; Ner+11], the wave-function decay becomes important. Due to its
significance, we present here a new derivation of the leading-order contribution to
the polarization operator, which is very similar to the corresponding calculations in
vacuum QED (see Chap. 3 and Ref. [3]; the adaptation of the calculation method to
the mass operator is straightforward). Notably, the physical interpretation of the
appearing integration variables becomes particularly transparent in our approach
and facilitated the identification of the recollision contribution to the polarization
operator (see Chap. 4 and Ref. [5]).
In Chap. 2 (see also Ref. [6]) we verify that photoproduced electron-positron

pairs behave like classical particles after they have left the formation region (in the
ultra-relativistic regime ξ � 1). Correspondingly, many features of the asymptotic
momentum distribution become intuitively understandable from the classical
equations of motion. Remarkably, they predict for linearly polarized laser fields
high-energy recollision processes, which could subsequently prime new reactions as
in an ordinary collider experiment [HMK06; Kuc07]. Recollision processes are well
known from atomic physics, where they are routinely employed in laboratories, e.g.,
for high-harmonic generation (HHG). Semiclassically, they can be described using
a three-step model: Firstly, the atom is ionized by the laser field, subsequently the
laser accelerates the electron and finally the electron recollides with the parent ion
[Cor93; Koh+12; Kuc87]. From a pictorial point of view one could expect that in
the realm of quantum field theory recollisions of photoproduced electron-positron
pairs are described by loop diagram like the polarization operator. However,
high-energy recollision contributions to the polarization operator, which permit the
efficient absorption of many laser photons, remained unnoticed until we identified
them in Ref. [5] (see Chap. 4). So far, only the quasistatic approximation (i.e. the
limit ξ → ∞) was considered in the regime ξ � 1. In this limit, the creation
and the annihilation vertex of the electron-positron loop are located very close
to each other and the whole process happens effectively inside a constant-crossed
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field. Correspondingly, only a few laser photons can be absorbed by the electron-
positron loop (see also [Di+13] for a more general argument). The detailed analysis
presented in Chap. 4 reveals that the absence of recollision contributions in the limit
ξ →∞ can be attributed to the wave-packet spreading of the electron-positron
pair inside the laser field, which suppresses recollision processes with respect to the
immediate annihilation of the electron-positron pair within the formation region
of pair creation. Nonetheless, they are responsible for a large plateau-region in the
polarization operator spectrum, which renders the absorption of ∼ ξ3 laser photons
feasible. Our calculation represents the first full ab initio quantum calculation for
recollision processes of electron-positron pairs created from vacuum. Furthermore,
we firmly established the validity of the above mentioned semiclassical three-step
model (pair creation – acceleration – recollision) by showing that it predicts the
same scaling laws for the width and the height of the plateau-region in the spectrum
as the full quantum calculation. Even if the center-of-mass energy of the resulting
electron-positron “vacuum collider” are smaller than those routinely obtained at
existing large accelerator facilities, the electron and the positron are entangled
during their propagation and the process is intrinsically coherent. In comparison
with vacuum fluctuations [which happen on the Compton scale ∼ ~/(mc)] the laser
enlarges the extend of the electron-positron loop by several orders of magnitude
(laser-induced recollision processes occur on the scale set by the laser wavelength
∼ c/ω). Therefore, recollision processes constitute a novel test for the Standard
Model and the predictions of loop Feynman diagrams on a scale which is unexplored
so far.
Recollision processes represent a very incisive example for properties of the

quantum vacuum which change profoundly in the presence of external background
fields. Another, well known effect is birefringence, normally derived using an
effective action approach [Aff88; BB67; BB70; DG00; Din+14b]. Noteworthy, it
is self-consistently contained in our derivation of the exact photon wave function
(see Chap. 3 and Ref. [3]). While birefringence is well explored for photons, the
analogous phenomenon for electrons has not attracted much attention yet. In
Refs. [1] and [2] (see Chap. 5) we showed for the first time that the spin-dependence
of the electron dispersion relation could be measured using strong laser fields. As
the orientation of the magnetic field oscillates, also the sign of the spin-dependent
contribution to the quasi-energy continuously changes its sign. Therefore, the
importance of the electron spin orientation averages out for long laser pulses,
which probably explains why the effect has not been investigated previously.
However, due to the nonlinear dependence of the electron anomalous magnetic
moment on the effective laser intensity, a finite spin rotation is obtained for
ultra-short laser pulses with an asymmetric pulse profile. Correspondingly, the
spin degree of freedom exhibits nontrivial dynamics due to quantum fluctuations
which are not predicted by the Dirac equation. The effect is closely related to the
Lamb shift in atoms [LR47] and provides an alternative probe of the quantum
vacuum.

Finally, we consider also neutrino interactions inside strong laser fields in Chap. 6
(see also Ref. [7]). Even though neutrinos are neutral particles and interact only
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via the exchange of weak gauge bosons, charged leptons and quarks mediate a
coupling to the photon field beyond tree level. Therefore, loop diagrams represent
the leading-order contribution to processes like photon emission or trident pair
creation by neutrinos. In addition to the polarization operator (see Chap. 3 and
Ref. [3]) also the axial-vector–vector current-coupling pseudo tensor appears in this
context. Here, we present the first calculation of the leading-order contribution
to the current-coupling tensor inside an arbitrary plane-wave laser field. As it
represents the simplest Feynman diagram in an external field which exhibits the
Adler-Bell-Jackiw (ABJ) anomaly [Adl69; BJ69], it is also interesting from a
fundamental point of view. By employing a suitable regularization procedure, we
explicitly calculate the anomalous contribution to the Ward-Takahashi identity
and show that no nonperturbative contributions arise inside a plane-wave field at
one loop. Despite the fact that the probabilities for nonlinear neutrino-photon
interactions are small, the electromagnetic background field enhances them by
several orders of magnitude in comparison with the vacuum case [GMV93; GMV94a;
GMV96]. In the future, laser-neutrino experiments could provide useful insights
concerning electromagnetic catalyzing mechanisms, which presumably play an
important role in astrophysical environments with strong magnetic fields [GMV92;
IR97].
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1 QED with strong plane-wave
background fields

The basic concepts of quantum field theory have been discussed in many textbooks
(see, e.g., the Refs. [GR96; IZ05; LL82; Mag05; PS95; Sre07; Wei95; Wei96]). There-
fore, the main intention of this chapter is to summarize the most important results
and to introduce our notation. We start with the quantization of the photon field,
following Gupta [Gup50] and Bleuler [Ble50] (see Sec. 1.1). Subsequently, coherent
states are introduced [Gla63], as they are a good theoretical description of strong
laser pulses (see Sec. 1.2). From a mathematical point of view, the presence of the
laser field leads to a vacuum expectation value (VEV) for the photon field operator.
If the laser field is strong, the coherent part of the photon field must be included
exactly in all calculations and only the quantum fluctuations around the classical
expectation value can be treated perturbatively1.
In this thesis, the coherent part of the photon field is always described by a

plane wave (see Sec. 1.3). As a plane-wave field depends nontrivially only on the
phase φ = kx (kµ denotes the laser four-momentum), the calculations become
particularly transparent in light-cone coordinates (see Sec. 1.4). The presence of
a plane-wave background does not affect the stability of the vacuum. Therefore,
the quantization of the Dirac field is not substantially altered in comparison with
the vacuum case (see, e.g., the Refs. [DG00; FGS91; Mit75; Rit85] and the reviews
[BR13; Di+12; EKK09; MS06; MTB06]). Furthermore, the Dirac equation can be
solved analytically in closed form for a plane-wave background field and a dressed-
state expansion of the fermionic field operator becomes feasible (see Sec. 1.5).
Therefore, the Feynman rules for QED inside strong plane-wave background fields
differ only by the employed wave functions from those in vacuum. In momentum
space, this leads to a modification of the vertex. The so-called dressed vertex is
thoroughly discussed in Sec. 1.6.

1.1. Quantization of the photon field

QED is described by the following Lagrangian density [LL82; Wei95]

LQED = ψ̄
(
i/∂ −m

)
ψ − 1

4FµνF
µν − eψ̄γµψAµ, (1.1)

where ψ and Aµ are the Dirac spinor field and the photon vector field, respec-
tively. Furthermore, Fµν = ∂µAν − ∂νAµ denotes the electromagnetic field
tensor.

1This is true for experimental parameters achievable now and in the near future. For very strong
background fields, however, QED becomes strongly coupled and also the quantum fluctuations
cannot be treated perturbatively anymore [Di+12; Rit85].
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Chapter 1. QED with strong plane-wave background fields

The free photon field is described by the Lagrangian density

Lem = −1
4FµνF

µν . (1.2)

As A0 is not a dynamical field, we cannot straightforwardly employ the canonical
quantization procedure (for more details see Ref. [Wei95], Chap. 8). The problem is
solved by giving up gauge invariance. Working in the Lorentz gauge ∂µAµ = 0, we
add a so-called gauge-fixing term to the Lagrangian density [GR96; IZ05; Pok00;
Ryd96]

L′em = −1
4FµνF

µν − 1
2ζ (∂ρAρ)2 , (1.3)

where ζ is called gauge-fixing parameter2. After fixing the gauge, the photon field
can be quantized like four ordinary scalar fields. Finally, the field operator is given
by

Âµ(x) = Âµ+(x) + Â†µ+ (x), Âµ+(x) =
∑
σ=1,2

∫
d3q

(2π)3
1√
2ωq

ĉq,σe
−iqxεµq,σ, (1.4)

where ωq =
√
q2 and εµq,σ are orthogonal polarization four-vectors

(ε∗q,σ)µ(εq,τ )µ = −δστ (1.5)

[for simplicity we consider here only the two physical degrees of freedom (σ, τ = 1, 2),
see, e.g., Refs. [Ble50; Gup50; Wei95] for further details].

In Eq. (1.4) the same normalization is used as, e.g., in Refs. [Mag05; PS95] (note
that it differs from Ref. [LL82]). Correspondingly, the photon creation ĉ†q,σ and anni-
hilation operators ĉq,σ obey the canonical commutation relations[

ĉp,σ, ĉ
†
q,τ

]
= (2π)3δ3(p− q)δστ . (1.6)

1.2. Coherent states of the photon field

In the presence of a strong laser field the photon field operator Âµ(x) obtains a
vacuum expectation value (VEV), i.e. it is shifted Âµ(x)→ Âµrad(x) +Aµext(x) by
the classical background field Aµext(x) = Aµ(x). While Aµ(x) describes the coherent
part of the laser field (by assumption, it is not affected by the quantum processes
happening inside the field), Âµrad(x) represents the quantum fluctuations around
the VEV. In the following, we will justify this approach following Refs. [FGS91;
Gla63; HHI09].

A strong laser field represents a very good experimental realization of a coherent
state |A〉 of the photon field. Using the same notation as in the previous section,

2Sometimes the inverse of ζ is used. We have to ensure that all physical observable results
(e.g., the S-Matrix) are independent of ζ. If this is established on general grounds, particular
calculations often simplify for certain values of ζ. By “abuse of language” we call ζ = 1 the
t’Hooft-Feynman gauge and ζ → ∞ the Landau gauge. The gauge-fixing parameter can be
interpreted as a Lagrange-multiplier for the Lorentz-gauge constraint ∂µAµ = 0, see [GR96].
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1.2. Coherent states of the photon field

it can be written as [Gla63]

|A〉 = D̂ |0〉 , (1.7)

where |0〉 is the vacuum state of the photon Fock space (ĉq,σ |0〉 = 0 for all q
and σ, and 〈0|0〉 = 1) and D̂ is a unitary displacement operator. If the classical
four-potential Aµ(x) associated with the coherent state is given by [compare with
Eq. (1.4)]

Aµ(x) = Aµ+(x) +A∗µ+ (x), (1.8a)

with

Aµ+(x) =
∑
σ=1,2

∫
d3q

(2π)3
1√
2ωq

Cq,σe
−iqxεµq,σ, (1.8b)

the displacement operator D̂ has the form

D̂ = exp
[ ∑
σ=1,2

∫
d3q

(2π)3

(
Cq,σ ĉ

†
q,σ − C∗q,σ ĉq,σ

) ]
(1.9)

and the properties

D̂−1ĉq,σD̂ = ĉq,σ + Cq,σ, D̂−1ĉ†q,σD̂ = ĉ†q,σ + C∗q,σ. (1.10)

From Eq. (1.10) we obtain

Âµ+(x) |A〉 = Aµ+(x) |A〉 . (1.11)

Due to the relation

〈A|Âµ(x)|A〉 = Aµ(x), (1.12)

a coherent state can be considered as the most “classical” state of the photon
field.
If the coherent part of the photon field is not substantially changed during

the interaction, the same coherent state appears on both sides of the S-matrix
element(s) of an arbitrary QED process,

〈A| · · · |A〉 = 〈0|D̂−1 · · · D̂|0〉 . (1.13)

Physically, this amounts to the assumption that the laser field is not significantly
depleted or enhanced during the interaction. To justify this approximation, we note
that typical available optical petawatt lasers, which are suitable for the investigation
of QED processes in a strong laser field, have an energy of the order of 100 J
[Di+12], i.e., a total number of ∼ 1020 photons. At an intensity of ∼ 1022 W/cm2

(which is, in principle, attainable with a petawatt laser), ∼ ξ3 ∼ 106 photons are
absorbed from the laser by each electron (positron) [Di+12]. By assuming that
∼ 109 electrons (positrons) interact with the laser, we obtain that ∼ 1015 photons
are expected to be absorbed from the laser field, which remains then practically
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Chapter 1. QED with strong plane-wave background fields

unaffected. Therefore, the coherent part of the photon field can be treated as a
given, classical background field which does not change during the interaction (see
also Refs. [Ber69; BV81; ER66; FE64; Fil85]).

By applying this approximation, we can include the coherent part of the photon
field nonperturbatively if we adopt the transformation in Eq. (1.10). In particular,
we obtain [see Eqs. (1.4) and (1.8)]

D̂−1Âµ(x)D̂ = Âµ(x) +Aµ(x). (1.14)

Thus, instead of calculating S-matrix elements between coherent states, we can
apply the shift Âµ(x)→ Âµrad(x) +Aµ(x) and consider S-matrix elements between
vacuum states as usual [FGS91; HHI09].

To estimate the laser intensity at which we can start to treat the laser as a classical
field, we follow Ref. [LL82], Sec. 5. In natural units, the energy density of a laser field
with intensity I and central angular frequency ω is of the order of I, and the density
of modes is of the order of ω3. Correspondingly, each mode contains Nγ photons,
where Nγ is of the order of I/ω4. If Nγ � 1, due to the correspondence principle,
it is possible to describe the laser modes by a classical field. Thus, we obtain the
following condition for the laser intensity

I � ω4 ≈ 6× 105 W/cm2 ×
(

ω

1 eV

)4
, (1.15)

which is well fulfilled at the relativistic intensities (I & 1018 W/cm2) in the optical
regime (ω ∼ 1 eV) we are interested in here.

1.3. Classical plane-wave fields

In this thesis only plane-wave external fields are considered, i.e., we require that the
field tensor Fµν(x) of the classical background field depends only on the plane-wave
phase φ = kx, where kµ (k2 = 0) is the characteristic four-momentum of the laser
photons (see Sec. 1.3.4). In this case the Dirac equation can be solved analytically
(see Sec. 1.5.1) and thus it is feasible to construct a Fock space with dressed states
and perform nonperturbative calculations with respect to the background field in
the Furry picture [Fur51].

1.3.1. Field tensor

In the absence of charges and currents, the field tensor Fµν(x) of the background
field must obey the homogeneous Maxwell equations [LL87]:

∂µF
µν(x) = kµF

′µν(x) = 0, ∂µF ∗µν(x) = kµF ′∗µν(x) = 0. (1.16)

The most general (antisymmetric) field tensor obeying Eq. (1.16) is given by the
following expression [Sch51]

Fµν(kx) = fµν1 ψ′1(kx) + fµν2 ψ′2(kx) =
∑
i=1,2

fµνi ψ′i(kx), (1.17)
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1.3. Classical plane-wave fields

where

fµνi = kµaνi − kνa
µ
i , fµi ρf

ρν
j = −δija2

i k
µkν , kµf

µν
i = 0 (1.18)

and kai = 0, a1a2 = 0 (see also Sec. 1.4). The scalar functions ψi(kx) are arbitrary,
restricted only by the physical requirement that the external field is of finite extent
and has no dc component3 [i.e., ψi(±∞) = ψ′i(±∞) = 0, with ψi(kx), ψ′i(kx)
vanishing fast enough at infinity]. Furthermore, we adopt (without restriction)
the normalization condition |ψi(kx)| , |ψ′i(kx)| . 1. This implies that the strength
of the field along the two polarization directions is characterized by the two
four-vectors aµi (for more details see Sec. 1.3.2).
In the Lorentz gauge (∂µAµ = 0) the four-potential corresponding to the field

tensor in Eq. (1.17) can be chosen as

Aµ(kx) = aµ1ψ1(kx) + aµ2ψ2(kx), Fµν(kx) = ∂µAν(kx)− ∂νAµ(kx). (1.19)

1.3.2. Classical intensity parameters

Due to the normalization conditions employed for the shape functions ψi(φ)
[see Eq. (1.17)], the laser field strength is characterized by the so-called classical
intensity parameters ξi, which are gauge and Lorentz invariant [see Eq. (1.21)]
[HI09]

ξi = |e|
m

√
−a2

i , ξ =
√
ξ2

1 + ξ2
2 , ξ̂i = ξi/ξ. (1.20)

As pointed out in the introduction, the plane-wave background field must be
taken into account exactly in the calculations if ξ & 1 [Di+12]. Modern laser
facilities can reach this ultra-relativistic regime, e.g., in Ref. [Yan+08] ξ ∼ 100
was obtained.

1.3.3. Quantum-nonlinearity parameters

Using the tensors fµνi and an arbitrary four-momentum vector qµ (most commonly
the four-momentum of an incoming particle), we define the following quantum-
nonlinearity parameters [Di+12]:

χi =
|e|
√
qf2
i q

m3 = η ξi, η =
√

(kq)2

m2 . (1.21)

Since both η and χi are manifestly gauge and Lorentz invariant, this also holds
for the parameters ξi. Furthermore, we define

χ =
√
χ2

1 + χ2
2, χ̂i = χi/χ. (1.22)

3Note that the dc component vanishes if ψi(±∞) = 0, as

+∞∫
−∞

dφψ′i(φ) = ψi(∞)− ψi(−∞) = 0.
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Fig. 2: Laser pulse with sin2-
envelope [see Eq. (1.23)] for differ-
ent carrier-envelope phases [φ0 = 0
(solid line) and φ0 = −π/2 (dot-
ted line), N = 3 cycles]. Depend-
ing on the CEP we obtain either
one strong peak or two peaks with
slightly less strength.
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Fig. 3: In the numerical calcula-
tions we considered either a laser
pulse with sin2 (solid line) or with
sin4 envelope (dotted line), plotted
here for N = 5 cycles and a CEP
of φ0 = −π/2 [see Eq. (1.23) and
Eq. (1.24)]. As the sin4 pulse falls
off faster at the edges, it must have
a higher peak strength in compar-
ison with a sin2 envelope in order
to describe a pulse with the same
total energy.

1.3.4. Laser pulse shape and photon four-momentum

In the numerical calculations we normally employ a linearly polarized laser pulse
[ψ1(φ) = ψ(φ), ψ2(φ) = 0] with a sin2-envelope given by [see Eq. (1.17)]

ψ′(φ) = sin2[φ/(2N)] sin(φ+ φ0) (1.23)

for φ = kx ∈ [0, 2πN ] and zero otherwise. Here N characterizes the number of
cycles in the pulse and φ0 its carrier-envelope phase (CEP, see Fig. 2). To estimate
the effect of the pulse shape we have sometimes repeated the calculations also for
a sin4-envelope

ψ′(φ) −→ ψ̃′(φ) = R sin4[φ/(2N)] sin(φ+ φ0). (1.24)

Here, the scaling parameter R is chosen such that

2πN∫
0

dφ [ψ′(φ)]2 =
2πN∫
0

dφ [ψ̃′(φ)]2, (1.25)

as in most experiments the total energy of the laser pulse is fixed and only its
shape may change (see Fig. 3). As long as N is an integer and N ≥ 2 for ψ′
and N ≥ 3 for ψ̃′, the above shape functions describe a laser pulse without dc
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1.3. Classical plane-wave fields

Fig. 4: If the laser pulse has a
finite extend, its spectrum must
have a finite width and the four-
momentum of the laser photons is
not well defined. Here we plot-
ted the normalized spectrum [see
Eq. (1.28)] for the sin2-pulse given
in Eq. (1.23) with a CEP of φ0 = 0
for N = 5 (solid line), N = 10
(dashed line) and N = 20 (dot-
ted line) cycles. The larger the
pulse, the more monochromatic it
becomes.
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component, i.e.

2πN∫
0

dφψ′(φ) =
2πN∫
0

dφ ψ̃′(φ) = 0 (1.26)

and the energy in the pulse is independent of the CEP.
A plane-wave laser pulse with a finite duration must contain photons with

different four-momenta nkµ (n is not restricted to integers). This becomes obvious
from the following Fourier transformation

ψ′(φ) =
+∞∫
−∞

dn einφcn =
∞∫
0

dn
(
einφcn + e−inφc∗n

)
, (1.27)

where the complex coefficients c−n = c∗n are given by

cn =
+∞∫
−∞

dφ

2π e
−inφψ′(φ) =

2πN∫
0

dφ

2π e
−inφψ′(φ). (1.28)

In Fig. 4 the absolute value of the coefficients cn normalized to cn=1 has been
plotted for different pulse lengthes. Despite this ambiguity and the fact that we
treat the laser field as a classical field, we will call kµ = ω(1,n) the (character-
istic) four-momentum of the laser photons and ω their (characteristic) angular
frequency.

1.3.5. Integrated field tensor

We will use the following symbol for the integrated field tensor

Fµν(φ, φ0) =
φ∫

φ0

dφ′ Fµν(φ′), ∂Fµν(φ, φ0)
∂φ

= Fµν(φ). (1.29a)
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Chapter 1. QED with strong plane-wave background fields

Furthermore, we define

Fµν(φ) = Fµν(φ,−∞) =
φ∫

−∞

dφ′ Fµν(φ′) (1.29b)

and introduce the compact notation Fµνx = Fµν(kx). Using Eq. (1.17), we conclude
that in the Lorentz gauge

Fµν(φ, φ0) = kµ[Aν(φ)−Aν(φ0)]− kν [Aµ(φ)−Aµ(φ0)]
=
∑
i=1,2

fµνi [ψi(φ)− ψi(φ0)], (1.30a)

Fµν(φ) = kµAν(φ)− kνAµ(φ) =
∑
i=1,2

fµνi ψi(φ). (1.30b)

1.4. Light-cone coordinates
As a plane-wave laser field depends nontrivially only on the phase φ = kx (see
Sec. 1.3), it naturally introduces the four-vector kµ which characterizes the four-
momentum of the laser photons (see Sec. 1.3.4). As k2 = 0, any basis including
kµ will be a light-cone basis which defines so-called light-cone coordinates [Dir49;
Mit75; NR71]. Calculations involving plane-wave background fields become particu-
lar transparent if light-cone coordinates are used.

1.4.1. Light-cone basis

We call the set of four four-vectors kµ, k̄µ, eµi (i ∈ 1, 2) a light-cone basis if they
obey

k2 = k̄2 = 0, kei = k̄ei = 0, kk̄ = 1, eiej = −δij . (1.31)

Using the above properties and the determinant identity for εµνρσεαβγδ, it is possible
to show that any such light-cone basis obeys Ω2 = 1, where

Ω = εµνρσk
µk̄νeρ1e

σ
2 (1.32)

is called the orientation of the basis. To be more specific, we can, in a reference
system where the plane wave propagates along the direction n, take the following
four-vectors

kµ = ω(1,n), k̄µ = 1
2ω (1,−n), eµi = (0, ei) ∼ aµi ,

n2 = 1, eiej = δij , n = e1 × e2

(1.33)

(ei represent the two polarization directions of the plane-wave field, and ω has the
dimension of a frequency).

In light-cone coordinates the metric is given by

gµν = kµk̄ν + k̄µkν − eµ1e
ν
1 − e

µ
2e
ν
2 . (1.34)
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1.4. Light-cone coordinates

This allows us to define the transformation to light-cone coordinates (primed
indices) by

aµ
′ = Λµ

′

νa
ν , bµ′ = bνΛ−1ν

µ′ , Λ−1ρ
µ′Λ

µ′

σ = δρσ, (1.35)

where the components denote contractions with the following four-vectors

Λ−µ = kµ, Λ+
µ = k̄µ, ΛI

µ = e1µ, ΛII
µ = e2µ,

Λ−1µ
− = k̄µ, Λ−1µ

+ = kµ, Λ−1µ
I = −eµ1 , Λ−1µ

II = −eµ2 .
(1.36)

(we label light-cone components by +,−,I,II). This implies that we obtain for an ar-
bitrary four-vector vµ the light-cone components

v− = vk, v+ = vk̄, vI = ve1, vII = ve2. (1.37)

We point out that kµ has dimension of momentum and therefore k̄µ must have
dimension of inverse momentum (eµi are dimensionless). Hence, the dimen-
sions of v+ and v− differ from those of vµ. The different dimensions of the
light-cone components can be circumvented by defining kµ = ωnµ and using
the dimensionless quantity nµ in place of kµ. Then, however, nv is not a
Lorentz scalar (contrary to kv = v−), and ω has to appear explicitly in many
places.

In light-cone coordinates, the metric is given by

gµ′ν′ = gρσΛ−1ρ
µ′Λ−1σ

ν′ = δ+
µ′δ
−
ν′ + δ−µ′δ

+
ν′ − δ

I
µ′δ

I
ν′ − δIIµ′δIIν′ , (1.38)

which allows us to write the scalar product of two four-vectors as

aµb
µ = a+b− + a−b+ − aIbI − aIIbII (1.39)

(we also use the short notation a⊥b⊥ = aIbI + aIIbII). Due to Eq. (1.32), we
obtain ∣∣∣det Λµ′ν

∣∣∣ =
∣∣∣Λ+

µΛ−νΛI
ρΛII

σε
µνρσ

∣∣∣ = 1. (1.40)

Thus, the four-dimensional integration measure becomes∫
d4a =

∫
da+da−da⊥, da⊥ = daIdaII. (1.41)

Furthermore, the following notation for light-cone momentum conserving delta
functions is used

δ(−,⊥)(a) = δ(a−)δ(aI)δ(aII) (1.42)

(⊥ summarizes I and II).

1.4.2. Equivalence of different light-cone bases

As any set of four four-vectors eµi (i ∈ 1, 2), k̄µ and kµ obeying the relations given
in Eq. (1.31) represents a light-cone basis, it is natural to ask which expressions
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Chapter 1. QED with strong plane-wave background fields

are invariant under a change of the underlying light-cone basis. To this end we
consider two different bases k̄µ, eµi and k̄′µ, e′µi and denote the corresponding
components of a four-vector vµ by

v+ = k̄µvµ, vI = eµ1vµ, vII = eµ2vµ,

v′+ = k̄′µvµ, v′I = e′µ1 vµ, v′II = e′µ2 vµ,
(1.43)

(v− = v′− = kv). The three coordinates (−, I, II) define a closed subspace and we
obtain the relation v′−v′I

v′II

 =

 1 0 0
e′1k̄ −e′1e1 −e′1e2
e′2k̄ −e′2e1 −e′2e2

 ·
v−vI
vII

 . (1.44)

In order to show that its determinant has magnitude one, we use the expan-
sions

e′µ1 = aeµ1 + beµ2 + λkµ,

e′µ2 = ceµ1 + deµ2 + µkµ.
(1.45)

As e′21 = e′22 = −1 and e′1e′2 = 0, we obtain a2 + b2 = c2 + d2 = 1 and ac+ bd = 0.
Without restricting generality, we set a = cosϕ, b = sinϕ and d = cos θ, c = sin θ.
Finally, we obtain the two solutions θ = −ϕ and θ = −ϕ+ π, which correspond
to ad − bc = ±1. Therefore, the measure dv−dv⊥ = dv′−dv′⊥ and the delta
function

δ(−,⊥)(v) = δ(v−)δ(vI)δ(vII) = δ(v′−)δ(v′I)δ(v′II) = δ(−,⊥)(v′) (1.46)

are invariant under a change of the light-cone basis. If v− = v⊥ = 0, also the
component v+ = k̄µvµ is invariant.

1.4.3. Canonical light-cone basis

For any four-vector qµ with kq 6= 0 we define an associated canonical light-cone
basis kµ, k̄µ, Λµ1 and Λµ2 , where4

k̄µ = 1
kq
qµ − q2

2(kq)2k
µ (1.47)

and

Λµ1 = fµν1 qν

kq
√
−a2

1

, Λµ2 = fµν2 qν

kq
√
−a2

2

. (1.48)

If qµ is also light-like (q2 = 0), the basis is particularly simple (this is not in general
required, though).

4The notation k̄µq and Λµq,i would be more explicit. For simplicity, the index q is dropped.
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1.5. Quantization with plane-wave background fields

Now, we can expand an arbitrary four-momentum vector pµ as follows:

pµ = rqµ + skµ +Mt1Λµ1 +Mt2Λµ2 (1.49a)

where M represents a mass scale and

p− = rkq, p+ = q2

2kq r + s, pI = −Mt1, pII = −Mt2. (1.49b)

If the four-momentum is on shell (i.e. p2 = M2), we can eliminate one of the four
expansion parameters, e.g.,

s = M2

kq

[
1
2r (1 + t21 + t22)− r

2
q2

M2

]
. (1.50)

1.4.4. On-shell momentum integrals in light-cone coordinates

During the calculation of matrix elements one often encounters three-dimensional
on-shell momentum integrals. Since plane-wave background fields conserve three
of four light-cone momenta [see Eq. (1.80)], it is often convenient to rewrite such
integrals in light-cone coordinates as follows∫

d3p

(2π)3
1

2εp
f(p) =

∫
d4p

(2π)3 δ(p
2 −m2)θ(p0)f(p) =

∫
dp−dp⊥

(2π)3
θ(p−)
2p− f(p) (1.51)

(εp =
√
M2 + p2). Here, M is the particle mass, θ is the step function and we

require that p2 = M2 with p0 ≥ 0. This implies that p0 = εp if we integrate over p
(in the first expression) and p+ = (p⊥p⊥ +M2)/(2p−) if we integrate over p−, p⊥
(in the last expression). We note that p0 = εp corresponds to p− > 0 and p0 = −εp
to p− < 0 (p− = 0 is only reached in the limit εp →∞). In particular, using the ex-
pansion given in Eq. (1.49), we obtain the relation∫

d3p

(2π)3
1

2εp
f(p) = M2

∫
drdt1dt2
(2π)3 2r θ(rkq) f(p). (1.52)

1.5. Quantization with plane-wave background fields

As pointed out in the introduction, for very strong background fields the coher-
ent part Aµ(x) of the photon field [see Eq. (1.14)] must be taken into account
exactly in the calculations. For plane-wave fields this is possible by solving
the interaction Dirac equation analytically (see Sec. 1.5.1) and an subsequent
expansion of the fermionic field operator using the obtained Volkov states (see
Sec. 1.5.2).

1.5.1. Volkov solution of the Dirac equation

For a classical plane-wave field Aµ = Aµ(φ) (see Sec. 1.3) the interacting Dirac
equation

(i/∂ − e /A−m)ψ = 0 (1.53)
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Chapter 1. QED with strong plane-wave background fields

can be solved analytically and one obtains the so-called Volkov states Ψp(φ) [LL82;
Vol35], which we will also call dressed states. If we require that they turn into
plane-waves for φ→ −∞ [Ψp(x)→ ψp(x)] , we obtain the representation [Mit75;
Rit72a]

Ψp(x) = Ep,xup, ψp(x) = e−ipxup, (1.54)

where the so-called Ritus matrices Ep,x = Ep(x) are defined by

Ep,x =
[
1 + e/k /A(kx)

2 kp

]
eiSp(x), Ēp,x =

[
1 + e /A(kx)/k

2 kp

]
e−iSp(x) (1.55)

(in the literature different normalization conditions are used). Note that

Ēp,xEp,x = Ep,xĒp,x = 1. (1.56)

The constant Dirac spinors up and vp for the electron and the positron, respec-
tively, are defined by [LL82; PS95]

(/p−m)up = 0, (/p+m)vp = 0 (1.57a)

and obey the normalization conditions

ūpup = 2m, v̄pvp = −2m (1.57b)

(the spin degree of freedom is discussed in Chap. 5).
Although the Volkov states are exact solutions of the interacting Dirac equation,

their phase corresponds to the classical action [LL87]

Sp(x) = −px−
kx∫
−∞

dφ′
[
e pA(φ′)

kp
− e2A2(φ′)

2 kp

]
. (1.58)

Therefore, many aspects of the theory can be understood from the classical
equations of motion (see App. A.3).

Analogously to Eq. (1.54), the dressed electron propagator is given by

iG(x, y) = i

∫
d4p

(2π)4Ep,x
/p+m

p2 −m2 + i0Ēp,y (1.59)

(see Sec. 2.2.2 for a thorough analysis).
The given representations for the Volkov states [see Eq. (1.54)] and the dressed

propagator [see Eq. (1.59)] can be verified by proving that the Ritus matrices convert
momentum operators into momentum variables [Rit72a]

[i/∂x − e /A(kx)]Ep,x = Ep,x/p, −i∂µx Ēp,xγµ − eĒp,x /A(kx) = /pĒp,x (1.60)

(these identities hold only if the derivative acts solely on Ep,x and Ēp,x, respec-
tively).
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1.5. Quantization with plane-wave background fields

Finally, we point out that the Ritus matrices form a complete set [Rit72a]∫
d4p

(2π)4 Ep,xĒp,x′ = δ4(x− x′),
∫
d4x Ēp′,xEp,x = (2π)4 δ4(p′ − p) (1.61)

(the verification of these relations is particularly simple in light-cone coordinates,
see Sec. 1.4).

1.5.2. Dressed-state expansion of the field operator

As both field invariants

Finv = −1
4FαβF

αβ, Ginv = −1
4F
∗
αβF

αβ (1.62)

vanish for a plane-wave background field, the vacuum remains stable (no spon-
taneous pair creation) [Di+12; Sch51]. Therefore, the quantization procedure
for the fermionic fields is not altered substantially in comparison with vacuum
QED.
Instead of expanding the fermionic field operator in terms of the free wave

functions, we use now the Volkov states given in Eq. (1.54). This implies that the
coherent part of the photon field (which is left unchanged by the interaction) is
already taken into account exactly

ψ̂(x) =
∑
σ=1,2

∫
d3p

(2π)3
√

2εp

[
âp,σ Ep(x)up,σ + b̂†p,σ E−p(x) vp,σ

]
. (1.63)

Here, âp,σ and b̂p,σ denote the annihilation operators for fermions and anit-fermions,
respectively (note that we use here the same normalization for the field operators as,
e.g., in [Mag05; PS95], which differs from [LL82]).

By comparing Eq. (1.63) with the vacuum expression we see that, effectively, only
the free wave functions must be replaced by the Ritus matrices [see Eq. (1.54)]

exp(−ipx) −→ Ep(x), exp(+ipx) −→ Ēp(x), (1.64)

which depend nontrivially on the plane-wave phase φ = kx. As the abelian photon
field has no tree-level self interactions, the Feynman rules for the photon sector
remain unaffected by the background field.

1.5.3. Summary of the Feynman rules in position space

Finally, we obtain the Feynman rules summarized in Tab. 4 [DG00; FGS91;
Mit75; Rit85]. In Feynman gauge the photon propagator −iDµν(x− y) is given
by

−iDµν(x− y) = −i
∫

d4k

(2π)4 e
−ik(x−y) 4π

k2 + i0 gµν (1.65)
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Chapter 1. QED with strong plane-wave background fields

Feynman rules in position space

Vertex −ieγµ

Photon propagator −iDµν(x− y) x
’

µ y
’

ν

Dirac propagator iG(x, y) x y

Incoming fermion Ep(x)up,σ p
x

Outgoing fermion ūp,σ Ēp(x) p
x

Incoming anti-fermion v̄p,σ Ē−p(x) ← p
x

Outgoing anti-fermion E−p(x) vp,σ ← p
x

Incoming photon εµ e−ikx ← k
x

Outgoing photon ε∗µ eikx ← k
x

Tab. 4: Feynman rules for the calculation of QED S-matrix elements in the presence
of a plane-wave background field. We use a double line for (anti-) fermions to stress
the fact that the dressed states and propagators include the exact interaction with the
classical background field. In the limit Aµ(x)→ 0 the Feynman rules for vacuum QED
are obtained.

and the Volkov propagator iG(x, y) reads [see Eq. (1.59)]

iG(x, y) = i

∫
d4p

(2π)4 Ep(x) /p+m

p2 −m2 + i0 Ēp(y). (1.66)

Note that we have to integrate over all possible space-time positions of the vertices.
Furthermore, a closed fermionic loop requires a trace in spinor space and an
additional minus sign.

1.6. Dressed vertex

To obtain Feynman rules in momentum space, the Ritus Ep matrices [see Eq. (1.55)]
are combined with the vertex, analogously as in vacuum QED [Mit75; Rit72a]. Cor-
respondingly, we define the dressed vertex by (see Fig. 5)

Γρ(p′, q, p) = −ie
∫
d4x e−iqx Ēp′,xγ

ρEp,x. (1.67)

Working in momentum space, the only difference between vacuum QED and strong-
field QED is a more complicated interaction vertex [i.e., the free vertex −ieγρ is re-
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1.6. Dressed vertex

pµp′µ

qµ

↓

Fig. 5: In the presence of an external background field the dressed vertex must be used in
momentum space [see Eq. (1.67)]. We adopt the following sign convention: the electron
with four-momentum pµ and the photon with four-momentum qµ are incoming and the
electron with four-momentum p′µ is outgoing.

placed by the dressed vertex defined in Eq. (1.67)].

1.6.1. Gauge-invariant representation

After some Gamma-matrix algebra (see App. D), we obtain the following simplified
expression for the dressed vertex

Γρ(p′, q, p) = −ie
∫
d4x

[
γµG

µρ(kp′, kp; kx)

+ iγµγ
5Gµρ5 (kp′, kp; kx)

]
eiSΓ(p′,q,p;x), (1.68)

where the phase and the coupling tensors are given by

SΓ(p′, q, p;x) = −Sp′(x)− qx+ Sp(x) = (p′ − q − p)x

+
kx∫
−∞

dφ′
[epµp′νFµν(φ′)

(kp)(kp′) + e2(kp− kp′)
2(kp)2(kp′)2 pµp

′
νF

2µν(φ′)
]
, (1.69)

Gµρ(kp′, kp; kx) = gµρ +G1(kp′, kp)Fµρx +G2(kp′, kp)F2µρ
x ,

Gµρ5 (kp′, kp; kx) = G3(kp′, kp)F∗µρx ,
(1.70)

G1(kp′, kp) = −e kp+ kp′

2kp kp′ , G2(kp′, kp) = e2

2kp kp′ ,

G3(kp′, kp) = −e kp− kp
′

2kp kp′

(1.71)

(note that G1 and G2 are even in the permutation kp ↔ kp′ while G3 is odd).
As it depends on the external field only through the tensor Fµν , the expression
given in Eq. (1.68) is manifestly gauge invariant (with respect to the external field)
[Mit75].
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1.6.2. Algebraic properties

As qµ = p′µ − pµ, we obtain for the free vertex the following contraction rela-
tion

/q = (/p′ −m) 1− 1 (/p−m). (1.72)

The dressed vertex obeys a similar algebraic identity [Mit75]

qρΓρ(p′, q, p) = (/p′ −m)I(p′, q, p)− I(p′, q, p)(/p−m), (1.73)

where

I(p′, q, p) = −ie
∫
d4x e−iqx Ēp′,xEp,x. (1.74)

Furthermore, we note the following representation

I(p′, q, p) = −ie
∫
d4x

[
1 + G3

2 σαβFαβ(kx)
]
eiSΓ . (1.75)

The identity given in Eq. (1.73) plays a central role in the proof of the Ward-
Takahashi identity. To verify Eq. (1.73), we use Eq. (1.60) and [Mit75]∫

d4x i∂µ
[
Ēp′,xγ

µe−iqxEp,x
]

= 0. (1.76)

Typically, (/p′−m) and (/p−m) in Eq. (1.73) cancel an adjacent propagator, and
the associated momentum-integral can be taken using the relations∫

d4p′′

(2π)4 I(p, q′, p′′)Γµ(p′′, q, p′) = −ieΓµ(p, q + q′, p′),∫
d4p′′

(2π)4 Γµ(p, q, p′′)I(p′′, q′, p′) = −ieΓµ(p, q + q′, p′),
(1.77)

which follow from Eq. (1.61). Using Eqs. (1.73) and (1.77), we can simplify diagrams
which contain dressed vertices contracted with the corresponding photon four-
momenta.
Finally, we note the relation [see Eq. (D.2)]

Γρ(p′, q, p) = −Γρ(p,−q, p′). (1.78)

1.6.3. Momentum conservation

In light-cone coordinates (see Sec. 1.4) the dressed vertex defined in Eq. (1.68)
depends nontrivially only on φ = kx = x−. Therefore, we can take the integrals in
dx+ and dx⊥ and obtain momentum-conserving delta functions in three of four
light-cone components,

Γρ(p′, q, p) = (2π)3δ(−,⊥)(p′ − q − p)Gρ(p′, q, p). (1.79)

Here, Gµ(p′, q, p) denotes the nonsingular part of the dressed vertex [the notation
used for the delta function is introduced in Eq. (1.42)]. Note that its definition is in-
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1.6. Dressed vertex

dependent of the light-cone basis chosen (see Sec. 1.4.2).
In contrary to vacuum QED, four-momentum is only conserved up to a multiple

of the plane-wave four-momentum kµ at the dressed vertex. We point out that we
always implicitly assume the presence of this momentum-conserving delta function
if we discuss the quantity Gρ(p′, q, p) (or functions related to it), i.e. we assume
that it is only evaluated for four-momenta which obey p′µ − qµ − pµ = 0 for the
light-cone components (−,⊥).

After the integrals in dx+ and dx⊥ are taken, the first part of the phase reduces
to [see Eq. (1.69)]

(p′ − q − p)+x− = nkx, (1.80a)

where we introduced the parameter n by

p′µ = pµ + qµ + nkµ. (1.80b)

Thus, the integral in kx = x− determines the amount of laser four-momentum
nkµ which is absorbed from the background field. For simplicity, we will call n
the number of absorbed laser photons (note that n is not restricted to integers,
see Sec. 1.3.4).

1.6.4. Canonical parametrization

To simplify the phase SΓ(p′, q, p;x) given in Eq. (1.69) further, we use the in-
coming photon momentum qµ to define the canonical light-cone basis associ-
ated with this vertex (see Sec. 1.4.3) and introduce the two four-vectors [see
Eq. (1.48)]

Λµi = fµνi qν

kq
√
−a2

i

(1.81)

(i = 1, 2). After parametrizing the integrated field tensor as in Eq. (1.30), we
obtain the following expression for the phase [see Eq. (1.69); the classical intensity
parameters ξi are defined in Eq. (1.20)]

SΓ(p′, q, p;x) = (p′ − q − p)x+ 1
2
m2

kq
w
∑
j=1,2

kx∫
−∞

dφ′
[
ξ2
jψ

2
j (φ′)− 2tjξjψj(φ′)

]
,

(1.82)

where we introduced the parameters [see Eq. (1.80)]

ti = −pµΛµi
m

= −
p′µΛµi
m

= −(p+ p′)µΛµi
2m = e pµp′νfiµν

kqm2 ξi
(1.83)

to characterize the transverse momenta and

w = − (kq)2

(kp)(kp′) (1.84)
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Chapter 1. QED with strong plane-wave background fields

to characterize the longitudinal momentum of the fermions which interact at the ver-
tex. More precisely, we expand their momenta as follows [see Eq. (1.49)]

pµ = rqµ + skµ + t1mΛµ1 + t2mΛµ2 ,
p′µ = r′qµ + s′kµ + t′1mΛµ1 + t′2mΛµ2 .

(1.85)

The momentum-conserving delta functions included in the vertex [see Eq. (1.80)]
imply r′ = r + 1 and t′i = ti. We call this the “canonical” parametrization of the
momenta, because the resulting phase of the dressed vertex [see Eq. (1.82)] has a
particularly simple structure.

The quantities kq and w specify kp and kp′ up to the sign of

w̄ = (kp+ kp′)
kq

w,
(kp+ kp′)

kq
= ±

√
1− 4

w
, (1.86)

which can be seen from the solutions

kp =
(
−1

2 ±
√

1
4 −

1
w

)
kq, kp′ =

(
+1

2 ±
√

1
4 −

1
w

)
kq. (1.87)

Finally, we obtain [see Eq. (1.71)]

G1(w̄, kq) = e

2
w̄

kq
, G2(w, kq) = −e

2

2
w

(kq)2 , G3(w, kq) = −e2
w

kq
. (1.88)

Thus, up to the sign of the coefficient G1, the whole nontrivial momentum-
dependence of the dressed vertex is contained in the parameters ti and w.

1.6.5. Master integrals

To simplify the dressed vertex given in Eq. (1.68) further, we take the integrals in
dx+ and dx⊥ to obtain momentum-conserving delta functions [see Eq. (1.79)] and
introduce the following master integrals

G0(p′, q, p) =
+∞∫
−∞

dφ eiS̃Γ(p′,q,p;φ), Gj,l(p′, q, p) =
+∞∫
−∞

dφ [ψj(φ)]leiS̃Γ(p′,q,p;φ),

(1.89)

where the remaining part of the action is given by [see Eq. (1.82)]

S̃Γ(p′, q, p;φ) = nφ+ 1
2
m2

kq
w
∑
i=1,2

φ∫
−∞

dφ′
[
ξ2
i ψ

2
i (φ′)− 2tiξiψi(φ′)

]
(1.90)

[n = (p′− q−p)+, see Eq. (1.80)]. For Gj,l(p′, q, p) with l > 0 the integration range
is automatically limited to the pulse duration. Assuming that n 6= 0 (which is
required if the in- and outgoing particles are on-shell), we integrate by parts and
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1.6. Dressed vertex

obtain

G0(p′, q, p) = − 1
2n

m2

kq
w
∑
i=1,2

[
ξ2
iGi,2(p′, q, p)− 2tiξiGi,1(p′, q, p)

]
(1.91)

(the boundary terms at infinity are dropped).
Finally, we can express the nonsingular part Gρ(p′, q, p) [see Eq. (1.79)] of the

dressed vertex Γρ(p′, q, p) defined in Eq. (1.67) as

Gρ(p′, q, p) = (−ie)
{
γµ
[
G0g

µρ +
∑
j=1,2

(G1Gj,1f
µρ
j +G2Gj,2f

2µρ
j )

]
+ iγµγ

5 ∑
j=1,2

G3Gj,1f
∗µρ
j

}
, (1.92)

where Gi = Gi(kp′, kp) [see Eq. (1.88)], G0 = G0(p′, q, p), Gi,j = Gi,j(p′, q, p) [see
Eq. (1.89)] and we implicitly assume that p′µ = pµ + qµ for the components (−,⊥),
which is ensured by momentum conservation [see Eq. (1.80)].

1.6.6. Dressed vertex with on-shell momenta

The case where all momenta of the dressed vertex are on shell (i.e. p2 = p′2 = m2,
q2 = 0) is of central importance for tree-level processes (note that the dressed vertex
represents the leading-order contribution to nonlinear Breit-Wheeler pair creation
and nonlinear Compton scattering, see Chap. 2, where all external momenta are
necessarily on shell). In this case the representation given in Sec. 1.6.4 can be
simplified even further. In particular, the fact that q2 = 0 implies that the
canonical light-cone basis associated with the vertex has a very simple structure
[see Eq. (1.85) and Sec. 1.4.3].
For each momentum which is on shell, we can eliminate one degree of freedom.

Using the parametrization [see Eq. (1.85)] [Rit85]

pµ = rqµ + skµ + t1mΛµ1 + t2mΛµ2 ,
p′µ = r′qµ + s′kµ + t′1mΛµ1 + t′2mΛµ2

(1.93)

(r′ = r + 1, t′i = ti) we obtain5 [see Eq. (1.50)]

s = 1
2
m2

kp
(1 + t21 + t22), s′ = 1

2
m2

kp′
(1 + t21 + t22), (1.94)

where kp = rkq and kp = r′kq. Therefore, the amount n = (p′ − q − p)+ of
absorbed laser photons [see Eq. (1.80)] is now determined by the external momenta
and given by

n = s′ − s = 1
2w

m2

kq
(1 + t21 + t22), m2

kp′
− m2

kp
= w

m2

kq
, (1.95)

5Since the parameters r and ti (or r′ and t′i) are conserved at the vertex, we chose them as
independent variables and express s and s′ using the on-shell condition.
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Chapter 1. QED with strong plane-wave background fields

where [see Eq. (1.83) and Eq. (1.84)]

ti = −pµΛµi
m

, w = − (kq)2

(kp)(kp′) = − 1
rr′

. (1.96)

Due to the relation given in Eq. (1.95) the phase of the master integrals [see
Eq. (1.89) and Eq. (1.91)]

Gj,l(p′, q, p) = Gj,l(w, t1, t2) =
+∞∫
−∞

dφ [ψj(φ)]leiS̃Γ(w,t1,t2;φ) (1.97)

simplifies and is given by [see Eq. (1.90)]

S̃Γ(w, t1, t2;φ) = 1
2w

m2

kq
SΓ(t1, t2;φ),

SΓ(t1, t2;φ) = (1 + t21 + t22)φ+
∑
i=1,2

φ∫
−∞

dφ′
[
ξ2
i ψ

2
i (φ′)− 2tiξiψi(φ′)

]
.

(1.98)

We note that for on-shell momenta the phase of the master integrals is monotonic,
which can be seen from

S̃′Γ(p′, q, p;φ) = S̃′Γ(w, t1, t2;φ) = 1
2w

m2

kq
S′Γ(t1, t2;φ),

S′Γ(t1, t2;φ) = 1 +
∑
i=1,2

[
ti − ξiψi(φ)

]2 (1.99)

(for S̃ and S the prime denotes the partial derivative with respect to the laser
phase φ). Thus, S̃′Γ(p′, q, p;φ) is always different from zero for on-shell momenta
(note that w ≥ 4).

1.6.7. Fourier representation for the master integrals

Due to the simple dependence of S̃Γ(w, t1, t2;φ) on w [see Eq. (1.98)], we can
efficiently calculate the master integrals for many different values of w using only
a single fast Fourier transform (see App. I.1 and Chap. 2). To this end we define
for on-shell momenta [see Eq. (1.97)]

Gj,l(x̃, t1, t2) =
+∞∫
−∞

dw e
−i 1

2w
m2
kq
x̃
Gj,l(w, t1, t2) = 4π kq

m2
[ψj(φx̃)]l

|S′Γ(t1, t2;φx̃)| , (1.100)

where we interchanged the integration order (resulting in a delta function) and
φx̃ is the unique solution of SΓ(w, t1, t2;φx̃) = x̃. Correspondingly, we obtain the
following representation

Gj,l(w, t1, t2) =
+∞∫
−∞

dx̃ e
i 1
2w

m2
kq
x̃ [ψj(φx̃)]l

|S′Γ(t1, t2;φx̃)| . (1.101)
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2 Nonlinear Breit-Wheeler
pair production

The possibility to create matter from pure light is one of the most appealing
predictions of quantum electrodynamics. So far, however, it has never been ob-
served experimentally. In this chapter we consider a special type of light-by-light
scattering scheme, namely the collision between a highly-energetic gamma photon
and a strong optical laser pulse. It is shown that for available experimental param-
eters electron-positron photoproduction probabilities of the order of ten percent
are achievable. Correspondingly, this setup is a promising candidate for the first
conversion of light into matter in a laboratory.

In vacuum the decay of a photon into an electron-positron pair is forbidden due to
energy-momentum conservation (also for photon energies ~ωγ above the threshold
2mc2). To catalyze the decay, for example, a second photon (Breit-Wheeler process
[BW34]) or the Coulomb field of a nucleus (Bethe-Heitler pair creation [BH34;
OP33]) is needed. Inside relativistically strong laser fields (ξ � 1) even the simul-
taneous absorption of many laser photons becomes feasible and the Breit-Wheeler
process is called nonlinear (see Fig. 6). Therefore, electron-positron photoproduc-
tion is also possible using optical laser pulses, i.e. if the laser photon energy ~ω ∼ eV
is much smaller than the electron (positron) mass.
Shortly after the first experimental realization of an optical laser by Maiman

[Mai60], several authors started to consider nonlinear quantum processes inside
strong electromagnetic background fields (see e.g. Refs. [NNR65; NR64a; NR64b;
NR67; Rei62] for the Breit-Wheeler process). However, the required laser intensities

γ
e−

e+

← k′µ

p
µ

1

p
µ

2

e−

e+

kµ

k′µ

p
µ

1

p
µ

2

a) Nonlinear Breit-Wheeler process b) Breit-Wheeler pair creation

Fig. 6: a) Leading-order Feynman diagram for the decay of a photon into an electron-
positron pair inside a background field. b) In vacuum this process is always kinematically
forbidden and must be catalyzed, e.g., by a second photon (Breit-Wheeler pair creation;
the two interaction vertices may also be interchanged) [BW34]. Inside a strong laser field
even the simultaneous absorption of many laser photons (nonlinear Breit-Wheeler process)
becomes feasible. Here, the dressed (Volkov) states for the fermions are denoted by double
lines (solutions of the Dirac equation, which take the interaction with the background
field exactly into account) [LL82; Vol35]. The four-vectors indicate the four-momenta of
the particles; they are described in the text (time axis from right to left).
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pµ

k′µ

p′µ

pµ

kµ

k′µ

p′µ

a) Nonlinear Compton scattering b) Ordinary Compton process

Fig. 7: a) Leading-order Feynman diagram for the emission of a photon by an electron or
a positron inside a background field (nonlinear Compton scattering). b) As the electron
(positron) is stable in vacuum, at least one additional interaction is needed to emit a
photon (ordinary Compton process; the two interaction vertices may also be interchanged).
Nonlinear Compton scattering and nonlinear Breit-Wheeler pair creation (see Fig. 6) are
related via a crossing symmetry (solid lines denote fermions in vacuum, double lines
dressed fermion states and wiggly lines photons; time axis from right to left).

for laboratory observations have become available only recently due to impressive
technological advances. The experimental progress triggered new theoretical inves-
tigations over the past years, with an emphasis on both nonlinear Breit-Wheeler
pair production (see Fig. 6) [Bul+10b; Bul+13; FM13; HIM10; HIM11; Ipp+11;
JM13; KER13; KK12a; KK14; Nou+12; OHA11; Tit+12; Tit+13; Tuc10] and non-
linear Compton scattering (see Fig. 7) [BDF12a; BDF12b; BF11; GH14; HSK10;
Kin15; KK12b; KK13; MD11; MD13; MDK10; SK11; SK12; SK13; SK14]. A
detailed summary of the existing literature can be found, e.g., in the review articles
[BR13; Di+12; EKK09; MS06; MTB06; RVX10].
In this chapter, which is mainly based on the publications [4] and [6], we will

consider both the differential and the total probabilities for electron-positron pho-
toproduction inside an arbitrary plane-wave laser field. As near future experiments
will probably use short laser pulses to obtain high intensities, we focus on few-cycle
pulses in the numerical calculations. Below, we summarize the main achievements
of our work.

Proof of the optical theorem for the polarization operator
The optical theorem relates the total probability for particle production processes
to the imaginary part of corresponding loop diagrams; it is a direct consequence
of a unitary time evolution [PS95; Sre07; Wei95]. More specifically, the total pair-
creation probability must be related to the imaginary part of the photon forward-
scattering amplitude (described by the polarization operator, see Chap. 3) due to
probability conservation (see Fig. 8) [FGS91; Rit85]. However, it is instructive
to verify this by an explicit calculation, which leads to the so-called “cutting” or
“cutkosky rules” for Feynman diagrams (for QED in vacuum this derivation was
first given in Refs. [Cut60; Lan59]).

Here, the optical theorem for the polarization operator in the presence of an arbi-
trary plane-wave background field is proven (to leading order) by generalizing the
calculation presented in Ref. [Sre07] for vacuum Feynman diagrams (see Sec. 2.2).
The application of the optical theorem to the nonlinear Breit-Wheeler process
results in a compact double-integral representation for the total electron-positron
photoproduction probability (see Sec. 2.4). By evaluating the remaining two in-
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a) pair production b) polarization operator

Fig. 8: The total probability for electron-positron photoproduction is related via the
optical theorem to the imaginary part of the polarization operator, which describes photon
forward scattering (see Chap. 3).

tegrals numerically (see Sec. 4.5), the dependence of the total pair-production
probability on the energy of the incoming photon, the intensity of the laser pulse,
the number of cycles, the global pulse shape and the carrier-envelope phase (CEP)
has been studied in detail (see Sec. 2.5).

Note that the optical theorem is also used in Refs. [Di+09; Mil+06] to investigate
the nonlinear Bethe-Heitler process. Alternatively, total probabilities could be
calculated efficiently using the approach introduced in Ref. [Din13] for nonlinear
Compton scattering.

Verification of the local constant-crossed field approximation
It is well known that for relativistically strong laser fields (ξ � 1) the formation
region of the basic QED processes nonlinear Compton scattering and nonlinear
Breit-Wheeler pair production is much smaller than the laser wavelength [Di+12;
Rit85]. Therefore, it is possible to calculate the total nonlinear Breit-Wheeler
pair-creation probability by averaging the corresponding quantity inside a constant-
crossed field over the laser pulse shape in the regime ξ � 1 (see Sec. 2.4). By
comparing this so-called local constant-crossed field approximation with a full
numerical calculation, we show that already for ξ & 10 both results are in very
good agreement.
However, the local constant-crossed field approximation breaks down in the

regime ξ . 1. There, the global properties of the laser pulse become important,
which is demonstrated by analyzing the CEP-dependence of the total probability
(see Sec. 2.5).

Furthermore, we prove that the local constant-crossed field approximation is
also applicable for the calculation of the asymptotic momentum distribution of the
pair if interference effects between different formation regions are properly taken
into account (see Sec. 2.7).

Inclusion of the exponential photon wave-function decay
In the regime where the total pair-production probability is of order unity, the
standard evaluation of the leading-order Feynman diagram given in Fig. 6 results in
unphysical predictions. To resolve the contradiction, the back-reaction of the pair-
creation process on the photon wave function must be taken into account. Here, a
self-consistent description is obtained by solving the Schwinger-Dyson equation
[LL82; Sch51], which leads to an exponential decay of exact photon wave function
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Chapter 2. Nonlinear Breit-Wheeler pair production

(see Sec. 2.3). It is shown that already for available laser parameters and gamma
photon energies this effect plays an important role and that it cannot be ignored
at next-generation laser facilities (see Sec. 2.5).

Moreover, the birefringence of the quantum vacuum is obtained from the exact
photon wave function. Normally, this effect is derived from the effective action, see,
e.g., Refs. [Aff88; BB67; BB70; BMS76; DG00; Din+14b].

Semiclassical explanation for the asymptotic momentum distribution
By applying a stationary-phase analysis to the leading-order S-matrix element
of the Breit-Wheeler process (see Fig. 6), we establish a semiclassical description
for electron-positron photoproduction valid in the regime ξ � 1 (see Sec. 2.7).
Accordingly, the asymptotic electron-positron momentum distribution is mainly
determined by the classical equations of motion inside the laser field. To obtain
the correct initial conditions for the classical propagation, the differential pair-
creation probability inside the constant-crossed field at the creation point has to be
considered. In addition, the interference between pairs produced within different
formation regions must be taken into account if the asymptotic momenta after
the classical propagation coincide [Rit85]. As a laser field is oscillatory, each laser
cycle typically contributes two interference paths to the final probability amplitude.
Therefore, nonlinear Breit-Wheeler pair production can also be interpreted as an
optical multi-slit experiment (for the importance of interference effects in Schwinger
pair production see, e.g., Ref. [DD11]).
We point out that the developed intuitive picture reveals many similarities

between Breit-Wheeler pair creation and atomic tunnel ionization [Cor93; Koh+12;
Kuc87]. Furthermore, it provides a clear explanation for the extend of the spec-
trum, the region of highest probability and the strong dependence on the carrier-
envelope phase (CEP) for ultra-short laser pulses reported in Ref. [KK12a] (see
Sec. 2.8).

Note that semiclassical methods are also used in Refs. [MD11; MD13; MDK10] to
interpret the emission spectra obtained for nonlinear Compton scattering.

High-resolution calculation of the spectrum to resolve interferences
In order to establish the validity of the semiclassical description outlined above,
the asymptotic momentum distribution of photoproduced electron-positron pairs is
calculated fully numerically without any approximation. In particular, it is shown
that already for ξ & 10 the interference structure obtained from the local constant-
crossed field approximation applied on the probability amplitude level is in very
good agreement with full numerical predictions (see Sec. 2.8).

As the appearing integrals are highly oscillating in the regime ξ � 1, the exact
numerical calculation is a challenging task [KK12a; Tit+12]. To accomplish it,
we presented a scheme which is substantially more efficient than other employed
methods (see Sec. 1.6). Consequently, it became feasible to evaluate the three-
dimensional differential probability on a grid which is fine enough to completely
resolve the interference structure of the spectrum.
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2.1. Derivation of the pair-creation probability

To calculate the pair-creation probability, we describe the incoming photon by a
wave packet

|Φ, η〉 =
∫

d3q′

(2π)3 2εq′
η(q′) |Φq′〉 , (2.1)

where εq′ =
√
q′2. As shown in [IT13; PS95; Ryd96], this has the advantage of

avoiding the appearance of squared delta functions and ambiguities in interpreting
volume factors. In Eq. (2.1) we assume that all components of the wave packet
have the same polarization (the polarization indices are suppressed) and are on
shell, i.e. q′2 = 0. Furthermore, |Φq′〉 denotes a momentum eigenstate of the
photon field with relativistic normalization

〈Φq|Φq′〉 = 2εq(2π)3δ3(q − q′). (2.2)

The wave-packet state describes a single particle [〈Φ, η|Φ, η〉 = 1] if the envelope
function obeys the covariant normalization condition∫

d3q′

(2π)3 2εq′
∣∣η(q′)

∣∣2 = 1 (2.3)

(this is assumed in the following discussion).
The probability that a single photon decays into an electron-positron pair inside

a plane-wave background field is now given by

W =
∑
σ,σ′

∫
d3p d3p′

(2π)6 2εp2εp′
∣∣〈Φp,σ,p′,σ′ |S|Φ, η〉∣∣2 , (2.4)

where |Φp,σ,p′,σ′〉 describes an electron and a positron with momenta1 pµ = (εp,p)
and p′µ = (εp′ ,p′), respectively (σ,σ′ ∈ [1, 2] label the different spin states, εp =√
m2 + p2, εp′ =

√
m2 + p′2). Equation (2.4) holds if the one-particle momentum

eigenstates for the electron and the positron are relativistically normalized [see
Eq. (2.2)] [Mag05],

〈Φp,σ|Φp′,σ′〉 = 2εp(2π)3δ3(p− p′)δσσ′ . (2.5)

Then, the identity operator (in the one-particle subspace) is given by

1 =
∑
σ=1,2

∫
d3p

(2π)3 2εp
|Φp,σ〉 〈Φp,σ| , (2.6)

which explains the density of states employed in Eq. (2.4).
In the following we drop the spin labels and write |Φp,p′〉 = |Φp,σ,p′,σ′〉 for simplic-

ity. Note thatW is a probability (not a rate), as the duration of the process is natu-
rally limited if the background field has only a finite extend.

1Note that in the first part of this chapter (i.e. from Sec. 2.1 to Sec. 2.5) the notation for the
momenta agrees with the one used in Ref. [4] but differs from the one used in the second part
of this chapter (i.e. starting from Sec. 2.6). There, the notation agrees with Ref. [6].
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Using Eq. (2.1) we rewrite the squared matrix element in Eq. (2.4) as

∣∣〈Φp,p′ |S|Φ, η〉∣∣2 =
∫

d3q1 d
3q2

(2π)6 2εq12εq2

η(q1)η∗(q2)M(p, p′; q1)[M(p, p′; q2)]∗, (2.7)

where

iM(p, p′; q) = 〈Φp,p′ |S|Φq〉 (2.8)

[for simplicity we often suppress some of the labels, i.e. M(p, σ, p′, σ′; q) =
M(p, p′; q) = M(q)].
From now on we consider only plane-wave external fields (see Sec. 1.3). Then,

the S-matrix contains three overall momentum-conserving delta functions [see
Eq. (1.79)] and it is useful to define the reduced matrix elementM by

iM(p, p′; q) = (2π)3δ(−,⊥)(p+ p′ − q) iM(p, p′; q). (2.9)

After transforming the on-shell momentum integrals to light-cone coordinates using
Eq. (1.51), we can rewrite Eq. (2.7) as follows

∣∣〈Φp,p′ |S|Φ, η〉∣∣2 =
∫
dq−1 dq

⊥
1

(2π)3
θ(q−1 )
2q−1

|η(q1)|2

× 1
2q−1

∣∣M(p, p′; q1)
∣∣2 (2π)3δ(−,⊥)(p+ p′ − q1). (2.10)

Finally, the total pair-creation probability is given by [see Eq. (2.4)]

W =
∫

d3q′

(2π)3 2εq′
∣∣η(q′)

∣∣2 W (q′), (2.11a)

where

W (q) =
∑
spin

∫
d3p d3p′

(2π)6 2εp2εp′
1

2q−
∣∣M(p, p′; q)

∣∣2 (2π)3δ(−,⊥)(p+ p′ − q). (2.11b)

Using the Feynman rules for QED with plane-wave background fields (see
Sec. 1.5.3 for details), we obtain the following expression for the electron-positron
photoproduction matrix element2 (see Fig. 6)

iM(p, σ, p′, σ′; q) = εµ ūp,σΓµ(p, q,−p′)vp′,σ′ , (2.12)

where εµ is the polarization four-vector of the incoming photon (εq = 0, εµε∗µ = −1).
Furthermore, up,σ and vp′,σ′ denote the Dirac four-spinors of the electron and
the positron, respectively [see Eq. (1.57)]. Correspondingly, the reduced matrix
element reads [see Eqs. (2.9) and (2.12)]

iM(p, p′; q) = εµ ūpGµ(p, q,−p′)vp′ , (2.13)

2Note that in Eq. (3) and Eq. (A19) in Ref. [4] the i is erroneously missing.
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where G denotes the nonsingular part of the dressed vertex [see Eq. (1.79)].
We point out that the expression for the matrix element given here represents

only the leading-order contribution to the pair-creation process. Furthermore, it is
only possible to interpret W as the probability for pair production as long as it
is small. In general, it represents the decay exponent of the exact photon wave
function (see Sec. 2.3 for more details).

2.2. Optical theorem

In the last section we have clarified the relation between the pair-creation prob-
ability and the corresponding S-matrix element [see Eq. (2.11)]. By proving the
so-called optical theorem [see Eq. (2.29)], we will show now that the total pair-
creation probability is closely related to photon forward scattering described by
the polarization operator (see Fig. 8).
The optical theorem immediately leads to the exponential decay of the exact

photon wave function, which is subsequently discussed in Sec. 2.3. Furthermore,
it is employed in Sec. 2.4 to obtain compact expressions for the total nonlinear
Breit-Wheeler pair-creation probability.

2.2.1. Leading-order cutting rule for the polarization operator

In this section we will explicitly derive the optical theorem for nonlinear Breit-
Wheeler pair production (to leading order, see Fig. 8) in the presence of an arbitrary
plane-wave background field (see also [BMS76; Di+09; Din+14b; FGS91; Mil+06;
Rit72b] and e.g. [Cut60; Lan59; PS95; Sre07] for the corresponding proof in
vacuum QED). To this end we consider the squared matrix element [see Eq. (2.12)],
which appears in Eq. (2.7)

M(p, σ, p′, σ′; q1)[M(p, σ, p′, σ′; q2)]∗

= εµε
∗
ν tr ρup,σΓµ(p, q1,−p′)ρvp′,σ′Γ

ν(p, q2,−p′) (2.14)

[see Eq. (D.2) for the bar notation used]. Here, we have introduced the following
density matrices

ρup,σ = up,σūp,σ, ρvp′,σ′ = vp′,σ′ v̄p′,σ′ . (2.15)

To obtain the total pair-creation probability we have to sum/integrate over final
spins and momenta [see Eq. (2.4)]

∑
spin

∫
d3p d3p′

(2π)6 2εp2εp′
M(q1)[M(q2)]∗. (2.16)

The sum over different spin states yields [LL82; PS95]∑
σ=1,2

ρup,σ = /p+m,
∑
σ′=1,2

ρvp′,σ′ = /p
′ −m. (2.17)
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Chapter 2. Nonlinear Breit-Wheeler pair production

Thus, we see that Eq. (2.16) resembles the leading-order contribution to the
polarization operator (see Chap. 3)

iPµν(q1, q2) =
∫
d4p1 d

4p2
(2π)8

tr[· · · ]µν

(p2
1 −m2 + i0)(p2

2 −m2 + i0)
, (2.18)

where

tr[· · · ]µν = tr Γµ(p2, q1, p1)(/p1 +m)Γν(p1,−q2, p2)(/p2 +m). (2.19)

To match the two expressions even further, we introduce two more integrations
in p0 and p′0 in Eq. (2.16) together with appropriate delta and step functions to
bring the momenta on shell [see Eq. (1.51)]. After applying the identity given
in Eq. (1.78), using the cyclic property of the trace and the change of variables
pµ → pµ2 , p′µ → −p

µ
1 we obtain

∑
spin

∫
d3p d3p′

(2π)6 2εp2εp′
M(q1)[M(q2)]∗ =

∫
d4p1 d

4p2
(2π)6

× δ(p2
1 −m2)δ(p2

2 −m2)θ(−p0
1)θ(p0

2)εµε∗ν tr[· · · ]µν . (2.20)

To prove the optical theorem we have to relate the imaginary part of the photon
forward-scattering amplitude described by the polarization operator to the total
pair-creation probability. To this end we extract the nonsingular part of the
polarization operator by defining

Pµν(q1, q2) = (2π)3δ(−,⊥)(q1 − q2) Πµν(q1, q2), (2.21)

and consider = [εµε∗νΠµν(q, q)]. We point out that the contracted trace εµε∗ν tr[· · · ]µν
[see Eq. (2.19)] is purely real if evaluated at qµ1 = qµ2 = qµ (strictly speaking, after
the singular part is factorized out). This can be deduced from

(tr[· · · ]µν)∗ = tr[· · · ]νµ(q1 ↔ q2) (2.22)

[note that (trM)∗ = trM † = tr M̄ ]. Using the Sokhotski-Plemelj identity [Mer98;
Sre07]

1
p2 −m2 + i0 = P 1

p2 −m2 − iπδ(p
2 −m2), (2.23)

we obtain the symbolic relation [see Eq. (2.18)]

= [εµε∗νΠµν(q, q)] = −< [εµε∗νiΠµν(q, q)] ∼ π2δδ − P P . (2.24)

It is shown in Sec. 2.2.2 that the two principle value integrals are related to the on-
shell contribution. Symbolically, the result can be written as

P P = sign(p−1 ) sign(p−2 )π2δδ, (2.25)
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implying

= [εµε∗νΠµν(q, q)] ∼ [1− sign(p−1 ) sign(p−2 )]π2δδ. (2.26)

On the other hand, the momentum-conserving delta function δ(−)(p2 − q1 − p1)
contained in the vertices in Eq. (2.20) ensures that only the region p−2 − p

−
1 > 0

contributes to the integral (assuming q−i > 0, i.e. we exclude the trivial case of a
photon which is copropagating with the laser). Thus, in Eq. (2.20) we can apply
the replacement

2θ(−p0
1)θ(p0

2)←→ [1− sign(p−1 ) sign(p−2 )]. (2.27)

Finally,

2= [εµε∗ν Πµν(q, q)] = εµε
∗
ν

∫
d3p d3p′

(2π)6 2εp2εp′
(2π)3δ(−,⊥)(p+ p′ − q)

× tr(/p+m)Gµ(p, q,−p′)(/p′ −m)Gν(p, q,−p′) (2.28)

for q− > 0, where Gµ denotes the nonsingular part of the dressed vertex [see
Eq. (1.79)].
After combining everything, we obtain the following relation between the total

electron-positron photoproduction probability W and the imaginary part of the
photon forward scattering amplitude, which is called the optical theorem (see also
[BMS76; Di+09; Mil+06])

W =
∫

d3q′

(2π)3 2εq′
∣∣η(q′)

∣∣2 W (q′), W (q) = 1
kq
= [εµε∗ν Πµν(q, q)] (2.29)

[q2 = 0; W ≈W (q) if the wave packet of the incoming photon is sharply peaked
around q′µ = qµ, see Eq. (2.3)].

2.2.2. Pole structure of the Volkov propagator

To prove Eq. (2.25) we have to investigate the pole structure of the the Volkov
propagator [see Eq. (1.59)]

iG(x, y) = i

∫
d4p

(2π)4Ep,x
/p+m

p2 −m2 + i0Ēp,y. (2.30)

This is most conveniently carried out in light-cone coordinates, where the integral
in dp+ has a simple structure [Rit72a], as the phase of the propagator depends on
p+ only via [see Eq. (1.58)]

exp[−ip+(x− − y−)] (2.31)

(A− = k− = 0). For p− 6= 0 we can evaluate the integral in p+ using the residue
theorem [AF03].

In general, the point p− = 0 (which corresponds to the so-called light-cone zero
mode) must be treated carefully (for more details about light-cone quantization
and the light-cone zero mode see e.g. Refs. [BPP98; Dir49; Hei01]). As long
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Chapter 2. Nonlinear Breit-Wheeler pair production

as no singularities [e.g. a delta function δ(p−)] are encountered, a single point
can always be excluded from the integration range. In the absence of external
fields such a delta function appears in QED only in diagrams without external
legs and for all other diagrams the light-cone zero mode can be ignored (see
Sec. II.C in Ref. [CM69]). Like in vacuum QED, the light-cone zero mode does
not contribute to the leading-order diagram for the polarization operator in a
plane-wave background field if the incoming photon is on shell and does not
propagate collinearly with the laser field. This can be seen explicitly from the
final expression of the field-dependent part of the polarization operator given
in Chap. 3 [see Eq. (3.56)]. In fact, the integrand of the polarization operator
vanishes at the points τ = 0 and v = ±1, corresponding to vanishing values of
at least one of the proper-time variables s and t [see Eq. (3.24)]. Thus, the delta
function used to take the p−-integral [see Eq. (3.20)] implies that p− 6= 0 as long
as kq = q− 6= 0. In conclusion, for the discussion of the optical theorem we can
ignore subtleties arising from the light-cone zero mode and assume that p− 6= 0 in
the following.
To take the integral in p+ we have to close the contour in the lower complex

plane if x− − y− > 0 and in the upper complex plane if x− − y− < 0. The pole
of

1
p2 −m2 + i0 = 1

2p+p− − p⊥p⊥ −m2 + i0
(2.32)

is located at

p+ = p⊥p⊥ +m2 − i0
2p− , (2.33)

i.e. in the lower complex plane for p− > 0 and in the upper complex plane for p− <
0, in agreement with the Feynman boundary condition.
Following Ref. [Sre07], we have to consider also the retarded and advanced

propagators, defined by the pole prescriptions

1
p2 −m2 + sign(p−)i0 ,

1
p2 −m2 − sign(p−)i0 , (2.34)

respectively. The pole of the former is always located in the lower, the pole of
the latter always in the upper complex plane. Correspondingly, the propagators
vanish for x− < y− and x− > y−, respectively.

The polarization operator diagram [see Eq. (3.6)] contains both G(x, y) and
G(y, x) or in other words the phase factor contains

exp
[
− ip+

1 (x− − y−)
]
exp

[
ip+

2 (x− − y−)
]
. (2.35)

Correspondingly, the contour integrals in p+
1 and p+

2 must be closed differently.
If both propagators of the polarization operator are either replaced by advanced
or by retarded propagators, such that for x− − y− ≷ 0 one propagator is always
zero, the contribution of the total diagram vanishes. Using the relation [see
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2.3. Exact photon wave function

= + + + · · ·

= +

a) Exact photon wave function

= + + + + · · ·

b) One-particle irreducible diagrams

Fig. 9: a) The exact photon wave function (double wiggly line) can be defined either
implicitly or by an geometric expansion. b) One-particle irreducible (1PI) contributions
to the polarization operator (see Chap. 3).

Eq. (2.23)]

1
p2 −m2 ± sign(p−)i0 = P 1

p2 −m2 ∓ i sign(p−)πδ(p2 −m2), (2.36)

we can now prove the identity [see Eq. (2.25)]

P P = sign(p−1 ) sign(p−2 )π2δδ (2.37)

for = [εµε∗νΠµν(q, q)].

2.3. Exact photon wave function

It is shown in Sec. 2.5 that the quantity W (q) [see Eq. (2.11)] may become larger
than unity for next-generation laser parameters. Therefore, the common inter-
pretation of W (q) as pair-production probability must eventually be modified.
The reason for this unphysical result is the fact that we neglected the exponential
decay of the photon and the electron wave functions during the evaluation of the
Feynman diagram shown in Fig. 6. As the photon is unstable in the external field,
the phase of its exact wave function must contain an imaginary part to ensure
a unitary time evolution. Due to the optical theorem [see Eq. (2.29)] the decay
of the photon wave function is naturally obtained from radiative corrections (see
Fig. 9). To obtain a self-consistent description, they have to be included by solving
the Schwinger-Dyson equation [LL82; Sch51].

2.3.1. Schwinger-Dyson equations

In vacuum the wave function of an incoming (outgoing) photon with four-momentum
qµ is given by [LL82; PS95]

Φinµ
q,j (x) = εµj e

−iqx, Φ∗outµ
q,j (x) = ε∗µj e

iqx (2.38)
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Chapter 2. Nonlinear Breit-Wheeler pair production

(j = 1, 2 labels the polarization state). However, inside a background field
radiative corrections affect also the external lines (even after renormalization
[Wei95]) and the exact wave function obeys the Schwinger-Dyson equation [LL82;
Sch51]

−∂2Φinµ
q (x) =

∫
d4y Pµν(x, y)Φin

qν(y),

−∂2Φ∗outµ
q (x) =

∫
d4yΦ∗out

qν (y)P νµ(y, x),
(2.39)

where Pµν(x, y) denotes the polarization operator in position space. It is related to
the polarization operator in momentum space (see Chap. 3) via

Pµν(x, y) =
∫
d4q1d

4q2
(2π)8 e−iq2x Pµν(−q2,−q1) eiq1y,

Pµν(q1, q2) =
∫
d4xd4y e−iq1y Pµν(y, x) eiq2x

(2.40)

[note that we use for Pµν(x, y) = P νµ(y, x) the Schwinger notation (particle prop-
agation from y to x) [Sch51], while in Pµν(q1, q2) = Pνµ(−q2,−q1) the incoming
momentum is denoted by q1]. As the vacuum part does not change the photon
wave function (after renormalization is carried out), we will consider here only the
field-dependent part of the polarization operator.
We point out that now even for a plane-wave field the states for incoming

and outgoing particles are not equivalent anymore, as the quantum loop enters
differently into the equations (the corresponding Schwinger-Dirac equation for an
electron is discussed in Chap. 5).

To solve the Schwinger-Dyson equations [see Eq. (2.39)] we use the ansatz

Φinµ
q,j (x) = exp(−iqx)E inµ

q,j (kx), Φ∗outµ
q,j (x) = E∗outµ

q,j (kx) exp(iqx) (2.41)

and require the boundary conditions

E inµ
q,j (−∞)→ εµj , E∗outµ

q,j (+∞)→ ε∗µj (2.42)

(with a suitable choice for the constant polarization four-vectors εµj ). As they
denote the asymptotic momenta, the quantum numbers are left unchanged (i.e.
q2 = 0). However, we obtain Q2

j 6= 0, where the effective four-momentum Qµ
j is

defined as the derivative of the total wave-function phase [Din+14b], i.e. for in
states

Qµ
j = −∂µSq,j(x), Φinµ

q,j (x) ∼ exp[iSq,j(x)] (2.43)

(Qµ
j = qµ to leading order).
From Eq. (2.39) we obtain now the following integro-differential equations

i2kq E ′inµq,j (φ) =
∫
dφ′ Pµνq (φ, φ′)E in

q,jν(φ′),

−i2kq E ′∗outµ
q,j (φ) =

∫
dφ′ E∗out

q,jν (φ′)P̃ νµq (φ′, φ),
(2.44)
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2.3. Exact photon wave function

where we defined the quantities

Pµνq (kx, ky) =
∫
dy+dy⊥ eiq(x−y) Pµν(x, y),

P̃ νµq (ky, kx) =
∫
dy+dy⊥ eiq(y−x) P νµ(y, x).

(2.45)

2.3.2. Exact photon wave function for strong background fields

From now on we focus on the in states and assume that the background field is
strong (ξ � 1), i.e. we use the leading-order quasistatic approximation for the
polarization operator (see Sec. 3.3.2). To determine the leading-order corrections in
αχ2/3 � 1 [Rit85], we can apply a perturbative approach [Sch51]. As to leading or-
derQµ

j = qµ, we obtain the following differential equation3

i2kq E ′inµq,j (φ) = −
[
p1(φ) Λµ1 Λν1 + p2(φ) Λµ2 Λν2 + p3(φ)q

µqν

m2

]
E in
q,jν(φ), (2.46)

where [see Eq. (3.96)]

p1(φ) = α
m2

3π

+1∫
−1

dv (w − 1)f
′(x̃)
x̃

, p2(φ) = α
m2

3π

+1∫
−1

dv (w + 2)f
′(x̃)
x̃

,

p3(φ) = −α m
2

π

+1∫
−1

dv
f1(x̃)
w

(2.47)

[ 1
w = 1

4(1 − v2), x̃ = [w/|χ(φ)|]2/3, χ(φ) = χψ′(φ) and the Ritus functions are
defined in Eq. (F.1)]. As the incoming photon is initially transversely polarized
(i.e. in the plane spanned by Λµj , j = 1, 2), the term proportional to p3(φ) can be
ignored.
Finally, we obtain for the exact incoming photon wave function the following

expression

Φinµ
q,j (x) = Λµj exp

[
− iqx− i 1

2kq

kx∫
−∞

dφ′ pj(φ′)
]

(2.48)

(j = 1, 2, valid for ξ � 1 and as long as αχ2/3 � 1 [Rit85]; similarily, the outgoing
photon wave function can be derived).
According to Eq. (2.48) the effective photon four-momentum [see Eq. (2.43)] is

given by

Qµ
j (φ) = qµ + kµ

1
2kqpj(φ) (2.49)

and locally the well-known expression for the square of the photon mass Q2
j inside

a constant-crossed field is recovered [BS71; Nar69; Rit70b; Rit72a] (for other dis-
3Note that for ξ � 1 the polarization operator is contracted to a single point (we do not consider
the recollision contribution discussed in Chap. 4). Therefore, the integro-differential equation
[see Eq. (2.44)] turns into an ordinary differential equation.
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Chapter 2. Nonlinear Breit-Wheeler pair production

cussions of refractive indices and birefringence see e.g. [Aff88; BB67; BB70; BMS76;
DG00; Din+14b] and the reviews [BR13; Di+12; MS06]).

2.3.3. Exponential wave-function decay

Due to the imaginary part of the polarization operator, the photon wave function
decays exponentially (as expected for an unstable particle). During the calcula-
tion of the pair-creation probability the exponential decay of the wave function
must be considered as soon as the approximation W (q) � 1 breaks down [see
Eq. (2.11)].

The total probability that a photon with polarization four-vector εµj = Λµj does
not decay inside the laser pulse is obtained by evaluating the square of the exact
wave function at kx→∞, it is given by [BI70]

W s
q,j = exp

{ 1
kq

+∞∫
−∞

dφ′=[pj(φ′)]
}
. (2.50)

As the imaginary part of the polarization operator is related to the pair-creation dia-
gram (without radiative corrections) via the optical theorem [see Eq. (2.29)]

Wj(q) = 1
kq
= [ΛjµΛjν Πµν(q, q)], (2.51)

the survival probability can be expressed as

W s
q,j = exp[−Wj(q)] ≈ 1−Wj(q) (2.52)

[the last relation holds only if Wj(q) is much smaller than unity]. Thus, Wj(q)
must be interpreted as the decay exponent for the photon wave function if it
becomes large [nevertheless, we call Wj(q) simply the probability for pair creation,
keeping Eq. (2.52) in mind].

2.4. Total pair-creation probability

The total nonlinear Breit-Wheeler pair-creation probability is obtained by inserting
the reduced matrix element given in Eq. (2.13) into Eq. (2.11). However, the phase-
space integrals are highly oscillating in the regime ξ � 1 and a direct numerical cal-
culation is tedious (see Sec. 2.6) [KK12a; Tit+12].
In order to circumvent this difficutly, we utilize the optical theorem [see

Eq. (2.29)]. By applying it to the double-integral representation for the field-
dependent part of the polarization operator given in Eq. (3.132), we obtain com-
pact expressions for the total nonlinear Breit-Wheeler pair-creation probability
W (q) [see Eq. (2.11)]. For a single on-shell photon with four-momentum qµ and
polarization four-vector εµ, colliding with a plane-wave laser pulse described by the
field tensor Fµν(φ) = fµν1 ψ′1(φ) + fµν2 ψ′2(φ) [see Eq. (1.17)] the total pair-creation
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2.4. Total pair-creation probability

probability is given by

W (q) = − 1
kq

α

2π

∞∫
0

d%

%

+∞∫
−∞

dy−= εµε∗ν
[
P12Λµ1 Λν2

+ P21Λµ2 Λν1 + P11Λµ1 Λν1 + P22Λµ2 Λν2
]
, (2.53)

where [see Eq. (1.48)]

Λµ1 = fµν1 qν

kq
√
−a2

1

, Λµ2 = fµν2 qν

kq
√
−a2

2
(2.54)

and the coefficients Pij [see Eq. (3.133)] are evaluated at q1 = q2 = q, q2 = 0 [PQ
does not contribute for qε = q2 = 0, which can be seen from the definition of the
four-vectors Qµi ].

2.4.1. Linearly polarized laser fields

We consider now the important case of a linearly polarized background field
[ξ = ξ1, ξ2 = 0; ψ1(φ) = ψ(φ), ψ2(φ) = 0; Fµν = ψ′(φ)fµν , fµν = kµaν − kνaµ,
P12 = P21 = 0]. It is then useful to introduce the following two polarization
four-vectors (see App. E for a detailed discussion of possible photon polariza-
tions)

εµ‖ = Λµ1 , εµ⊥ = Λµ2 . (2.55)

They are real and obey ε2‖ = ε2⊥ = −1, ε‖ε⊥ = 0. The index denotes the
polarization direction of the photon with respect to the electric field of the
laser (in the frame where the incoming photon and the laser pulse collide head-
on).
Accordingly, we obtain for the total pair-creation probability in a linearly

polarized laser pulse by an on-shell photon with polarization four-vector εµ‖ and
εµ⊥ [see Eq. (2.53)]

W‖(q) = −α m
2

kq

1
2π

+∞∫
−∞

dy−
∞∫
0

d%

%
= P̃11,

W⊥(q) = −α m
2

kq

1
2π

+∞∫
−∞

dy−
∞∫
0

d%

%
= P̃22,

(2.56)

where [see Eq. (3.133)]

P̃11 = − i
%

kq

m2

[
W2(x1)e−i4x1 −W2(x0)e−i4x0

]
+ ξ2

[1
2VW0(x1) + 2XW1(x1)

]
e−i4x1 ,

P̃22 = − i
%

kq

m2

[
W2(x1)e−i4x1 −W2(x0)e−i4x0

]
+ ξ2 1

2VW0(x1)e−i4x1
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[V = V1, X = X11, see Eq. (3.137); x0 and x1 are defined in Eq. (3.135) and Wl(x)
in Eq. (G.2)].

2.4.2. Quasistatic approximation for strong background fields

As the integrals in Eq. (2.56) are oscillatory, it is useful to derive non-oscillatory rep-
resentations for important limits. In this section we consider a strong (ξ � 1), lin-
early polarized background field. In this case the field-dependent contribution to the
polarization operator can be written as [see Eq. (3.102)]

iPµν(q1, q2)− iPµνF=0(q1, q2) = i(2π)3δ(−,⊥)(q1 − q2)
+∞∫
−∞

dz− ei(q
+
2 −q

+
1 )z−

×
[
π′1

(fq)µ(fq)ν

(fq)2 + π′2
(f∗q)µ(f∗q)ν

(f∗q)2 − π′3
q1q2

Gµν
]
, (2.57)

where f∗µν = 1
2ε
µνρσfρσ and

π′1 = α
m2

3π

+1∫
−1

dv (w − 1)
[ |χ(kz)|

w

]2/3
f ′(ρ),

π′2 = α
m2

3π

+1∫
−1

dv (w + 2)
[ |χ(kz)|

w

]2/3
f ′(ρ),

π′3 = −α q1q2
π

+1∫
−1

dv
f1(ρ)
w

,

(2.58)

with 1
w = 1

4(1−v2), ρ =
[

w
|χ(kz)|

]2/3(1− q1q2
m2

1
w ), χ(kz) = χψ′(kz) and Gµν = qµ2 q

ν
1−

q1q2 g
µν . Furthermore, the Ritus functions are defined by [see App. F]

f(x) = i

∞∫
0

dt exp
[
− i
(
tx+ t3/3

)]
= πGi(x) + iπAi(x),

f1(x) =
∞∫
0

dt

t
exp (−itx)

[
exp

(
− it3/3

)
− 1

] (2.59)

and the integration variable can be changed using

+1∫
−1

dv = 2
1∫

0

dv =
∞∫
4

dw
4

w
√
w(w − 4)

(2.60)

(valid for integrands which are even functions of v).
To determine the pair-creation probabilities we apply now the optical theorem
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given in Eq. (2.29) to Eq. (2.57) and note the identities [see Eq. (1.48)]

Λµ1 Λν1 = −(fq)µ(fq)ν

(fq)2 , Λµ2 Λν2 = −(f∗q)µ(f∗q)ν

(f∗q)2 . (2.61)

Finally, the total probability for the decay of a single on-shell photon with four-
momentum qµ and polarization four-vector εµ‖ (εµ⊥) into an electron-positron pair
inside a strong (ξ � 1, χ < ξ), linearly polarized laser pulse with field tensor
Fµν(kx) = fµνψ′(φ) is given by

W‖(q) = −α m
2

kq

+∞∫
−∞

dφ

+1∫
−1

dv
(w − 1)

3
Ai′(x̃)
x̃

,

W⊥(q) = −α m
2

kq

+∞∫
−∞

dφ

+1∫
−1

dv
(w + 2)

3
Ai′(x̃)
x̃

, (2.62)

where 1
w = 1

4(1− v2), x̃ =
[
w/|χ(φ)|

]2/3 and χ(φ) = χψ′(φ) (due to qε = q2 = 0
the coefficient π′3 does not contribute). We point out that Eq. (2.62) holds for
an arbitrary shape of the plane-wave background field (χ should be such that
αχ2/3 � 1, otherwise perturbation theory with respect to the radiation field is
expected to break down [Di+12; Rit85]). As the formation region is small for
ξ � 1, the total pair-creation probability given in Eq. (2.62) consists essentially
of the probability to create a pair inside a constant-crossed field (see [Rit72a],
Eq. (64) and [Rit85], Chap. 5, Eq. (60); see also [BKS98]), integrated over the
pulse shape [χ(φ) represents the instantaneous value of the quantum-nonlinearity
parameter].

For comparison with the literature we consider now the monochromatic limit of
Eq. (2.62), i.e. ψ′(φ) = sin(φ) and a counterpropagating photon. As the wave is
periodic, we can split the integral in φ and consider only a single half-cycle (i.e.
φ ∈ [0, π]). As the photon is counterpropagating, it passes this half-cycle in the
time T/4, where the laser period is given by T = 2π/ω. Correspondingly, the rate
for pair creation by a single photon inside a strong (ξ � 1), linearly polarized,
monochromatic plane wave field is given by

W‖(q) = −α m
2

q0
1
π

π∫
0

dφ

+1∫
−1

dv
(w − 1)

3
Ai′(xm)
xm

,

W⊥(q) = −α m
2

q0
1
π

π∫
0

dφ

+1∫
−1

dv
(w + 2)

3
Ai′(xm)
xm

, (2.63)

where now xm =
[
w/|χm(φ)|

]2/3, χm(φ) = χ sin(φ) [ 1
w = 1

4(1 − v2)]. Equa-
tion (2.63) coincides with the result obtained in [Rit85] [Chap. 3, Eq. (35)
and Chap. 5, Eq. (60)]. It is also in agreement with the results obtained in
[BMS76].
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Chapter 2. Nonlinear Breit-Wheeler pair production

2.4.3. Small quantum parameter (exponential suppression)

For χ� 1 the pair-creation probability is exponentially suppressed. This becomes
obvious from the asymptotic expansion of the Airy function [Olv+10]

Ai′(x) ∼ −x
1/4 e−

2
3x

3/2

2
√
π

. (2.64)

In this regime we can approximately evaluate the integrals in Eq. (2.62), resulting
in a compact expression for the pair-creation probability. As the pair-creation
probability is exponential suppressed, only the region around the peak of the field
strength contributes to the integral in φ. Furthermore, we see from Eq. (2.60)
that the integral in w is formed around w = 4. Correspondingly, we can use the
relation

∞∫
4

dw
1√
w − 4

e−xw = e−4x
√
π

x
(2.65)

(for x > 0) to evaluate the integral in w approximately. Assuming that |ψ′(φ)| ≈
|sin(φ)| close to a field peak, the contribution from each peak can be approximately
taken into account using

π∫
0

dφ e−x/sin(φ) ≈
+∞∫
−∞

dφ e−x(1+φ2/2) = e−x
√

2π
x

(2.66)

(if x > 0; for different peak shapes this relation must be modified accordingly).
Combining everything, the pair-creation probability within a single peak of a
linearly polarized, plane-wave laser field is in the regime ξ � 1, χ � 1 given
by

W‖(q) = α
m2

kq

3
√
π

8

(
χ

2

)3/2
e−8/(3χ), (2.67)

W⊥(q) = 2W‖(q). From Eq. (2.67) the pair-creation rate inside monochromatic
fields can be obtained similar as above [see Eq. (2.63)]. To this end we consider again
a photon counterpropagating with a monochromatic wave. A counterpropagating
photon passes four field maxima during the time of one laser period T = 2π/ω.
Correspondingly, the pair-creation rate for a single photon is given by (linear
polarization, ξ � 1, χ� 1)

W‖(q) = α
m2

q0
3

8
√
π

(
χ

2

)3/2
e−8/(3χ), (2.68)

W⊥(q) = 2W‖(q). The result agrees with [Rit85], Chap. 3, Eq. (33) (see also
[Rei62]).
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2.5. Numerical results for the total pair-creation probability

Fig. 10: Total pair-creation proba-
bility for a single photon inside a lin-
early polarized laser pulse (φ0 = 0,
N = 5, χ = 1). The full nu-
merical calculation [black dots, see
Eq. (2.56)] is compared with the lo-
cal constant-crossed field approxi-
mation [valid for ξ � 1, dotted line,
see Eq. (2.62)]. Allready for ξ & 10
both results are in very good agree-
ment. 1 2 3 4 5 6 7 8 9 10

ξ

0.0
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Fig. 11: Comparison between the
full numerical calculation of the
pair-creation probability [solid lines,
see Eq. (2.56)] and the constant-
crossed field approximation [valid
for ξ � 1, dotted lines, see
Eq. (2.62)] for ξ = 1.0, 1.25, 1.5,
1.75 and 2.0 (lower to upper curve),
N = 5, χ = 1. Besides underesti-
mating the probability, the strong-
field approximation fails to repro-
duce the correct CEP dependence
in the regime ξ . 1.
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2.5. Numerical results for the total pair-creation probability
To determine for which experimental parameters the observation of the nonlinear
Breit-Wheeler process is feasible, the total pair-creation probability is now evalu-
ated numerically for a linearly polarized laser pulse. We consider its dependence
on the classical intensity parameter ξ [see Eq. (1.20)], the quantum-nonlinearity
parameter χ [see Eq. (1.21)], the number of cycles N and the carrier-envelope
phase (CEP) φ0 of the pulse. Furthermore, we compare a sin2 [see Eq. (1.23)] with
a sin4-pulse [see Eq. (1.24)].
As the pair-creation probability is exponentially suppressed for χ � 1 [see

Eq. (2.67)], we are mainly interested in the nonlinear quantum regime where χ & 1.
Existing optical petawatt laser systems reach already ξ ∼ 100 [Yan+08] and photon
energies ∼ 1 GeV are obtainable via Compton backscattering either at conventional
facilities like SPring8 [Mur+14; SPring8] or by using laser wakefield accelerators
[ESL09; Lee+06; Phu+12; Pow+14; Wan+13]. Hence, it is possible to reach the
regime χ & 1 with presently available technology.

2.5.1. Breakdown of the constant-crossed field approximation

In the following we will not consider the influence of the incoming photon wave
packet and set W = W (q), see Eq. (2.11). For ξ � 1 the total pair-creation
probability can be calculated using Eq. (2.62) without further numerical diffi-
culties, as the integrals are non-oscillatory. To verify the validity of the local
constant-crossed field approximation [see Eq. (2.62)], we have compared it with
the general expression given in Eq. (2.56) (the oscillatory integrals have been
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Fig. 12: Dependence of the pair-
creation probability on ξ and χ
(φ0 = 0, N = 5). For ξ &
1 the pair-creation probability in-
creases linearly with ξ (we plotted
the values ξ = 10, 20, 50, 100
and 200, lower to upper curve).
In the regime χ � 1 pair cre-
ation is exponentially suppressed
[pulse shape ψ′(φ) (solid lines), see
Eq. (1.23) and ψ̃′(φ) (dashed lines),
see Eq. (1.24)].

evaluated numerically as explained in Sec. 4.5). The result is shown in Fig. 10.
Already for ξ . 10 both equations are in good agreement. However, for ξ ∼ 1 the
constant-crossed field approximation fails to predict the CEP dependence of the
total probability (see Fig. 11). As the formation region scales as 1/ξ, the global
structure of the pulse within the formation region itself [which is not included in
the constant-crossed field approximation, see Eq. (2.62)] becomes important at
ξ ∼ 1.
From now on we consider the experimentally interesting regime ξ � 1 and use

Eq. (2.62) to determine the total pair-creation probability. Furthermore, we com-
pare two different pulse shapes. Solid lines are calculated using the sin2-envelope
[see Eq. (1.23)], dashed lines using the sin4-envelope [see Eq. (1.24)]. In general, the
results do not depend strongly on the pulse shape. However, in the regime where
pair creation is exponentially suppressed (χ� 1), the sin4-envelope is favorable, as
it implies a higher peak field strength (see Fig. 3).

2.5.2. Dependence on the nonlinear quantum parameter

In Fig. 12 we plot the total pair-creation probability as a function of the parameters
ξ and χ. For ξ & 1 it scales linear in ξ due to the phase-space prefactor m2/kq [see
Eq. (2.62)] and only the dependence on χ is nontrivial [Rit85]. Around χ ∼ 1 the
pair-creation probability becomes sizable and is no longer exponentially suppressed
[see Eq. (2.67)] [Rit85].

2.5.3. Importance of the exponential wave-function decay

As explained in Sec. 2.3, the quantities W‖,⊥ only represent the total pair-creation
probability as long as they are much smaller than unity. In general, one has to
consider the total probability for the decay of a photon with a given polarization
[see Eq. (2.52)]

W d
‖,⊥ = 1−W s

‖,⊥ = 1− exp[−W‖,⊥] ≈W‖,⊥. (2.69)

In Fig. 13 we have compared both quantities to show when this difference becomes
relevant. We point out that the decay of the photon is necessarily accompanied by
the creation of at least one electron-positron pair.
In Fig. 14 we have plotted the parameter regime accessible by combining a

petawatt laser system (ξ = 100) with a GeV photon source. Accordingly, it is
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2.5. Numerical results for the total pair-creation probability

Fig. 13: Comparison between the
photon-decay probabilityW d

‖ (solid
lines) and the pair-creation proba-
bilityW‖ obtained from the leading-
order Feynman diagram shown in
Fig. 6, i.e. without including ra-
diative corrections (dashed lines).
As long as the probability is small,
both quantities agree. However, for
W‖ ∼ 1 it is important to note that
W‖ represents the decay exponent
of W d

‖ [see Eq. (2.52), the param-
eters are as in Fig. 12, the pulse
shape is given by ψ′(φ)].
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Fig. 14: Total photon-decay proba-
bility during the head-on collision
between a gamma photon with en-
ergy ωγ and a linearly polarized
laser pulse with the following pa-
rameters: φ0 = 0, N = 5, ω =
1.55 eV, ξ = 100 [pulse shape ψ′(φ)
(solid lines), see Eq. (1.23) and
ψ̃′(φ) (dotted lines), see Eq. (1.24)].
For parallel polarization (W d

‖ ) the
probabilities are smaller than for
orthogonal polarization (W d

⊥).
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possible to obtain a large pair-creation yield even with a limited number of highly
energetic photons. As expected from Eq. (2.67), the pair-creation probability for
perpendicular polarization (W⊥) is roughly twice as large as for parallel polarization
(W‖). Correspondingly,W‖ can be considered as a lower bound (which is the reason
why we mainly focused on this polarization).

2.5.4. Dependence on the pulse length and the CEP

The dependence of the total pair-creation probability on the pulse length N is
shown in Fig. 15. As expected, the scaling in the pulse length is roughly linear in
the regime χ ∼ 1.

Fig. 15: The scaling of the pair-
creation probability is roughly lin-
ear in the pulse length (we plot-
ted N = 3, 5, 7, 9 and 11, lower
to upper curve; φ0 = 0, ξ = 10)
[pulse shape ψ′(φ) (solid lines), see
Eq. (1.23) and ψ̃′(φ) (dashed lines),
see Eq. (1.24)].
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Chapter 2. Nonlinear Breit-Wheeler pair production

Due to the fact that the pair-creation probability is exponentially suppressed for
χ� 1, it depends very sensitively on the maximum field strength in this regime
and large CEP effects can be expected. To investigate them, we introduce the
CEP-averaged pair-creation probability

〈W‖,⊥〉 = 1
2π

2π∫
0

dφ0W‖,⊥(φ0) (2.70a)

and the relative deviation

∆W‖,⊥(φ0) =
W‖,⊥(φ0)− 〈W‖,⊥〉

〈W‖,⊥〉
. (2.70b)

They are plotted in Fig. 16 and Fig. 17, respectively, for a short pulse (N = 3) of
moderate intensity (ξ = 10). For χ ≈ 0.2 the relative CEP effect is of the order
of 10%, but many photons are needed to produce a sufficient amount of electron-
positron pairs. In the regime where pair creation is likely (χ ∼ 1), the CEP effect
for the total pair-creation probability is very small (we point out that this prediction
could be changed by higher-order corrections).
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Fig. 16: The total pair-creation probability as a function of the quantum-nonlinearity
parameter χ averaged over the CEP phase [see Eq. (2.70), ξ = 10 and N = 3]. The solid
line correspond to the pulse shape ψ′(φ) [see Eq. (1.23)] and the dashed line to the pulse
shape ψ̃′(φ) [see Eq. (1.24)].
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Fig. 17: The relative pair-creation probability [see Eq. (2.70)] as a function of the quantum-
nonlinearity parameter χ and the CEP φ0 (ξ = 10 and N = 3, for the CEP-averaged
probability see Fig. 16). We used the pulse shape ψ′(φ) [see Eq. (1.23)] for the upper and
ψ̃′(φ) [see Eq. (1.24)] for the lower plot. The dependence on the CEP is quite pronounced
for χ� 1, where, however, the total probability is strongly suppressed (the intermediate
color levels are located at 10−1/2 ≈ 0.32, 101/2 ≈ 3.2 and 103/2 ≈ 32).
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2.6. Differential pair-creation probability

In the first part of this chapter we primarily considered the total pair-creation prob-
ability. In particular, we showed in Sec. 2.5 that the experimental observation of the
nonlinear Breit-Wheeler process is feasible with existing technology. Therefore, also
the differential probability (i.e. the asymptotic momentum distribution of the pro-
duced pairs) is of interest for upcoming experiments. The second part of this chapter
focuses on its calculation and establishes an intuitive semiclassical picture for the
pair-creation process valid in the regime ξ � 1.

2.6.1. Spectrum in light-cone coordinates

The calculation of the differential pair-creation probability simplifies considerably
if the canonical light-cone basis (see Sec. 1.4.3)

kµ, k̄µ = 1
kq
qµ, eµi = Λµi = fµνi qν

kq
√
−a2

i

(2.71)

is used [qµ denotes the four-momentum of the incoming photon (q2 = 0), the
trivial case kq = 0 is excluded]. Therefore, we expand the four-momentum
pµ1 (pµ2 ) of the created electron (positron) in the following way [see Eq. (1.93)]

pµ1 = r′qµ + s′kµ + t′1mΛµ1 + t′2mΛµ2 , (2.72a)
pµ2 = −rqµ − skµ − t1mΛµ1 − t2mΛµ2 (2.72b)

(t′i = ti and r′ = r + 1 due to momentum conservation). The notation for
the momenta (see Fig. 18) agrees with the one used in Chap. 1 for the dressed
vertex (see Sec. 1.6) if p′µ = pµ1 and pµ = −pµ2 (this is always assumed in the
following).
In Eq. (2.72) the quantities

s = 1
2r
m2

kq
(1 + t21 + t22), s′ = 1

2r′
m2

kq
(1 + t21 + t22) (2.73)

are determined by the on-shell conditions p2
1 = p2

2 = m2 [see Eq. (1.94)]. Corre-

γ

e−

e+

← qµ

pµ
1

pµ
2

Fig. 18: Notation used throughout the calculation of the asymptotic electron (positron)
momentum distribution (see also Fig. 6). The four-momenta of the electron and the
positron are denoted by pµ1 and pµ2 , respectively, and the incoming photon four-momentum
by qµ. The particles are all on shell, i.e. p2

1 = p2
2 = m2 and q2 = 0.
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spondingly, the amount n of absorbed laser photons is related to the introduced
Lorentz invariant momentum parameters as follows [see Eq. (1.95)]

pµ1 + pµ2 = qµ + nkµ, n = 1
2w

m2

kq
(1 + t21 + t22). (2.74)

According to Eq. (2.11) the total pair-creation probability is given by

W (q) =
∑
spin

∫
d3p1 d

3p2
(2π)6 2εp12εp2

1
2kq |M(p1, p2; q)|2 (2π)3δ(−,⊥)(p1 + p2 − q)

=
∑
spin

0∫
−1

dr

+∞∫
−∞

dt1dt2
m2

(kq)2
1

8(−rr′)
1

(2π)3 |M(p1, p2; q)|2 , (2.75)

where iM(p1, p2; q) = εµ ūp1Gµ(p1, q,−p2)vp2 is the reduced matrix element for
the process [see Eq. (2.9)], Gµ the nonsingular part of the dressed vertex [see
Eq. (1.79)], εµ the polarization four-vector of the incoming photon and up1 and
vp2 the Dirac spinors for the electron and the positron, respectively. Furthermore,
we used Eq. (1.51) to rewrite the on-shell integrals in light-cone coordinates and
[see Eqs. (2.71) and (2.72)]

p− = kp = rkq, pI = pΛ1 = −mt1,
p+ = k̄p = s, pII = pΛ2 = −mt2.

(2.76)

After introducing the parameters [see Eq. (1.84)]

R = r + 1
2 = kp1 − kp2

2kq = 1
2
kp1 − kp2
kp1 + kp2

, w = − 1
r(r + 1) = 4

1− 4R2 (2.77)

we obtain the final result

W (q) =
+1/2∫
−1/2

dR

+∞∫
−∞

dt1dt2
d3W

dRdt1dt2
,

d3W

dRdt1dt2
= m2

(kq)2
w

8
1

(2π)3

∑
spin
|M(p1, p2; q)|2 . (2.78)

For a head-on collision the parameters ti are related to the transverse momentum
of the created pair, whereas for electrons and positrons created ultra-relativistic
the parameter R is half the asymmetry of the asymptotic energies of the electron
and the positron.

2.6.2. Evaluation of the trace

To determine the spectrum using Eq. (2.78) we have to analyze the square of the
reduced matrix element∑

spin
MM∗ = εµε

∗
νMµν(p1, p2), M(p1, p2; q) = εµ ūp1Gµ(p1, q,−p2)vp2 , (2.79)
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which contains the following trace

Mµν(p1, p2) = −e2 tr[...]µν(p′ → p1, p→ −p2),
e2 tr[...]µν = trGµ(p′, q, p)(/p+m)Ḡν(p′, q, p)(/p′ +m).

(2.80)

As shown in Sec. 1.6.5 the nonsingular part of the dressed vertex can be expressed in
terms of only a few master integrals [see Eq. (1.92)]

Gρ(p′, q, p) = (−ie)
{
γµ
[
G0g

µρ +
∑
j=1,2

(G1Gj,1f
µρ
j +G2Gj,2f

2µρ
j )

]
+ iγµγ

5 ∑
j=1,2

G3Gj,1f
∗µρ
j

}
. (2.81)

Therefore, we obtain the following result

Λi,µΛj,ν tr[...]µν = tr(/a+ i/bγ5)(/p+m)(/c − i/dγ5)(/p′ +m)
= 4(ac)(m2 − pp′) + 4[(ap)(cp′) + (ap′)(cp)]
− 4(bd)(m2 + pp′) + 4[(bp)(dp′) + (bp′)(dp)]

+ 4εµνρσ(bµcρ − aµdρ)pνp′σ, (2.82)

where the polarization four-vector εµ is expressed in terms of the four-vectors Λµi
(see App. E) and

aµ = G0Λµi −
mξi
e
G1Gi,1k

µ, bµ = −(−1)i′mξi
′

e
G3Gi′,1Λµ5 ,

cµ = G∗0Λµj −
mξj
e
G1G

∗
j,1k

µ, dµ = −(−1)j′mξj
′

e
G3G

∗
j′,1Λµ5

(2.83)

(we use the notation 1′ = 2 and 2′ = 1 for the indices). Correspondingly, the scalar
products are given by

ac = −δij |G0|2 , bd = 0, (2.84a)

εµνρσ(bµcρ − aµdρ)pνp′σ

= −m
2kq

e
G3(−1)i′(−1)j′(ξi′tj′G∗0Gi′,1 + ξj′ti′G0G

∗
j′,1) (2.84b)

and

ap = −timG0 −
mξi
e
G1Gi,1kq r, bp = −(−1)i′mξi

′

e
G3Gi′,1Λ5q r, (2.84c)

cp = −tjmG∗0 −
mξj
e
G1G

∗
j,1kq r, dp = −(−1)j′mξj

′

e
G3G

∗
j′,1Λ5q r (2.84d)
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[if pµ is replaced by p′µ we have to replace r by r′ (ti = t′i)]. Furthermore, we
conclude from Eq. (1.88) that

(kq)2(G2
1/e

2) = w(w/4− 1), (kq)2(G2
3/e

2) = 1
4w

2,

kq(G1/e)(r + r′) = 2(w/4− 1), kq(G3/e) = −1
2w.

(2.85)

Finally, we obtain

Λi,µΛj,ν tr[...]µν =− 4δij |G0|2 (m2 − pp′)

+ 4m2
[
2titj |G0|2 − 2(w/4− 1)ξiξjGi,1G

∗
j,1

+ 2(w/4− 1)(ξitjG∗0Gi,1 + ξjtiG0G
∗
j,1)
]

− 2m2w (−1)i′(−1)j′ξi′ξj′Gi′,1G
∗
j′,1

+ 2m2w (−1)i′(−1)j′(ξi′tj′G∗0Gi′,1 + ξj′ti′G0G
∗
j′,1),

(2.86)

where

m2 − pp′ = w

2m
2(1 + t21 + t22). (2.87)

For a linearly polarized laser field (ψ = ψ1, ψ2 = 0, ξ = ξ1) and an incoming
photon with parallel polarization (εµ = Λµ1 , see App. E), Eq. (2.86) simplifies and
the trace is given by

Λ1µΛ1ν tr[...]µν = 2m2(w − 4)
[
− ξ2 |G1,1|2 + 2ξt1<(G∗0G1,1)

]
+ 4m2 |G0|2

[
− (w/2)(1 + t21 + t22) + 2t21

]
. (2.88)

2.7. Semiclassical description

The decay of a photon into an electron-positron pair is an intrinsic quantum
process, which has no classical analogue and must be described in the realm of
quantum field theory using the S-matrix approach [Di+12; Rit85]. This implies
that we can typically determine only the probability distribution for the asymptotic
momenta and all details of the actual production process are hidden. However, it
is well known that inside a relativistically strong (ξ � 1) plane-wave laser field the
formation region of the basic QED processes nonlinear Compton scattering and
nonlinear Breit-Wheeler pair production is much smaller than the laser wavelength.
Hence, the total probability for nonlinear Compton scattering and nonlinear Breit-
Wheeler pair production can be calculated by applying the local constant-crossed
field approximation, i.e. by averaging the corresponding probability in a constant-
crossed field over the laser pulse [Di+12; NNR65; NR64a; NR64b; NR67; Rei62;
Rit85]. As pointed out by Ritus [Rit85], this procedure is justified for the calculation
of the total probabilities but it may not work for differential probabilities, i.e. for
determining the momentum distribution of the final particles (this has also been
recently observed numerically in [HIK15] for nonlinear Compton scattering). In
general, interference effects arising from processes occurring at different space-time
points, which are neglected from the beginning when the averaging procedure is
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Chapter 2. Nonlinear Breit-Wheeler pair production

applied to the probabilities, can play an important role [Rit85]. Nevertheless, this is
the state-of-the-art approach for the implementation of strong-field QED processes
in plasma codes [BK08; Bul+10a; Bul+13; Elk+11; Fed+10; Ner+11]. Therefore,
it is desirable to estimate the error of this procedure and to show how the standard
approach could be extended if necessary.
By applying a stationary-phase analysis to the leading-order S-matrix element

for electron-positron photoproduction, we show here that for ξ � 1 all significant
features of the momentum distribution for the created electron-positron pair are ob-
tainable from the following three-step procedure:

Ê At each laser phase the pair-production probability amplitude is calculated
using the local constant-crossed field approximation

Ë The asymptotic momenta for the electron and the positron are obtained by
applying the classical equations of motion

Ì Interferences between pairs which have the same asymptotic momenta but
originate from different formation regions are taken into account

In Chap. 4 this simpleman’s model is extend to include also a possible recollision
of the created pair (see Sec. 4.4).
Note that electron-positron photoproduction has a lot of commonalities with

laser-induced ionization processes. In fact, the procedure outlined above is
closely related to similar approaches used in atomic physics to describe the
time evolution of an electron after tunnel ionization [Cor93; Koh+12; Kuc87]
(a tunneling picture for pair creation was developed in Ref. [Wöl+15], see also
Ref. [Di+09]).

2.7.1. Stationary-phase analysis

If the background field becomes very strong (ξ � 1), the master integrals [see
Eq. (1.97)]

G0(w, t1, t2) =
+∞∫
−∞

dφ eiS̃Γ(t1,t2;φ), Gj,l(w, t1, t2) =
+∞∫
−∞

dφ [ψj(φ)]leiS̃Γ(t1,t2;φ)

(2.89)

are highly oscillatory due to the nonlinear term in the phase [see Eq. (1.99)]

S′Γ(t1, t2;φ) = 1 +
∑
i=1,2

[
ti − ξiψi(φ)

]2 (2.90)

[S̃Γ(t1, t2;φ) = (w/2)(m2/kq)SΓ(t1, t2;φ); the prime denotes the derivative with re-
spect to the laser phase φ] and a stationary-phase analysis is applicable.

Focusing on a linearly-polarized background field (ψ2 = 0, ξ = ξ1, ψ = ψ1), only
the term containing t1 leads to strong oscillations in the regime ξ � 1. Therefore,
the master integrals are dominated by small regions around the quasi-stationary
points φk defined by t1 = ξψ(φk). Close to each quasi-stationary point φk two
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true stationary points φ±k

ξψ(φ±k ) = t1 ± i
√

1 + t22 (2.91)

are located inside the complex plane but close to the real line. In the regime
ξ � 1 the imaginary part in Eq. (2.91) scales as 1/ξ and the integral along the
real line is dominated by the regions where t1 ≈ ξψ(φk) (see App. H) [Rit85]. In
the following we call the quasi-stationary points φk simply stationary points and
keep this subtlety in mind (an analogous situation is encountered for nonlinear
Compton scattering [MD11]).
Furthermore, we assume that all stationary points are located sufficiently far

away from each other, i.e. we ignore subtleties arising around the extremal points
of ψ(φ) [note that pair production is ineffective in these regions, as ψ′(φ) is small].
After expanding the phase around a stationary point φk up to the cubic term we
obtain

S̃Γ(φ) ≈ S̃Γ(φk) + a(φ− φk) + 1
3b(φ− φk)

3

a = w

2
m2

kq
(1 + t22), b = w

2
m2

kq
[ξψ′(φk)]2.

(2.92)

Since a ∼ ξ and b ∼ ξ3, the formation region δφ scales as ξ−1 and both the
linear and the cubic term have to be taken into account. Higher-order terms
of the expanded phase do not contribute (within the formation region) and can
be neglected to leading order (a similar discussion can be found in Chap. 4 for
recollision processes, see Sec. 4.2.2).

After the change of variables from φ to t = 3√b(φ−φk) the phase is approximately
given by

S̃Γ(φ) ≈ S̃Γ(φk) + xt+ 1
3 t

3, (2.93)

where

x = a
3√b

=
[
w/2
χ(φk)

]2/3
(1 + t22), 1

3√b
= 2
w

kq

m2

[
w/2
|χ(φk)|

]2/3
, (2.94)

and χ(φ) = χψ′(φ) denotes the local value of the quantum-nonlinearity parameter
χ = (kq/m2)ξ [see Eq. (1.21)].

After applying the expansions given in Eq. (2.92) to the master integrals defined
in Eq. (1.89) we obtain [see Eq. (F.9)]

G0(p′, q, p) ≈ kq

m2
2
w

[
w/2
|χ(φk)|

]2/3
2πAi(x) eiS̃Γ(p′,q,p;φk), (2.95a)

G1,1(p′, q, p) ≈ t1
ξ
G0(p′, q, p)

− i
(
kq

m2
2
w

)2
ψ′(φk)

[
w/2
|χ(φk)|

]4/3
2πAi′(x) eiS̃Γ(p′,q,p;φk). (2.95b)

Here we truncated the expansion of the preexponent after the linear term, i.e. we
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Chapter 2. Nonlinear Breit-Wheeler pair production

used

ψ(φ) ≈ ψ(φk) + ψ′(φk)(φ− φk) = t1
ξ

+ ψ′(φk)(φ− φk) (2.96)

as higher-order contributions vanish in the limit ξ →∞.
For a single stationary point, the well-known result for pair production within a

constant-crossed field is obtained [after combining Eq. (2.88) and Eq. (2.95), see e.g.
Ref. [NR67]]. In general, however, the phase factor in Eq. (2.95) leads to an interfer-
ence between contributions of different stationary points (see Fig. 19).

2.7.2. Classical interpretation of the stationary points

In order to show that the stationary points have a classical interpretation, we
consider now the classical evolution of the four-momenta pµ1 and pµ2 . According to
Eq. (A.17) we obtain

pµ1 (φ) = r′(φ)qµ + s′(φ)kµ + t′1(φ)mΛµ1 + t′2(φ)mΛµ2 ,
pµ2 (φ) = −r(φ)qµ − s(φ)kµ − t1(φ)mΛµ1 − t2(φ)mΛµ2 ,

(2.97)

where [see Eq. (A.19)]

ti(φ) = ti − ξiψi(φ), r(φ) = r, s(φ) = 1
2
m2

kp
[1 + t21(φ) + t22(φ)],

t′i(φ) = t′i − ξiψi(φ), r′(φ) = r′, s′(φ) = 1
2
m2

kp′
[1 + t′21 (φ) + t′22 (φ)]. (2.98)

As usual for S-matrix elements, pµi = pµi (±∞) denote the asymptotic four-momenta
[pµi (−∞) = pµi (+∞) follows from ψk(±∞) = 0; by assumption the laser has no
dc component]. Furthermore, ti = ti(±∞), r = r(±∞), s = s(±∞) and t′i = ti
implies t′i(φ) = ti(φ).
Correspondingly, we obtain [see Eq. (1.95)]

pµ1 (φ) + pµ2 (φ) = qµ + n(φ)kµ, n(φ) = 1
2w

m2

kq
[1 + t21(φ) + t22(φ)], (2.99)

where kµn(φ) is the four-momentum classically absorbed from the laser field.
Remarkably, it determines the oscillation frequency of the phase [see Eqs. (1.95)
and (1.99)]

S̃′Γ(p′, q, p;φ) = n(φ) (2.100)

(the prime denotes the derivative with respect to the laser phase φ). Therefore,
the four-momentum conservation relation

pµ1 (φs) + pµ2 (φs) = qµ (2.101)

is obeyed at a true stationary point φs of the phase [S̃′Γ(p′, q, p;φs) = 0]. As this
is not possible for on-shell momenta, they must be located within the complex
plane.
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2.8. Numerical results for the differential pair-creation probability

At the (quasi-) stationary points φk defined by ti = ξiψi(φk) [i.e. ti(φk) = 0] we
obtain

pµ1 (φk) + pµ2 (φk) = qµ + 1
2w

m2

kq
kµ. (2.102)

Accordingly, these are the points where the least amount of laser four-momentum
kµ is needed to bring the four-momenta on shell.
For monochromatic fields the threshold condition χ & 1 for the onset of pair

production is normally derived using the dressed mass (m∗ ∼ ξm) and the fact
that asymptotically the pair can absorb n ∼ ξ3/χ photons from the background
field [see Eq. (2.74)] [Di+12; Rit85]. As already pointed out in Ref. [KR13],
the same threshold condition is also obtained by considering the physical mass
m (4m2 ≤ 2nkq) and noting that the pair must become real on the scale set
by the formation region δφ ∼ 1/ξ (classically, the electron and the positron
may absorb together the four-momentum nkµ with n ∼ ξ during the formation
region).
From a quantum mechanical perspective the initial condition ti(φk) = 0 may

seem to contradict the Heisenberg uncertainty principle. However, the contradiction
is resolved as the application of the local constant-crossed field approximation
implies the inclusion of contributions from within the whole formation region
around φk, such that the true initial position is blurred on the scale set by the
formation region.
Note that the integration in φ in Eq. (1.89) exactly expresses the Heisenberg

uncertainty relation between the phase formation region and the number of laser
photons absorbed in the process [Di+13].

2.8. Numerical results for the differential pair-creation probability

To verify the applicability of the local constant-crossed field approximation [see
Eq. (2.95)], we compare the result now with a full numerical calculation. As shown
in Sec. 1.6.7, the calculation of the Fourier-transformed master integrals with
respect to the parameter w reduces to a root-finding problem [see Eq. (1.101)].
Correspondingly, the master integrals can be evaluated for different values of w
in parallel by using only a single fast Fourier transform (FFT). Therefore, this
approach reduces the computation costs substantially, as usually a highly-oscillating
integral must be computed for each value of w.
Since S′Γ(t1, t2;φx̃) > 0 on the real axis [see Eq. (2.90)], one could equivalently

perform the change of variable SΓ(w, t1, t2;φx̃) = x̃ in Eq. (1.89) and evaluate the
master integrals directly via FFT. This approach has been applied in [DHK09] to the
analogous problem of nonlinear Thomson scattering.

For the numerical calculations the pulse shape ψ′(φ) = sin2[φ/(2N)] sin(φ+ φ0)
[see Eq. (1.23)] has been used and the numerical values of the parameters are given
in the captions of the figures.

2.8.1. Validity of the constant-crossed field approximation

As demonstrated in Fig. 19, the local constant-crossed field approximation repro-
duces all features of the spectrum, including the interference pattern [if applied
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Fig. 19: Momentum distribution for the created electron-positron pair [see Eq. (2.78)]
for the parameters χ = 1, ξ = 5, N = 5 and φ0 = π/2 (the longitudinal momentum
characterized by R is integrated). The parameters ξ = 5 and χ = 1 could be obtained by
colliding photons with an energy of 17 GeV head-on with an optical (ω = 1.55 eV) laser
pulses having an intensity of 1020 W/cm2 (note that few-cycle laser pulses are envisaged
e.g. at the PFS in Garching [Ahm+09]). a) Full numerical calculation of the spectrum
[see Eq. (1.101)]. b) Local constant-crossed field approximation applied on the amplitude
level [see Eq. (2.95)]. The inset shows that the interference pattern is lost if the local
constant-crossed field approximation is applied on the probability level. c) Outline for
t2 = 0. Solid line: full numerical calculation; dotted (dashed) line: local constant-crossed
field approximation applied on the amplitude (probability) level.
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Fig. 20: Numerically calculated differential pair-creation probability as a function of the
transversal momentum parameters t1 and t2 (the longitudinal momentum characterized
by R is integrated out). As the spectrum is symmetric with respect to t2 ↔ −t2, it is
plotted only for t2 ≥ 0. Here, the incoming photon has parallel polarization, N = 5, χ = 1
and φ0 = π/2. To verify that the maximum achievable transversal momentum t1 scales
proportional to ξ, we compared the values ξ = 20 (a), 10 (b) and 5 (c). The solid white
line confines the phase-space region where the pair can be created at a phase φ with
|ψ′(φ)| ≥ 0.5 and the dashed white lines indicate the transverse momenta for which the
pair can be created at a local field peak (only strong peaks are indicated). For the total
pair-creation probability W‖ we obtain 0.44%, 0.22% and 0.11%, respectively.

on the level of the master integrals, see Eq. (2.95)]. The interference fringes
are lost, however, if the contribution of each stationary point is taken into ac-
count by simply adding the corresponding spectra and neglecting the phase factor
(inset).

From Eq. (1.89) we conclude that the oscillation frequency of the interference
fringes scales as ∼ ξ3 for w, ∼ ξ2 for t1 and ∼ ξ for t2. Correspondingly, we used
for ξ = 10 a grid with ∼ 105× 104× 103 = 1012 (w, t1, t2) data points to resolve it.
As a cross-check we ensured that the total probability obtained here by integrating
numerically over the phase space agrees with the one calculated using the optical
theorem in Sec. 2.5.

2.8.2. Scaling of the transverse momentum

From the classical equations of motion [see Eq. (2.97)] we expect that the extend of
the spectrum in t1 should be proportional to ξ. In Fig. 20 this is verified numerically.
The semiclassical description fully accounts for all qualitative features of the
spectrum in t1, i.e. its extend and the position of the maxima. Correspondingly,
the linear increase of the total pair-creation probability as a function of ξ in the
regime ξ � 1 (see Sec. 2.5) is a pure kinematic effect (size of the available phase
space).
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Fig. 21: Left side: Numerically calculated differential pair-creation probability as a
function of the transversal momentum parameters t1 and t2 (the longitudinal momentum
characterized by R is integrated out). As the spectrum is symmetric with respect to
t2 ↔ −t2, it is plotted only for t2 ≥ 0. Here, the incoming photon has parallel polarization,
χ = 1, ξ = 10, N = 2 and φ0 = π (a), 3π/4 (b), π/2 (c), π/4 (d) and 0 (e). The solid
white line confines the phase-space region where the pair can be created at a phase φ with
|ψ′(φ)| ≥ 0.5 and the dashed white lines indicate the transverse momenta for which the
pair can be created at a local field peak (only strong peaks are indicated). The interference
pattern arises as for given values of t1 and t2 the pair can in general be created at more
than just one laser phase. After integrating over t1 and t2 we obtain W‖ = 0.09 % for the
total pair-creation probability (up to this precision it is independent of the CEP). Right
side: Plot of the laser pulse shape (solid line: ψ′, dashed line: ψ).

2.8.3. Dependence on the CEP

In Ref. [KK12a] a strong dependence of the spectrum on the carrier-envelope phase
(CEP) φ0 was reported. As shown in Fig. 21, this can be explained completely
by the fact that the classical acceleration of the created particles has a preferred
direction (see the plot of ψ, which determines the stationary points). However,
very short laser pulses are needed to detect the asymmetry. Already for N ≥ 3 the
effect is less profound (see Fig. 22), as most pairs experience several cycles before
leaving the laser pulse.

2.8.4. Spectrum for the constants of motion

In contrary to t1, the two other parameters R and t2 are constants of motion (for a
linearly polarized background field with Fµν ∼ fµν1 ) and the associated probability
distributions are not changed by the subsequent classical evolution of the produced
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Fig. 22: Left side: Numerically calculated differential pair-creation probability (see
Fig. 21 for more details). Already for N = 3 cycles (plot a and b) the CEP-dependence
of the transverse momentum is less severe (compare with Fig. 21) and decreases further
for N = 5 (plot c and d) [χ = 1, ξ = 10 and φ0 = π (a,c), φ0 = 0 (b,d)]. The total
pair-creation probability is given by W‖ = 0.13 % (N = 3) and W‖ = 0.22% (N = 5), up
to this precision the total probability is independent of the CEP. Right side: Plot of the
laser pulse shape (solid line: ψ′, dashed line: ψ).
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Fig. 23: Differential probability
with respect to the parameters t2
and R for χ = 1, ξ = 10, N = 5
and φ0 = π/2 (full numerical calcu-
lation, t1 is integrated). The inset
shows d3W‖/dRdt1dt2 for t1 = 0
(in arb. units). The pronounced
interference pattern vanishes after
the integral in t1 is taken. Note that
the differential probability does not
depend on the sign of R and t2.

particles. This is demonstrated in Fig. 23. We point out that after the parameter
t1 is integrated out, the spectrum corresponds very closely to the one obtained in a
constant-crossed field (averaged over the pulse shape). This may not be expected at
first sight, as for a fixed value of t1 the differential spectrum has a rich interference
structure (shown in the inset of Fig. 23).
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3 Polarization operator for
plane-wave laser fields

According to classical electrodynamics two light waves should not interact with
each other. QED, however, predicts a nonvanishing coupling between different
photons via intermediate charged particles, always present in the form of quantum
fluctuations. The simplest Feynman diagram, which mediates photon-photon inter-
actions inside an electromagnetic background field, is shown in Fig. 24. It represents
the leading-order contribution to the polarization operator, which determines the
properties of an external photon inside an electromagnetic background field via the
Schwinger-Dyson equation (see Sec. 2.3). As a consequence, a plane-wave field acts
like a medium in which external photons have a nontrivial dispersion relation (e.g.,
they obtain a mass) [BR13; Di+12; MS06]. Furthermore, the imaginary part of
the polarization operator is related to the total electron-positron photoproduction
probability due to the unitarity of the S-matrix (see Sec. 2.2) and leads to an expo-
nential decay of the exact photon wave function (see Sec. 2.3). As we will show in
Chap. 4, the polarization operator also describes laser-induced recollision processes
of photoproduced electron-positron pairs.

The first calculation of the leading-order contribution to the polarization operator
was published independently by Baier, Milstein, and Strakhovenko [BMS76] and
by Becker and Mitter [BM75]. Here, we provide an alternative derivation based
on the direct evaluation of the vertex- and momentum integrals obtained from
the Feynman rules (see Sec. 3.2). This approach, published in Ref. [3], has the
appealing feature that it is very similar to calculation techniques commonly used
in vacuum QED.
Furthermore, we prove the validity of the Ward-Takahashi identity [Tak57;

War50] for general loop diagrams in a plane-wave background field (see Sec. 3.1).
The Ward-Takahashi identity is a consequence of the gauge-symmetry of the QED
Lagrangian and restricts the tensor structure of the polarization operator (see
Sec. 3.2.3). The absence of an anomalous contribution to the Ward-Takahashi

q
µ

2
q
µ

1
νµ

Fig. 24: The Feynman diagram corresponding to the leading-order contribution to the
polarization operator Pµν(q1, q2) in a plane-wave background field (sign convention: qµ1
is incoming, qµ2 outgoing). The double lines represent the Volkov propagators for the
fermions, which take the external field exactly into account [see Eq. (1.59)]. Due to the
unitarity of the S-matrix the vertical dashed line links the polarization operator to the
nonlinear Breit-Wheeler pair-creation diagram (see Chap. 2).
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Chapter 3. Polarization operator for plane-wave laser fields

identity for the polarization operator is shown explicitly in Chap. 6, where the
axial-vector current and the associated Adler-Bell-Jackiw (ABJ) anomaly [Adl69;
BJ69] are investigated.
This chapter is organized as follows. In Sec. 3.2 a triple-integral representa-

tion for the leading-order contribution to the polarization operator is derived.
It is manifestly symmetric with respect to the external photon four-momenta
qµ1 and qµ2 [see Eq. (3.56)]. In particular, its equivalence to the triple-integral
representation given in Ref. [BMS76] is demonstrated (see Sec. 3.2.7). Afterwards,
the special cases of a constant-crossed field (see Sec. 3.3.1), a linearly polarized
plane-wave field in the quasistatic approximation1 (see Sec. 3.3.2), and a circularly
polarized, monochromatic plane-wave field (see Sec. 3.3.3) are considered in more
detail.
In the second part of this chapter, which was published in Ref. [4], a double-

integral representation for the polarization operator in terms of the laser phases at
the creation and the annihilation vertex is obtained [see Eq. (3.132)]. It serves as
the starting point for the investigation of electron-positron recollisions carried out
subsequently in Chap. 4.

Finally, we note that the polarization operator has recently also been considered
by other authors for various field configurations [Din+14a; Din+14b; GKS14; GR11;
Kar+12; Kar13]. A more detailed summary of the existing literature can be found
in the review articles [BR13; Di+12; MS06].

3.1. Ward-Takahashi identity for loop diagrams

The Ward-Takahashi identity [Tak57; War50] is a direct consequence of the gauge
invariance of QED, which becomes particularly transparent in the Feynman path
integral approach [Col84; Wei95]. Diagrammatically, it is a functional relation for
Feynman diagrams (in momentum space), where the polarization four-vector of an
external photon leg is replaced by the corresponding momentum four-vector. In
Ref. [PS95] a perturbative proof of the Ward-Takahashi identity in vacuum QED
is given. Now, we will extend this derivation to electron-positron loops inside a
plane-wave background field.

The starting point for the proof of the Ward-Takahashi identity is the algebraic
identity for the dressed vertex given in Eq. (1.73)

qρΓρ(p′, q, p) = (/p′ −m)I(p′, q, p)− I(p′, q, p)(/p−m). (3.1)

In the following, we apply it to a closed electron-positron loop which contains n
dressed vertices and propagators (see Fig. 25). The ith propagator of such a loop
together with its adjacent vertices is given by

· · ·Γµi(pi−1, qi, pi)
1

/pi −m
Γµi+1(pi, qi+1, pi+1) · · · (3.2)

(the electron four-momenta pµi are integrated out). If we insert now a ver-
tex (contracted with its photon four-momentum) at this propagator, we ob-

1Note that the quasistatic approximation is called quasi-classical approximation in Ref. [3].
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Fig. 25: Closed electron (positron) loop with n dressed vertices.

tain

· · ·Γµi(pi−1, qi, pi)
1

/pi −m
qµΓµ(pi, q, p′)

1
/p′ −m

Γµi+1(p′, qi+1, pi+1) · · · . (3.3)

Using the above identity and [see Eq. (1.77)]∫
d4p′′

(2π)4 I(p, q′, p′′)Γµ(p′′, q, p′) = −ieΓµ(p, q + q′, p′),∫
d4p′′

(2π)4 Γµ(p, q, p′′)I(p′′, q′, p′) = −ieΓµ(p, q + q′, p′),
(3.4)

we find that Eq. (3.3) is equivalent to

· · ·Γµi(pi−1, qi + q, pi)
1

/pi −m
Γµi+1(pi, qi+1, pi+1) · · ·

− · · ·Γµi(pi−1, qi, pi)
1

/pi −m
Γµi+1(pi, qi+1 + q, pi+1) · · · (3.5)

(in the first line, we have changed the name of the integration variable from p′µ

to pµi ). Thus, the insertion splits the diagram into the sum of twice the original
diagram with the additional four-momentum qµ added once at the adjacent vertex
before and after the insertion. If we sum now over all possible insertion points of
the loop, we obtain zero, since all contributions cancel pairwise (as in the vacuum
case [PS95]).
We point out that the above derivation relies on the fact that different terms

cancel each other. Therefore, the proof can fail if the intermediate expressions
are divergent. This possibility is discussed in Chap. 6. By using a suitable
regularization procedure, it is shown there that the Ward-Takahashi identity
for the axial-vector current obtains an additional anomalous contribution, in
agreement with the Adler-Bell-Jackiw (ABJ) anomaly [Adl69; BJ69]. For the
polarization operator, however, such subtleties are absent and the above derivation
is applicable.
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Chapter 3. Polarization operator for plane-wave laser fields

3.2. Calculation of the leading-order contribution

In this section a triple-integral representation for the leading-order contribution
to the polarization operator shown in Fig. 24 is derived. After the Feynman rules
summarized in Sec. 1.5.3 are applied, the momentum-dependence of the Dirac trace
is simplified by introducing source terms to the phase and appropriate derivatives.
Subsequently, most of the initially present integrals can be calculated analytically
(see Sec. 3.2.2). Finally, the result given in Eq. (3.56) is obtained by evaluating
the derivatives with respect to the sources (see Sec. 3.2.4). As shown in Sec. 3.2.7,
the representation derived here is equivalent to the Baier-Milstein-Strakhovenko
representation given in [BMS76].

3.2.1. General expression

The leading-order contribution to the polarization operator Pµν(q1, q2) for plane-
wave background fields (see Ref. [LL82], Sec. 104) is determined by the diagram in
Fig. 24. This diagram corresponds to the following expression

Tµν(q1, q2) =
∫
d4p d4p′

(2π)8 tr Γµ(p′, q1, p)

×
(/p+m)

p2 −m2 + i0 Γν(p,−q2, p
′)

(/p′ +m)
p′2 −m2 + i0 (3.6)

and Tµν = iPµν (see Ref. [LL82], Sec. 115; [BKS75]). We note that Tµν(q1, q2) is
divergent, but if we write

Tµν(q1, q2) =
[
Tµν(q1, q2)− TµνF=0(q1, q2)

]
+ TµνF=0(q1, q2), (3.7)

the contribution in square brackets is finite [BMS76], and the regularization of the
vacuum contribution is well known [LL82; Wei95]. In the following, we will focus
on the tensor in square brackets, which contains only the corrections induced by
the external background field.
To simplify the expression in Eq. (3.6), we have to insert the dressed vertex

given in Eq. (1.68) [we will denote the vertex integrals associated with Γµ(p′, q1, p)
and Γν(p,−q2, p

′) by d4x and d4y, respectively]. Then, we obtain

Tµν(q1, q2) = 4 (−ie)2
∫
d4p d4p′

(2π)8

∫
d4xd4y

×
1
4 tr

[
· · ·
]µν

(p2 −m2 + i0)(p′2 −m2 + i0)e
iST (3.8)

(the prefactor 1/4 in front of the trace is included explicitly for later convenience),
where the phase reads [see Eq. (1.68)]

iST = i(p′ − p− q1)x+ i(p− p′ + q2)y

+ i

kx∫
ky

dφ′
[
epµp

′
νF

µν

(kp)(kp′) + e2(kp− kp′)
2(kp)2(kp′)2 pµp

′
νF

2µν
]

(3.9)
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3.2. Calculation of the leading-order contribution

and 1
4 tr

[
· · ·
]µν in Eq. (3.8) is given by (it can be calculated using the relations

in App. D)

1
4 tr

[
γαa

αµ + iγαγ
5bαµ

]
(/p+m)

[
γβc

βν + iγβγ
5dβν

]
(/p′ +m)

= m2[(aαµc ν
α ) + (bαµd ν

α )] + (pp′)(bαµd ν
α )− (pp′)(aαµc ν

α )
+ (pαaαµ)(p′βcβν) + (p′αaαµ)(pβcβν)− (pαbαµ)(p′βdβν)

− (p′αbαµ)(pβdβν)− ερσαβpρp′σ(aαµdβν + bαµcβν). (3.10)

Here,

aαµ = Gαµ(kp′, kp; kx), cβν = Gβν(kp, kp′; ky),

bαµ = Gαµ5 (kp′, kp; kx), dβν = Gβν5 (kp, kp′; ky).
(3.11)

3.2.2. Evaluation of the integrals

Working in light-cone coordinates (see Sec. 1.4) we can take all space-time integrals
except of those in dx− and dy− and obtain the momentum-conserving delta
functions

(2π)6δ(−,⊥)(p′ − p− q) δ(−,⊥)(q1 − q2). (3.12)

Here and in the following, we write qµ if qµ1 and qµ2 can be used interchangeably
due to the above delta functions. Successively, we can take the integrals in dp′−
and dp′⊥ (for simplicity we will continue writing p′µ and identify p′µ = pµ + qµ for
the components −,⊥).

It is now convenient to introduce the two four-vectors [see Eq. (1.48)]

Λµ1 = fµν1 qν

kq
√
−a2

1

, Λµ2 = fµν2 qν

kq
√
−a2

2

, (3.13)

which obey ΛiΛj = −δij , kΛi = qiΛj = 0 and

fµν1 Λ1ν = −m
e
kµξ1, fµν2 Λ2ν = −m

e
kµξ2. (3.14)

They allow us to write the remaining phase as

iST = i(p′ − p− q1)+x− + i(p− p′ + q2)+y− + ipλ+ iΛ, (3.15)

where we defined

λµ = − m(kq)
(kp)(kp′)

∑
i=1,2

ξiΛµi

kx∫
ky

dφ′ ψi(φ′),

Λ = − m2(kq)
2(kp)(kp′)

∑
i=1,2

ξ2
i

kx∫
ky

dφ′ ψ2
i (φ′).

(3.16)

Due to the appearance of Λµ
i in λµ, it is more convenient to use the canonical
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Chapter 3. Polarization operator for plane-wave laser fields

light-cone coordinates2 discussed in Sec. 1.4.3. In canonical light-cone coordinates
we obtain the relations

pλ = −p⊥λ⊥, q⊥ = 0, p′⊥ = p⊥, (3.17)

which simplify the algebra considerably.
If the preexponent would not depend on p+ and p′+, both integrals could now

be taken. Therefore, we introduce the proper-time representation of the scalar
propagators [DG00; Sch51]

1
p2 −m2 + i0

1
p′2 −m2 + i0 = (−i)2

∞∫
0

ds dt

× exp
[
i(p2 −m2 + i0)s+ i(p′2 −m2 + i0)t

]
. (3.18)

In the following we will drop the pole prescriptions i0 and keep the replacement
m2 → m2 − i0 in mind. Furthermore, we add the source terms ipµjµ + ip′µj

′µ to
the phase, which allow for the replacement

/p −→ (−i)/∂j , /p
′ −→ (−i)/∂j′ (3.19)

in the trace. Now, the preexponent depends only on p− (through kp and kp′). Tak-
ing the derivatives with respect to the sources out of the integrals, we can take the in-
tegrals in dp+, dp′+, which results in the delta functions,

(2π)δ
[
y− − x− − 1

s+ t
(2stq− − tj− + sj′−)

]
× (2π)δ[2p−(s+ t) + 2q−t+ j− + j′−]. (3.20)

Successively, these delta functions can be used to take also the integrals in dy−
and dp−. To this end we rewrite (since s+ t ≥ 0)

δ[2p−(s+ t) + 2q−t+ j− + j′−] = 1
2(s+ t)δ

[
p− + 1

2(s+ t)(2q−t+ j− + j′−)
]

(3.21)

(for simplicity we keep writing y− and p−). In particular, we obtain the identi-
ties

kp = − 1
s+ t

[
tkq + 1

2(kj + kj′)
]
, kp′ = + 1

s+ t

[
skq − 1

2(kj + kj′)
]
,

ky = kx+ 1
s+ t

(2stkq − tkj + skj′).
(3.22)

2In Ref. [3] the canonical light-cone coordinates are called modified light-cone coordinates. Due
to the equivalence between different light-cone coordinates the calculation so far is independent
of this choice, see Sec. 1.4.2.
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3.2. Calculation of the leading-order contribution

For jµ = j′µ = 0 they imply

G1 = e

2kq
(s− t)(s+ t)

st
= e

2kq
vτ

µ
,

G2 = − e2

2(kq)2
(s+ t)2

st
= − e2

2(kq)2
τ

µ
,

G3 = − e

2kq
(s+ t)2

st
= − e

2kq
τ

µ
,

(3.23)

where we defined [BMS76]

τ = s+ t, v = s− t
s+ t

, µ = st

s+ t
= 1

4τ(1− v2) (3.24)

[the motivation for these definitions becomes clear in Eq. (3.41)].
The remaining part of the phase structure (including the part coming from the

propagators and the sources) is now given by

iS′T = i
[
(q+

2 − q
+
1 )x− + st

s+ t
q2

2 −
1

s+ t
(t q2j − s q2j

′)− (p⊥p⊥ +m2)(s+ t)

− 1
2(s+ t)(j+ + j′+)(j− + j′−)− (j⊥ + j′⊥ + λ⊥)p⊥ +Λ

]
. (3.25)

Taking the Gaussian integrals in pI and pII, we obtain the prefactor π/[i(s+ t)],
and the final phase is given by

iS′T = i
[
(q+

2 − q
+
1 )x− −m2(s+ t) + st

s+ t
q2

2 −
1

s+ t
(t q2j − s q2j

′)

− 1
4(s+ t)(j + j′)2 − 1

2(s+ t)(j + j′)λ− 1
4(s+ t)λ

2 +Λ
]
. (3.26)

For zero sources (jµ = j′µ = 0) we obtain

iS′T = i
[
(q+

2 − q
+
1 )x− + µq2

2 − τm2 + τm2 ∑
i=1,2

ξ2
i (I2

i − Ji)
]
, (3.27)

where we defined

Ii = − 1
2kqµ

kx∫
ky

dφ′ ψi(φ′), Ji = − 1
2kqµ

kx∫
ky

dφ′ ψ2
i (φ′) (3.28)

(the prefactor is chosen such that Ii = Ji = 1 if jµ = j′µ = 0 and ψi = 1). Finally,
we can write the tensor Tµν as

Tµν(q1, q2) = −2iπe2 δ(−,⊥)(q1−q2)
∞∫
0

ds dt

(s+ t)2

+∞∫
−∞

dx−
1
4 tr [. . .]µν eiS′T

∣∣∣
j=j′=0

,

(3.29)

where the expression for 1
4 tr [. . .]µν is given in Eq. (3.10) with the replacement
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Chapter 3. Polarization operator for plane-wave laser fields

in Eq. (3.19) and where the sources are set to zero after the derivatives are
taken.
We point out that the two four-momenta qµ1 and qµ2 appear asymmetrically in

the final expression [see Eq. (3.27)]. To remove this asymmetry, we shift the x−
integration by defining

z− = x− + µq−. (3.30)

After this shift, the phase contains q1q2 since

(q+
2 − q

+
1 )x− + µq2

2 = (q+
2 − q

+
1 )z− + µq1q2. (3.31)

Furthermore, we obtain (for jµ = j′µ = 0) symmetric representations for the
functions defined in Eq. (3.28)

Ii = 1
2

+1∫
−1

dλψi(kz − λµkq), Ji = 1
2

+1∫
−1

dλψ2
i (kz − λµkq), (3.32)

since

kx = kz − µkq, ky = kz + µkq + 1
s+ t

(skj′ − tkj). (3.33)

3.2.3. Tensor structure

In principle, the only remaining task is to evaluate the two derivatives with
respect to jµ and j′µ and then set jµ = j′µ = 0. Despite being elementary, this
is the most tedious part of the calculation, since the sources appear in many
places in the final expression. The work is considerably reduced if we expand
the polarization operator in a convenient basis [BMS76]. To this end we note
that

q1µT
µν(q1, q2) = 0, Tµν(q1, q2)q2ν = 0 (3.34)

due to the Ward-Takahashi identity (see Sec. 3.1).
Since the four-vectors Λµi appear in the phase [see Eq. (3.15)] and qiΛj = 0, it

is natural to introduce the two complete sets qµ1 , Q
µ
1 , Λµ1 , Λµ2 and qν2 , Qν2 , Λν1 , Λν2 ,

where

Qµ1 = kµq2
1 − q

µ
1 kq

kq
, Qµ2 = kµq2

2 − q
µ
2 kq

kq
(3.35)

(Q2
1 = −q2

1, Q2
2 = −q2

2, QiΛj = 0, qiQi = 0). Using the set including qµ1 for the
index µ and the set including qν2 for the index ν, seven of 16 coefficients vanish
due to the Ward-Takahashi identity, and we can decompose Tµν(q1, q2) as follows
[BMS76]

Tµν = c1Λµ1 Λν2 + c2Λµ2 Λν1 + c3Λµ1 Λν1 + c4Λµ2 Λν2 + c5Qµ1Q
ν
2

+ c6Qµ1 Λν1 + c7Qµ1 Λν2 + c8Λµ1Qν2 + c9Λµ2Qν2 . (3.36)
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3.2. Calculation of the leading-order contribution

It turns out that also the coefficients c6−c9 vanish. If analyzed perturbatively (with
respect to the external field coupling) this can be understood from Furry’s theorem
[BM75; BMS76]. Since a closed fermion loop with an odd number of vertices
does not contribute to the final amplitude, only diagrams with an even number of
external field couplings (eAµ) contribute to Tµν . Due to gauge invariance and the
fact that Tµν is a tensor, the external field can enter only as Fµν (which is linear in
Aµ). Since it is not possible to construct a scalar linear in Fµν using only the four-
vectors qµ1 , q

µ
2 and kµ, the tensor structure cannot involve an odd number of the

tensor Fµν (note that q1Fq2 = qFq = 0). As a consequence, the coefficients c6 − c9
(which are linear in Λµi and thus in the external field) should vanish. We will later
see that this is indeed the case.
The coefficients ci in Eq. (3.36) can be determined by contracting Tµν(q1, q2)

with the appropriate four-vectors. Especially, using again the Ward-Takahashi
identity, we obtain

Q1µT
µν = q2

1
kq
kµT

µν , TµνQ2ν = q2
2
kq
Tµνkν . (3.37)

Thus, effectively, we need to determine the contractions of Tµν(q1, q2) with the
four-vectors kµ and Λµi to determine the coefficients ci, i.e. we need to calculate
the (−,⊥)-components of Tµν(q1, q2) in canonical light-cone coordinates. Since
kµ has only a +-component, the evaluation of the derivatives is now considerably
simplified. Leaving the term proportional to pp′ aside, we see that all derivatives
which act on kj or kj′ can be ignored. They would result in the replacement of pµ
or p′µ by kµ. Since kµFµν = kµF

2µν = kµF
∗µν = 0 and k2 = kΛi = 0, we do not

need to consider those terms. The derivatives acting on kj or kj′ are therefore only
important to determine the term proportional to pp′. However, this is achieved
more easily if the calculation presented in Sec. 3.2.2 is repeated with a scalar source
term J pp′ in the exponent (see Sec. 3.2.5).
To calculate the preexponent of the polarization operator, we must now insert

the explicit expressions given in Eq. (1.70) into the trace in Eq. (3.10). Many
terms of the trace, e.g., the terms proportional to Fµν , F2µν , F2µρpρ vanish,
as they are contracted with kµ or Λµ

i from each side. Using the relations in
App. C, we can show that Eq. (3.10) can be substituted by the following expres-
sion

m2gµν + pµp′ν + p′µpν + gµν
[
G3pFyp

′ +G3pFxp
′ − 2G2

3(pF2
xyp
′)− (pp′)

]
−G3

[
(Fyp′)µpν − (Fyp)µp′ν + pµ(Fxp′)ν − p′µ(Fxp)ν

]
−G1

[
pµ(Fyp′)ν + p′µ(Fyp)ν + (Fxp)µp′ν + (Fxp′)µpν

]
+G2

1
[
(Fxp)µ(Fyp′)ν + (Fxp′)µ(Fyp)ν

]
−G2

3
[
(Fyp)µ(Fxp′)ν + (Fyp′)µ(Fxp)ν

]
, (3.38)

where F2µν
xy = Fµρ(kx)F ν

ρ (ky) = Fµρ(ky)F ν
ρ (kx) [here the replacement pµ −→

(−i)∂µj and p′µ −→ (−i)∂µj′ is understood if the trace is inserted in Eq. (3.29); see
Eq. (3.19)]. Since the term proportional to pp′ enters as gµν , it modifies only the
diagonal coefficients c3 and c4.
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3.2.4. Evaluation of the derivatives

Leaving the term proportional to pp′ aside, we can ignore derivatives acting on
kj and kj′ as discussed above [this implies that the derivatives do not act on kp,
kp′, and ky; see Eq. (3.22)]. The remaining nontrivial source-dependent part of
the phase is given by [see Eq. (3.26)]

− i

s+ t

[
t q2j − s q2j

′ + 1
4(j + j′)2 + 1

2(j + j′)λ
]
. (3.39)

The squared term contributes only if both derivatives act on it, which results in
the replacement

pαp′β −→ (−i)2∂αj ∂
β
j′ −→

i

2(s+ t)g
αβ (3.40a)

and the only nonzero contribution arises from the first three terms in Eq. (3.38). If
the derivatives act on the other source terms, we obtain the replacement

pαp′β −→ (−i)2∂αj ∂
β
j′ −→ −

1
(s+ t)2

(
tqα2 + 1

2λ
α
)(
sqβ2 −

1
2λ

β
)
. (3.40b)

After these replacements are applied to Eq. (3.38) and the sources are set to zero, we
obtain (effectively) the following expression for Eq. (3.38)

gµν
[
m2 + i

τ
− e

4kq µ(qFyλ+ qFxλ) + e2

2(kq)2
τ

µ
qF2

xyq − pp′
]

− 2µ
τ
qµ2 q

ν
2 −

v

2τ (qµ2λν + λµqν2 ) + 1
2τ2λ

µλν + e

kq
v
[
qµ2 (Fyq)ν + (Fxq)µqν2

]
− e

4kq
1
µ

[
(Fyq)µλν + λµ(Fxq)ν

]
+ e

4kq
v2

µ

[
λµ(Fyq)ν + (Fxq)µλν

]
+ e2

2(kq)2
τ

µ

[
(Fyq)µ(Fxq)ν − v2(Fxq)µ(Fyq)ν

]
(3.41)

[note that terms proportional to (Fλ)µ, (Fλ)ν can be omitted]. By changing the
proper-time integrations from s, t to τ , v [BMS76],

∞∫
0

ds dt f(s, t) = 1
2

+1∫
−1

dv

∞∫
0

dτ τ f̃(τ, v) (3.42)

we see that the terms linear in v vanish. Those terms determine the coeffi-
cients c6 − c9, which are therefore zero (as already anticipated from Furry’s
theorem).

3.2.5. Scalar term

To determine the term proportional to pp′, we add the scalar source term iJ pp′
to the phase (instead of ipµjµ + ip′µj

′µ) and repeat the calculation presented in
Sec. 3.2.2. The propagators are represented in the same way [see Eq. (3.18)], and we
replace pp′ by −i ∂∂J . Then, we take the integrals in dx

+, dx⊥, dy+, dy⊥, dp′−, dp′⊥,
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3.2. Calculation of the leading-order contribution

dp′+, and dp+. Instead of Eq. (3.20), we obtain now

(2π)δ
[
y− − x− − 4st− J 2

2(s+ t+ J )q
−
]

(2π)δ[2(s+ t+ J )p− + (2t+ J )q−]. (3.43)

The remaining part of the phase (including the part from the propagator) can be
written as

iS′T = i
[
q+

2 y
− − q+

1 x
− − p⊥p⊥J + (−p⊥p⊥ −m2)(s+ t)− p⊥λ⊥ +Λ

]
. (3.44)

Now, it is convenient to shift the proper-time integrations

s −→ s− 1
2J , t −→ t− 1

2J . (3.45)

Due to this shift, also the integral boundaries of the proper-time integrations depend
on the source. However, if the derivative acts on the integral boundaries, either s
or t is set to zero or to infinity. The resulting terms do not depend on the external
field since s = 0 or t = 0 implies µ = 0, ky = kx and thus λµ = 0 and Λ = 0.
On the other hand, the terms at s→∞ or t→∞ do not contribute because the
field-dependent part of the integral is convergent. Since we want to calculate only
the field-dependent part of the polarization operator [see Eq. (3.56)], we will ignore
the source dependence of the integral boundaries.

After the shift in Eq. (3.45) the delta functions read

(2π)δ[y− − x− − (2µ− J )q−] (2π)δ[2p−(s+ t) + 2q−t] (3.46)

and the phase is given by

iS′T = i
[
(q+

2 − q
+
1 )x− +

(
µ− 1

2J
)
q2

2 −m2(s+ t− J )

− p⊥p⊥(s+ t)− p⊥λ⊥ +Λ
]
. (3.47)

We can now use the delta functions to take the integrals in dy− and dp− (we keep
writing y− and p− for convenience) and obtain the identities

kp = − t

s+ t
kq, kp′ = s

s+ t
kq, ky = kx+ (2µ− J )kq (3.48)

[for J = 0 this agrees with Eq. (3.22)]. The shift in the proper-time integrals has the
advantage that kp and kp′ are now independent of J . We could have proceeded sim-
ilarly also in the calculation of the other terms. However, since we ignored sources
contracted with kµ, this was not necessary.

Taking now the Gaussian integrals in dpI, dpII, we obtain the prefactor π/[i(s+ t)],
and the final phase is given by

iS′T = i
[
(q+

2 − q
+
1 )x− +

(
µ− 1

2J
)
q2

2 −m2(τ − J ) + τm2 ∑
i=1,2

ξ2
i (I2

i − Ji)
]
,

(3.49)

where Ii and Ji are defined in Eq. (3.28) [for zero sources Eq. (3.49) agrees with
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Eq. (3.27)]. Since pp′ in the preexponent is only multiplied by gµν [see Eq. (3.41)],
the evaluation of the derivative is not very cumbersome, and we obtain the
replacement

pp′ −→ (−i) ∂

∂J
−→ −1

2q
2
2 +m2 +m2 τ

2µ
∑
i=1,2

ξ2
i

[
ψ2
i (ky)− 2Iiψi(ky)

]
(3.50)

after J is set to zero (as explained above, we have ignored the source dependence
of the proper-time integral boundaries).
To symmetrize the final expression, we change the x−-integration by defining

[see Eq. (3.30)]

z̃− = x− +
(
µ− 1

2J
)
q− (3.51)

(z̃− = z− for J = 0), which implies

kx = kz̃ −
(
µ− 1

2J
)
kq, ky = kz̃ +

(
µ− 1

2J
)
kq (3.52)

and

(q+
2 − q

+
1 )x− +

(
µ− 1

2J
)
q2

2 = (q+
2 − q

+
1 )z̃− +

(
µ− 1

2J
)
q1q2. (3.53)

Finally, we obtain the symmetric replacement

pp′ −→ (−i) ∂

∂J
−→ −1

2q1q2 +m2 +m2 τ

2µ
∑
i=1,2

ξ2
i

×
[1
2ψ

2
i (kx) + 1

2ψ
2
i (ky)− Iiψi(kx)− Iiψi(ky)

]
(3.54)

(we assume that at x− = ±∞ the external field vanishes, and therefore the
derivative does not act on the integral boundaries, which now also depend on the
source).

3.2.6. Final result

To determine the nonvanishing coefficients c1 − c5 of the polarization operator [see
Eq. (3.36)], we combine now Eqs. (3.29), (3.30), (3.41), and (3.54). Furthermore,
we define the following functions

Xij = [Ii − ψi(ky)] [Ij − ψj(kx)], Zi = 1
2[ψi(kx)− ψi(ky)]2. (3.55)

Finally, using the relations summarized in App. C, we obtain the following expres-
sion for the field-dependent part of the tensor Tµν

Tµν(q1, q2)− TµνF=0(q1, q2) = −iπe2 δ(−,⊥)(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

+∞∫
−∞

dz−

×
[
b1Λµ1 Λν2 + b2Λµ2 Λν1 + b3Λµ1 Λν1 + b4Λµ2 Λν2 + b5Qµ1Q

ν
2
]
eiΦ, (3.56)
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where the field-independent phase reads [see Eqs. (3.27) and (3.31)]

eiΦ = exp
{
i
[
(q+

2 − q
+
1 )z− + µq1q2 − τm2

]}
(3.57)

[µ = 1
4τ(1− v2); see Eq. (3.24)] and

b1 = 2m2ξ1ξ2
( τ

4µX12 −
τv2

4µ X21
)
eiτβ ,

b2 = 2m2ξ1ξ2
( τ

4µX21 −
τv2

4µ X12
)
eiτβ ,

b3 = −
( i
τ

+ q1q2
2
) (
eiτβ − 1

)
+ 2m2

[ τ
4µ
(
ξ2

1Z1 + ξ2
2Z2

)
+ ξ2

1X11
]
eiτβ,

b4 = −
( i
τ

+ q1q2
2
) (
eiτβ − 1

)
+ 2m2

[ τ
4µ
(
ξ2

1Z1 + ξ2
2Z2

)
+ ξ2

2X22
]
eiτβ,

b5 = −2µ
τ

(
eiτβ − 1

)
. (3.58)

The field-dependent phase is given by [see Eq. (3.27)]

eiτβ = exp
[
iτm2 ∑

i=1,2
ξ2
i (I2

i − Ji)
]
, (3.59)

where [see Eq. (3.32)]

Ii = 1
2

+1∫
−1

dλψi(kz − λµkq), Ji = 1
2

+1∫
−1

dλψ2
i (kz − λµkq) (3.60)

and [see Eq. (3.55)]

Xij = [Ii − ψi(kz + µkq)] [Ij − ψj(kz − µkq)],

Zi = 1
2[ψi(kz − µkq)− ψi(kz + µkq)]2.

(3.61)

We note that, using the metric tensor gµν , we can construct the following
projection tensor [BM75]

Gµν = qµ2 q
ν
1 − q1q2 g

µν , (3.62)

which obeys

q1µG
µν = Gµνq2ν = 0 (3.63)

and can be decomposed as

Gµν = q1q2 (Λµ1 Λν1 + Λµ2 Λν2) +Qµ1Qν2 . (3.64)

This shows that the decomposition given in Eq. (3.56) has the structure claimed
in Ref. [BM75].
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Chapter 3. Polarization operator for plane-wave laser fields

3.2.7. Derivation of the BMS representation

The expression we obtained for the field-dependent part of Tµν in Eq. (3.56) is
manifestly symmetric in qµ1 and qµ2 . Now, we will show how the Baier-Milstein-
Strakhovenko (BMS) representation found in Ref. [BMS76] can be derived from
our calculation (see also Sec. 3.4.3). To this end we do not apply the shift in
Eqs. (3.30) and (3.51), which means that we have to use the replacement given
in Eq. (3.50) [rather than Eq. (3.54)] for the pp′ term in Eq. (3.41). This modifies
the coefficients b3 and b4. Furthermore, we apply the change of variables z− → y−

[see Eq. (3.22)]

y− = x− + 2µq− = z− + µq−, (3.65)

which allows us to write [see Eq. (3.31)]

(q+
2 − q

+
1 )x− + µq2

2 = (q+
2 − q

+
1 )z− + µq1q2 = (q+

2 − q
+
1 )y− + µq2

1. (3.66)

(here and in the remaining subsection we assume that all sources are set to zero).
Thus, we obtain the following representation [see Eq. (3.28)]

Ii =
1∫

0

dλψi(ky − 2kqµλ), Ji =
1∫

0

dλψ2
i (ky − 2kqµλ), (3.67)

I2
i − Ji =

[ 1∫
0

dλ∆i(µλ)
]2
−

1∫
0

dλ∆2
i (µλ), (3.68)

where we introduced [BMS76]

∆i(r) = ψi(ky − 2kqr)− ψi(ky). (3.69)

Furthermore, it is useful to define [compare with Eq. (3.55)]

Xij = [Ii − ψi(ky)] [Ij − ψj(kx)], Yi = [Ii − ψi(ky)] [ψi(kx)− ψi(ky)] (3.70)

which can be written as

Xij =
[ 1∫

0

dλ∆i(µλ)
][ 1∫

0

dλ∆j(µλ)−∆j(µ)
]
, Yi =

[ 1∫
0

dλ∆i(µλ)
]
∆i(µ).

(3.71)

Finally, we obtain the following alternative representation for the field-dependent
part of Tµν

Tµν(q1, q2)− TµνF=0(q1, q2) = −iπe2 δ(−,⊥)(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

+∞∫
−∞

dy−

×
[
b1Λµ1 Λν2 + b2Λµ2 Λν1 + b′3Λµ1 Λν1 + b′4Λµ2 Λν2 + b5Qµ1Q

ν
2
]
eiΦ (3.72)
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with the coefficients

b1 = 2m2ξ1ξ2
( τ

4µX12 −
τv2

4µ X21
)
eiτβ,

b2 = 2m2ξ1ξ2
( τ

4µX21 −
τv2

4µ X12
)
eiτβ,

b′3 = −
( i
τ

+ q2
2
2
) (
eiτβ − 1

)
+ 2m2

[ τ
4µ
(
ξ2

1Y1 + ξ2
2Y2

)
+ ξ2

1X11
]
eiτβ,

b′4 = −
( i
τ

+ q2
2
2
) (
eiτβ − 1

)
+ 2m2

[ τ
4µ
(
ξ2

1Y1 + ξ2
2Y2

)
+ ξ2

2X22
]
eiτβ,

b5 = −2µ
τ

(
eiτβ − 1

)
(3.73)

and phases

eiΦ = exp
{
i
[
(q+

2 − q
+
1 )y− + µq2

1 − τm2
]}
,

eiτβ = exp
[
iτm2 ∑

i=1,2
ξ2
i (I2

i − Ji)
]
.

(3.74)

This representation coincides with Eq. (2.27) in Ref. [BMS76].

3.3. Special field configurations

The triple-integral representation given in Eq. (3.56) holds for an arbitrary plane-
wave background field (arbitrary polarization and pulse shape). In this section we
consider three important external field configurations for which the general result
simplifies considerably.

3.3.1. Constant-crossed field

The polarization operator for a constant-crossed field was first obtained in Refs.
[BS68; Nar69] (see also Refs. [BS71; Rit72a; Rit85]). We show now how this result
can be obtained from the expression in Eq. (3.56).
A constant-crossed field is characterized by

ψ1(φ) = φ, ψ2(φ) = 0 (3.75)

(the latter condition corresponds to ξ2 = 0, and we will write ξ = ξ1 in this para-
graph). The field tensor and its square are then given by [see Eq. (1.17)]

Fµν = fµν1 , F 2µν = m2ξ2

e2 kµkν . (3.76)

For a constant-crossed field, we obtain

I1 = kz, J1 = (kz)2 + 1
3(µkq)2, I2 = J2 = 0,

X11 = −(µkq)2, Z1 = 2(µkq)2, Z2 = X12 = X21 = X22 = 0.
(3.77)
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Chapter 3. Polarization operator for plane-wave laser fields

After inserting these expressions into Eq. (3.56), we can take the integral in
dz− and obtain a fourth delta function 2π δ(+)(q1 − q2) = 2π δ(q+

1 − q
+
2 ), which

implies that the polarization tensor for a constant-crossed field is diagonal in
the external photon four-momenta. Therefore, we define the four-vectors [see
Eq. (3.35)]

qµ = qµ1 = qµ2 , Qµ = Qµ1 = Qµ2 = kµq2 − qµkq
kq

. (3.78)

They obey

kQ = −kq, qQ = 0, Q2 = −q2. (3.79)

The four-vectors qµ, Qµ, Λµ
1 , and Λµ

2 form a complete set, and we obtain the
following representation of the metric tensor

gµν = 1
q2 (qµqν −QµQν)− Λµ1 Λν1 − Λµ2 Λν2 . (3.80)

Accordingly, the field-dependent part of Tµν is in a constant-crossed field [see
Eq. (3.75)] given by [see Eq. (3.56)]

Tµν(q1, q2)− TµνF=0(q1, q2) = −2iπ2e2 δ4(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

×
[
b3Λµ1 Λν1 + b4Λµ2 Λν2 + b5QµQν

]
eiΦ , (3.81)

where

b3 = −
( i
τ

+ q2

2
) (
eiτβ − 1

)
+m6χ2τ2 1

4(1− v2)
[
1− 1

2(1− v2)
]
eiτβ ,

b4 = −
( i
τ

+ q2

2
) (
eiτβ − 1

)
+m6χ2τ2 1

4(1− v2)eiτβ ,

b5 = −1
2(1− v2)

(
eiτβ − 1

)
(3.82)

and the phases are given by

iΦ = −iτa, a = m2
[
1− 1

4(1− v2) q
2

m2

]
,

iτβ = − i3τ
3b, b = m6χ2

[1
4(1− v2)

]2 (3.83)

(in the following, we will make the change of variables τ → t, where τ3b = t3 and
ρ = a/ 3√b). Here, we have introduced the quantum nonlinearity parameter [see
Eq. (1.21)]

χ = |e|
√
qF 2q

m3 = ξ

√
(kq)2

m2 (3.84)

(κ in Refs. [Nar69; Rit72a]).

94



3.3. Special field configurations

Now, we use the identities

Λµ1 Λν1 = −(Fq)µ(Fq)ν

(Fq)2 , Λµ2 Λν2 = −(F ∗q)µ(F ∗q)ν

(F ∗q)2 , (3.85)

where

(F ∗q)2 = (Fq)2 = −m
2ξ2

e2 (kq)2 (3.86)

and [see Eq. (3.62)]

Gµν = qµqν − q2 gµν = q2 (Λµ1 Λν1 + Λµ2 Λν2) +QµQν . (3.87)

Note that Gµν obeys the following relations

qρG
ρν = Gµρqρ = 0, kρG

ρµ = Gµρkρ = −kqQµ,

GµρF 2
ρσG

σν = m2

e2 ξ
2(kq)2QµQν .

(3.88)

To obtain the representation given in Refs. [Rit72a; Rit85], we pass over to different
basis tensors

b3Λµ1 Λν1 + b4Λµ2 Λν2 + b5QµQν = (q2b5 − b3)(Fq)µ(Fq)ν

(Fq)2

+ (q2b5 − b4)(F ∗q)µ(F ∗q)ν

(F ∗q)2 + b5G
µν (3.89)

and define the following functions (see App. F for more details)

f(x) = i

∞∫
0

dt exp
[
− i
(
tx+ 1

3 t
3
)]

= πGi(x) + iπAi(x), (3.90)

f ′(x) =
∞∫
0

tdt exp
[
− i
(
tx+ 1

3 t
3
)]
, (3.91)

f1(x) =
∞∫
0

dt

t
exp (−itx)

[
exp

(
− i

3 t
3
)
− 1

]
, (3.92)

where Ai and Gi denote the Airy and Scorer function, respectively [Olv+10]. They
obey the following differential equations

f ′′(x) = xf(x)− 1, f ′1(x) = 1
x
− f(x) = −1

x
f ′′(x). (3.93)

Using the latter, we can replace the function f1(x) by f ′(x) in the following way
(if all boundary terms vanish)

+1∫
−1

dv g(v)f1[ρ(v)] = −
+1∫
−1

dv

[
G(v)
ρ(v)

]′
f ′[ρ(v)], G′(v) = g(v). (3.94)
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Chapter 3. Polarization operator for plane-wave laser fields

Using the above notation, it is possible to represent the field-dependent part of the
tensor Tµν for a constant-crossed field [see Eq. (3.81)] by

Tµν(q1, q2)− TµνF=0(q1, q2) = i(2π)4δ4(q1 − q2)

×
[
π1

(Fq)µ(Fq)ν

(Fq)2 + π2
(F ∗q)µ(F ∗q)ν

(F ∗q)2 − π3
q2G

µν
]
, (3.95)

where

π1 = α
m2

3π

+1∫
−1

dv (w − 1)
(χ
w

)2/3
f ′(ρ), π2 = α

m2

3π

+1∫
−1

dv (w + 2)
(χ
w

)2/3
f ′(ρ),

π3 = −α q
2

π

+1∫
−1

dv
f1(ρ)
w

(3.96)

[ 1
w = 1

4(1−v2), ρ =
(
w/χ

)2/3(1− q2

m2
1
w )]. Since all nonvanishing functions are even

in v, we can now apply the following change of variables

+1∫
−1

dv = 2
1∫

0

dv =
∞∫
4

dw
4

w
√
w(w − 4)

, (3.97)

which shows that the result in Eq. (3.95) is equivalent to the one given in Refs.
[Rit72a; Rit85].

3.3.2. Quasistatic limit

We consider now a linearly polarized plane-wave field

ψ1(φ) = ψ(φ), ψ2(φ) = 0 (3.98)

(we will set ξ = ξ1 and fµν = fµν1 in this paragraph) in the quasistatic limit defined
by ξ →∞ while [see Eq. (3.84)]

χ = |e|
√
qf2q

m3 = ξ

√
(kq)2

m2 (3.99)

is kept constant. In the optical regime (photon energy ω0 ∼ 1 eV), χ & 1 requires
ξ � 1 (unless the incoming photon energy exceeds the threshold of about 1 TeV),
which means that the quasistatic limit is sufficient to analyze most of the upcoming
strong-field experiments with optical lasers (one notable exception are recollision
processes, see Chap. 4).

By employing the identity |kq| = m2χ/ξ, we can expand all functions depending
on µkq

I2
1 − J1 = −(1/3)(µkq)2[ψ′(kz)]2 +O(µkq)3,
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Z1 = 2(µkq)2[ψ′(kz)]2 +O(µkq)3, X11 = −(µkq)2[ψ′(kz)]2 +O(µkq)3

(3.100)

(X12 = X21 = X22 = Z2 = I2 = J2 = 0 for linear polarization). Thus, if multiplied
by ξ2, only the leading-order terms are independent of ξ, and all others are
suppressed. In the limit ξ → ∞, the expressions in Eq. (3.100) correspond to
those in Eq. (3.77) with the replacement χ → χ(kz) = χψ′(kz). The remaining
calculation is therefore similar to the one in the constant-crossed field case, and
the final result in Eq. (3.102) corresponds essentially to Eq. (3.95) with the above
replacement. Using [see Eq. (3.85)]

Λµ1 Λν1 = −(fq)µ(fq)ν

(fq)2 , Λµ2 Λν2 = −(f∗q)µ(f∗q)ν

(f∗q)2 (3.101)

and Eq. (3.64), we obtain for a linearly polarized plane-wave field in the quasistatic
approximation the following representation for the field-dependent part of the
tensor Tµν [see Eq. (3.56)]

Tµν(q1, q2)− TµνF=0(q1, q2) = i(2π)4δ(−,⊥)(q1 − q2) 1
2π

+∞∫
−∞

dz− ei(q
+
2 −q

+
1 )z−

×
[
π′1

(fq)µ(fq)ν

(fq)2 + π′2
(f∗q)µ(f∗q)ν

(f∗q)2 − π′3
q1q2

Gµν
]
, (3.102)

where [see Eq. (3.96)]

π′1 = α
m2

3π

+1∫
−1

dv (w − 1)
[ |χ(kz)|

w

]2/3
f ′(ρ),

π′2 = α
m2

3π

+1∫
−1

dv (w + 2)
[ |χ(kz)|

w

]2/3
f ′(ρ),

π′3 = −α q1q2
π

+1∫
−1

dv
f1(ρ)
w

(3.103)

with 1
w = 1

4(1− v2), ρ =
[
w/|χ(kz)|

]2/3(1− q1q2
m2

1
w ) and Gµν = qµ2 q

ν
1 − q1q2 g

µν [see
Eq. (3.62)].

3.3.3. Circular polarization

The general result in Eq. (3.56) also simplifies considerably if the plane wave is
circularly polarized and monochromatic,

ψ1(φ) = <eiφ, ψ2(φ) = =eiφ, ξ1 = ξ2 = ξ. (3.104)

Then, we obtain

I1 = sinc(µkq)<eikz, I2 = sinc(µkq)=eikz,
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J1 + J2 = 1, Z1 + Z2 = 2 sin2(µkq), (3.105)

I1 − ψ1(kz + µkq) = <A, I2 − ψ2(kz + µkq) = =A,
I1 − ψ1(kz − µkq) = <B, I2 − ψ2(kz − µkq) = =B,

(3.106)

where

A = eikz [sinc(µkq)− cos(µkq)− i sin(µkq)] ,
B = eikz [sinc(µkq)− cos(µkq) + i sin(µkq)]

(3.107)

[we define sincx = (sin x)/x]. Thus,

X12 −X21 = =A∗B, X11 −X22 = <AB,
X12 +X21 = =AB, X11 +X22 = <A∗B,

(3.108)

where

A∗B = sinc2(µkq) + cos(2µkq)− 2 sinc(2µkq)
+ i [− sin(2µkq) + 2 sinc(µkq) sin(µkq)] ,

AB = e2ikz
[
sinc2(µkq)− 2 sinc(2µkq) + 1

]
.

(3.109)

Thus, we can write the field-dependent part of the tensor Tµν for a circularly
polarized plane wave as [see Eq. (3.56)]

Tµν(q1, q2)− TµνF=0(q1, q2) = −iπe2 δ(−,⊥)(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

+∞∫
−∞

dz−

×
[
b+Λµ+Λν+ + b−Λµ−Λν− + 1

2(b1 − b2)(Λµ1 Λν2 − Λµ2 Λν1)

+ 1
2(b3 + b4)(Λµ1 Λν1 + Λµ2 Λν2) + b5Qµ1Q

ν
2

]
eiΦ, (3.110)

where we defined Λµ
± = Λµ

1 ± iΛ
µ
2 . Furthermore, the coefficients are given by

b± = 1
4 [(b3 − b4)∓ i(b1 + b2)]

= 1
2m

2ξ2
[
sinc2(µkq)− 2 sinc(2µkq) + 1

]
e∓2ikz+iτβ , (3.111a)

1
2(b1 − b2) = m2ξ2 (1 + v2)

(1− v2)
[
− sin(2µkq) + 2 sinc(µkq) sin(µkq)

]
eiτβ, (3.111b)

1
2(b3 + b4) = −

( i
τ

+ q1q2
2
) (
eiτβ − 1

)
+m2ξ2

[
2 (1 + v2)

(1− v2) sin2(µkq)

+ sinc2(µkq)− 2 sinc(2µkq) + 1
]
eiτβ, (3.111c)

98



3.3. Special field configurations

b5 = −2µ
τ

(
eiτβ − 1

)
(3.111d)

and the phases read

iτβ = iτm2ξ2
[
sinc2(µkq)− 1

]
,

iΦ = i
[
(q+

2 − q
+
1 )z− + µq1q2 − τm2

] (3.112)

[µ = 1
4τ(1 − v2)]. Finally, the integral in dz− can be taken and we obtain the

following expression for the field-dependent part of Tµν(q1, q2) for a monochromatic,
circularly polarized plane-wave laser field

Tµν(q1, q2)− TµνF=0(q1, q2) = − i(2π)4 e2

8π2

+1∫
−1

dv

∞∫
0

dτ

τ
eiΦcp

×
[
Tµν0 δ4(q1 − q2) + Tµν+ δ4(q1 − q2 + 2k) + Tµν− δ4(q1 − q2 − 2k)

]
, (3.113)

where

iΦcp = −iτm2{1 + ξ2[1− sinc2(µkq)]
}

+ iµq1q2, (3.114)

Tµν0 = τ1(Λµ1 Λν2 − Λµ2 Λν1) + τ2(Λµ1 Λν1 + Λµ2 Λν2) + τ3Qµ1Q
ν
2 ,

Tµν± = 1
2m

2ξ2[ sinc2(µkq)− 2 sinc(2µkq) + 1
]
Λµ±Λν± (3.115)

and

τ1 = m2ξ2 (1 + v2)
(1− v2)

[
2 sin2(µkq)/(µkq)− sin(2µkq)

]
,

τ2 = 2m2ξ2 (1 + v2)
(1− v2) sin2(µkq) +

[(µ
τ
− 1

2
)
q1q2 −m2

] (
1− e−iτβ

)
,

τ3 = −2µ
τ

(
1− e−iτβ

)
.

(3.116)

This result agrees with Eq. (2.34) in Ref. [BMS76]. The terms described by Tµν±
can be interpreted as describing processes where two photons from the back-
ground field are absorbed or emitted, respectively (since the external field is
not quantized, this interpretation relies only on the momentum-conserving delta
function).

In order to obtain Eq. (3.113) from Eq. (3.110), we have used the identity

∞∫
0

dτ

τ
eiΦm2ξ2[ sinc2(µkq)− 2 sinc(2µkq) + 1

]
eiτβ

=
∞∫
0

dτ

τ
eiΦ

[ i
τ

+ µ

τ
q1q2 −m2

](
eiτβ − 1

)
, (3.117)
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which follows from

i
d

dτ

(
eiτβ − 1

)
= i

d

dτ
eiτβ = m2ξ2[ sinc2(µkq)− 2 sinc(2µkq) + 1

]
eiτβ (3.118)

via integration by parts.

3.4. Double-integral representation for the leading-order result
In Sec. 3.3 we investigated several important special field configurations and derived
compact expressions for the associated polarization operators. Now, we return to
the general triple-integral expression given in Eq. (3.56) and show how one more
integral can be solved analytically without any assumption about the background
field3. To this end we clarify the physical meaning of the remaining integration
variables (see Sec. 3.4.1). More specifically, we show that after an appropriate
change of variables two of them are related to the laser phase of the creation
and the annihilation vertex, respectively, and one determines the momentum
propagating in the loop. The latter integral can be expressed analytically in terms
of Hankel functions, for which very efficient numerical calculation schemes are
known (see Sec. 3.4.2).
As the incoming and the outgoing photon momentum must differ only by a

multiple of the plane-wave four-momentum kµ, the dependence of the polarization
operator on the momenta of the external photons can be expressed in terms of
different scalar products (e.g., q2

1, q2
2 or q1q2; see Sec. 3.4.3). Choosing q1q2 and kq

as independent variables as in Eq. (3.56) ensures that the symmetry between the
incoming and the outgoing photon is manifest. For the calculations presented in
Chap. 2 and Chap. 4, however, the incoming photon is to a good approximation on
shell (q2

1 = 0), which implies that the combination q2
1 and kq is more convenient.

Such a representation is finally derived in Sec. 3.4.4 (for other double-integral
representations see [BM75; Din+14b]).
Naturally, the remaining two integrals over the laser phases of the two vertices

depend nontrivially on the shape of the laser field and can in general only be solved
numerically or by applying approximations. As the integrals are highly oscillatory
(at least for ξ � 1), a full numerical calculation is by itself a challenging task (this
problem is addressed in Chap. 4, see Sec. 4.5).

3.4.1. Physical interpretation of the integration variables

The triple-integral representation for the leading-order contribution to the polariza-
tion operator given in Eq. (3.56) is expressed in terms of the integration variables
kz = z−, τ and v. To understand the physical meaning of τ and v [which originate
from the proper-time integrals in s and t, see Eq. (3.18) and Eq. (3.24)], the delta
functions obtained in Sec. 3.2.2 must be analyzed.

As the phases of the creation and the annihilation vertex are given by kx = kz−%
and ky = kz+%, respectively [see Eq. (3.22) and Eq. (3.30)], the change of variables

3Note that the results obtained in Sec. 3.3 and the analysis carried out here are complementary,
as different integrals are considered. In the quasistatic limit (see Sec. 3.3.2) one of the integrals
in the laser phases is solved approximately (for a constant-crossed field even both) but the
momentum integral remains. Here, the momentum integral is solved exactly. For reasons
explained in Sec. 3.4.4, a simple combination of both approaches is not feasible.
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3.4. Double-integral representation for the leading-order result

from τ to % is useful

τ = µw = %w

kq
, % = µkq, µ = 1

4τ(1− v2), 1
w

= 1
4(1− v2). (3.119)

Furthermore, it is convenient to integrate over w instead of v. The variable w is
related to the momenta pµ1 and pµ2 of the created electron and positron, respectively,
by4 w = (kq)2/(kp1kp2) [see Eq. (3.22)]. Assuming that the integrand is an even
function of v, we obtain [see Eq. (3.97)]

+1∫
−1

dv

∞∫
0

dτ

τ

+∞∫
−∞

dz− =
∞∫
4

dw
4

w
√
w(w − 4)

σ∞∫
0

d%

%

+∞∫
−∞

dz−, (3.120)

where σ = sign(kq).
In terms of the new variables the phases [see Eq. (3.57) and Eq. (3.59)] can be

written as

Φ = (q+
2 − q

+
1 )z− + %(q1q2/kq)− w (m2/kq) %,

Φ1 = (q+
2 − q

+
1 )z− + % (q1q2/kq)− w (m2/kq)D(%, kz),

(3.121)

where Φ1 = Φ+τβ and we defined [see Eq. (3.28)]

D(%, kz) = %
[
1 +

∑
i=1,2

ξ2
i

(
Ji − I2

i

)]
,

Ii = 1
2%

kz+%∫
kz−%

dφψi(φ), Ji = 1
2%

kz+%∫
kz−%

dφψ2
i (φ).

(3.122)

3.4.2. Analytical calculation of the momentum integral

After the change of variables given in Eq. (3.120), the phases have a very simple
dependence on w [see Eq. (3.121)] and the integral in w can be calculated analyti-
cally. To this end we define the functions Wl(x) [l = 0, 1, 2, x ≥ 0, see Eq. (G.2)
and Fig. 41]

∞∫
4

dw
4

wl
√
w(w − 4)

e−iwx = e−i4xWl(x), (3.123)

which are non-oscillatory and scale asymptotically as [see Eq. (G.4)]

Wl(x) ∼ −2
√
πi

4l eiπ/4
1√
x

(3.124)

4Note that the definition used here for w (see Sec. 3.3.1) agrees with the one introduced in
Eq. (1.84) for the dressed vertex. Due to the sign convention adopted for the dressed vertex,
the momenta p′µ and pµ appearing in the polarization operator are related to the momenta
pµ1 and pµ2 of the created electron and positron, respectively, by p′µ = pµ1 and pµ = −pµ2 , see
Sec. 1.6.
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Chapter 3. Polarization operator for plane-wave laser fields

[note thatW0(x) has a logarithmic singularity at x = 0]. As shown in App. G, they
can be expressed in terms of Hankel functions [see Eq. (G.19)]

W0(x) = (−2πi) ei2x H(2)
0 (2x),

W1(x) = (−2πx) ei2x
[
H(2)

0 (2x) + iH(2)
1 (2x)

]
,

W2(x) = πx

3 ei2x
[
4ixH(2)

0 (2x)− (4x+ i) H(2)
1 (2x)

]
.

(3.125)

3.4.3. Different representations for the polarization operator

The representation given for the polarization operator in Eq. (3.56) depends
on the external photon momenta via the scalar q1q2. As already mentioned
in the introduction, for a real incoming or a real outgoing photon it is more
convenient to use a representation which depends only on q2

1 or q2
2, respectively.

To obtain such a representation, we use the fact that momentum is conserved and
write

qµ2 = qµ1 + nkµ, n = q+
2 − q

+
1 , q1q2 = q2

1 + nkq = q2
2 − nkq, (3.126)

where n is in general not an integer and denotes the amount of four-momentum
kµ exchanged with the background field (n > 0 corresponds to absorption, n <
0 to emission). Thus, the integral in z− represents a Fourier transform that
determines the probability amplitude to absorb nkµ four-momentum from the
background field. Using the relations above, the phases can be rewritten as [see
Eq. (3.121)]

(q+
2 − q

+
1 )z− + %

q1q2
kq

= nkz + %
q1q2
kq

= nky + %
q2

1
kq

= nkx+ %
q2

2
kq
. (3.127)

By changing now the integration variable from z− to either x− (real outgoing
photon) or y− (real incoming photon), the phase of the polarization operator sim-
plifies in these cases. Depending on this choice one of the following representations
for the functions Ii and Ji defined in Eq. (3.28) is particularly convenient [see
Eq. (3.122)]

Ii =
1∫

0

dλψi(ky − 2%λ) =
1∫

0

dλψi(kx+ 2%λ),

Ji =
1∫

0

dλψ2
i (ky − 2%λ) =

1∫
0

dλψ2
i (kx+ 2%λ).

(3.128)

Similarly, we can rewrite the preexponent using the following identity

nkq

2

+∞∫
−∞

dz−eiΦ
(
eiτβ − 1

)
= (−i)kq2

+∞∫
−∞

dz−
(
eiτβ − 1

) ∂

∂z−
eiΦ

= 2m2 τ

4µ

+∞∫
−∞

dz−eiΦeiτβ
∑
i=1,2

ξ2
i (Yi − Zi) , (3.129)
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3.4. Double-integral representation for the leading-order result

where [see Eq. (3.70)]

Yi = [Ii − ψi(ky)] [ψi(kx)− ψi(ky)]. (3.130)

To prove Eq. (3.129) we used integration by parts and

∂Ii(%, kz)
∂z−

= − 1
2% [ψi(kz − %)− ψi(kz + %)] ,

∂Ji(%, kz)
∂z−

= − 1
2%
[
ψ2
i (kz − %)− ψ2

i (kz + %)
]
.

(3.131)

Furthermore, it is useful to define Vi = 2Zi − Yi.
By applying the above relations to the symmetric representation for the polar-

ization operator given in Eq. (3.56), we immediately obtain the BMS-representation
[see Eq. (3.72)], which has been derived differently in Sec. 3.2.7.

3.4.4. Final result

After combining the results discussed above, we obtain the following double-integral
representation for the field-dependent part of the polarization operator inside a
plane-wave background field

iPµν(q1, q2)− iPµνF=0(q1, q2) = −i(2π)3 δ(−,⊥)(q1 − q2) α

2π

σ∞∫
0

d%

%

+∞∫
−∞

dy−

×
[
P12Λµ1 Λν2 + P21Λµ2 Λν1 + P11Λµ1 Λν1 + P22Λµ2 Λν2 + PQQµ1Q

ν
2
]
, (3.132)

σ = sign(kq), where the coefficients are given by

P12 = m2ξ1ξ2
2

{
W0(x1)X12 + [4W1(x1)−W0(x1)]X21

}
eiΦ̃1 ,

P21 = m2ξ1ξ2
2

{
W0(x1)X21 + [4W1(x1)−W0(x1)]X12

}
eiΦ̃1 ,

P11 = −m2
[
i

%

kq

m2W2(x1) + q2
1

2m2W1(x1)
]
eiΦ̃1

+m2
[
i

%

kq

m2W2(x0) + q2
1

2m2W1(x0)
]
eiΦ̃0

+m2
[1

2
(
ξ2

1V1 + ξ2
2V2

)
W0(x1) + 2ξ2

1X11W1(x1)
]
eiΦ̃1 ,

P22 = −m2
[
i

%

kq

m2W2(x1) + q2
1

2m2W1(x1)
]
eiΦ̃1

+m2
[
i

%

kq

m2W2(x0) + q2
1

2m2W1(x0)
]
eiΦ̃0

+m2
[1

2
(
ξ2

1V1 + ξ2
2V2

)
W0(x1) + 2ξ2

2X22W1(x1)
]
eiΦ̃1 ,

PQ = −2
[
W2(x1)eiΦ̃1 −W2(x0)eiΦ̃0

]
(3.133)

103



Chapter 3. Polarization operator for plane-wave laser fields

and the phases read [see Eq. (3.121)]

Φ̃0 = (q+
2 − q

+
1 )y− + %(q2

1/kq)− 4x0,

Φ̃1 = (q+
2 − q

+
1 )y− + % (q2

1/kq)− 4x1.
(3.134)

Here, we have introduced

x0 = (m2/kq) %, x1 = (m2/kq)D(%, ky), (3.135)

where [see Eq. (3.122) and Eq. (3.128)]

D(%, ky) = %
[
1 +

∑
i=1,2

ξ2
i

(
Ji − I2

i

)]
,

Ii =
1∫

0

dλψi(ky − 2%λ), Ji =
1∫

0

dλψ2
i (ky − 2%λ).

(3.136)

Furthermore, [see Eq. (3.55)]

Xij = [Ii − ψi(ky)] [Ij − ψj(ky − 2%)],
Vi = [Ii − ψi(ky − 2%)] [ψi(ky)− ψi(ky − 2%)]

(3.137)

and the functions Wl(x) are defined in Eq. (G.1).
Having taken the w-integral analytically, we are left with the integrals in y− = ky

and %. To evaluate these integrals, the precise shape of the background field has
to be known and it is therefore reasonable to use numerical methods (see Chap. 4
for more details).
Finally, we note that the quasistatic approximation [see Eq. (3.102)] was ob-

tained from the triple-integral representation given in Eq. (3.56) using suitable
approximations. It is tempting to apply them also to the double-integral repre-
sentation in Eq. (3.132). However, this is not possible because the functions Wi

change over the formation region (W0 even has a logarithmic singularity at the
origin).

3.5. Mass dressing in the laser field

To conclude this chapter, we want to show that the nonlinear phase of the
polarization operator can be interpreted in terms of the so-called mass dressing in
the laser field.

It is well known that inside a linearly polarized, monochromatic field the square of
the dressed electron (positron) mass is given by [Rit85]

m2
∗ = m2(1 + ξ2/2), (3.138)

which corresponds to the square of the average (classical) electron four-momentum.
This definition of the dressed mass may be generalized to an arbitrary plane-wave
field by noting that the classical four-momentum of an electron (charge e and mass
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m) is given by [see Eq. (A.13)]

Pµ(φ) = Pµ0 +
eFµν(φ, φ0)P ν0

kP0
+
e2F2µ

ν(φ, φ0)P ν0
2(kP0)2 , (3.139)

where Pµ0 = Pµ(φ0) and [see Eq. (1.17)]

Fµν(φ, φ0) =
φ∫

φ0

dφ′ Fµν(φ′) =
∑
i=1,2

fµνi [ψi(φ)− ψi(φ0)]. (3.140)

For an electron which propagates from φ0 to φ we define the dressed momentum
by [LL82]

Qµ(φ, φ0) = 1
(φ− φ0)

φ∫
φ0

dφ′ Pµ(φ′). (3.141)

Correspondingly, the square of the dress mass is in general given by [Mit75]

m2
∗(ky, kx) = Q2(ky, kx) = m2

[
1 +

∑
i=1,2

ξ2
i

(
Ji − I2

i

)]
, (3.142)

where Ii and Ji are defined in Eq. (3.122). As it depends only on e2, the positron
has the same dressed mass. For ψ1(φ) = sin(φ), ψ2 = 0, kx = 0, ky = 2π we
obtain the above monochromatic result.

Thus, the nonlinear phase of the polarization operator [see Eq. (3.121)] can be in-
terpreted in terms of the mass dressing in the laser field [BM75; Din+14b].
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4 Recollision processes of
electron-positron pairs

In was shown in Chap. 2 that for strong background fields many aspects of the
nonlinear Beit-Wheeler pair-production process can be understood from the clas-
sical time evolution of the created particles in the laser field. The developed
semiclassical description (valid for ξ � 1) provides an intuitive understanding for
several characteristic features of the asymptotic electron (positron) momentum
distribution like its extend, the regions of highest probability and interference
effects (see Sec. 2.7 for more details).
A closer analysis of the classical propagation of the pair inside a linearly po-

larized laser field reveals that the electron and the positron could experience a
laser-induced recollision after roughly one laser half-cycle (for certain initial condi-
tions, see Fig. 32) [HMK06; Kuc07]. In this chapter, which was partly published
in Ref. [5], we rigorously prove the feasibility for electron-positron recollisions after
photoproduction by showing that these processes – characterized by a separation
of the creation and the annihilation vertex on the scale set by the laser wave-
length – contribute to the laser-dressed polarization operator (see Chap. 3 and
Fig. 26).
Recollision processes are responsible for a variety of phenomena, which have

been investigated especially in the realm of atomic and molecular physics. After
an atom (or a molecule) is ionized by a linearly polarized laser field, the electron
is accelerated and possibly brought to a recollision with the parent ion. The
energy that the electron absorbs between the ionization and the recollision can
be released in different ways: as a high-energy photon after recombination [high-
harmonic generation (HHG)] or by striking out another electron (nonsequential
double ionization), see, e.g., [Bec+02; Di+12; JKP12; Koh+12; Sal+99]. The
maximal energy absorbed by the recolliding ionized electron in a laser field with

qµ

← kµ
γ

p′µ

pµ
ky ←−−−−→

2̺
kx

Fig. 26: Depending on the distance 2% of the two polarization-operator vertices, this
Feynman diagram describes either radiative corrections to the photon propagator or
laser-induced recollision processes. The wavy lines denote photons, the double lines
the laser-dressed electron (positron) propagators, and the straight solid lines indicate
the particles produced in the secondary reaction. The meaning of the other symbols is
explained in the text (time increases from right to left).
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Chapter 4. Recollision processes of electron-positron pairs

peak-electric field strength E0 and mean angular frequency ω is found to be about
3.17Up, where Up = e2E2

0/(4mω2) is the ponderomotive potential, with e < 0
and m being the electron charge and mass, respectively [BLM90; Cor93; KI09;
Kuc87; Sch+93]. Recently, applications of recollisions in nuclear physics have been
discussed as well [Cor+13; LM14].
Recollision processes also play an important role in high-energy physics as

originating, for example, from an electron and a positron initially bound in a
positronium atom, which may annihilate during a recollision and create other
particles, analogously as in an ordinary collider experiment [HHK04; HMK06;
MHK08]. Moreover, the electron and the positron inducing the high-energy
recollision process can also be created from vacuum in an ultrastrong laser field,
e.g., in the presence of a laser field and a nucleus [Kuc07]. In both mentioned cases,
classical considerations show that the available energy in the recollision, which
happens after the particles propagated for approximately one laser wavelength,
is of the order of mc2ξ2 = 4Up, where ξ = |e|E0/(mωc) is the classical intensity
parameter [see Eq. (1.20)]. This explains why the ultrarelativistic regime ξ � 1 is
of relevance in high-energy recollision physics.
From a pictorial point of view, recollisions are expected to be described by

loop diagrams in the realm of quantum field theory. The simplest Feynman
diagram, which contains an electron-positron loop, is the polarization operator;
see Fig. 26. Since the seminal work of Baier, Milstein, and Strakhovenko [BMS76]
and Becker and Mitter [BM75], the polarization operator in a plane-wave field
has been investigated in many publications (see Chap. 3). Surprisingly, no high-
energy recollisions have been identified so far. To explain this, we note that the
leading-order contribution to the polarization operator in 1/ξ permits only the net
exchange of a few laser photons [Di+13]. This so-called quasistatic approximation
(see Sec. 3.3.2) describes electron-positron pairs annihilating within the coherence
length λ/ξ of pair production, which is much smaller than the laser wavelength
λ = 2πc/ω.

In this chapter, we consider high-energy recollisions experienced by an electron-
positron pair which is created by pure light in the collision of a gamma photon
and an intense laser field (see Fig. 26). It is shown for the first time that the
polarization operator contains subleading contributions in 1/ξ, which allow for
the efficient absorption of up to 3.17 ξ3/χ laser photons if χ & 1. For a head-on
collision the quantum-nonlinearity parameter is given by χ = (2~ωγ/mc2)(E0/Ecr)
[see Eq. (1.21)], where ~ωγ is the gamma photon energy and Ecr = m2c3/(|e|~) =
1.3× 1016 V/cm the QED critical field. Contrary to the leading-order quasistatic
approximation considered so far, the subleading contributions to the polarization op-
erator derived in this chapter describe recollision processes. They are characterized
by a separation of the creation and annihilation point of the electron-positron pair
on the scale set by the laser wavelength. Correspondingly, it is possible to absorb
much more energy from the laser field (for χ & 1 the Heisenberg uncertainty relation
is not violated, as even real e+e− photoproduction is energetically allowed [Di+12;
Rit85; RVX10]). Experimentally, the regime χ & 1, ξ � 1 could be explored
by colliding GeV photons (obtainable, e.g., via Compton backscattering) [ESL09;
Kim+13; Lee+06; Lee+14; Mur+14; Phu+12; Pow+14; Wan+13] with strong
optical laser pulses [CLF; ELI; XCELS; Yan+08].
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γ

e−γ

e+
γ

Fig. 27: Two-photon annihilation of the recolliding electron-positron pair. Like Bhabha
scattering (see Fig. 28) this processes is always kinematically allowed. If the whole loop is
contained within a single formation region, the process is called photon splitting [DMK07].

γ

e−

e+

γ∗

e−

e+

γ

e−

γ∗

e+

a) Annihilation channel b) Scattering channel

Fig. 28: During a recollision the photoproduced electron-positron pair could also experience
Bhabha scattering. From a theoretical point of view this process is more complicated
than the production of other lepton pairs (see Fig. 26), as both the annihilation and the
scattering channel have to be taken into account.

4.1. Lepton pair production via electron-positron recollisions

Exemplarily, we consider now recollision processes where the virtual photon decays
into a lepton pair (see Fig. 26). The generalization of the calculation to other
secondary reactions (see, e.g., Fig. 27 and Fig. 28) is technically more involved but
conceptually straightforward. To reduce the calculation to its essential part, we
focus on the electron-positron loop and neglect the influence of the laser field on
the final particles in Fig. 26. After applying the usual Feynman rules (see Chap. 1),
the total recollision probability is given by

W (kγ) = −
∞∫
n0

dn
εµΠµν [ερΠρν ]∗

2kkγα(2π)2 σtot(q2) (4.1)

(for an electron-positron pair in the final state also the scattering channel and the
laser dressing must be taken into account, see Fig. 28). In Eq. (4.1) kµ = (ω,k)
(k2 = 0) denotes the average four-momentum of the laser photons, kµγ = (ωγ ,kγ)
(k2
γ = 0) and εµ the momentum and polarization four-vector of the incoming gamma

photon, respectively, Παβ = Παβ(kγ , q) the nonsingular part of the polarization
operator (after renormalization of the vacuum part, see Chap. 3) and qµ = kµγ +
nkµ the four-momentum of the intermediate virtual photon (

√
q2 =

√
2nkkγ

is the center-of-mass energy of the laser-induced electron-positron recollision).
Furthermore, σtot(q2) represents the total cross section for the secondary process,
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e.g.,

σtot(q2) = 4πα2

3q2

√
1− 4m2

µ/q
2
(
1 + 2m2

µ/q
2
)

(4.2)

for muon pair production [LL82; PS95] and n0 a possible kinematic thresh-
old [e.g. n0 = 2m2

µ/(kkγ) for muon pair production, where mµ is the muon
mass].

4.2. Recollision contribution to the polarization operator

We show now analytically that recollision processes contribute to the polarization
operator in a plane-wave laser field. To this end a stationary-phase analysis is
applied to the double-integral representation for the polarization operator derived
in Chap. 3. It turns out that recollisions are only possible if the laser is linearly
polarized (see Sec. 4.4 for a semiclassical explanation). Therefore, we set ψ2(φ) = 0
[ψ1(φ) = ψ(φ)] throughout this chapter. For the numerical calculations the pulse
shape ψ′(φ) = sin2[φ/(2N)] sin(φ+ φ0) [see Eq. (1.23)] is employed, with N = 5
cycles and φ0 = 0 for the CEP.

For a linearly-polarized laser, the field-dependent part of the polarization opera-
tor is given by [see Eq. (3.132)]

Πµν(kγ , q)−Πµν
F=0(kγ , q)

= −
+∞∫
−∞

dky

∞∫
0

d%

%

α

2π
[
P11Λµ1 Λν1 + P22Λµ2 Λν2 + PQQµ1Q

ν
2
]
, (4.3)

where % = (ky − kx)/2 and kx and ky denote the laser phase when the pair is cre-
ated and annihilated, respectively (see Fig. 26). It is shown in App. E that the polar-
ization four-vector εµ of the incoming photon can be chosen as εµ‖ = Λµ1 (polarization
parallel to the electric field of the laser) and εµ⊥ = Λµ2 (polarization perpendicular to
the electric field of the laser), respectively, whereas the last term on the right-hand
side of Eq. (4.3) does not contribute. Thus,

∣∣∣∣ ∫ P⊥,‖

∣∣∣∣2 =
∣∣∣∣

+∞∫
−∞

dky

∞∫
0

d%

%
P⊥,‖

∣∣∣∣2, P‖ = P11, P⊥ = P22 (4.4)

determines the recollision probability for the corresponding photon polarization [see
Eq. (4.1)] and will be calculated in the following.

4.2.1. Stationary phase analysis

For strong laser fields (ξ � 1) the polarization-operator integrals over the laser
phases kx and ky [see Eq. (4.3) and Eq. (3.132)] are highly oscillatory and a
stationary-phase analysis is applicable (see also Sec. 2.7, where the pair-creation
matrix element is analyzed in a similar way).

For the subsequent analysis it is sufficient to note that the coefficients P11 = P‖
and P22 = P⊥ contain the oscillatory phase factor exp [iϕ(%, ky)] [see Eq. (3.134)],
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4.2. Recollision contribution to the polarization operator

Fig. 29: Combinations of creation
(kx) and annihilation (ky) laser
phases for which a recollision is pos-
sible [see Eq. (4.8)]. The color de-
picts the quantity n proportional
to the energy absorbed (classically)
by the electron-positron pair in the
laser field [see Eq. (4.16)]. The solid
black line illustrates the absolute
value of the laser-envelope function
ψ′(kx) in arbitrary units.
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where

ϕ(%, ky) = nky − 4 (ξ/χ) [%+ ξ2D(%, ky)], (4.5)

with D(%, ky) = %(J − I2) and [see Eq. (3.136)]

I =
1∫

0

dl ψ(ky − 2%l), J =
1∫

0

dl ψ2(ky − 2%l). (4.6)

We first investigate the integral in % for a fixed value of ky. For ξ � 1 and at
fixed χ the phase factor exp [−4i (ξ3/χ)D(%, ky)] is highly oscillating and we can
apply a stationary-phase analysis. The stationary points %k are determined by the
condition1

D′(%k, ky) = [ψ(ky − 2%k)− I(%k, ky)]2 = 0, (4.7)

which implies

(ky − kx)ψ(kx) =
ky∫
kx

dφψ(φ) (4.8)

(for D, the prime denotes the partial derivative with respect to %). Equation (4.8)
links the creation (kx = ky− 2%) and the annihilation (ky) phases (see Fig. 29). It
is shown in Sec. 4.4 that it exactly corresponds to the condition that the classical
coordinates of the electron and the positron coincide again at a later phase φr = ky
[see Eq. (4.24)].

4.2.2. Physical interpretation of the stationary points

The stationary-phase equation D′(%k, ky) = 0 always admits the solution %0 = 0,
independently of the shape of the background field. The contribution of this
stationary point is formed for values of % in the region 0 ≤ % . 1/ξ, where the
phase 4 (ξ3/χ)D(%, ky) is less than or of the order of unity. Thus, this contribution

1Note that by definition %k is a stationary point of the highly-oscillating part of the polarization-
operator phase. Even if the total phase function D(%, ky) = %+ξ2D(%, ky) has no real stationary
points [see Eq. (4.43)], the (quasi-) stationary points %k determine the regions which dominate
the integral for ξ � 1 [see also App. H and Eq. (4.9)].
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Fig. 30: Left side: Comparison of
the quasistatic contribution (lower
yellow curve) with the full numeri-
cal calculation (upper gray curve).
Right side: Plateau-region, analyt-
ical (red curve) and numerical cal-
culation coincide [χ = 1, ξ = 10,
N = 5, φ0 = 0, see Eq. (4.3)].

describes the immediate annihilation of the created electron-positron pair within a
distance of the order of λ/ξ inside an (effectively) constant-crossed field (quasistatic
limit). The compensation of the large parameter ξ3/χ in the phase occurring at
ρ . 1/ξ explains why the stationary point ρ0 provides the leading contribution to
the polarization operator and, at the same time, why it allows for a net exchange
of only a few laser photons [Di+13]. On the other hand, laser-induced recollision
processes are described by the contributions to the integral in % close to the
nonvanishing stationary points %k, k = 1, 2, . . ., with %k & π � 1/ξ (see Fig. 29).
As we will see below, these contributions are formed in the regions |%− %k| . 1/ξ,
where the phase 4 (ξ3/χ)D(%, ky) remains of the order of ξ3/χ. Thus, although
such contributions are suppressed with respect to the one from %0, they are essential
to understand the high-energy plateau region of the photon-absorption spectrum
[see Fig. 30 (left side)].

In order to determine the contribution from the recollision processes, we expand
the functionD(%, ky) around %k up to the third order

D′(%k, ky) = D′′(%k, ky) = 0, D′′′(%k 6= 0, ky) = 8
[
ψ′(ky − 2%k)

]2
. (4.9)

Since the third-order term of the expansion scales as (%− %k)3ξ3/χ, the contribution
is formed in the region |% − %k| . 1/ξ and also the linear term in ξ in ϕ(%, ky)
must be taken into account. All higher-order terms can be neglected. On the other
hand, the preexponent functions in P⊥,‖ vanish at %k and it is necessary to expand
them up to linear terms in %− %k.

Next, we apply the change of variable from % to t

%− %k = [rχ/(4ξ)]t, r = [2/χ(%k, ky)]2/3, χ(%, ky) = χ
∣∣ψ′(ky − 2%)

∣∣ . (4.10)

Here, χ(%, ky) denotes the quantum-nonlinearity parameter at the pair-production
vertex. Then, the phase ϕ(%, ky) can be approximated by [see Eq. (4.5)]

ϕ(%, ky) ≈ ϕ(%k, ky)− (tr + t3/3). (4.11)

After extending the integration boundaries in the new variable t to ±∞, the
contribution to the integral from the region around the stationary point %k 6= 0
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4.2. Recollision contribution to the polarization operator

Fig. 31: Numerically calculated
photon absorption spectra for χ =
1, N = 5, φ0 = 0 and ξ = 102/3 ≈
4.6 (upper two), ξ = 10 (middle
two), ξ = 104/3 ≈ 21.5 (lower two).
Of each pair the upper (lower) spec-
trum corresponds to perpendicular
(parallel) polarization.

102 3·102
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3

|∫
P
⊥
,‖
|2 /
m

4

103 3·103

n

104 3·104

reads (see App. F)

∞∫
0

d% g(%)eiϕ(%,ky) ≈ eiϕ(%k,ky) πχ

2ξ

[
g(%k) rAi(r) + ig′(%k) Ai′(r) r

2χ

4ξ

]
, (4.12)

where g(%) is an arbitrary, slowly varying function and Ai is the Airy function
[Olv+10]. As expected, at χ� 1 the above contribution features an exponential
suppression ∼ exp {−4/[3χ(%k, ky)]}, i.e. as the electron-positron pair-production
amplitude inside a (locally) constant-crossed field (see Chap. 2).
By applying Eq. (4.12) to Eq. (4.3) we obtain

∞∫
0

d%

%
P⊥ ≈ im2 eiϕ(%k,ky) πχ

2

2

{
ψ′(ky − 2%k)M(%k, ky)W0[x1(%k, ky)]

× r2 Ai′(r)
4%k

−W2[x1(%k, ky)] rAi(r)
%2
kξ

2

}
(4.13a)

and

∞∫
0

d%

%
P‖ ≈ −im2 eiϕ(%k,ky) ψ′(ky − 2%k)M(%k, ky)

×W1[x1(%k, ky)] r2 Ai′(r)πχ
2

2%k
+
∞∫
0

d%

%
P⊥, (4.13b)

where the functions Wi are defined in Eq. (G.1), x1(%, ky) = (ξ/χ) [%+ ξ2D(%, ky)]
[see Eq. (3.135)] and

M(%, ky) = ψ(ky)− ψ(ky − 2%). (4.14)

4.2.3. Number of absorbed laser photons

Now, we proceed to determine the stationary points of the integral in ky. To this
end we have to solve the equation ϕ′(ky) = 0, where ϕ(ky) = ϕ[%k(ky), ky] [see
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Chapter 4. Recollision processes of electron-positron pairs

Eq. (4.12)]. The stationary-phase condition reads

n = ξ3

χ

[
2M2(%k, ky) + 2

ξ2 −
1
ξ2

M(%k, ky)
%kψ′(ky − 2%k)

]
, (4.15)

where %k = %k(ky) [note that for ψ′(ky − 2%) → 0 the pair-production prob-
ability is exponentially suppressed]. The leading-order contribution with n ≈
2M2(%k, ky)ξ3/χ corresponds to the four-momentum

k′µ = nkµ = 2ξ
3

χ
[ψ(ky)− ψ(kx)]2 kµ (4.16)

that the electron-positron pair has classically absorbed from the laser field [see
Eq. (4.31) and Fig. 32]. For a monochromatic field pairs created after the peak (φ ≈
π/10) have the highest recollision energy (see Sec. 4.4) and we obtain the cutoff nc =
3.17 ξ3/χ, which corresponds to the result 3.17Up obtained in atomic HHG (Up =
mξ2/4) [BLM90; Cor93; Di+12; Kuc87; Sch+93]. The ξ3/χ scaling of the cutoff is
confirmed by a full numerical calculation in Fig. 31.
Now, the approximate contribution of the stationary point kys, solution of

Eq. (4.15), is given by

+∞∫
−∞

dky h(ky) eiϕ(ky) ≈ hs ei(σπ/4+ϕs)
√

2π
|ϕ′′s |

, (4.17)

where h(ky) is an arbitrary, slowly-varying function, hs = h(kys), ϕs = ϕ(kys),
ϕ′′s = ϕ′′(kys), σ = sign(ϕ′′s), and

ϕ′′(ky) = −4ξ
3

χ

[
M(%k, ky)ψ′(ky)− M2(%, ky)

2%k
+ %′′k
ξ2

]
, (4.18)

where %′′k = %′′k(ky). If two stationary points coalesce, the Airy uniform approxima-
tion must be used instead of Eq. (4.17) (see App. H).
The validity of the stationary-phase approximation is demonstrated in Fig. 30

(right side), where the recollision contribution was calculated analytically as out-
lined above and compared with a full numerical calculation (see Sec. 4.5). For large
photon numbers both results agree already for ξ = 10.

Combining Eqs. (4.13) and (4.17), we conclude that the recollision contribution
to |
∫
P⊥|2 scales as ξ−6χ10/3 at χ & 1 [Wi(x) ∼ x−1/2, see Eq. (G.4)], while the qua-

sistatic contribution is independent of ξ (see Sec. 3.3.2). The ξ−6-scaling of the recol-
lision contribution is confirmed numerically in Fig. 31.

4.3. Recollision probability

In order to determine the efficiency of the “vacuum electron-positron collider”,
we consider the ratio R between the recollision probability W (kγ) and the pair-
production probability We+e−(kγ). Using Eq. (4.1) we can estimate the ξ scaling
of R. Since n ∼ ξ3, εµΠµν [ερΠρν ]∗ ∼ m4ξ−6, and We+e−(kγ) ∼ ξ (see Chap. 2), we
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4.3. Recollision probability

obtain

R = W (kγ)
We+e−(kγ) ∼ ξ

−3m2σtot, σtot ∼ σtot(q2 = m2ξ2). (4.19)

An intuitive explanation of this scaling is based on the wave packet spreading
of the electron-positron pair between the production and the recollision as in
[HMK06; Kuc07]. In fact, in the frame, where the recollision is head-on and
along the polarization direction of the laser, one obtains R ∼ σtot/A [PS95],
where A = ∆Lb∆Lk, with ∆Lb ∼ ξ/m and ∆Lk ∼ ξ2/m being the spread of
the particles along the direction of the magnetic field and along the propagation
direction, respectively (see Sec. 4.4). Note that the initial conditions assumed
in [Kuc07] for the classical propagation do not correspond to the most proba-
ble ones employed here, which explains the different scaling of the quantity R
there.

4.3.1. Probability for muon pair production

As the tree-level production of µ+µ− pairs is exponentially suppressed [exp(−8/3χµ),
with χµ ∼ 10−7χ], their observation would unambiguously prove the existence
of recollision processes. For a pulse with 5 cycles, χ = 1 and ξ = 200 ≈ mµ/m
(kinematic threshold) we obtain to leading order a probability of 2 × 10−20 per
incoming gamma photon. However, for ξ & 200 the emission of additional pho-
tons within the electron-positron loop should be taken into account. In fact,
Nγ ≈ παξ photons are emitted on average by each particle in the loop (inte-
grating the total emission probability yields Nγ = 4.5) [Di+12]. Taking the
corresponding exponential decay of the electron (positron) wave function into
account (see Chap. 5), the probability for µ+µ− pair production without the emis-
sion of additional photons is ∼ 10−24. We stress that this is a lower bound for the
exact probability, as the emission of additional soft photons does not prevent the
recollision.

4.3.2. Probability for electron-positron scattering

Finally, we consider the case of an e+e− pair in the final state. Because of the
ξ−6 scaling of the plateau (see Fig. 31) much higher recollision probabilities are
now obtained in the regime χ = 1, ξ = 10. From Eq. (4.1) we expect ∼ 10−13

recollision events per incoming gamma photon for a 5-cycle pulse. Furthermore,
in this case Nγ < 1 and still the absorption of ∼ 103 laser photons is possible.
As shown in Chap. 2, photoproduced electron-positron pairs with t2 > 1 are ex-
ponentially suppressed (mt1 and mt2 denote the momentum component along
the direction of the laser electric and magnetic field, respectively; t1 . ξ). After
the recollision, however, also t2 spans up to ξ. Therefore, in comparison with
tree-level e+e− photoproduction, recollision-produced e+e− pairs cover a much
wider phase-space region, such that these channels are, in principle, distinguish-
able.
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Chapter 4. Recollision processes of electron-positron pairs

4.4. Semiclassical description of the recollision process
In the previous section an ab initio derivation of the recollision contribution to
the polarization operator valid in the important strong-field regime ξ � 1 was
given. Now, we will show that the obtained results are in agreement with the
following intuitive three-step model, which is a natural generalization of the well
established three-step description of atomic recollision processes2 [BLM90; Cor93;
KI09; Kuc87; Sch+93]:

Ê Pair creation inside an effectively constant-crossed field

Ë Acceleration of the pair by the laser field

Ì Recollision after one or more laser (half-)cycles

To this end the classical trajectories of the created electron-positron pair are
considered (see App. A.3). As we have already found the appropriate initial
conditions for the classical propagation in Chap. 2, the determination of the rec-
ollision condition (see Sec. 4.4.1) and the recollision energy (see Sec. 4.4.2) is
straightforward. Finally, recollisions with finite impact parameters are consid-
ered (see Sec. 4.4.3). By identifying how the impact parameter depends on the
laser intensity, an intuitive explanation for the scaling laws given in Sec. 4.2 is
obtained.

4.4.1. Classical recollision condition

According to QED the electron and the positron are created at the same space-
time point xµ0 with possibly different initial four-momenta pµ1 and pµ2 (see Fig. 26).
As for ξ � 1 the formation region is small in comparison with the scale set
by the laser wavelength, we assume in the following that both particles are
always real (p2

i = m2). Correspondingly, their trajectories are given by [see
Eq. (A.15)]

xµi (φi) = xµ0 +
φi∫
φ0

dφ′
pµi (φ′)
kpi

, (4.20)

where φi = kxi and the classical four-momenta read [see Eq. (A.13)]

pµ1 (φ1) = pµ1 + eFµν(φ1, φ0)p1ν
kp1

+ e2F2µν(φ1, φ0)p1ν
2(kp1)2 ,

pµ2 (φ2) = pµ2 −
eFµν(φ2, φ0)p2ν

kp2
+ e2F2µν(φ2, φ0)p2ν

2(kp2)2 .

(4.21)

To obtain compact expressions, we denote here the initial four-momentum by pµi =
pµi (φ0) and the corresponding classical evolution by pµi (φi). Note that this notation
(which is employed throughout Sec. 4.4) differs from the one used for S-matrix

2Kuchiev [Kuc07] was the first who suggested that this model should also apply to electron-
positron pairs produced in combined laser and Coulomb fields (e.g., during the collision of a
relativistic nucleus with a strong laser pulse). Note, however, that the initial conditions for the
classical propagation used in [Kuc07] are not very likely.
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4.4. Semiclassical description of the recollision process

elements, where the four-momenta pµi always denote the initial/final asymptotic val-
ues at φ = ±∞. As pµ1 6= pµ2 implies x0

1(φ) 6= x0
2(φ), the two particles encounter the

same laser phase at different times (in general).
Classically, a perfect recollision is obtained if the trajectory of the electron and

the positron intersect again at a later time, i.e. if xµ1 = xµ2 . Before considering
recollisions with a finite impact parameter, we focus on this important special
case. A necessary condition for a recollision with zero impact parameter is the
requirement that the laser phases of the electron and the positron are the same
at the recollision point (φ1 = φ2 = φr). Therefore, a recollision with zero impact
parameter is possible if the integral equation

φr∫
φ0

dφ′
pµ1 (φ′)
kp1

=
φr∫
φ0

dφ′
pµ2 (φ′)
kp2

(4.22)

has a nontrivial solution φr 6= φ0. If the initial momenta of the electron and
the positron are equal (pµ1 = pµ2 = pµ0 ), their trajectories are symmetric and the
analysis simplifies considerably. In this case the recollision condition given in
Eq. (4.22) becomes

φr∫
φ0

dφ′ Fµν(φ′, φ0)p0ν = 0. (4.23)

Correspondingly, a recollision is only feasible if the laser is linearly polarized [ψ(φ) =
ψ1(φ), ψ2(φ) = 0, ξ = ξ1] and we obtain [see Eq. (1.30)]

(φr − φ0)ψ(φ0) =
φr∫
φ0

dφ′ ψ(φ′) (4.24)

in this case. The result given in Eq. (4.24) corresponds exactly to the stationary-
point condition encountered during the quantum calculation [see Eq. (4.8)].

4.4.2. Recollision energy

After expanding in the canonical light-cone basis associated with the momentum
four-vector qµ = kµγ (q2 = 0) of the incoming photon [see Eqs. (1.85), (1.93)
and (A.17)], the classical momenta of the electron and the positron are given by
[see Eq. (4.21)]

pµ1 (φ) = r′qµ + s′(φ)kµ + t1(φ)mΛµ1 + t2(φ)mΛµ2 ,
−pµ2 (φ) = rqµ + s(φ)kµ + t1(φ)mΛµ1 + t2(φ)mΛµ2 ,

(4.25)

where r′ = r + 1 (momentum conservation; r and r′ are constants of motion) and
t2(φ) = t2 (linearly polarized background field). Correspondingly,

pµ1 (φ) + pµ2 (φ) = qµ +Nkµ,

pµ1 (φ)− pµ2 (φ) = w̄

w
[qµ −Nkµ] + 2m(T1Λµ1 + T2Λµ2 ).

(4.26)
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Here, the classical transverse momentum parameters are introduced [see Eq. (1.83)
and Eq. (A.19)]

Ti = ti(φ) = − 1
m

Λµi [p1(φ)]µ = 1
m

Λµi [p2(φ)]µ, (4.27)

the amount of classically absorbed laser four-momentum is given by [see Eq. (1.95)]

N = n(φ) = s′(φ)− s(φ) = 1
2w

m2

kq
[1 + t21(φ) + t22(φ)] (4.28)

and [see Eq. (1.84) and Eq. (1.86)]

w = (kq)2

(kp1)(kp2) = − 1
rr′

, w̄ = (kp1 − kp2)
kq

w = −(r + r′)
rr′

(4.29)

are both constants of motion. For a linearly polarized laser field [t2(φ) = t2],
the nontrivial time evolution of the particles is completely specified by [see
Eq. (A.19)]

T1 = t1(φ) = t1 − ξ[ψ(φ)− ψ(φ0)], t1 = t1(φ0). (4.30)

In the following, we will call the plane spanned by kµ and qµ the longitudinal and the
plane spanned by Λµi (i = 1, 2) the transverse plane.

From Eq. (4.28) and Eq. (4.30) we conclude that the four-momentum k′µ absorbed
from the laser field during the propagation from the creation to the annihilation
point is given by3

k′µ = nrk
µ = 2m

2

kq
ξ2[ψ(φr)− ψ(φ0)]2kµ, (4.31)

where the initial conditions ti = ti(φ0) = 0 and w = 4 are used, as required by
the recollision condition for zero impact parameter [see Eq. (4.23)]. This result
coincides with the leading-order expression obtained from the quantum calculation
[see Eq. (4.16)]. In Fig. 32 the four-momentum gain nr is plotted for different
trajectories.

4.4.3. Impact parameter

To obtain an intuitive understanding of the scaling law for the recollision probability
derived in Sec. 4.2 (see in particular Fig. 31), we consider now recollision processes
with a finite impact parameter (see App. B). To this end we introduce two four-
vectors Bµ

1 and Bµ
2 , which obey the relations given in Eq. (B.6) [with the replace-

ment pµ1 → pµ1 (φr) and pµ2 → pµ2 (φr), where pµi (φr) are the momenta of the two col-
liding particles at the recollision point, see Eq. (4.21)].

According to Eq. (4.26) the three four-vectors Λµi and qµ −Nkµ are orthogonal
to (p1 + p2)µ(φ) and among them we must find two linear combinations which
are also orthogonal to (p1 − p2)µ(φ). One of this two four-vectors may be chosen

3Note that we have dropped here the constant term 2m
2

kq
as in Eq. (4.16).
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4.4. Semiclassical description of the recollision process

Fig. 32: Classical trajectories for
the electron [X1(φ), see Eq. (A.20)]
and the positron [−X1(φ) =
Λµ1xµ(φ)] for equal initial momenta
(pµ1 = pµ2 = pµ0 ) and X1(φ0) = 0 but
different values for φ0 [monochro-
matic background, ψ′(φ) = cos(φ)].
The recollision phase φr is de-
termined by Eq. (4.24), the color
depicts the absorbed laser four-
momentum at the recollision point
[see Eq. (4.31)]. The highest four-
momentum gain nc = 3.17 ξ3/χ is
obtained for φ0 ≈ 0.31.
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Bµ
1 = T1Λµ2 − T2Λµ1√

T 2
1 + T 2

2

, B2
1 = −1. (4.32)

The second four-vector is mostly longitudinal (i.e. proportional to qµ−Nkµ), with a
small transverse component (proportional to T1Λµ1 +T2Λµ2 )

Bµ
2 = B

[
2m(T 2

1 + T 2
2 )(qµ −Nkµ)− 2Nkq w̄

w
(T1Λµ1 + T2Λµ2 )

]
(4.33)

(B2
2 = −1), the normalization constant is given by

B =
[
(T 2

1 + T 2
2 )2Nkq(2Nkq − 4m2)

]−1/2
. (4.34)

We assume now that the recollision condition in Eq. (4.24) admits for a given
φ0 a nontrivial solution φr. Thus, the classical trajectories intersect for the initial
conditions pµ1 = pµ2 , i.e. for t1 = t2 = w̄ = 0 [see Eq. (4.26)]. The collision still
takes place if this assumption is slightly relaxed (t1 ≈ t2 ≈ w̄ ≈ 0), but with finite
impact parameters

bi(φr) = dµ(φr)Biµ(φr), dµ(φ) = [x1(φ)− x2(φ)]µ. (4.35)

Due to the smallness of the relevant cross sections, only very small impact param-
eters lead to a scattering event. Therefore, the momentum of the electron pµ1 (φr,1)
and the positron pµ2 (φr,2) at the recollision point are to a good approximation
given by pµ1 (φr) and pµ2 (φr), respectively (note that we can specify the position
of the two particles at different times in the above formula). Even if in general
φr,1 6= φr,2 6= φr, we call φr the recollision phase.
As the electron and the positron are created at the same space-time point,

the four-position difference at the recollision phase is given by [see Eqs. (4.20)
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and (A.15)]

dµ(φ) =
φr∫
φ0

dφ′
[
pµ1 (φ′)
kp1

− pµ2 (φ′)
kp2

]
. (4.36)

Using the recollision condition [see Eq. (4.23)], we obtain from Eq. (A.13)

dµ(φr) = (φr − φ0)
[
pµ1
kp1
− pµ2
kp2

]
+ λ(φr) e2f2µν

[
p1ν

(kp1)3 −
p2ν

(kp2)3

]
, (4.37)

where

λ(φr) = 1
2

φr∫
φ0

dφ′ [ψ(φ′)− ψ(φ0)]2. (4.38)

To determine the impact parameter we note that [see Eq. (4.25)]

kµ

[
pµ1
kp1
− pµ2
kp2

]
= 0, qµ

[
pµ1
kp1
− pµ2
kp2

]
= −w̄n, Λiµ

[
pµ1
kp1
− pµ2
kp2

]
= m

kq
wti

(4.39a)

and

e2f2µν
[
p1ν

(kp1)3 −
p2ν

(kp2)3

]
= −kµm

2ξ2

(kq)2 w̄w. (4.39b)

After combining everything, we obtain

b1 = Bµ
1 dµ(φr) = 1

m

m2

kq
wt2

ξ√
T 2

1 + T 2
2

(φr − φ0)[ψ(φr)− ψ(φ0)],

b2 = Bµ
2 dµ(φr) = − 2

m

m2

kq
ξ2w̄w(T 2

1 + T 2
2 )λ(φr)m2B

+ 2
m
w̄
[
N(T1t1 + T2t2)− n(T 2

1 + T 2
2 )
]
(φr − φ0)m2B.

(4.40)

To analyze the scaling laws for the impact parameters we note that a significant
pair-creation probability is only obtained if the initial parameters t1, t2 and w̄ are
all of order one and T1 . ξ (see Chap. 2). Correspondingly, ξ/(T 2

1 + T 2
2 )1/2 ∼ 1,

m2B ∼ ξ−3 and

b1 ∼
1
m
ξt2, b2 ∼

1
m
ξ2w̄ (4.41)

(note that w ≥ 4 ∼ 1). Therefore, both t2 and w̄ must actually be much smaller
than unity to match the impact parameter with a typical QED cross section,
while t1 is not constrained. In the limit t2, w̄ → 0 the differential pair-creation
probability in a constant-crossed field (see Chap. 2) becomes constant and the
effective beam area (at the recollision point) scales as A ∼ b1 × b2 ∼ ξ3/m2 [see
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4.5. Numerical calculation of the polarization-operator spectrum

Eq. (4.19)].

4.5. Numerical calculation of the polarization-operator spectrum

In order to verify that the stationary-phase analysis presented in Sec. 4.2 is ap-
plicable for strong background fields (ξ � 1), we also calculated the polarization-
operator integrals in % and y− = ky [see Eq. (4.3) and Eq. (3.132)] fully numerically
without any approximation (see Fig. 30 and Fig. 31). As the absolute magnitude of
the leading-order contribution to the polarization operator is several orders of mag-
nitude larger than the recollision contribution (see Fig. 30), the numerical evaluation
of the highly-oscillating integral in % must be carried out with a relative accuracy
of at least 8 − 10 digits already for ξ ∼ 10, which is a challenging task. In the
following, we explain how it can be accomplished.

4.5.1. Transformation to a regularly oscillating integral

Due to the appearance of the field-dependent function [see Eq. (3.136) and Eq. (4.5),
we consider only linear polarization]

D(%, ky) = %
[
1 + ξ2(J − I2)] = %+ ξ2D(%, ky), (4.42)

the phase Φ̃1 is nonlinear [see Eq. (3.134)] and the integral in % oscillates irregularly.
In order to use the Chebyshev methods presented in App. I, we first apply a change
of variables to transform it into a regularly oscillating integral. This is possible,
because the derivative [see Eq. (4.7)]

D′(%, ky) = 1 + ξ2[ψ(ky − 2%)− I(%, ky)]2 (4.43)

is always positive (this has also been observed in [Din+14b]; the prime denotes the
partial derivative with respect to %). Therefore, the change of variables u = D(%)
is uniquely defined and can be applied to obtain an regularly oscillating integral
[Eva94], suitable for a standard treatment

∞∫
0

d%

%
g(%)e−i4(m2/kq)D(%) =

∞∫
0

du

D′(%)
g(%)
%
e−i4(m2/kq)u. (4.44)

Here, the inverse function % = D−1(u) is calculated numerically using a root-finding
algorithm [due toD′(%) > 0 the map is one-to-one].

4.5.2. Splitting of the integration range

Having transformed the integral in % to a regularly oscillating one [see Eq. (4.44)], we
can calculate it numerically using a Chebyshev series expansion of the preexponent
(see App. I). However, as the stationary points %k [D′(%k, ky) = 1] lead to delta-like
peaks (see Fig. 33), the convergence of the Chebyshev series is rather poor. To
circumvent this problem, we note that around a stationary point %k the preexponent
is rapidly varying over a single oscillation cycle of the phase. Correspondingly, it is
possible to employ an ordinary integration routine for the integration of the peaks.
Between two peaks the situation is reversed, the preexponent varies only slightly
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Fig. 33: In the regime ξ � 1 the phase of the polarization-operator integrals [see Eq. (4.5)]
is highly oscillating (parameters used in the plot: ξ = 10, N = 5, φ0 = 0, ky = 6π).
As discussed in Sec. 4.2, the main contribution to the integral in % arises from the
regions around the stationary points %k defined by D′(%k, ky) = 0 [see Eq. (4.7)], where
D′(%k, ky) = 1 has a global minimum (left side). After the change of variables in Eq. (4.44),
the stationary points define the location of the delta-like peaks in the preexponent (right
side).

over one oscillation cycle and the Chebyshev expansion converges fast. Therefore,
we split the total integral in the following way

n∑
k=0

%bk∫
%a
k

d%+
n−1∑
k=0

%ak+1∫
%b
k

d%+
∞∫
%bn

d%. (4.45)

Here, [%ak, %bk] represents a small interval around the stationary point %k, which
contains only a few oscillation cycles of the phase. The integrals over these regions
are calculated with, e.g, the QAG algorithm from the GSL [GSL; Pie+83]. The
integrals over the intermediate regions [%bk, %ak+1] are calculated using Chebyshev
integration, if necessary they are further divided into subintervals (see App. I). To
minimize the numerical error caused by cancellations among different integrals,
the points %ak and %bk should be chosen such that each integral in the above
decomposition covers an integer number of oscillation cycles (with respect to the
new integration variable u).
Finally, the remaining integral from %bn to infinity is calculated using standard

algorithms like the one introduced by Longman [Lon56] or the QAWF algorithm
from the GSL [GSL; Pie+83]. If theses algorithms fail to achieve convergence, a
finite part of the integral must be split off first and integrated separately using,
e.g., Chebyshev methods

∞∫
%bn

d% =
%cn∫
%bn

d%+
∞∫
%cn

d%. (4.46)

The outlined algorithm is fast and achieves a high numerical precision. To minimize
the adaptive splitting of the integration range into smaller subintervals, Chebyshev
series expansions with ∼ 103 coefficients have been used. Their calculation using
fast Fourier transform in combination with Olver’s algorithm for the integral
moments turns out to be very efficient.
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5 Vacuum-induced electron
spin rotations

The first evidence for physics beyond the Dirac equation was found by Lamb
and Retherford [LR47]. Their measurement revealed a finite gap (“Lamb shift”)
between the energy levels 2S1/2 and 2P 1/2 of atomic hydrogen, not explainable
within relativistic quantum mechanics [Dir27; Dir28; Dir30]. This observation
triggered the development of renormalization techniques, which are needed to
handle the infinities appearing in quantum-field theory calculations beyond tree
level. Finally, a consistent covariant description of QED was jointly established
by Dyson [Dys49a; Dys49b], Feynman [Fey48a; Fey48b; Fey49a; Fey49b; Fey50;
Fey51] Schwinger [Sch48a; Sch48b; Sch49a; Sch49b; Sch49c; Sch51] and Tomonaga
[TO48; Tom46].
According to QED, an electron bound to a nucleus interacts also with the

quantum vacuum. The continuous emission and absorption of virtual photons
changes the effective Coulomb potential and is responsible for the Lamb shift
(the first nonrelativistic calculation was carried out by Bethe [Bet47]). Closely
related to the Lamb shift is the anomalous magnetic dipole moment of the electron
(g = 2 + α/π at one-loop) [Sch48a; Sch51].

An analogous situation is encountered for electrons interacting with a plane-
wave laser field. According to the Dirac equation, the asymptotic electron spin
polarization is not changed by the propagation through a plane-wave laser pulse.
Even if the spin precesses around the magnetic field inside the pulse, the original
orientation is restored again afterwards (see Sec. 5.1). Quantum fluctuations,
however, change this prediction. For an electron, they are described by the mass
operator (see Fig. 34) and taken into account by solving the Schwinger-Dirac
equation for the exact electron wave function (see Fig. 35). Note that similar spin
effects could also be observed if an electron interacts with a non-coherent state of
the photon field (see, e.g., Refs. [Ber69; SFK13]).
In this chapter, we give an alternative derivation of the exact electron wave

function inside a plane-wave background field (see Sec. 5.2; it was first considered

p
µ

2
p
µ

1

Fig. 34: The Feynman diagram corresponding to the leading-order contribution to the
mass operatorM(p2, p1) in a plane-wave background field (sign convention: pµ1 is incoming,
pµ2 outgoing). The double lines represent the Volkov propagators/wave functions for the
fermion, which takes the external field exactly into account [see Eq. (1.59)]. Due to the
unitarity of the S-matrix the vertical dashed line links the mass operator to the nonlinear
Compton scattering diagram (see Fig. 7).
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Chapter 5. Vacuum-induced electron spin rotations

in Ref. [Meu10] using an operator approach, see also Ref. [BM76]). The calculation
is very similar to the one carried out in Chap. 2 for the exact photon wave function
(see Sec. 2.3). Subsequently, it is shown that the real part of the mass operator
induces a nontrivial electron spin dynamics in analogy to birefringence for photons,
which is caused by the real part of the polarization operator (see Sec. 5.3). Even if
the magnetic field of the laser oscillates, the nonlinear dependence of the anomalous
magnetic moment of the electron on the field strength leads to a nonvanishing spin-
flip probability for ultra-short laser pulses. The calculated spin-flip asymmetries
depend strongly on the CEP of the pulse and vanish in the monochromatic limit
(these findings were reported in Refs. [1] and [2]).

5.1. Spin dynamics predicted by the Dirac equation

Before discussing the influence of quantum fluctuations on the electron spin
dynamics, we briefly review the definition of the spin four-vector ζµ and its time
evolution inside a plane-wave laser field.

5.1.1. Electron density matrix

Any measurable quantity related to an electron (positron) depends on its Dirac
spinor up (vp) [see Eq. (1.57)] only through the density matrices

ρu = upūp, ρv = vpv̄p. (5.1)

Like any other matrix in spinor space, the density matrices can be decomposed
into five fundamental terms (see App. D). For the electron we obtain [IZ05; Lea01;
MW55; Sre07]

ρu = upūp = 1m2 + γµ
pµ
2 + iγµγ5(−i)m2 ζµ + iσµν

1
4εµνρσζ

ρpσ

= 1
2(m+ /p)(1 + /ζγ5), (5.2)

where we defined the spin four-vector1

ζµ = 1
2mūpγ

5γµup; ζ2 = −1, ζµpµ = 0. (5.3)

Using the standard representation for the Dirac spinors [LL82]

up =
( √

ε+mω√
ε−m (p̂σ)ω

)
, vp =

(√
ε−m (p̂σ)ω′√
ε+mω′

)
(5.4)

(p̂ = p/|p|) and the standard representation for the Dirac gamma matrices
[LL82]

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 −1
−1 0

)
, (5.5)

1Note that ζµ is actually a pseudo four-vector.
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5.1. Spin dynamics predicted by the Dirac equation

we obtain [LL82; Tol56]

ζµ =
(
pζ

m
, ζ + p(pζ)

m(ε+m)

)
, ζi = ω†σiω, (5.6)

(note that, unfortunately, ζi 6= ζi). Here, σi = σi [σ = (σ1, σ2, σ3)] denote the
Pauli matrices [LL82]

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5.7)

and ω an arbitrary two component spinor with normalization ω†ω = 1. Corre-
spondingly, the free spinor up is described completely by its momentum p and its
spin polarization ζ in the rest frame (i.e. we should actually write up,ζ instead of
up).

In (nonrelativistic) quantum mechanics the spin operator S and the spin polariza-
tion vector P are defined by [LL81; Mer98; PS95]

S = 1
2σ, P = 〈S〉 = ω†Sω = 1

2ζ. (5.8)

They are related to the magnetic moment µ of the electron as follows

µ = −µBM g 〈S〉 = −µBM g
1
2ζ, µBM = |e|

2m (5.9)

where µBM is called the Bohr magneton and g ≈ 2 the electron g-factor.

5.1.2. Evolution of the spin four-vector in a plane-wave laser field

To analyze the spin dynamics predicted by the Dirac equation, we consider the
Volkov solution [see Eq. (1.54)]

ΨV
p,ζ(x) = Ep(x)up,ζ (5.10)

and calculate the expectation value of the spin four-vector

ζµ(φ) =
Ψ̄V
p,ζ(x)γ5γµΨV

p,ζ(x)
Ψ̄V
p,ζ(x)ΨV

p,ζ(x)
= ζµ + eFµν(φ)ζν

pk
+ e2F2µν(φ)ζν

2(pk)2 , (5.11)

where ζµ = ζµ(−∞) and φ = kx. Interestingly, the result given in Eq. (5.11) (which
corresponds to an exact solution of the Dirac equation) also obeys the Bargmann-
Michel-Telegdi (BMT) equation [BMT59; LL82]

dζµ(τ)
dτ

= e

m
Fµνζν(τ), (5.12)

which describes the evolution of the spin four-vector ζµ(τ) semiclassically [in
Eq. (5.12) we neglected the anomalous magnetic moment].
Note that the spin continuously changes its orientation while the electron

propagates through a plane-wave field. However, the Volkov solution predicts that
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Chapter 5. Vacuum-induced electron spin rotations

= + + + · · ·

= +

a) Exact electron wave function

= + + + + · · ·

b) One-particle irreducible diagrams

Fig. 35: a) The exact electron wave function (double zigzag line) can be defined either
implicitly or by an geometric expansion. b) One-particle irreducible (1PI) contributions
to the mass operator (see Sec. 5.2.3).

the initial spin configuration is recovered again after the electron has left the laser
field [ζµ(+∞) = ζµ(−∞)]. We will show later that this is no longer the case if
nonlinear QED corrections are taken into account.

5.1.3. Canonical spin quantization axis

If the background field is linearly polarized [Fµν = fµνψ′(φ), see Eq. (1.17)], the
direction of the magnetic field does not change. Therefore, the following (pseudo)
four-vector represents a good quantization axis for the electron spin [Rit72a;
Rit85]

sµ = |e|
m3χ

f∗µνpν , s2 = −1, ps = 0, ks = 0, (5.13)

where

χ = |e|
√
pf2p

m3 = ξ

√
(kp)2

m2 (5.14)

denotes the quantum-nonlinearity parameter of the electron with four-momentum
pµ [this notation is used throughout this chapter; it differs from Eq. (1.21)].

In agreement with Eq. (5.2) we define the following spin operator

Σ = /sγ5 = |e|
m3χ

γ5pf∗γ, (/sγ5)2 = 1 (5.15)

and construct the corresponding spin projectors

P±s = 1
2(1± /sγ5), (P±s )2 = P±s , P+

s P
−
s = 0. (5.16)
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5.2. Exact electron wave function

5.2. Exact electron wave function

In Chap. 2 we considered the exact photon wave function (see Sec. 2.3). There,
we showed that the inclusion of quantum fluctuations guarantees a unitary time
evolution and leads to a birefringent quantum vacuum. Here, we will obtain a
similar result for the exact electron (positron) wave function (see Fig. 35). On the
one hand, the imaginary part of the mass operator (see Fig. 34) causes an expo-
nential wave-function decay [dressed states are unstable, as an electron (positron)
radiates inside the background field]. On the other hand, the real part of the mass
operator induces a nontrivial spin dynamics even for particles which propagate
through the pulse without emitting photons.

5.2.1. Schwinger-Dirac equation

In the following we consider exemplarily the exact wave function of an incoming
electron ΨE

p (x) (see Fig. 35). To leading order it coincides with the Volkov solution
ΨV
p (x) of the Dirac equation [see Eq. (1.54)], which reduces to a momentum eigen-

state ψp(x) in the absence of the background field

ΨV
p (x) = Ep(x)up, ψp(x) = e−ipxup (5.17)

[for simplicity we drop the spin labels, see Eq. (5.10)]. Therefore, we require the
same boundary condition also for the exact electron wave function [ΨE

p (x)→ ψp(x)
if kx→ −∞ with a suitable choice of up].

To define the exact electron wave function we introduce the position-space mass
operatorM(x, y) (see Ref. [LL82], Sec. 105) such that −iM(x, y) denotes the set of
all one-particle irreducible diagrams (see Fig. 35; we use the convention that elec-
trons propagate from y to x). Correspondingly,

ΨE
p (x) = ΨV

p (x) +
∫
d4yd4z G(x, y)M(y, z)ΨV

p (z) + . . .

= ΨV
p (x) +

∫
d4yd4z G(x, y)M(y, z)ΨE

p (z), (5.18)

whereG(x, y) is the Green’s function in the background field [see Eq. (1.59)]

[i/∂x − e /A(x)−m]G(x, y) = δ4(x− y),
[i/∂x − e /A(x)−m] ΨV

p (x) = 0
(5.19)

(the index x indicates that the derivative ∂µx acts solely on x). Therefore, the exact
electron wave function obeys the following so-called Schwinger-Dirac equation
[Sch51]

[i/∂x − e /A(x)−m] ΨE
p (x) =

∫
d4yM(x, y)ΨE

p (y). (5.20)

For a plane-wave background field, which depends nontrivially only on φ = kx, we
can write the exact wave function in the following way

ΨE
p (x) = Ep(x)UEp (kx), (5.21)
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Chapter 5. Vacuum-induced electron spin rotations

where UEp (kx)→ up for kx→ −∞. Using Ēp,xEp,x = 1 [see Eq. (1.56)], /kEp(x) =
Ep(x)/k and

[i/∂x − e /A(kx)]Ep(x) = Ep(x)/p (5.22)

[if the derivative acts solely on Ep(x), see Eq. (1.60)], we obtain

i/kU ′Ep (kx) + (/p−m)UEp (kx) =
∫
d4y Ēp(x)M(x, y)Ep(y)UEp (ky). (5.23)

Finally, after defining the quantity (see Sec. 1.4 for the definition of light-cone
coordinates)

M(kx, ky; p) =
∫
dy+dy⊥ Ēp(x)M(x, y)Ep(y), (5.24)

we obtain the following integro-differential equation

i/kU ′Ep (φ) + (/p−m)UEp (φ) =
∫
dφ′M(φ, φ′; p)UEp (φ′). (5.25)

Note that due to momentum conservation the function M(kx, ky; p) depends only
on kx = x−, even if this is not manifest in the definition.

5.2.2. Quasistatic approximation

For strong background fields (ξ � 1) the formation region for the integral in
dφ′ in Eq. (5.25) is small and we may apply the replacement UEp (φ′) → UEp (φ),
which transforms the Schwinger-Dirac equation into an ordinary differential equa-
tion2

i/kU ′Ep (φ) + (/p−m)UEp (φ) = Mp(φ)UEp (φ), (5.26)

where now [see Eq. (5.24)]

Mp(kx) =
∫
d4y Ēp(x)M(x, y)Ep(y). (5.27)

Using the completeness relation for the Ritus matrices [see Eq. (1.61)], we obtain
the following relation

Mp(kx) =
∫
d4zd4y Ēp(x)δ4(x− z)M(z, y)Ep(y)

=
∫

d4p′

(2π)4 Ēp(x)Ep′(x)M(p′, p), (5.28)

2Effectively, M(φ, φ′; p) = δ(φ − φ′)Mp(φ) [see Eq. (5.25)] in the quasistatic approximation,
which was used in Ref. [1] to obtain Eq. (5.26).
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5.2. Exact electron wave function

where we defined the mass operator in momentum space3 (see Fig. 34)

M(p′, p) =
∫
d4z′d4z Ēp′(z′)M(z′, z)Ep(z) (5.29)

[pµ is incoming, p′µ is outgoing].
For ξ � 1 (i.e. in the quasistatic approximation) we can use the mass operator

inside a constant-crossed field [see Eq. (5.35)] for M(p′, p) if the field tensor Fµν
of the constant-crossed field is replaced by the local value of the wave field
[Fµν → fµνψ′(kx)]. The mass operator for a constant-crossed field is diagonal [see
Eq. (5.32)]

Mcc(p′, p) = (2π)4δ4(p′ − p)Mcc(p). (5.30)

Therefore, we obtain in the quasistatic approximation [see Eq. (5.28)]

Mp(φ) −→Mqs
p (φ) = Mcc[p;F → fψ′(φ)]. (5.31)

5.2.3. Mass operator for a constant-crossed field

For a constant-crossed field with field tensor Fµν , the mass operator was first
calculated by Ritus [Rit70a; Rit70b; Rit85]; it is diagonal in the Ep-representation
[see Eq. (5.29)]

Mcc(p′, p) =
∫
d4z′d4z Ēp′(z′)Mcc(z′, z)Ep(z) = (2π)4δ4(p′ − p)Mcc(p). (5.32)

To renormalize the mass operator, we apply the same renormalization conditions as
in ordinary QED [Bai+76; BKS75; Bro02; PS95; Rit85]

MR
cc(p;F = 0, /p = m) = 0, d

d/p
MR

cc(p;F = 0)
∣∣∣∣
/p=m

= 0. (5.33)

Correspondingly, the renormalized mass operator is defined by

MR
cc(p) = Mcc(p)−Mcc(p;F = 0, /p = m)− (/p−m)dMcc(p;F = 0)

d/p

∣∣∣∣
/p=m

. (5.34)

3Note that the order of the arguments differs between mass and polarization operator, see
Eq. (3.6). Furthermore, the mass operator in position [M(x, y)] and momentum space [M(p′, p)]
is denoted by the same symbol, even if it is not the same object.
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Chapter 5. Vacuum-induced electron spin rotations

Finally, the field-dependent part of the renormalized mass operator inside a
constant-crossed background field is given by [Rit70a; Rit70b; Rit85]

MR
cc(p)−MR

cc(p;F = 0) = α

2π

∞∫
0

dw

(1 + w)2

[(
2m− /p

1 + w

)
f1(z)

+ e

(2 + w

1 + w
γ5pF ∗γ + imγFγ

) 1
m2χ

(
χ

w

)1/3
f(z)

+ 2e2 (1 + w/3)
m4χ2

(
χ

w

)2/3
pF 2γ f ′(z)

]
, (5.35)

where z = (w/χ)2/3 [1+(1− ν)/w] and ν = p2/m2.
For a numerical evaluation it is convenient to eliminate the function f1. To this

end we note the following identities, which hold for z = (w/χ)2/3 (i.e. if p2 = m2)
and can be proven via integration by parts

∞∫
0

dw
1 + 2w

(1 + w)3 f1(z) = −
∞∫
0

dw
1 + w − 3w2

3z(1 + w)3 f ′(z), (5.36a)

∞∫
0

dw

(1 + w)2

[
f1(z) + 2 + 2w + w2

1 + w

f ′(z)
z

]
=
∞∫
0

dw
f ′(z)
z

5 + 7w + 5w2

3(1 + w)3 . (5.36b)

5.2.4. Exact electron wave function for strong background fields

As shown in Sec. 5.2.2, the Schwinger-Dirac equation reduces to [see Eqs. (5.26)
and (5.31)]

i/kU ′Ep (φ) + (/p−m)UEp (φ) = Mqs
p (φ)UEp (φ) (5.37)

for strong background fields (ξ � 1). Here, Mqs
p (φ) = Mcc[p;F → fψ′(φ)] [see

Eq. (5.31)] corresponds to the mass operator inside a constant-crossed field [see
Eq. (5.35)]. Therefore, Eq. (5.37) has the following spinor structure [see Eq. (5.35)
and App. D]

1 γ5 γµ iγµγ5 iσµν

1 − /p, /k /sγ5 γfγ
(5.38)

As the Ritus matrices contain the terms 1 and γfγ [see Eq. (1.55)], we use the follow-
ing expansion for the exact electron wave function [see Eq. (5.21)]

ΨE
p,σ(x) = Ep(x)UEp,σ(kx), UEp,σ(kx) = eiA(kx)[1 +B(kx)γfγ

]
up,σ, (5.39)

where the constant four-spinor up,σ is chosen such that it is an eigenstate of the
spin operator

/sγ5 up,σ = σup,σ, (/p−m)up,σ = 0, ūp,σup,σ = 2m (5.40)
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5.2. Exact electron wave function

(σ = ±1). In order to show that the exact electron wave function has the spinor
structure assumed in Eq. (5.39), we note that the spin operator commutes with all
other operators in Eq. (5.38)

[/sγ5, /p] = 0, [/sγ5, /k] = 0, [/sγ5, γfγ] = 0. (5.41)

Correspondingly, UEp,σ(kx) is also an eigenspinor of /sγ5 [see Eq. (5.40)]. Further-
more, we can use the relations

/k = i

2
e(kp)
χm3 γfγ(/sγ5), γf2p = i

2
χm3

e
γfγ(/sγ5) (5.42)

to express /k and γf2p using γfγ and

{/p, γfγ} = −4im
3χ

e
/sγ5 (5.43)

to eliminate /p. After some algebra [note that only terms to leading-order in α
are taken into account for both A(kx) and B(kx)], we obtain the following result
[Meu10]

ΨE
p,σ(x) =

[
1 + e

kp
γfγ ψ(kx)− i

4ξ
e

kp
γfγ µB(φ)

]
eiS

E
p,σ(x) up,σ, (5.44)

where the new phase is given by

SEp,σ(x) = −px−
kx∫
−∞

dφ′
[
e pA(φ′)

kp
− e2A2(φ′)

2 kp + m2

kp
µA(φ′)

]
. (5.45)

Here, we defined the following coefficients related to the mass operator [see
Eq. (5.35)]

µA(φ) = α

2π

∞∫
0

dw

(1 + w)3

[5 + 7w + 5w2

3z f ′(z) + σχ(φ)zf(z)
]
, (5.46a)

µB(φ) = α

2π

∞∫
0

dw

(1 + w)3

[
(2 + w)f(z)√

z
+ σ

1 + w − 3w2

3z f ′(z)
]
, (5.46b)

where z = [w/χ(φ)]2/3, χ(φ) = χψ′(φ) and the Ritus functions are defined in
Eq. (F.1). Note that p2 = m2, as it denotes the asymptotic (on-shell) four-
momentum of the incoming electron.

5.2.5. Exponential wave-function decay

In Chap. 2 we discussed the exponential decay of the exact photon wave function
due to pair creation (see Sec. 2.3). Similarly, the optical theorem (see Sec. 2.2)
ensures for electrons that the total probability for photon emission corresponds to
the imaginary part of the mass operator.

From the square of the exact electron wave function [see Eq. (5.44)], we conclude
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Chapter 5. Vacuum-induced electron spin rotations

that the probability for no photon emission is given by

W s
p,σ = exp

{
m2

kp

+∞∫
−∞

dφ′= 2µA(φ′)
}
, (5.47)

where [see Eq. (5.46) and App. F]

= 2µA(φ) = α

∞∫
0

dw

(1 + w)3

[5 + 7w + 5w2

3z Ai′(z) + σχ(φ)zAi(z)
]
, (5.48)

z = [w/χ(φ)]2/3, χ(φ) = χψ′(φ) and Ai denotes the Airy function [Olv+10].
To verify this result, we compare it with the total photon emission rate inside

a constant-crossed field calculated by Ritus [Rit70b; Rit72a; Rit85]. To obtain
a rate, we transform the integral in the laser phase φ = kx into an integral over
time

dxµ

dt
= pµ

ε
,

1
kp

dφ

dt
= 1
ε
. (5.49)

Using the following relation for the decay probability

W d
p,σ = 1−W s

p,σ = 1− exp[−Wp,σ] ≈Wp,σ (5.50)

(the last relation holds if Wp,σ is much smaller than unity), we conclude that
Eq. (5.47) agrees with the results previously published.

5.3. Nonlinear QED modifications of the electron spin dynamics

As the phase of the exact electron wave function depends on the spin quantum
number σ [see Eq. (5.44)], the two spin states have a different quasi-energy inside
the laser pulse. Nevertheless, the difference does not play a role for long pulses.
Since it is proportional to ψ′(φ) (which continuously changes its sign), the total
accumulated phase4

Φtot = −m
2

kp

+∞∫
−∞

dφ′ µA(φ′) = Φ0 + σΦs (5.51)

is independent of σ in the monochromatic limit. However, the spin-dependent con-
tribution Φs is a nonlinear function of the laser intensity. Therefore, its average over
an asymmetric pulse profile does not necessarily vanish. We will show in the follow-
ing that Φs 6= 0 is possible for ultra-short laser pulses.

5.3.1. Evolution of the spin polarization vector

For definiteness, we consider now the head-on collision between an electron with
fixed spin orientation and initial four-momentum pµ = (ε, 0, 0,−pz) and a laser
pulse linearly polarized along the x-direction with peak electric field amplitude

4Note that in Refs. [1] and [2] a different sign convention is used for the phase.
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E0 and angular frequency ω [kµ = ω(1, 0, 0, 1) and aµ = (0, E0/ω, 0, 0)]. After the
interaction, we measure the orientation of the spin polarization vector ζi = ω†σiω
[see Eq. (5.6)] to detect possible changes.

The most general initial spin state is given by5

|χi〉 = c1 |↑z〉+ c2 |↓z〉 =
(
c1
c2

)
, |c1|2 + |c2|2 = 1, (5.52)

with the following spin polarization vector [see Eq. (5.6)]

ζx = c∗1c2 + c1c
∗
2, ζy = i(c1c

∗
2 − c∗1c2), ζz = |c1|2 − |c2|2 . (5.53)

As the magnetic field of the laser points along the y-direction, we have to use
this axis as the quantization axis during the propagation. The corresponding
eigenspinors of σ2 are given by

|↑y〉 = 1√
2
(
|↑z〉+ i |↓z〉

)
= 1√

2

(
1
i

)
,

|↓y〉 = 1√
2
(
i |↑z〉+ |↓z〉

)
= 1√

2

(
i
1

)
.

(5.54)

For completeness, we also note the eigenstates of σ1

|↑x〉 = 1√
2
(
|↑z〉+ |↓z〉

)
= 1√

2

(
1
1

)
,

|↓x〉 = 1√
2
(
|↑z〉 − |↓z〉

)
= 1√

2

(
1
−1

)
.

(5.55)

Hence, a measurement of the initial spin polarization along one of the coordinate
axes would show the following probability distributions

|〈↑x |χi〉|2 = 1
2(1 + ζx), |〈↓x |χi〉|2 = 1

2(1− ζx),

|〈↑y |χi〉|2 = 1
2(1 + ζy), |〈↓y |χi〉|2 = 1

2(1− ζy),

|〈↑z |χi〉|2 = 1
2(1 + ζz), |〈↓z |χi〉|2 = 1

2(1− ζz).

(5.56)

Inside the laser pulse, the states |↑y〉 (σ = +1) and |↓y〉 (σ = −1) acquire the

5Here and in the following we use the notation

|↑z〉 =
(

1
0

)
, |↓z〉 =

(
0
1

)
,

where ↑ and ↓ corresponds to the eigenvalue +1 and −1, respectively. Furthermore,

〈χi| = c∗1 〈↑z|+ c∗2 〈↓z| =
(
c∗1 c∗2

)
.
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following phases [see Eq. (5.51)]

|↑y〉 −→ ei(Φ0+Φs) |↑y〉 , |↓y〉 −→ ei(Φ0−Φs) |↓y〉 . (5.57)

Expanding the initial state [see Eq. (5.52)] in the y-basis [see Eq. (5.54)], we
obtain

|χi〉 = c1 − ic2√
2
|↑y〉+ c2 − ic1√

2
|↓y〉 . (5.58)

Using Eq. (5.57), we can now calculate the time evolution of the initial state

|χi〉 −→ |χf 〉 (5.59)

and obtain the following transition probabilities [see Eq. (5.53)]

P↑ = |〈↑z |χf 〉|2 = e−2=Φ0

{
1
4(1 + ζy)e−2=Φs + 1

4(1− ζy)e2=Φs

+ 1
2 [ζz cos (2<Φs) + ζx sin (2<Φs)]

}
, (5.60a)

P↓ = |〈↓z |χf 〉|2 = e−2=Φ0

{
1
4(1 + ζy)e−2=Φs + 1

4(1− ζy)e2=Φs

− 1
2 [ζz cos (2<Φs) + ζx sin (2<Φs)]

}
. (5.60b)

The first contribution to P↑↓ represents a change in the polarization induced by
the life-time difference of the two spin states (imaginary part of the mass operator).
It can be controlled by reducing the total emission probability, i.e. by using short
laser pulses.

The second contribution to P↑↓ is a spin rotation analogous to birefringence for
photons. As the dispersion relation (real part of the mass operator) depends on the
spin orientation, the propagation induces a rotation of the spin polarization along
the axis of the magnetic field. For =Φs = 0 we obtain

|〈↑z |χf 〉|2 = e−2=Φ0 1
2(1 + ζ′z), |〈↓z |χf 〉|2 = e−2=Φ0 1

2(1− ζ′z), (5.61)

where the new polarization along the z-axis is given by

ζ′z = ζz cos (2<Φs) + ζx sin (2<Φs) . (5.62)
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5.3.2. Spin asymmetry

For possible experimental measurements the following spin asymmetry is a conve-
nient observable

A = P↑ − P↓
P↑ + P↓

. (5.63)

Here, the difference

P↑ − P↓ = e−2=Φ0 [ζz cos (2<Φs) + ζx sin (2<Φs)] (5.64)

measures the vacuum-induced spin rotation and the sum

P↑ + P↓ = e−2=Φ0

[1
2(1 + ζy)e−2=Φs + 1

2(1− ζy)e2=Φs

]
(5.65)

represents the total probability for the emission of zero photons [note that the two
spin states have a different decay exponent; see Eqs. (5.51) and (5.56)].
Due to the expansions

cos(φ) ≈ 1− 1
2φ

2, sin(φ) ≈ φ, (5.66)

it is much easier to detect the spin rotation if the electron is initially polarized
transversely along the x direction [ζ = (1, 0, 0)]. Therefore, we focus on this case in
the following, where the asymmetry is given by

A = P↑ − P↓
P↑ + P↓

= sin (2<Φs)
cosh (2=Φs)

. (5.67)

As aforementioned, the Volkov states predict no relative phase between two different
spin states and thus A = 0 (see Sec. 5.1). Measuring a nonzero asymmetry would
therefore be a clear signature for nonlinear QED contributions to the electron’s
spin dynamics.

5.3.3. Numerical results

Since for long pulses a relatively large amount of electrons will decay by radiating,
it is convenient to employ rather short pulses (furthermore, the asymmetry becomes
insensitive to the CEP for longer pulses). In Fig. 36 we show the asymmetry A as
a function of the laser intensity I and of the laser carrier-envelope phase (CEP) φ0
for a pulse with N = 2 and N = 3 cycles, respectively. Note that phase-stabilized
laser pulses with τ ∼ 5 fs and I & 1022 W/cm2 are experimentally envisaged at the
PFS in Garching [Ahm+09; Kar+08]. At an intensity of I ∼ 5× 1022 W/cm2, for
example, we find exp[−2=(Φ0)] ∼ 10−3 (for N = 3) and a maximal asymmetry
A0 ∼ 1 % (see Fig. 36). An asymmetry of this order of magnitude has already
been measured experimentally [Esc+05]. Furthermore, polarized ultra-relativistic
electron beams with N ≈ 1010 electrons, a spot area ≈ 1.7µm × 0.75µm and a
length le of about 0.5 mm have been produced [SLAC376; SLAC9961]. Assuming a
Gaussian laser beam focused to one wavelength (spot radius w0 = λ and Rayleigh
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a) Laser pulse with N = 2 cycles (τ = 2πN/ω ≈ 5 fs)
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b) Laser pulse with N = 3 cycles (τ = 2πN/ω ≈ 8 fs)

Fig. 36: Expected spin asymmetry A [see Eq. (5.67)] as a function of the laser peak
intensity I and the laser carrier-envelope phase (CEP) φ0. The optical laser pulse
(ω = 1.55 eV) is described by ψ′(φ) = sin2 (φ/2N) sin (φ+ φ0) if φ ∈ [0, 2πN ] and zero
otherwise [see Eq. (1.23)]. The electrons collide head-on with an energy ε = 500 MeV
(corresponding to γ ≈ 1000). The peak intensity I and the peak value for χ are related by
χ = γ(1 + β)

√
I/Icr (Icr = 4.6× 1029 W/cm2).

length lr = πw2
0/λ = πλ) [ST07], about N ∗ ∼ N × exp[−2=(Φ0)]× 2lr/le ∼ 105

electrons pass through the strong-field region without radiating. Thus, the absolute
difference of the expected electrons with opposite spin is ∼ A0 × N ∗ ∼ 103.
Note also that in the above example the transverse excursion of an electron in
the field is approximately λmξ/ε ∼ 0.1λ, i.e. much smaller than w0 [LL87].
Finally, the relatively weak dependence of the asymmetry on the laser intensity
at I & 5 × 1022 W/cm2 renders our results sufficiently insensitive to possible
fluctuations of the laser intensity. Thus, we conclude that a spin asymmetry due to
the electron’s self-interaction is, in principle, measurable with presently available
technology.
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6 Neutrino-photon coupling
inside strong laser pulses

As different neutrino mass eigenstates exist [AEE08; Bil10; BP87; GK07; Kay03;
MP04; RPP14], only the lowest one is stable and all others can, in princi-
ple, decay radiatively [BPP77; LS77; MS77; Pet77; PW82; Shr82]. However,
due to the smallness of the available phase space and the Glashow-Iliopoulos-
Maiani (GIM) suppression mechanism (i.e. cancellations between contributions
from different fermion generations) [GIM70; PW82] the neutrino life time is
much larger than the age of the universe (the electromagnetic properties of neu-
trinos in vacuum are discussed in Refs. [BGS12; DS04a; DS04c; GS09; Nie82;
Shr82]).
Nevertheless, a neutrino can emit photons inside strong electromagnetic back-

ground fields, which catalyze the decay. For example, strong magnetic fields en-
countered in various astrophysical situations substantially reduce the neutrino life
time [AM13; GMV92; GMV97; IR97; KW97; TE14; ZEG96] (see also [GMV94b],
where the Coulomb field has been investigated). Inside background fields also the
production of electron-positron pairs – which is not possible in vacuum due to
energy-momentum conservation – is feasible under certain circumstances [BTZ93;
CI69; DRT07; KM97; KMR00; KMR02; Tin05].
Moreover, neutrino properties like their mass and their magnetic moment are

modified by electromagnetic background fields [DMN13; Erd09; Kuz+06]. Implica-
tions for neutrino oscillations have been studied in Refs. [DS01; DS04b; ELS00;
LS01] and the possibility for spin light has been pointed out in Refs. [LS03;
ST05].
The presence of electromagnetic background fields could also be exploited to

create neutrinos, e.g., via photon splitting [DMD76; KMV98; Sko76], scatter-
ing [CM02; KMR03; Sha98] or the trident process [Tit+11] (for a review of
electroweak processes in electromagnetic background fields see the Refs. [KM03;
KM13]).
It is an interesting question whether the emission of photons by neutrinos or

other processes like electron-positron pair production could be investigated in a
laboratory experiment using high-power lasers (see Fig. 37). To shed light on the
feasibility of this idea, the special case of a circularly polarized, monochromatic
plane-wave laser field has been analyzed in [GMV93; GMV94a; GMV96] (see
also [Sko91]). As laser fields are naturally produced with linear polarization
and the highest intensities can only be achieved by using short laser pulses,
it is desirable to generalize these results accordingly. In this chapter we will
therefore consider a plane-wave laser field with arbitrary polarization and pulse
shape.
Inside plane-wave laser fields the probability for a neutrino process depends

primarily on the laser intensity and the neutrino energy. A convenient gauge- and
Lorentz-invariant measure for the laser field strength is given by the parameter
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ξ = |e|E0/(mωc) [see Eq. (1.20)], where E0 is the electric field amplitude and ω the
central angular frequency of the laser. In the regime ξ & 1 the interaction between
the background field and the electron and the positron, must be taken into account
exactly by solving the Dirac equation in the presence of the background field
(see Chap. 1). For a plane-wave field this is possible analytically and one obtains
the Volkov states as single-particle states [LL82; Vol35]. Working in momentum
space, the only necessary modification of the Feynman rules (for QED) is the
replacement of the free vertex −ieγµ by the dressed vertex Γµ [see Eq. (1.67)].
Unlike in vacuum, four-momentum is conserved only up to a multiple of the
laser four-momentum at the dressed vertex, which changes the kinematics of the
processes.
It is well known that for ξ � 1 the formation region for single-vertex processes

primed by the laser field is much smaller than the laser wavelength, such that the
local constant-crossed field approximation is applicable [Di+12; Rit85]. Therefore,
the case of a constant-crossed background field (studied, e.g., in [BKM99; BTZ93;
GMV96; GN72]) is particularly interesting and provides the order of magnitude for
the expected probabilities. Inside a constant-crossed field the probability depends
nontrivially only on the quantum-nonlinearity parameter χ = (2Eν/mc2)(E0/Ecr)
[see Eqs. (1.21) and (6.72)], where Eν denotes the energy of the incoming neutrino
and Ecr = m2c3/(~|e|) = 1.3× 1016 V/cm the critical field strength of QED [HE36;
Sau31; Sch51] (the expression for χ given here assumes a head-on collision and
neglects the neutrino mass).

As the nonlinear-quantum parameter is inversely proportional to the cube of the
electron (positron) mass (χ ∼ m−3), nonlinear quantum effects caused by muon or
tau leptons are strongly suppressed for reasonable parameters and ignored here.

ν

ν

Z

γ

ν

ν

Z

e−

e+

a) Photon emission b) Pair production

ν

ZZ

c) Optical theorem for pair production

Fig. 37: a) Photon emission and b) trident electron-positron pair production by a neutrino
inside a strong, plane-wave laser field (mediated by the neutral current, i.e. Z boson
exchange). For an electron neutrino also the charged current must be taken into account
(W boson exchange, see Fig. 40). c) The total trident pair-production probability is related
to the imaginary part of the neutrino self-energy diagram (see, e.g., [BTZ93] for details).
The double lines denote here electron and positron states, which are dressed by the laser
field (time axis from right to left).
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γ5γµ γν

q1 q2

a) Current-coupling tensor
Tµν5 (q1, q2)

γµ γν

q1 q2

b) Polarization tensor
Tµν(q1, q2)

Fig. 38: a) The leading-order Feynman diagram for the coupling between the vector
current (γµ-vertex) and the axial-vector current (γ5γµ-vertex), see Eq. (6.8). b) The
current-coupling tensor Tµν5 (q1, q2) is closely related to the polarization tensor Tµν(q1, q2)
[see Chap. 3 and Eq. (3.6)]. Solid lines indicate fermions, double lines Volkov states (which
take the plane-wave background field exactly into account), wiggly lines photons and
dashed lines the axial-vector current.

Correspondingly, the symmetry between different lepton generations is broken and
the GIM mechanism does not apply. Furthermore, the laser provides additional
energy and momentum to the reaction, which enlarges the available phase space.
Due to these two reasons, the probability for photon emission by neutrinos inside
a plane-wave field is strongly enhanced in comparison with the vacuum case
(note that the laser field also affects tree-level processes like the decay of a muon
[Dic+09; Far+09]). Nevertheless, the enhancement is primed by an electromagnetic
exchange of photons between an electron/positron loop and the laser. Therefore, we
expect that the probabilities for nonlinear neutrino processes inside laser fields still
contain the suppression factor (m/MZ,W )4 ∼ 10−20 which renders an experimental
observation challenging (MZ ≈ 91 GeV and MW ≈ 80 GeV denote the mass of the
Z and the W boson, respectively [RPP14]).

By combining accelerator-based neutrino beams with energies in the GeV range
[Ban+09; Ber+06; Bog+14; Gee12; Gee98; IDS; ISS; Kap14; MAP; The+09] and
strong optical lasers (ξ ∼ 102−3) [CLF; ELI; XCELS; Yan+08], the nonlinear
quantum regime χ & 1 could be entered, where also the production of real electron-
positron pairs via the trident process becomes feasible [BTZ93; CI69; DRT07;
KM97; KMR00; KMR02; Tin05]. As the energy and momentum required to bring
the electron-positron pair on shell are provided by the laser field, the probability
for trident pair production even exceeds the one for photon emission if χ & 1
(the corresponding Feynman diagram contains only two interaction vertices, see
Fig. 37).
In order to calculate the probability for neutrino photon emission or trident

pair production (via the optical theorem), the coupling between the vector current
(γµ-vertex) and the axial-vector current (γ5γµ-vertex) described by the tensor
Tµν5 (q1, q2) must be determined (see Fig. 38). For a constant background field it has
been investigated in [BG03; GS00a; GS00b; GS01; Nie03; Sch00a; Sch00b; Sha00].
In the present paper an arbitrary plane-wave laser field is considered as background
field (see Sec. 1.3) and a triple-integral representation for Tµν5 (q1, q2) is derived,
which can be transformed into a double-integral representation using the relations
given in Chap. 3. Special attention is payed to the Ward-Takahashi identity, which
contains a contribution due to the Adler-Bell-Jackiw (ABJ) anomaly (see Fig. 39)
[Adl69; BJ69]. The anomalous term is calculated here explicitly by applying a
suitable regularization procedure.
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γ5γµ
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γρ

a) Anomalous triangle diagram

Tµν
5 (q1, q2) =

γ5γµ

γν

q1

q2

=

γ5γµ

γν

q1

q2

+

γ5γµ

γν

q1

q2

+ . . .

b) Leading-order expansion in the external field

Fig. 39: a) The axial-vector anomaly in vacuum QED is caused by the triangle diagram.
b) As for weak external fields Aµ(φ) (denoted by ⊗) the leading-order field-dependent
contribution to the current-coupling tensor Tµν5 (q1, q2) [see Eq. (6.8)] corresponds to the
triangle diagram, one also expects an anomalous term in the Ward-Takahashi identity for
Tµν5 (q1, q2) [see Eq. (6.38)]. Here, solid lines indicate the vacuum states and double lines
dressed Volkov states for the charged fermions, wiggly lines photons and dashed lines the
axial-vector current.

This chapter is organized as follows: In Sec. 6.1 the interaction between neu-
trinos and photons inside a plane-wave background field is considered and it is
shown how the axial-vector–vector current-coupling tensor Tµν5 (q1, q2) (see Fig. 38)
appears naturally in the electroweak sector of the standard model if plane-wave
background fields are taken into account. The calculation of Tµν5 (q1, q2) is then
presented in Sec. 6.2, followed by a detailed discussion of the ABJ anomaly in
Sec. 6.3. Subsequently, various important special cases like a constant-crossed and
a circularly polarized, monochromatic field are considered in Sec. 6.4 and compared
with known expressions from the literature.

6.1. Nonlinear neutrino-photon interactions

As neutrinos are neutral particles, their interaction with photons must be mediated
by loop diagrams which contain electrically charged particles (see Fig. 40). At the
loop level the quantization of the electroweak sector of the standard model involves
“unphysical” degrees of freedom, i.e. particles which appear only in loops but not
as free, asymptotic states [BP99; DGH94]. These are the unphysical scalar Higgs
particles, present if the calculation is performed in a renormalizable gauge (from
the Higgs doublet, which consists of four scalar fields, only one degree of freedom
corresponds to the physically observable Higgs particle) and the Feynman-Faddeev-
Popov ghosts, which appear in the quantization of a nonabelian gauge theory
[CL82; Pok00]. Therefore, the complete set of Feynman rules for the electroweak
sector of the standard model after symmetry breaking is rather large [Aok+82;
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a) Z boson exchange b) W boson exchange
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γ

c) Local limit (Fermi description)

Fig. 40: Neutrino-photon interaction vertex. a) The electron-positron loop interacts via
the neutral current with all neutrino flavor states. b) Electron neutrinos also couple via
the charged current to electrons and positrons. c) In the local limit (exchanged momentum
much smaller than the weak gauge-boson mass) the effective four-point Fermi interaction
is obtained. The double lines denote dressed electron and positron states which take the
laser field exactly into account (time axis from right to left).

BSH86; Den93; Hol90]. Fortunately, the leading-order contribution (with respect
to the electroweak mass scale) to the neutrino-photon coupling inside a plane-wave
background field is given by only two diagrams, which are shown in Fig. 40 (see
also [DS04a; GMV96]).
Due to the existence of neutrino oscillations we know that neutrinos have a

finite mass [AEE08; Bil10; BP87; GK07; Kay03; Kay81; MP04; RPP14]. The
left-handed neutrino mass eigenstates νrL (r = 1, 2, 3) are related by the unitary
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix Uαr (which is also simply
called neutrino mixing matrix) ναL = Uαr νrL [MNS62; Pon57; Pon58; RPP14]
to the left-handed flavor neutrino eigenstates ναL (α = e, µ, τ). As neutrinos are
produced via the charged current as left-handed flavor eigenstates, the nature
of their right-handed component (required for the construction of a mass term
in the Lagrangian) is not determined so far, i.e. the neutrino could be either a
Dirac or a Majorana particle. At high energies, however, the neutrino mass can
usually be neglected and with a reasonable experimental precision it is not possible
to distinguish between Dirac and Majorana neutrinos. Correspondingly, we can
assume in the following that the neutrino is a massless, left-handed Dirac particle
as originally postulated in the standard model.

6.1.1. Lagrangian density

After electroweak-symmetry breaking the Lagrangian density, which describes the
interaction between the photon field Aµ and the various fermion fields ψf , is given
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by [DGH94; RPP14]

LEM
L = eAµJµEM, JµEM = −ψ̄eγµψe + 2

3 ψ̄uγ
µψu −

1
3 ψ̄dγ

µψd + . . . (6.1)

[the index f = e, µ, τ, . . . labels the type of fermion field (quarks and leptons),
Dirac spinor indices are suppressed (note that we use the convention e < 0)].
Correspondingly, we obtain

LZ
L = − g

2 cos θW
ZµJ

µ
Z , JµZ = ψ̄f

[
g(f)
v γµ + g(f)

a γµγ5]ψf (6.2)

for the interaction with the Z boson field Zµ. Here g = g2 and g′ = g1 =
g tan θW are the fundamental coupling constants for weak isospin and hypercharge,
respectively, which are (after symmetry breaking) related to the electron charge
e and the Fermi constant GF by −e = g sin θW and GF = (g2√2)/(8M2

W ) ≈
1.17× 10−5 GeV−2, respectively (at tree level the gauge-boson masses obey MW =
MZ cos θW , θW is called the weak mixing or Weinberg angle). The constants
g

(f)
v and g(f)

a depend on the type of fermion. For the charged leptons we obtain
g

(e,µ,τ)
v = −1/2 + 2 sin2 θW and g

(e,µ,τ)
a = −1/2, for the (massless) neutrinos

g
(νe,νµ,ντ )
v = g

(νe,νµ,ντ )
a = 1/2 and for the quarks g(u,c,t)

v = 1/2 − (4/3) sin2 θW

g
(d,s,b)
v = −1/2 + (2/3) sin2 θW , g(u,c,t)

a = −g(d,s,b)
a = 1/2 [note that we use the same

notation for γ5 as in [LL82] and [DGH94], i.e. the projection operators PL for the
left-handed and PR for the right-handed component are given by PL = (1 + γ5)/2
and PR = (1− γ5)/2, respectively].

Finally, the Lagrangian density, which describes the interaction between the com-
plex W boson field W+

µ [the plus is part of the symbol name, we also define W−µ =
(W+

µ )†] and the first lepton generation can be written as

LW
e = − g

2
√

2
[W+

µ J
µ
W,e +W−µ (JµW,e)

†], JµW,e = ψ̄νeγ
µ(1 + γ5)ψe. (6.3)

From Eqs. (6.1)-(6.3) one obtains the interaction vertices between the fermions
and the electroweak gauge fields of the standard model [Aok+82; DGH94]; they con-
tain both vector (γµ) and axial-vector (γµγ5) couplings.
After quantization the propagators for the weak gauge bosons are (in position

space and Feynman gauge) given by [DGH94]

iGµνZ,W (x− y) =
∫

d4p

(2π)4
−igµν

p2 −M2
Z,W + i0

e−ip(x−y). (6.4)

If the exchanged momenta are much smaller than the weak mass scale MZ,W ∼
100 GeV, one can neglect the momentum dependence in the denominator in Eq. (6.4)
(local limit). After taking the momentum integrals, the propagators are then given
by

iGµνZ,W (x− y) = i
gµν

M2
Z,W

δ4(x− y) (6.5)

(see Fig. 40, c). Physically, this means that the Z and the W boson are too heavy
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6.1. Nonlinear neutrino-photon interactions

to propagate a significant distance and we obtain essentially Fermi’s description
for the weak force [Fer34a; Fer34b].

6.1.2. Z boson exchange

In the local limit, the matrix element for the emission of a photon with four-
momentum qµ and polarization four-vector εµ by a neutrino due to Z boson
exchange (see Fig. 40, a) is given by [IR97]

iMZ(p′, q; p) = 2GF√
2
ūν,p′γµPLuν,p

1
e

[
g(e)
v Tµν(p− p′, q) + g(e)

a Tµν5 (p− p′, q)
]
ε∗ν

(6.6)

(we use the same conventions for matrix elements as in Chap. 2). Here, uν,p and uν,p′
are the Dirac spinors for the incoming neutrino with four-momentum pµ and the out-
going neutrino with four-momentum p′µ, respectively. Furthermore, Tµν(q1, q2) de-
notes the polarization tensor [see Fig. 38 and Eq. (3.6)]

Tµν(q1, q2) =
∫
d4p d4p′

(2π)8 tr Γµ(p′, q1, p)

× /p+m

p2 −m2 + i0 Γν(p,−q2, p
′) /p′ +m

p′2 −m2 + i0 (6.7)

and Tµν5 (q1, q2) the axial-vector–vector current-coupling tensor

Tµν5 (q1, q2) =
∫
d4p d4p′

(2π)8 tr Γµ(p′, q1, p)γ5

× /p+m

p2 −m2 + i0 Γν(p,−q2, p
′) /p′ +m

p′2 −m2 + i0 , (6.8)

which will be calculated in Sec. 6.2 [the final result is given in Eq. (6.51); for
the definition of the dressed vertex Γµ see Eq. (1.67)]. Note that Tµν5 (q1, q2) is
actually a pseudo-tensor and that in our definition the electron charge e is taken
as the coupling constant for both vertices [this is the reason for the prefactor 1/e
appearing in Eq. (6.6)]. Furthermore, the appearance of g(e)

v and g(e)
a in Eq. (6.6)

is related to the electron-positron loop and is independent of the neutrino species
which interacts with the photon.

Despite the fact that the electron and the positron are the lightest charged
fermions, also the muon, the tau and the various quarks contribute to the loop
which couples the photon with the Z boson (see Fig. 40, a). To calculate the
contribution of the other charged fermions to this loop, the electron (positron)
mass and charge appearing in 1

eT
µν(q1, q2) and 1

eT
µν
5 (q1, q2) must be replaced

accordingly and the Z boson coupling constants g(e)
v,a → g

(f)
v,a adjusted. As discussed

in the introduction, the nonlinear interaction with the background field can be
neglected for fermions with a mass well above the electron (positron) scale (for
reasonable field strengths of the background field). However, the contribution of
all fermions in each generation is needed for the cancellation of the axial-vector
anomaly. As the anomalous contribution to 1

eT
µν
5 (q1, q2) is independent of the
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Chapter 6. Neutrino-photon coupling inside strong laser pulses

fermion mass and proportional to the square of the electric charge [at one loop in
the presence of a plane-wave, see Eq. (6.48)], this cancellation (for each fermion
generation) can be seen from the relation

1
2
[
− (−1)2 + 3 (2/3)2 − 3 (−1/3)2 ] = 0 (6.9)

(all gauge-symmetry anomalies must cancel in the standard model, otherwise it
would be nonrenormalizable [GJ72]).

6.1.3. W boson exchange

For electron neutrinos also the exchange of a W boson contributes to the photon-
emission matrix element (see Fig. 40, b). Applying the local limit for the W boson
propagator, we obtain the following expression for the matrix element

iMW (p′, q; p) = 4GF√
2

∫
dp4

1dp
4
2

(2π)8

∫
d4x e−i(p−p

′)x

× ūν,p′γρPLMν(p1, p2, q;x)ε∗ν γρPLuν,p, (6.10)

where

Mν(p1, p2, q;x) = iEp1,x
/p1 +m

p2
1 −m2 + i0

Γν(p1,−q, p2) /p2 +m

p2
2 −m2 + i0

Ēp2,x. (6.11)

Using the identities given in App. D for an arbitrary 4×4 matrix Γ in spinor space,
we obtain

γρPLΓγρPL = −2rµγµPL, (6.12)

where

rµ = 1
2 trPRγµΓ = 1

2 tr γµPLΓ. (6.13)

Therefore, we can write the matrix element for the W boson exchange diagram as
[see Eq. (6.10)] [IR97]

iMW (p′, q; p) = 2GF√
2
ūν,p′γµPLuν,p

1
e

[
Tµν(p − p′, q) + Tµν5 (p − p′, q)

]
ε∗ν (6.14)

(note that it only contributes for electron neutrinos). In the local limit it has the
same structure as the one for the Z boson exchange given in Eq. (6.6). The anomaly,
however, must drop also for this diagram if one first performs the calculations by em-
ploying the fullW boson propagator in Eq. (6.4) [IR97].

6.2. Current-coupling tensor

In the previous section it was shown how the axial-vector–vector current-coupling
tensor Tµν5 (q1, q2) (see Fig. 38) arises in the calculation of neutrino-photon interac-
tions inside strong laser fields. Now, we will examine Tµν5 (q1, q2) closer and derive
a compact triple-integral representation for it. After applying the Feynman rules
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6.2. Current-coupling tensor

[DG00; Di+12; FGS91; Mit75; Rit85], we obtain the following expression [see
Eq. (6.8)]

Tµν5 (q1, q2) =
∫
d4p d4p′

(2π)8 tr Γµ(p′, q1, p)γ5

× /p+m

p2 −m2 + i0 Γν(p,−q2, p
′) /p′ +m

p′2 −m2 + i0 (6.15)

[for the definition of the dressed vertex Γρ see Eq. (1.67)]. Note that Tµν5 (q1, q2) is
equivalent to the tensor

T̃µν5 (q1, q2) =
∫
d4p d4p′

(2π)8 tr Γµ(p′, q1, p)

× /p+m

p2 −m2 + i0 Γν(p,−q2, p
′)γ5 /p′ +m

p′2 −m2 + i0 , (6.16)

which is obtained by interchanging the vector- and the axial-vector current vertex
[T̃µν5 (q1, q2) = T νµ5 (−q2,−q1)].
The current-coupling tensor Tµν5 (q1, q2), which we consider here, differs from

the polarization tensor Tµν(q1, q2) [see Eq. (6.7)] only by the insertion of γ5 (i.e.
by the trace). Hence, the calculation of Tµν5 (q1, q2) is related to the one of
Tµν(q1, q2) carried out in Chap. 3 and we will focus in this chapter mainly on
the differences between both derivations. At first sight one may think that the
small modification of the trace should only affect the technical details of the
calculation. However, it is responsible for several important qualitative changes
like the appearance of the ABJ anomaly in Tµν5 (q1, q2), which we will discuss now
in detail.

An important consequence of the additional γ5 in the trace of Tµν5 (q1, q2) is the
fact that only an odd number of couplings to the background field are allowed if
the background field is treated perturbatively (this follows from a generalization of
Furry’s theorem, see, e.g., [Nis51]; for the polarization tensor only an even number
of couplings is possible). Accordingly, the tensor structure of Tµν5 (q1, q2) is different
from that of Tµν(q1, q2) [see Eq. (6.47)] and the vacuum contribution to Tµν5 (q1, q2)
vanishes (see Fig. 39). Furthermore, we will see that no infinities are encountered
and Tµν5 (q1, q2) does not need to be regularized.
In order to determine Tµν5 (q1, q2) we insert the dressed vertex [see Eq. (1.67)]

into Eq. (6.8) [we will denote the vertex integrals associated with Γµ(p′, q1, p)
and Γν(p,−q2, p

′) by d4x and d4y, respectively] and obtain

Tµν5 (q1, q2) = 4 (−ie)2
∫
d4p d4p′

(2π)8

∫
d4xd4y

×
1
4 tr

[
· · ·
]µν
5

(p2 −m2 + i0)(p′2 −m2 + i0)e
iST , (6.17)
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Chapter 6. Neutrino-photon coupling inside strong laser pulses

where [see Eq. (3.9)]

iST = i(p′ − p− q1)x+ i(p− p′ + q2)y

+ i

kx∫
ky

dφ′
[
epµp

′
νF

µν(φ′)
(kp)(kp′) + e2(kp− kp′)

2(kp)2(kp′)2 pµp
′
νF

2µν(φ′)
]

(6.18)

and the trace 1
4 tr

[
· · ·
]µν
5 in Eq. (6.17) is given by

1
4 tr

[
γαa

αµ + iγαγ
5bαµ

]
γ5(/p+m)

[
γβc

βν + iγβγ
5dβν

]
(/p′ +m)

= im2[(bαµc ν
α )− (aαµd ν

α )]− i(pp′)[(aαµd ν
α ) + (bαµc ν

α )]
+ i(pαp′β + pβp

′
α)(bαµcβν + aαµdβν)

− iερσαβpρp′σ(bαµdβν − aαµcβν),
(6.19)

where

aαµ = Gαµ(kp′, kp; kx), cβν = Gβν(kp, kp′; ky),

bαµ = Gαµ5 (kp′, kp; kx), dβν = Gβν5 (kp, kp′; ky)
(6.20)

[the additional γ5 in Eq. (6.19) exchanges the vector and the axial-vector current
in comparison with the polarization tensor].

Next, we employ the following proper-time parametrization for the propagators
[see Eq. (3.18)]

1
p2 −m2 + i0

1
p′2 −m2 + i0 = (−i)2

∞∫
0

ds dt

× exp
[
i(p2 −m2 + i0)s+ i(p′2 −m2 + i0)t

]
(6.21)

(the pole prescription i0 will be dropped in the exponents and can be restored by
substituting m2 → m2− i0). In the final representation we change the proper-time
integrals in the following way [see Eq. (3.42)]

∞∫
0

ds dt f(s, t) = 1
2

+1∫
−1

dv

∞∫
0

dτ τ f̃(τ, v) (6.22)

(note that terms odd in v in the resulting function f̃(τ, v) can be dropped), where
[see Eq. (6.23)]

τ = s+ t, v = s− t
s+ t

, µ = st

s+ t
= 1

4τ(1− v2). (6.23)

After using the parametrization from Eq. (6.21) also in Eq. (6.17) and by adding
the source terms ipµjµ + ip′µj

′µ to the resulting phase in the same equation, we
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6.2. Current-coupling tensor

apply the replacements

pµ −→ (−i)∂µj , p′µ −→ (−i)∂µj′ (6.24)

to the trace given in Eq. (6.19), use canonical light-cone coordinates (see Sec. 1.4.3)
and define [see Eqs. (3.16) and (6.26)]

λµ = − m(kq)
(kp)(kp′)

∑
i=1,2

ξiΛµi

kx∫
ky

dφ′ ψi(φ′),

Λ = − m2(kq)
2(kp)(kp′)

∑
i=1,2

ξ2
i

kx∫
ky

dφ′ ψ2
i (φ′),

(6.25)

Ii = − 1
2kqµ

kx∫
ky

dφ′ ψi(φ′), Ji = − 1
2kqµ

kx∫
ky

dφ′ ψ2
i (φ′) (6.26)

(see App. C for more details). Finally, we obtain the following structure for the
current-coupling tensor

Tµν5 (q1, q2) = 4(−ie)2
∫
d4p d4p′

(2π)8

∫
d4xd4y (−i)2

∞∫
0

dsdt
1
4 tr[· · · ]µν5 eiS

′
T , (6.27)

where the full phase including the proper-time exponents and the source terms is
given by [see Eq. (3.25)]

S′T = S̃T + pµj
µ + p′µj

′µ, S̃T = (p2 −m2)s+ (p′2 −m2)t+ ST (6.28)

(if no explicit argument is present, the prime is a part of the symbol name and
does not indicate a derivative). After taking most of the integrals, we obtain the
result [see Eq. (3.29)]

Tµν5 (q1, q2) = −2iπe2 δ(−,⊥)(q1 − q2)
∞∫
0

ds dt

+∞∫
−∞

dx−

× 1
(s+ t)2

1
4 tr [· · ·]µν5 eiS

′
T

∣∣∣
j=j′=0

, (6.29)

where x− = kx = φ and the trace is given in Eq. (6.19) with the replacement in
Eq. (6.24) and [see Eq. (3.26)]

iS′T = i
[
(q+

2 − q
+
1 )x− −m2(s+ t) + st

s+ t
q2

2 −
1

s+ t
(t q2j − s q2j

′)

− 1
4(s+ t)(j + j′)2 − 1

2(s+ t)(j + j′)λ− 1
4(s+ t)λ

2 +Λ
]

(6.30)

[note that, since no confusion can arise, we use the same symbol for the phase
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Chapter 6. Neutrino-photon coupling inside strong laser pulses

before and after the mentioned integrals are taken, see Eqs. (6.27) and (6.28) and
Eqs. (6.29) and (6.30)].
Due to the momentum-conserving delta functions in Eq. (6.29), we will simply

write qµ whenever qµ1 and qµ2 can be used interchangeably as in Chap. 3.
To obtain a symmetric expression with respect to the external momenta qµ1 and

qµ2 , we will perform below the shift [see Eq. (3.30)]

z− = x− + µq− (6.31)

and use z− as integration variable.

6.2.1. Ward-Takahashi identity

According to Noether’s theorem the gauge invariance of the QED Lagrangian
implies electric charge conservation. More specifically, if the spinor field ψ(x)
obeys the Dirac equation

[i/∂ − e /A(x)−m]ψ(x) = 0 (6.32)

[here, Aµ(x) denotes the classical background field], the vector current is con-
served

∂µj
µ(x) = 0, jµ(x) = ψ̄(x)γµψ(x). (6.33)

After changing to momentum space, the current conservation law is expressed
by ∫

d4x e−iqx[∂µjµ(x)] = iqµj
µ
q = 0, jµq =

∫
d4x e−iqxjµ(x). (6.34)

Therefore, one expects that the polarization tensor Tµν(q1, q2) obeys the following
homogeneous Ward-Takahashi identity

q1µT
µν(q1, q2) = 0, Tµν(q1, q2)q2ν = 0, (6.35)

which is indeed the case (see Chap. 3).
Similarly, the divergence of the axial-vector current

jµ5 (x) = ψ̄(x)γµγ5ψ(x) (6.36)

should be given by

∂µj
µ
5 (x) = 2mi ψ̄(x)γ5ψ(x). (6.37)

After applying Eq. (1.73) to the definition of Tµν5 (q1, q2) [see Eq. (6.8)], we obtain
the followingWard-Takahashi identity for the tensor Tµν5 (q1, q2)

q1µT
µν
5 (q1, q2) = T ν5 (q1, q2) + Tν5(q1, q2), Tµν5 (q1, q2)q2ν = −Tµ5 (−q2,−q1),

(6.38)
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where we defined

T ν5 (q1, q2) = 2m
∫
d4p d4p′

(2π)8 tr I(p′, q1, p)γ5

× /p+m

p2 −m2 + i0 Γν(p,−q2, p
′) /p′ +m

p′2 −m2 + i0 (6.39)

and the so-called anomalous contribution

Tν5(q1, q2) =
∫
d4p d4p′

(2π)8

[
tr Γν(p,−q2, p

′)I(p′, q1, p)γ5 /p+m

p2 −m2 + i0

− tr I(p′, q1, p)Γν(p,−q2, p
′)γ5 /p′ +m

p′2 −m2 + i0
]
. (6.40)

Furthermore, we introduced the dressed scalar vertex I(p′, q, p) [see Eq. (1.74)].
Based on Eq. (6.37), one expects that the anomalous contribution to the Ward-

Takahashi identity vanishes. If the relations given in Eq. (1.77) are formally applied
to Eq. (6.40) as in Sec. 3.1, it looks like this is really the case. However, a closer
analysis reveals that the intermediate expressions are divergent and the required for-
mal manipulations cannot be justified. In fact, as shown in Sec. 6.3, the anomalous
contribution does not vanish and is given by

Tν5(q1, q2) = −iπe2δ(−,⊥)(q1 − q2) 4e
+∞∫
−∞

dx− ei(q
+
2 −q

+
1 )x− qµF

∗µν(kx). (6.41)

The phenomenon that quantum fluctuations can spoil the results expected from
the classical symmetries of the Lagrangian has first been observed in Refs. [Adl69;
BJ69] and, as we have mentioned, is known as ABJ anomaly (see also Refs. [AB69;
Bar69; JJ69], Ref. [Fuj79] for a discussion using the Feynman path integral and, e.g.,
Refs. [DG00; PS95; Wei96] for a textbook discussion).
The calculation of T ν5 (q1, q2) [see Eq. (6.39)] is much less involved. Due to the

identity [see Eq. (1.74)]

I(p′, q, p)γ5 = −ie
∫
d4x

(
γ5 − 1

2G3F
∗ρσ
x iσρσ

)
eiSΓ(p′,q,p;x) (6.42)

we only have to change the trace 1
4 tr

[
· · ·
]ν
5 in Eq. (6.19) to

1
4 tr 2m

(
γ5 − 1

2G3F
∗ρσ
x iσρσ

)
(/p+m)

(
γβc

βν + iγβγ
5dβν

)
(/p′ +m)

= 2im2[(p− p′)βdβν +G3(p− p′)αF∗xαβcβν −G3(p+ p′)αFxαβdβν
]
. (6.43)

Since the action of the derivatives on kj and kj′ gives no contribution, we obtain
the replacement rules [see Eq. (6.24)]

pµ −→ (−i)∂µj −→ −
1

s+ t

(
tqµ2 + 1

2λ
µ
)
,

p′µ −→ (−i)∂µj′ −→
1

s+ t

(
sqµ2 −

1
2λ

µ
)
,

(6.44)
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implying

(p− p′)µ −→ −qµ2 , (p+ p′)µ −→ vqµ2 −
1
τ
λµ. (6.45)

After applying them and noting that terms linear in v do not contribute [see
Eq. (6.22)], we can replace the trace in Eq. (6.43) by

1
4 tr

[
· · ·
]ν
5 −→ 2im2G3

[
(F∗xq)ν − (F∗yq)ν

]
(6.46)

for the calculation of T ν5 (q1, q2) [see Eq. (6.39)].

6.2.2. Tensor structure

Due to the inhomogeneous Ward-Takahashi identity [see Eq. (6.38)], the tensor
structure of Tµν5 (q1, q2) is more complicated than that of the polarization ten-
sor Tµν(q1, q2). Using the complete sets qµ1 , Q

µ
1 , Λ∗µ1 , Λ∗µ2 and qν2 , Qν2 , Λ∗ν1 , Λ∗ν2 (see

App. C for more details) we obtain the following expansion

Tµν5 = Tµν5 + d1Λ∗µ1 Λ∗ν2 + d2Λ∗µ2 Λ∗ν1 + d3Λ∗µ1 Λ∗ν1 + d4Λ∗µ2 Λ∗ν2
+ d5Qµ1Q

ν
2 + d6Qµ1 Λ∗ν1 + d7Qµ1 Λ∗ν2 + d8Λ∗µ1 Qν2

+ d9Λ∗µ2 Qν2 + d10q
µ
1 Λ∗ν1 + d11q

µ
1 Λ∗ν2 + d12q

µ
1Q

ν
2 ,

(6.47)

where Tµν5 (q1, q2) contains the contribution from the anomaly, i.e. [see Eq. (6.41)]

Tµν5 (q1, q2) = −iπe2δ(−,⊥)(q1 − q2) 4e
+∞∫
−∞

dx−

× ei(q
+
2 −q

+
1 )x− 1

kq
[kµ(qF ∗)ν(kx) + (qF ∗)µ(kx)kν ] . (6.48)

As expected from Furry’s theorem [Nis51], the coefficients d1 − d5 and d12 (which
contain an even power of the external field tensors fµνi ) vanish and only d6 − d11
are different from zero.

6.2.3. Determination of the coefficients

Having determined the contraction of Tµν5 (q1, q2) with qµ1 and qµ2 explicitly, we
can restrict us to the contraction from the set kµ, Λ∗µ1 and Λ∗µ2 (or alternatively
kµ, Λµ

1 and Λµ
2 , see App. C) if we analyze the general trace given in Eq. (6.19).

This means that, in order to complete the calculation of Tµν5 (q1, q2), we can ignore
the action of the derivatives on kj and kj′ and also terms in the trace which
are, e.g., proportional to Fµν , F∗µν , F2µν , (FF∗)µν , (F∗F)µν , F2µρvρ, vρF2ρν , where
vµ is an arbitrary four-vector. In particular, we see that the terms aαµd ν

α and
bαµc ν

α can be ignored and therefore also the action of the derivatives on the
term in the exponent which is quadratic in the sources. If the derivatives act
on the non-quadratic source-terms in the exponent, we obtain the replacement

150



6.2. Current-coupling tensor

rules

pαp′β + pβp′α −→ −2µ
τ
qα2 q

β
2 + 1

2τ2λ
αλβ − v

2τ (qα2 λβ + λαqβ2 ),

pαp′β − pβp′α −→ 1
2τ (qα2 λβ − q

β
2 λ

α).
(6.49)

Finally, we can replace the trace given in Eq. (6.19) by (terms linear in v do not
contrubute after the integration)

1
4 tr

[
· · ·
]µν
5 −→ i

{
e

kq

[
qµ2 (F∗yq)ν − (F∗xq)µqν2

]
+ 1

2τ ε
µνρσq2ρλσ

}
(6.50)

[as long as only contractions with kµ and Λµi /Λ∗µi are considered, which also means
that the anomaly does not contribute, see Eq. (6.41)].

6.2.4. Final result

Using the relations given in App. C we obtain the following representation for the
tensor Tµν5 (q1, q2)

Tµν5 (q1, q2) = Tµν5 (q1, q2)− iπe2 δ(−,⊥)(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

+∞∫
−∞

dz−
[
a6Qµ1 Λ∗ν1

+ a7Qµ1 Λ∗ν2 + a8Λ∗µ1 Qν2 + a9Λ∗µ2 Qν2 + a10q
µ
1 Λ∗ν1 + a11q

µ
1 Λ∗ν2

]
eiΦ, (6.51)

where the anomalous contribution Tµν5 (q1, q2) is given in Eq. (6.48) and the coeffi-
cients read

a6 = imξ1
[
W1 + U1

m2

q2
1

τ

µ

]
eiτβ,

a7 = imξ2
[
W2 + U2

m2

q2
1

τ

µ

]
eiτβ,

a8 = −imξ1V1e
iτβ, a10 = imξ1U1

m2

q2
1

τ

µ
eiτβ,

a9 = −imξ2V2e
iτβ, a11 = imξ2U2

m2

q2
1

τ

µ
eiτβ.

(6.52)

Here, the phases are given by [see Eq. (3.57)]

eiΦ = exp
{
i
[
(q+

2 − q
+
1 )z− + µq1q2 − τm2

]}
, (6.53)

eiτβ = exp
[
iτm2 ∑

i=1,2
ξ2
i (I2

i − Ji)
]
, (6.54)

where [see Eq. (6.26)]

Ii = 1
2

+1∫
−1

dλψi(kz − λµkq), Ji = 1
2

+1∫
−1

dλψ2
i (kz − λµkq). (6.55)
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In the preexponent we have introduced the following symbols

Ui = ψi(kx)− ψi(ky), Vi = ψi(kx)− Ii, Wi = ψi(ky)− Ii, (6.56)

where kx = kz−µkq, ky = kz+µkq and µ = 1
4τ(1−v2).

Alternatively, the result in Eq. (6.51) can be written as

Tµν5 (q1, q2) = Tµν5 (q1, q2)− iπe2 δ(−,⊥)(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

+∞∫
−∞

dz−
[
a′6Q

µ
1 Λ∗ν1

+ a′7Q
µ
1 Λ∗ν2 + a8Λ∗µ1 Qν2 + a9Λ∗µ2 Qν2 + a′10k

µΛ∗ν1 + a′11k
µΛ∗ν2

]
eiΦ, (6.57)

where

a′6 = imξ1W1e
iτβ, a8 = −imξ1V1e

iτβ, a′10 = imξ1U1
m2

kq

τ

µ
eiτβ,

a′7 = imξ2W2e
iτβ, a9 = −imξ2V2e

iτβ, a′11 = imξ2U2
m2

kq

τ

µ
eiτβ.

(6.58)

The last two terms (a′10 and a′11) are responsible for the inhomogeneous contribution
to the Ward-Takahashi identity [see Eq. (6.38) and Eq. (6.39)].

6.3. Adler-Bell-Jackiw anomaly

We will show now explicitly that the anomalous contribution to the Ward-Takahashi
identity Tν5(q1, q2) [see Eq. (6.40)] of the current-coupling tensor Tµν5 (q1, q2) [see
Eq. (6.38)] is different from zero.
As pointed out in Sec. 6.2.1, the formal application of the relations given in

Eq. (1.77) to Eq. (6.40) would prove that Tν5(q1, q2) = 0. However, this procedure
leads to divergent expressions and a more careful analysis reveals that the obtained
result would be incorrect. To determine the anomalous contribution we rewrite
Eq. (6.40) as

Tν5(q1, q2) = lim
ε→0

4(−ie)2
∫
d4p d4p′

(2π)8

∫
d4xd4y (−i)

∞∫
0

ds

×
[ 1

4 tr[· · · ]ν5AeiS̃T︸ ︷︷ ︸
t=ε

− 1
4 tr[· · · ]ν5BeiS̃T︸ ︷︷ ︸

s=ε,t=s

]
, (6.59)

where the phase S̃T is defined in Eq. (6.28) and the traces are given by

1
4 tr[· · · ]ν5A =iG3

[
(pµF∗µνx − pµF∗µνy ) +G1 p

ρF∗xρµF
µν
y +G3 p

ρFxρµF
∗µν
y

]
, (6.60a)

and

1
4 tr[· · · ]ν5B =iG3

[
(p′µF∗µνx − p′µF∗µνy ) +G1 p

′ρF∗xρµF
µν
y −G3 p

′ρFxρµF
∗µν
y

]
,

(6.60b)
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with Gi = Gi(kp′, kp).
Although we need to exponentiate here only one scalar propagator [see Eq. (6.40)],

we artificially add a second term in the exponent (multiplied by a quantity ε which
will be later sent to zero), in order to recover exactly the same structure as in
Eq. (6.28). Also note that the traces in Eq. (6.60a) and Eq. (6.60b) can be formally
obtained from Eq. (6.43) by setting p′µ = 0 and pµ = 0, respectively, and by dividing
by 2m2 and −2m2, respectively. To match the first and the second contribution
in Eq. (6.59), we changed the name of the integration variable t → s (after the
replacement s→ ε) in the second expression.

In order to determine the first and the second contribution to Eq. (6.59), respec-
tively, we need to apply the following replacements to Eq. (6.27)

(−i)
∞∫
0

dt→ 1, t→ ε, tr[· · · ]µν5 → tr[· · · ]ν5A,

(−i)
∞∫
0

ds→ 1, s→ ε,
t→ s,

tr[· · · ]µν5 → tr[· · · ]ν5B.

(6.61)

In this way, the final result can then be obtained from Eq. (6.29).
The replacements given in Eq. (6.61) imply that τ = s+ t and µ = st/(s+ t) are

mapped to the same quantity in both expressions, but v = (s− t)/(s+ t) changes
its sign

τ(t→ ε) = τ(s→ ε, t→ s) = s+ ε,

µ(t→ ε) = µ(s→ ε, t→ s) = sε

s+ ε
,

v(t→ ε) = −v(s→ ε, t→ s) = s− ε
s+ ε

.

(6.62)

We note that due to the relation ky = kx+ 2µkq [see Eq. (3.22)] the distance
(here in phase) between the two vertices tends to zero as ε → 0. A similar
regularization procedure for the axial-vector vertex is also commonly used in the
calculation of the vacuum amplitude (see, e.g., Chap. 19 of [PS95] for a textbook
discussion).
To use Eq. (6.29), we have to apply the replacement rules given in Eq. (6.44).

Firstly, we note that λµ does not contribute, as it would only give a non-vanishing
contribution after contraction with the first line of each trace in Eq. (6.60), which
then cancel pairwise. Correspondingly, we can focus on the contribution due
to qµ2 . As the second and the third line of each trace cancel both pairwise, we
focus on the first line. Using the following representation for the delta func-
tion

lim
ε→0

∞∫
0

dx
ε g(x)

(x+ ε)2 = lim
ε→0

∞∫
0

dy
g(εy)

(y + 1)2 = g(0) (6.63)

[g(x) is assumed to be sufficiently regular], we finally obtain the result given in
Eq. (6.41).
Concluding, we note that the adaptation of the presented calculation to the
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polarization operator proves that the results obtained in Sec. 3.1 using formal
manipulations are correct.

6.4. Special field configurations

In this section the general expression given in Eqs. (6.51) and (6.57) is used to
derive compact representations for the current-coupling tensor Tµν5 (q1, q2) for
three important special field configurations: a constant-crossed field, a relativis-
tically strong, linearly polarized plane-wave background field (quasistatic limit)
and a monochromatic, circularly polarized plane-wave background field. When
possible, the result is compared with existing representations from the litera-
ture.

6.4.1. Constant-crossed field

From Eq. (6.51) we can derive the result for a constant-crossed field, which is
characterized by [see Eq. (3.75)]

ψ1(φ) = φ, ψ2 = 0, (6.64)

(the latter condition corresponds to ξ2 = 0 and we will write ξ = ξ1 in the following).
For a constant-crossed field the field tensor is given by

Fµν = fµν1 = fµν . (6.65)

As ψ2 = 0, the following functions vanish

I2 = J2 = U2 = V2 = W2 = 0 (6.66)

and due to the simple form of ψ1

I1 = kx+ µkq, J1 = (kx+ µkq)2 + 1
3(µkq)2,

U1 = −2µkq, V1 = −µkq, W1 = µkq.
(6.67)

Finally, we obtain the following explicit expression for the tensor Tµν5 (q1, q2) in a
constant-crossed field

Tµν5 (q1, q2) = Tµν5 (q1, q2)− 2iπ2e2 δ4(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

×
[
b̃c
6QµΛ∗ν1 + b̃c

8Λ∗µ1 Qν + b̃c
10q

µΛ∗ν1
]
eiΦc , (6.68)

where the coefficients are given by

b̃c
6 = iξmkq

[ 1
w
− 2m2

q2

]
τeiτβc , b̃c

8 = iξmkq
1
w
τeiτβc ,

b̃c
10 = iξmkq

(
− 2m2

q2

)
τeiτβc ,

(6.69)
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the phases read

iΦc = −iτa, a = m2
[
1− 1

4(1− v2) q
2

m2

]
,

iτβc = − i3τ
3b, b = m6χ2

[1
4(1− v2)

]2
(6.70)

and the anomaly Tµν5 (q1, q2) [see Eq. (6.48)] becomes

Tµν5 (q1, q2) = i(2π)4δ4(q1 − q2)
(
− e3

8π2m2

)
4m

2

kq
[kµ(qF ∗)ν + (qF ∗)µkν ] . (6.71)

Above, we introduced the quantum-nonlinearity parameter [see Eq. (1.21)]

χ = −e
√
qF 2q

m3 = ξ

√
(kq)2

m2 . (6.72)

Due to the overall momentum-conserving delta function we define

qµ = qµ1 = qµ2 , Qµ = Qµ1 = Qµ2 = kµq2 − qµkq
kq

. (6.73)

Using the relation

b̃c
6QµΛ∗ν1 + b̃c

10q
µΛ∗ν1 = e

ξmkq
(b̃c

6 − b̃c
10) qµ(F ∗q)ν − e

ξmkq

q2

kq
b̃c
6 k

µ(F ∗q)ν (6.74)

we can rewrite Eq. (6.68) as

Tµν5 (q1, q2) = Tµν5 (q1, q2) + i(2π)4δ4(q1 − q2)
×
[
τ̃1Qµ(F ∗q)ν + τ̃2k

µ(F ∗q)ν + τ̃1(F ∗q)µQν
]
, (6.75)

where

τ̃1 = e3

8π2m2

+1∫
−1

dv
1
w

(w
χ

)2/3
f(ρ), τ̃2 = − e3

8π2m2

+1∫
−1

dv 2m
2

kq

(w
χ

)2/3
f(ρ)

(6.76)

[ 1
w = 1

4(1− v2), ρ =
(
w
χ

)2/3(1− q2

m2
1
w )] and the anomaly is given in Eq. (6.71). Fur-

thermore, the Ritus functions are defined by (see App. F)

f(x) = i

∞∫
0

dt exp
[
− i
(
tx+ t3/3

)]
= πGi(x) + iπAi(x), (6.77a)

f1(x) =
∞∫
0

dt

t
exp (−itx)

[
exp

(
− it3/3

)
− 1

]
, (6.77b)

where Ai and Gi are the Airy and Scorer function, respectively [Olv+10].
Since all nonvanishing functions are even in v, it is possible to apply the following
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change of variables

+1∫
−1

dv = 2
1∫

0

dv =
∞∫
4

dw
4

w
√
w(w − 4)

. (6.78)

The final result given in Eq. (6.75) coincides with the one given in Eq. (4.24) of
[Sch00b], apart from the anomalous contribution in the vector index [see Eq. (6.38)],
which automatically drops out by performing the calculations within the wordline
formalism as in [Sch00b]. If evaluated on the mass shell (i.e. for q2 = 0), it also
agrees with Eq. (15) in [Sha00].

6.4.2. Linear polarization

We consider now a linearly polarized plane-wave field [see Eq. (3.98)]

ψ1(φ) = ψ(φ), ψ2 = 0 (6.79)

(ξ = ξ1, fµν = fµν1 ) in the quasistatic limit defined by ξ →∞ while the quantum-
nonlinearity parameter [see Eq. (6.72)]

χ = −e
√
qf2q

m3 = ξ

√
(kq)2

m2 (6.80)

is kept constant. In the optical regime (laser photon energy ω ∼ 1 eV) the condition
χ & 1 usually requires ξ � 1, which means that the quasistatic limit is in general
sufficient to analyze strong-field experiments with optical lasers (it neglects the rec-
ollision contribution considered in Chap. 4, though).

For a linearly polarized background field we obtain

I2 = J2 = U2 = V2 = W2 = 0 (6.81)

and using the relation |kq| = m2χ/ξ it is sufficient to consider the leading-order
contribution to the following quantities

I2
1 − J1 = −(1/3)(µkq)2[ψ′(kz)]2 +O(µkq)3,

U1 = −2µkqψ′(kz) +O(µkq)2,

V1 = −µkqψ′(kz) +O(µkq)2,

W1 = +µkqψ′(kz) +O(µkq)2.

(6.82)

If we insert these relations into Eq. (6.57), the remaining calculation is very
similar to the one for a constant-crossed field (see Sec. 6.4.1), the essential
change is the replacement χ → χ(kz) = χ |ψ′(kz)|. The final result is given
by

Tµν5 (q1, q2) = Tµν5 (q1, q2) + i(2π)4δ(−,⊥)(q1 − q2) 1
2π

+∞∫
−∞

dz−ei(q
+
2 −q

+
1 )z−

× ψ′(kz)
[
τ ′1Q

µ
1 (f∗q)ν + τ ′1(f∗q)µQν2 + τ ′2k

µ(f∗q)ν
]

(6.83)

156



6.4. Special field configurations

where

τ ′1 = + e3

8π2m2

+1∫
−1

dv
1
w

[
w

|χ(kz)|

]2/3
f(ρ),

τ ′2 = − e3

8π2m2

+1∫
−1

dv
2m2

kq

[
w

|χ(kz)|

]2/3
f(ρ)

(6.84)

and 1
w = 1

4(1− v2), ρ =
[

w
|χ(kz)|

]2/3(1− q1q2
m2

1
w ). Furthermore, the anomaly reads

[see Eq. (6.48)]

Tµν5 (q1, q2) = i(2π)4δ(−,⊥)(q1 − q2) 1
2π

+∞∫
−∞

dz− ei(q
+
2 −q

+
1 )z− ψ′(kz)

×
(
− e3

8π2m2

)
4m

2

kq
[kµ(qf∗)ν + (qf∗)µkν ] . (6.85)

Note that for ψ′(φ) = 1 the result given in Eq. (6.83) coincides (as required) with the
one for a constant-crossed field [see Eq. (6.75)].

6.4.3. Circular polarization

Also for a circularly polarized, monochromatic background field

ψ1(φ) = <eiφ, ψ2(φ) = =eiφ, ξ1 = ξ2 = ξ (6.86)

the result given in Eq. (6.57) simplifies considerably and we obtain

Tµν5 (q1, q2) = Tµν5 (q1, q2)− iπe2 δ(−,⊥)(q1 − q2)
+1∫
−1

dv

∞∫
0

dτ

τ

+∞∫
−∞

dz−
[
a+

1 Q
µ
1 Λ̃ν+

+ a−1 Q
µ
1 Λ̃ν− + a+

2 Λ̃µ+Qν2 + a−2 Λ̃µ−Qν2 + a+
3 k

µΛ̃ν+ + a−3 k
µΛ̃ν−

]
eiΦ, (6.87)

where the anomaly is given in Eq. (6.48) and

a+
1 = 1

2(a′6 − ia′7) = 1
2 imξ(W1 − iW2)eiτβ,

a−1 = 1
2(a′6 + ia′7) = 1

2 imξ(W1 + iW2)eiτβ ,

a+
2 = 1

2(a8 − ia9) = −1
2 imξ(V1 − iV2)eiτβ,

a−2 = 1
2(a8 + ia9) = −1

2 imξ(V1 + iV2)eiτβ ,

a+
3 = 1

2(a′10 − ia′11) = 1
2 imξ

τm2

µkq
(U1 − iU2)eiτβ,

a−3 = 1
2(a′10 + ia′11) = 1

2 imξ
τm2

µkq
(U1 + iU2)eiτβ,

(6.88)
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iτβ = iτm2ξ2
[
sinc2(µkq)− 1

]
,

iΦ = i
[
(q+

2 − q
+
1 )z− + µq1q2 − τm2

] (6.89)

and

Λ̃µ± = Λ∗µ1 ± iΛ
∗µ
2 (6.90)

(the star is part of the symbol, both Λ∗µ1 and Λ∗µ2 are real four-vectors). Further-
more,

W1 + iW2 = −A, W1 − iW2 = −A∗,
V1 + iV2 = −B, V1 − iV2 = −B∗,
U1 + iU2 = −C, U1 − iU2 = −C∗

(6.91)

where

A = eikz [sinc(µkq)− cos(µkq)− i sin(µkq)] ,
B = eikz [sinc(µkq)− cos(µkq) + i sin(µkq)] ,
C = eikz 2i sin(µkq)

(6.92)

and therefore

−W1 = I1 − ψ1(kz + µkq) = <A,
−W2 = I2 − ψ2(kz + µkq) = =A,
−V1 = I1 − ψ1(kz − µkq) = <B,
−V2 = I2 − ψ2(kz − µkq) = =B,
−U1 = ψ1(kz + µkq)− ψ1(kz − µkq) = <C,
−U2 = ψ2(kz + µkq)− ψ2(kz − µkq) = =C. (6.93)

We can now take the integral in dz− and obtain

Tµν5 (q1, q2) = Tµν5 (q1, q2)− i(2π)4 e
2

8π2

+1∫
−1

dv

∞∫
0

dτ

τ

×
[
Tµν5+ δ(q1 − q2 + k) + Tµν5− δ(q1 − q2 − k)

]
eiΦcp , (6.94)

where

iΦcp = −iτm2{1 + ξ2[1− sinc2(µkq)]
}

+ iµq1q2, (6.95)

Tµν5± = (λ±1 Q
µ
1 + λ±3 k

µ)Λ̃ν± + λ±2 Λ̃µ±Qν2 (6.96)
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and

λ±1 = −1
2 imξ [sinc(µkq)− cos(µkq)± i sin(µkq)] ,

λ±2 = +1
2 imξ [sinc(µkq)− cos(µkq)∓ i sin(µkq)] ,

λ±3 = ∓mξ τm2 sinc(µkq).

(6.97)

Correspondingly, the result is in agreement with the one obtained in [GMV93;
GMV94a; GMV96].
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Conclusion and outlook

In the present thesis several nonlinear processes have been examined, whose feasi-
bility necessitates ultra-strong electromagnetic background fields. Throughout, we
focused on genuine quantum effects not explainable using classical electrodynamics
alone. Particularly appealing is the conversion of pure light into matter, hitherto
unobserved in a laboratory. By thoroughly studying the nonlinear generalization
of the Breit-Wheeler process, we substantiated its suitability for an experimental
realization of a light-to-matter transformation with presently existing technology.
Moreover, our investigation indicates that for next-generation laser parameters
the pair-creation probability is sufficient to observe two other remarkable phe-
nomena. On the one hand, the back reaction of pair creation on the photon wave
function leads to an exponential decay, which modifies the measured probabilities.
Correspondingly, also the momentum distribution of the created electron-positron
pair is expected to change with respect to tree-level predictions in this regime, as
the impinging high-energy photon effectively experiences a modified laser pulse
shape. For a consistent description, also the radiative energy loss of the created
charged particles and possible cascade reactions must be taken into account, which
is an exciting challenge for future investigations. On the other hand, a large
flux of photoproduced electron-positron pairs renders the detection of high-energy
recollision processes feasible. By proving that in the framework of strong-field
QED electron-positron recollisions are consistently described by loop Feynman
diagrams, we established a new field of research in this thesis. Apparently, an
exhaustive survey of all conceivable secondary recollision reactions requires further
investigations. Even though a definite confirmation demands these calculations,
one can expect that recollision processes impress distinguished signatures on mea-
surable observables like the transverse electron-positron momentum along the
direction of the magnetic field or the probability for the coincidental emission of
two high-energy gamma photons.
The influence of quantum fluctuations constitutes another topic that is central

for this thesis. In particular, we considered the emission and absorption of virtual
light quanta by electrons. In close analogy to vacuum birefringence experienced
by photons, the electron dispersion relation becomes spin-dependent due to these
fluctuations in the radiation field. Our numerical calculations demonstrate the
measurability of this effect if few-cycle laser pulses and spin-polarized electron
beams are employed. The next step would be the examination of radiative correc-
tions for pair production and nonlinear Compton scattering. This is desirable, as
also for strong-field experiments the achievable experimental precision continuously
improves. In the calculation of the polarization operator and in the derivation
of the exact photon/electron wave function we demonstrated the suitability of
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our framework for this venture. Concurrently, a more realistic description of the
experimentally employed laser pulses is eligible, in particular the inclusion of
focusing effects also in space.

Besides, the present thesis also considered the weak force. Whereas the coupling
between electrons, positrons and photons is only slightly affected by quantum
fluctuations, they are essential for neutrino-photon interactions. So far, many
questions related to the nature and the properties of neutrinos remain open.
Therefore, their coupling to the photon field could also afford surprises and should
be tested experimentally. As the probabilities for neutrino interactions are generally
small, a laboratory investigation requires considerable efforts. Nonetheless, our
calculation constitutes the first step towards a realistic description of possible future
neutrino-laser experiments. A different application of the derived current-coupling
tensor are parity-violating contributions to the fundamental QED processes pair
creation and Compton scattering.
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Appendix
A. Classical electrodynamics

This appendix summarizes those results from classical electrodynamics which are
important for this thesis. For more details see, e.g., [Jac98; LL87].

A.1. Field tensor

The electric E and the magentic field B are jointly described by the anti-symmetric
electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ, (A.1)

where Aµ = (φ,A) denotes the four-potential1. The components of the field tensor
and its dual F ∗µν are given by

F 0i = −Ei, F ij = −εijkBk, F ∗0i = −Bi, F ∗ij = εijkEk. (A.2)

In matrix notation we obtain

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , F ∗µν =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 . (A.3)

A.2. Equations of motion for a charged particle

The four-velocity of a classical particle is defined by

uµ = dxµ

ds
= γ

dxµ

dt
= γ (1,v)µ , v = dx

dt
, γ = 1√

1− v2
, (A.4)

where s = τ denotes the proper time (dt = γds) and γ is called the relativistic
gamma factor. Correspondingly, we also introduce the four-acceleration2

aµ = d2xµ

ds2 = duµ

ds
, u2 = 1, ua = 0 (A.5)

(the last relation follows from differentiating u2 = 1). Using the mass m of the
particle, we define its four-momentum by

pµ = (εp,p) = γm (1,v) = muµ. (A.6)

Finally, the Lorenz force acting on the particle is given by

dpµ

ds
= q

m
Fµνpν , (A.7)

1Note that the zero component of the four-potential is denoted here by the same symbol which
is normally used for the laser phase. The field tensor is also called field-strength tensor.

2Note that the four-acceleration is denoted here by the same symbol which is normally used for
the constant plane-wave four-potential.
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Appendix A. Classical electrodynamics

where q denotes the charge of the particle and Fµν the field tensor of the background
field [see Eq. (A.1)].

A.3. Classical dynamics in a plane-wave field

For a plane-wave background field [Fµν = Fµν(φ), φ = kx; see Sec. 1.3] the
classical equations of motion for a particle with charge q and mass m [see
Eq. (A.7)] can be solved analytically [Di+12; Mey71; SS70]. To this end we
note that kµFµν = 0 implies d(kp)/dτ = 0 for a plane-wave field. Correspondingly,
kp = kp0 is conserved [pµ0 = pµ(φ0) denotes the initial four-momentum of the
particle].

As we assume that the field tensor depends only on the laser phase φ = kx, it is
useful to parametrize the trajectory of the charge by the laser phase rather than the
proper time. To this end we note that [see Eq. (A.6)]

dφ

dτ
= d(kx)

dτ
= kp0

m
,

d

dτ
= kp0

m

d

dφ
. (A.8)

Thus, the equation of motion [see Eq. (A.7)] can be written as

dpµ(φ)
dφ

= q

kp0
Fµν(φ)pν(φ). (A.9)

We will express the solution to this equation in terms of the integrated field
strength tensor [see Eq. (1.29)]

Fµν(φ, φ0) =
φ∫

φ0

dφ′ Fµν(φ′), ∂Fµν(φ, φ0)
∂φ

= Fµν(φ). (A.10)

The most general (integrated) field tensor for a plane-wave field is given by [see
Eq. (1.17) and Eq. (1.29)]

Fµν(φ) =
∑
i=1,2

fµνi ψ′i(φ), Fµν(φ, φ0) =
∑
i=1,2

fµνi [ψi(φ)− ψi(φ0)], (A.11)

which implies the following commutation relation

Fµν(φ)Fνρ(φ, φ0) = Fµν(φ, φ0)Fνρ(φ). (A.12)

Therefore, the solution of Eq. (A.9) is given by [Di+12; Mey71; SS70]

pµ(φ) = pµ0 + qFµν(φ, φ0)p0ν
kp0

+ q2F2µν(φ, φ0)p0ν
2(kp0)2 , (A.13)

where pµ0 = pµ(φ0) denotes the initial four-momentum. After inserting the
above representation for the integrated field tensor [see Eq. (1.30)] the result
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reads

pµ(φ) = pµ0 +
∑
i=1,2

{
q

kp0
fµνi p0ν [ψi(φ)− ψi(φ0)]

+ q2

2(kp0)2 f
2µν
i p0ν [ψi(φ)− ψi(φ0)]2

}
. (A.14)

Note that for a laser field without dc component [i.e. ψi(±∞) = 0] the initial
and final asymptotic momenta are the same [pµ(∞) = pµ(−∞)]. This result is in
agreement with the Lawson-Woodward theorem [Law79; WL48], which states that a
plane-wave laser field cannot accelerate particles.

Finally, we obtain the classical trajectory xµ(φ) by integrating Eq. (A.13)

xµ(φ) = xµ0 +
φ∫

φ0

dφ′
pµ(φ′)
kp0

, (A.15)

where xµ0 = xµ(φ0) denotes the initial four-position.

A.4. Classical dynamics in light-cone coordinates

The classical evolution of the four-momentum pµ(φ) given in Eq. (A.13) becomes
particularly transparent in light-cone coordinates. To this end we consider an
electron with charge q = e and assume that qµ is a constant light-like four-
momentum [q2 = 0, kq 6= 0, qµ 6= qµ(φ)]. Expanding in the canonical light-cone
basis defined in Sec. 1.4.3 [see Eq. (1.48)]

Λµ1 = fµν1 qν

kq
√
−a2

1

, Λµ2 = fµν2 qν

kq
√
−a2

2

, (A.16)

we obtain [see Eq. (1.49)]

pµ(φ) = r(φ)qµ + s(φ)kµ + t1(φ)mΛµ1 + t2(φ)mΛµ2 , (A.17a)

where

s(φ) = qp(φ)
kq

, r(φ) = kp(φ)
kq

, ti(φ) = −Λip(φ)
m

. (A.17b)

As kp(φ) = kp(φ0) = kp0 implies r(φ) = r(φ0) and

s(φ) = 1
2
m2

kp0

[
1 + t21(φ) + t22(φ)

]
(A.18)

is determined by the on-shell condition p2(φ) = m2 [see Eq. (1.50)], the nontrivial
dynamic is entirely described by [see Eq. (A.14) and App. C]

ti(φ) = ti(φ0)− ξi[ψi(φ)− ψi(φ0)]. (A.19)
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Appendix A. Classical electrodynamics

Note that also t2(φ) = t2(φ0) is conserved if the background field is linearly
polarized [ψ2(φ) = 0].
To obtain the trajectory we combine Eq. (A.15) and Eq. (A.17). As φ = kx(φ),

we only have to consider the components

Xi(φ) = −Λµi xµ(φ) = Xi(φ0) + 1
m

m2

kp0

φ∫
φ0

dφ′ ti(φ′) (A.20)

and

XQ(φ) = qµxµ(φ) = XQ(φ0) + 1
2
kq

m2

(
m2

kp0

)2 φ∫
φ0

dφ′ [1 + t21(φ′) + t22(φ′)]. (A.21)
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B. Two-particle collision kinematics
Normally, scattering experiments involve two beams with many incoherent particles
and the probability for a collision is related to a cross section [PS95; Tay72]. To
describe recollision processes of coherently produced electron-positron pairs, the im-
pact parameter for a two-particle collision must be considered.

B.1. Impact parameter
In this Appendix we derive an invariant expression for the impact parameter,
which can be evaluated in an arbitrary Lorentz frame. To this end we consider
first the rest frame of particle one, where the second particle moves along the
trajectory x2(t2) + (t− t2)v2 (we assume that the momentum of each particle is
constant during the interaction). In this frame the impact parameter b is defined
as the minimal distance between the two particles, it is given by the following
expression

b =

√
d2v2

2 − (dv2)2

|v2|
, b = |b| , b = d× v2/|v2|, (B.1)

with d = x2 − x1. Note that b depends only on the direction of v2 and the
replacement v2 → p2 is applicable. Furthermore, the position x2 may be evaluated
at an arbitrary time, as long as we can assume that the momentum of the particle
remains constant during the collision.

As the impact parameter is defined in the rest frame of a particle, it represents
by definition a Lorentz invariant quantity. To obtain a manifestly covariant
representation, we introduce the four-vector

bµ = εµνρσ(x2 − x1)νp1ρp2σ[(p1p2)2 −m2
1m

2
2)]−1/2. (B.2)

In the rest frame of particle one bµ = (0, b), as pµ1 = (m1, 0, 0, 0), pµ2 = (ε2,p2),
xµ1 = (t1,x1) and xµ2 = (t2,x2). Thus, b =

√
−bµbµ is the desired expression,

which holds in an arbitrary Lorentz frame.

B.2. Scattering plane
The plane, which passes through the origin where particle one is at rest, and
which is orthogonal to the velocity vector v2 of the second particle, is called the
scattering plane. Correspondingly, the impact parameter b describes the radial
distance to the trajectory of the second particle within the scattering plane. In
general, we are not only interested in the radial distance but in both coordinates of
the intersection. To this end we have to specify two vectors B1 and B2, which are
orthonormal and orthogonal to the velocity v2

|Bi| = 1, B1B2 = 0, Biv2 = 0. (B.3)

They define a coordinate system within the scattering plane and we can decompose
the distance vector as follows

d = b1B1 + b2B2 + (dv2)
v2

2
v2. (B.4)
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Appendix B. Two-particle collision kinematics

Thus, the scattering is more precisely described by the two coordinates

b1 = dB1, b2 = dB2; b =
√
b21 + b22. (B.5)

The two vectors B1 and B2 must depend on v2. In general, also their absolute
orientation may change if we change v2 (i.e. the coordinate system is rotated
within the scattering plane). To fix the absolute orientation, we would need another
vector (e.g. the spin vector of one of the particles), which defines a preferred
direction within the scattering plane. If such a vector does not exist, the problem
must be spherical symmetric and a rotation within the scattering plane cannot
play a role.
To obtain covariant expressions, we search for two four-vectors Bµ

1 and Bµ
2 ,

which obey

Bip1 = Bip2 = 0, B1B2 = 0, B2
1 = B2

2 = −1. (B.6)

In the rest frame of particle one we obtain Bµ
i = (0,Bi), where the two vectors Bi

obey the relations given in Eq. (B.3). Using Bµ
i , the scattering process is described

by the two coordinates bi = (x2 − x1)µBiµ.
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C. Tensor identities

After a summary of generally important tensor identities many useful proper-
ties of the four-vectors and tensors related to plane-wave background fields are
listed.

C.1. General relations

To simplify products or contractions of the totally antisymmetric tensor εαβγδ we
note the following identities [LL87]

εαβγδεαβγδ = −24,
εαβγµεαβγν = −6δµν ,
εαβµνεαβρσ = −2

(
δµρ δ

ν
σ − δµσδνρ

)
,

εµνρσεαβγσ = −
(
δµαδ

ν
βδ
ρ
γ − δµαδνγδ

ρ
β + δµγ δ

ν
αδ

ρ
β − δ

µ
γ δ

ν
βδ
ρ
α + δµβδ

ν
γδ
ρ
α − δ

µ
βδ

ν
αδ

ρ
γ

)
,

−εµνρσεαβγδ = det


δµα δµβ δµγ δµδ
δνα δνβ δνγ δνδ
δρα δρβ δργ δρδ
δσα δσβ δσγ δσδ

 .
(C.1)

Furthermore, antisymmetric tensors Tµν , Tµν1 , and Tαβ2 obey

T ∗µν1 T ∗αβ2 = 1
2(gµβgνα − gµαgνβ)T1ρσT

ρσ
2 − T

αβ
1 Tµν2

+ gνα(T1T2)βµ − gµα(T1T2)βν − gνβ(T1T2)αµ + gµβ(T1T2)αν , (C.2)

(T ∗1 T ∗2 )µν = 1
2g

µνT1αβT
αβ
2 + (T1T2)νµ, T ∗1µνT

∗µν
2 = −T1µνT

µν
2 ,

εµνρσT ∗σα = δµαT
νρ − δναTµρ + δραT

µν ,
1
2εµνρσT

∗ρσ = −Tµν .
(C.3)

C.2. Lambda four-vectors

We consider the two sets of four-vectors Λµ
i and Λ∗µi (the star is part of the

symbol)

Λµ1 = fµν1 qν

kq
√
−a2

1

, Λµ2 = fµν2 qν

kq
√
−a2

2

,

Λ∗µ1 = f∗µν1 qν

kq
√
−a2

1

, Λ∗µ2 = f∗µν2 qν

kq
√
−a2

2

(C.4)

(f∗µνi denotes the dual tensor). Here, qµ is an arbitrary four-vector (we only assume
that kq 6= 0) and [see Eq. (1.18)]

fµνi = kµaνi − kνa
µ
i . (C.5)
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We obtain the following properties [see Eq. (C.4)]

ΛiΛj = Λ∗iΛ∗j = −δij , kΛi = qΛi = 0, kΛ∗i = qΛ∗i = 0. (C.6)

Furthermore, we define

Λµ5 = εµνρσkνΛ1ρΛ2σ = εµνρσkνa1ρa2σ (a2
1a

2
2)−1/2 (C.7)

with the properties

Λ2
5 = Λ5k = Λ5Λ1 = Λ5Λ2 = 0, (qΛ5)2 = (kq)2,

qΛ5
kq

= kq

qΛ5
. (C.8)

Beside being a pseudo-vector, Λµ5 is proportional to kµ, i.e. we obtain

Λµ5 = qΛ5
kq

kµ. (C.9)

Furthermore, we note the identities

Λµ1 = qΛ5
kq

Λ∗µ2 , Λµ2 = −qΛ5
kq

Λ∗µ1 (C.10)

and correspondingly

Λ∗1Λ2 = qΛ5
kq

, Λ1Λ∗2 = −qΛ5
kq

. (C.11)

Using this notation, we can represent the constant field tensors fµνi as follows
[see Eq. (1.20) for the definition of ξi]

efµνi = mξi(kµΛνi − kνΛµi ). (C.12a)

Correspondingly, we also obtain

ef∗µνi = mξi(kµΛ∗νi − kνΛ∗µi ). (C.12b)

This implies the relations

fµνi Λjν = −δij
mξi
e
kµ, f∗µν1 Λ2ν = mξ1

e
Λµ5 , f∗µν2 Λ1ν = −mξ2

e
Λµ5 (C.13)

and

f∗µνi Λ∗jν = −δij
mξi
e
kµ, fµν1 Λ∗2ν = −mξ1

e
Λµ5 , fµν2 Λ∗1ν = mξ2

e
Λµ5 . (C.14)

C.3. Tensor contraction identities

We note the following contraction identities for the constant field tensors

fµi ρf
ρν
j = f∗µi ρf

∗ρν
j = −δija2

i k
µkν ,

f∗µρi fiρν = fµρi f∗iρν = 0,

fµρ1 f∗ ν2ρ =
√
a2

1a
2
2 k

µΛν5 , f∗µρ1 f ν
2ρ = −

√
a2

1a
2
2 Λµ5kν ,

fµρ2 f∗ ν1ρ = −
√
a2

1a
2
2 k

µΛν5 , f∗µρ2 f ν
1ρ =

√
a2

1a
2
2 Λµ5kν .

(C.15)

170



Appendix C. Tensor identities

Therefore, the integrated field tensor obeys the relations

Fµν(φ)Λiν = −m
e
kµξiψi(φ),

F∗µν(φ)Λ1ν = −m
e

Λµ5ξ2ψ2(φ), F∗µν(φ)Λ2ν = m

e
Λµ5ξ1ψ1(φ) (C.16)

and

F∗µν(φ)Λ∗iν = −m
e
kµξiψi(φ),

Fµν(φ)Λ∗1ν = m

e
qΛ5
kq k

µξ2ψ2(φ), Fµν(φ)Λ∗2ν = −m
e
qΛ5
kq k

µξ1ψ1(φ). (C.17)

Correspondingly, it is natural to expand F using the four-vectors Λi and F∗ using
the four-vectors Λ∗i . Furthermore,

Fµρx Fyρν = m2

e2 k
µkν

∑
i=1,2

ξ2
i ψi(kx)ψi(ky),

F∗µρx Fyρν = −m
2

e2 ξ1ξ2 Λµ5kν
[
ψ1(kx)ψ2(ky)− ψ1(ky)ψ2(kx)

]
,

Fµρx F∗yρν = m2

e2 ξ1ξ2 k
µΛ5ν

[
ψ1(kx)ψ2(ky)− ψ1(ky)ψ2(kx)

]
.

(C.18)

In particular, we obtain

eΛiµFµνx qν = mkq ξi ψi(kx),
e2qF2

x,yq = m2(kq)2 ∑
i=1,2

ξ2
i ψi(kx)ψi(ky). (C.19)

During the calculation of the polarization operator the four-vector [see Eq. (3.16)]

λµ = −2mτ
∑
i=1,2

Λµi ξiIi (C.20)

appears. It obeys the following contraction identities

Fµνx λν = 2m
2

e
τkµ

∑
i=1,2

ξ2
i ψi(kx)Ii,

F∗µνx λν = −2m
2

e
τΛµ5ξ1ξ2

[
ψ1(kx)I2 − ψ2(kx)I1

]
, (C.21a)

Λiλ = 2mτξiIi, eqFxλ = 2kq τm2 ∑
i=1,2

ξ2
i ψi(kx)Ii, (C.21b)

Λ∗1µΛ∗2νεµνρσqρλσ = Λ1µΛ2νε
µνρσqρλσ = 0, (C.21c)

Λ∗iµkνεµνρσqρλσ = 2mτ kq ξiIi,
Λ1µkνε

µνρσqρλσ = 2mτ qΛ5 ξ2I2,

Λ2µkνε
µνρσqρλσ = −2mτ qΛ5 ξ1I1.

(C.21d)
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D. Gamma matrix algebra

The gamma matrices form a complete set in the sense that any matrix Γc in spinor
space can be decomposed according to [Lea01]

Γc = c11 + c5γ
5 + cµγ

µ + c5µiγ
µγ5 + cµνiσ

µν , (D.1)

where we assume that cµν = −cνµ. The fundamental terms have the following
conjugation properties

1 = 1, γ5 = −γ5, γµ = γµ, (iγµγ5) = −iγµγ5, (iσµν) = iσµν . (D.2)

The coefficients in Eq. (D.1) can be calculated by using the following traces

c1 = 1
4 tr 1Γc, c5 = 1

4 tr γ5Γc, cµ = 1
4 tr γµΓc,

c5µ = 1
4 tr iγµγ5Γc, cµν = 1

8 tr iσµνΓc.
(D.3)

Instead of the vector and the axial-vector current one can also use the left- and
the right-handed current

cµγ
µ + c5µiγ

µγ5 = lµγ
µPL + rµγ

µPR, (D.4)

where the chirality projectors for the left and the right-handed component are
given by

PL = 1
2(1 + γ5), PR = 1

2(1− γ5) (D.5)

(note that we define γ5 = −iγ0γ1γ2γ3 as in [LL82]). The coefficients cµ, c5µ and
lµ, rµ are related via

lµ = cµ + ic5µ, rµ = cµ − ic5µ (D.6)

and

cµ = 1
2(lµ + rµ), c5µ = i

2(rµ − lµ). (D.7)

Therefore, the coefficients for the left- and the right-handed current can be deter-
mined from the following traces

lµ = 1
2 trPLγµΓ, rµ = 1

2 trPRγµΓ. (D.8)

Due to the cyclic property of the trace, one can recursively calculate traces of arbi-
trary length without conceptual difficulties by permuting the first gamma matrix to
the last position. For completeness we note the following relations

1
4 tr γµγν = gµν ,
1
4 tr γµγνγργσ = gµσ gνρ − gµρ gνσ + gµν gρσ,
1
4 trσµνγργσ = gµσ gνρ − gµρ gνσ,
1
4 tr γµγνγργσγ5 = iεµνρσ.

(D.9)

Thus, any identity involving gamma matrices can be proven by calculating the
fundamental terms given in Eq. (D.1) for both sides of the equation. It is in
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particular possible to map the gamma matrix algebra to a corresponding tensor
algebra once the decomposition of the product of two arbitrary gamma matrix
expressions Γc = ΓaΓb is known. Here, Γx is written as in Eq. (D.1) with the
letter c replaced by the letter x appearing in the index. The coefficients of Γc are
then given by

c1 = a1b1 + a5b5 + aµbµ + aµ5b5µ + 2aµνbµν ,

c5 = (a1b5 + a5b1) + (iaµb5µ − ia5µb
µ)− iεµνρσaµνbρσ,

cµ = (a1bµ + aµb1) + (ia5µb5 − ia5b5µ)
+ 2 (iaµνbν − iaνbµν)− iεµνρσ (aν5bρσ + aρσbν5) ,

c5µ = (a1b5µ + a5µb1) + (ia5bµ − iaµb5)
+ iεµνρσ (aνbρσ + aρσbν) + 2 (iaµνbν5 − iaν5bµν) ,

cµν = (a1bµν + aµνb1)− i

2εµνρσ (aρσb5 + a5b
ρσ)− i

2 (aµbν − aνbµ)

− i

2εµνρσ (aρbσ5 + aσ5b
ρ)− i

2 (a5µb5ν − a5νb5µ) + 2i(aµρbρν − aνρbρµ).
(D.10)

We point out that the trace of Γc is given by c1 [see Eq. (D.3)]. Therefore, Eq. (D.10)
is also useful for the calculation of traces. Finally, we note the following contraction
identities

γρ1γρ = 4, γργ5γρ = −4γ5, γργµγρ = −2γµ,
γρ(iγµγ5)γρ = 2(iγµγ5), γρ(iσµν)γρ = 0.

(D.11)
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E. Photon polarization density matrix
The (complex) polarization four-vector εµ of a photon with four-momentum qµ

(q2 = 0) must obey ε∗µεµ = −1 and qε = 0. In the canonical light-cone basis kµ, qµ,
Λµi (see Sec. 1.4.3) the polarization four-vector is given by

εµ = c1Λµ1 + c2Λµ2 + c3q
µ, c1 = −(εΛ1), c2 = −(εΛ2), c3 = kε

kq
(E.1)

with the normalization condition |c1|2 + |c2|2 = 1. As the contraction of the
matrix element with the four-momentum qµ must vanish due to gauge sym-
metry, we can restrict us to the vectors Λµ

i and replace the density matrix by

ρµν = εµε∗ν −→
∑

i,j=1,2
ρijΛµi Λνj , (E.2a)

ρ11 = |c1|2 , ρ22 = |c2|2 , ρ12 = c1c
∗
2, ρ21 = c∗1c2. (E.2b)

The 2×2 density matrix ρij is Hermitian and has unit trace

ρij = ΛiµΛjνρµν , ρ†ij = ρ∗ji = ρij , tr ρ =
∑
i=1,2

ρii = 1. (E.3)

Any Hermitian 2 × 2 matrix can be expanded using the Pauli matrices σi and
the identity 1 (with real parameters). Since trσi = 0, we obtain (see [LL82], Eq.
8.9)

ρ = 1
2(1 + siσ

i) = 1
2

(
1 + s3 s1 − is2
s1 + is2 1− s3

)
=
(
|c1|2 c1c

∗
2

c∗1c2 |c2|2

)
, (E.4)

where si are called Stokes parameters. The Stokes vector s = (s1, s2, s3) is a unit
vector, which can be seen from

det ρ = 0 = 1
4
(
1− s2

)
. (E.5)

Correspondingly, it can be described by two Stokes angles

s1 = cos(ϕ) sin(θ), s2 = sin(ϕ) sin(θ), s3 = cos(θ). (E.6)

Using trigonometric identities we conclude that the complex coefficients c1 and c2
can be expressed in terms of the stokes angles as

c1 = cos(θ/2) e−iϕ/2, c2 = sin(θ/2) e+iϕ/2, (E.7)

implying the representations

|c1|2 = cos2(θ/2), |c2|2 = sin2(θ/2), (E.8a)

c1c
∗
2 = 1

2 sin(θ) [cos(ϕ)− i sin(ϕ)] (E.8b)

[note that we can always multiply by a total phase in Eq. (E.7)].
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F. Airy, Scorer and Ritus functions

The Ritus functions are defined by [Rit72a; Rit85]

f(x) = i

∞∫
0

dt exp
[
− i
(
tx+ t3/3

)]
= πGi(x) + iπAi(x), (F.1a)

f ′(x) =
∞∫
0

tdt exp
[
− i
(
tx+ t3/3

)]
= πGi′(x) + iπAi′(x), (F.1b)

f1(x) =
∞∫
0

dt

t
exp (−itx)

[
exp

(
− it3/3

)
− 1

]
(F.1c)

and

f2(x) =
∞∫
0

dt

t2
exp (−itx)

[
exp

(
−it3/3

)
− 1

]
= −i

[
xf1(x) + f ′(x)

]
, (F.1d)

where Ai and Gi are the Airy and Scorer function, respectively [Olv+10]. Note that
in Ritus’ work the normalization of the Airy function is different and also changes
(see [Rit85], App.C and [NR64b], Eq. B5). The functions defined in Eq. (F.1) obey
the following differential equations [Olv+10; Rit85]

f ′′(x) = xf(x)− 1, f ′1(x) = 1
x
− f(x) = −1

x
f ′′(x). (F.2)

Furthermore, for x > 0 we obtain [Rit85]

f1(x) =
∞∫
x

dt [f(t)− 1/t] = ln(x) + 2
3γ + 1

3 ln(3) + i
π

3 −
x∫

0

dt f(t). (F.3)

The integral converges, as [Olv+10]

Gi(x) ∼ 1
πx

∞∑
k=0

(3k)!
k!3kx3k . (F.4)

The imaginary part of f1(x) is related to [VS04]

Ai1(x) =
∞∫
x

dtAi(t) = π
[
Ai(x) Gi′(x)−Ai′(x) Gi(x)

]
(F.5)

for x ≥ 0 and

Ai1′(x) =
x∫

−∞

dtAi(t) = π
[
Ai(x) Hi′(x)−Ai′(x) Hi(x)

]
(F.6)

for x ≤ 0. Here Hi denotes the second Scorer function [Olv+10].
For large values we obtain the following asymptotic series expansions for the
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Appendix F. Airy, Scorer and Ritus functions

Airy function [Olv+10]

Ai(z) ∼ e−ζ

2
√
πz1/4

∞∑
k=0

(−1)k
Γ(3k + 1

2)
54kk!Γ(k + 1

2)
ζ−k (F.7)

and its derivative

Ai′(z) ∼ −z
1/4 e−ζ

2
√
π

∞∑
k=0

(−1)k 6k + 1
1− 6k

Γ(3k + 1
2)

54kk!Γ(k + 1
2)
ζ−k, (F.8)

where ζ ≡ 2
3z

3/2.
Finally, we note the following integral representations for the Airy function and its

derivative, which are frequently encountered [see Eq. (F.1)]

F (x) = i

+∞∫
−∞

dt exp
[
− i(tx+ t3/3)

]
= 2πiAi(x), (F.9a)

F ′(x) =
+∞∫
−∞

tdt exp
[
− i(tx+ t3/3)

]
= 2πiAi′(x). (F.9b)
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G. Integrals expressible by Hankel functions

In this appendix we consider the functions

Wl(x) =
∞∫
0

dW
4

(W + 4)l
√

(W + 4)W
e−iWx (G.1)

(l = 0, 1, 2, x ≥ 0), which appear in the following integrals related to the polariza-
tion operator

∞∫
4

dw
4

wl
√
w(w − 4)

e−iwx = e−i4xWl(x) (G.2)

(w = W + 4).
By rescaling the integration variable (Wx = U , assuming x > 0)

Wl(x) =
∞∫
0

dU
4

(U/x+ 4)l
√

(U + 4x)U
e−iU (G.3)

and noting that for x � 1 the integral is formed around U = 0, we obtain the
leading-order behavior in the limit x→∞

Wl(x) ∼ −2
√
πi

4l eiπ/4
1√
x
. (G.4)

Here, we used
∞∫
0

dU
1√
U
e−iU =

+∞∫
−∞

dV e−iV
2 = −i

√
π eiπ/4 (G.5)

(V =
√
U). From Eq. (G.4) we conclude that the functions Wl are nonoscillatory

and vanish for large arguments.
We note that the functions Wl can be represented using Hankel functions

H(2)
ν (x) = Jν(x)−iYν(x) (Jν and Yν denote the Bessel function of the first and the

second kind, respectively) [Olv+10]. To this end we apply the change of variables
W = 2(cosh t− 1), which yields together with

cosh t+ 1 = 2 cosh2(t/2) (G.6)

the alternative integral representation

Wl(x) = ei2x
∞∫
0

dt
4

4l cosh2l(t/2)
e−i2x cosh t. (G.7)

For l = 0 we obtain, using the following integral representation for the Hankel
functions [GR07]

H(2)
ν (z) = i

2
π
eνπi/2

∞∫
0

dt e−iz cosh t cosh(νt) (G.8)
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Appendix G. Integrals expressible by Hankel functions

(valid for −1 < <ν < 1, z > 0)

W0(x) = (−2πi) ei2x H(2)
0 (2x). (G.9)

With the help of the asymptotic expansion of the Hankel functions [Olv+10]

H(2)
ν (z) ∼

√
2
πz

e−i(z−
1
2νπ−

1
4π)

∞∑
k=0

(−i)k ak(ν)
zk

,

ak(ν) = (4ν2 − 12)(4ν2 − 32) · · · [4ν2 − (2k − 1)2]
k! 8k ,

(G.10)

a0(ν) = 1, the leading asymptotic behavior given in Eq. (G.4) is verified forW0. We
note thatW0(x) has a logarithmic singularity at x = 0 [Olv+10].

We point out that the integral in Eq. (G.7) converges also for l > 0. Therefore, we
can use the replacement x→ x−iε together with the limit ε→ 0, which allows us to
apply Eq. (G.8) also for ν = 1. Using the identity

cosh t− 1 = tanh(t/2) sinh t, (G.11)

the integrals ∫
dt

1
cosh2(t/2)

= 2 tanh(t/2),
∫
dt

1
cosh4(t/2)

= 2
3 tanh(t/2)

[
2 + 1

cosh2(t/2)

] (G.12)

and integration by parts (due to the regularization the boundary terms vanish) we
obtain

W1(x) = (−2πx) ei2x
[
H(2)

0 (2x) + iH(2)
1 (2x)

]
,

W2(x) = πx

3 ei2x
[
4ixH(2)

0 (2x)− (4x+ i) H(2)
1 (2x)

]
,

(G.13)

where

H(2)
0 (2x) + iH(2)

1 (2x) = J0(2x) + Y1(2x) + i [J1(2x)−Y0(2x)] (G.14)

and

4ixH(2)
0 (2x)− (4x+ i) H(2)

1 (2x) = 4xY0(2x)− 4x J1(2x)−Y1(2x)
+ i
[
4x J0(2x) + 4xY1(2x)− J1(2x)

]
. (G.15)

In order to verify the final result in Eq. (G.13), we note that the asymptotic
behavior given in Eq. (G.4) agrees with the one obtained from Eq. (G.13) by
applying the asymptotic expansion of the Hankel function given in Eq. (G.10).
Furthermore, for x = 0 the integrals in Eq. (G.7) can be solved using Eq. (G.12)
and we obtain

W1(0) = 2, W2 = 1/3. (G.16)

These values are also obtained if the limit x→ 0 is considered in Eq. (G.13). Finally,
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Fig. 41: The function W0 (solid line) has a logarithmic singularity at the origin, W1
(dashed line) and W2 (dotted line) are regular. For large values they behave as ∼ x−1/2.

the expressions in Eq. (G.13) also obey the differential equations

d

dx
W1(x) = 4iW1(x)− iW0(x), d

dx
W2(x) = 4iW2(x)− iW1(x), (G.17)

obtained by differentiating Eq. (G.1) under the integral. This can be verified using
the relations [Olv+10]

d

dx
H(2)

0 (x) = −H(2)
1 (x), d

dx
H(2)

1 (x) = H(2)
0 (x)− 1

x
H(2)

1 (x). (G.18)

Summarizing, we obtain (see Fig. 41)

W0(x) = (−2πi) ei2x H(2)
0 (2x),

W1(x) = (−2πx) ei2x
[
H(2)

0 (2x) + iH(2)
1 (2x)

]
,

W2(x) = πx

3 ei2x
[
4ixH(2)

0 (2x)− (4x+ i) H(2)
1 (2x)

]
.

(G.19)
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H. Oscillating integrals with coalescing stationary points

As long as all stationary points xs [f ′(xs) = 0] of the oscillatory integral

I =
∫
dx g(x)eiλf(x) (H.1)

are well separated, the ordinary stationary-phase approximation can be used to
take them into account [Won01]

I ≈ g(xs)
[ 2πi
λf ′′(xs)

]1/2
eiλf(xs),

√
±i = e±iπ/4. (H.2)

Sometimes, however, two stationary points x1 and x2 are located very close to
each other (x1 ≈ x2) or even coalesce (x1 = x2) and Eq.H.2 is not applicable
anymore. Following the idea of [CFU57] (see also [OT94; VS04]), we consider
both two (nearly) coalescing stationary points located on the real line and two
(nearly) coalescing stationary points located close to the real line inside the complex
plane.

H.1. Two nearly coalescing real stationary points

If two stationary points x1 and x2 are located very close to each other, they must
be taken into account simultaneously. To this end we apply the change of variables
x→ y, implicitly defined by

F (y) = λf [x(y)] = a− b2y + y3/3. (H.3)

In terms of the new variable we obtain

I =
∫
dy G(y) eiF (y), G(y) = g[x(y)] dx

dy
. (H.4)

The transformed phase has two real stationary points located at ±b. We conclude
from

F ′(y) = λf ′[x(y)] dx
dy

(H.5)

that −b = y(x1) and b = y(x2), implying

λf(x1) = a+ 2
3b

3, λf(x2) = a− 2
3b

3. (H.6)

Correspondingly, we obtain

a = λ

2 [f(x1) + f(x2)] , b3 = 3λ
4 [f(x1)− f(x2)] . (H.7)

In the following we assume that b ≥ 0, which we can always ensure by relabeling
the two stationary points.

Having determined F (y), we consider now G(y) and approximate it by a linear
function

G(y) = 1
2π (r + isy) . (H.8)
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Appendix H. Oscillating integrals with coalescing stationary points

As [see Eq. (F.9)]

2πAi(x) =
+∞∫
−∞

dt exp
[
i(tx+ 1

3 t
3)
]
, 2πAi′(x) = i

+∞∫
−∞

tdt exp
[
i(tx+ 1

3 t
3)
]
,

(H.9a)

we obtain [see Eq. (H.1)]

I ≈ eia
[
rAi(−b2) + sAi′(−b2)

]
. (H.10)

In order to determine the two unknown coefficients, we require that the result of
the ordinary stationary-phase approximation is obtained in the limit where both
stationary points are sufficiently far away (i.e. for b� 1). To this end we note the
following asymptotic expansions (see App. F)

Ai(−b2) ∼ 1√
πb

cos(ζ − π/4), Ai′(−b2) ∼
√
b√
π

sin(ζ − π/4), (H.11)

where ζ = 2b3/3. Accordingly, we obtain

G1 e
+iπ/4 =

[
r

2
√
πb

+ s
√
b

2i
√
π

]
, G2 e

−iπ/4 =
[

r

2
√
πb
− s
√
b

2i
√
π

]
, (H.12)

where

Gi = g(xi)
[ 2πi
λf ′′(xi)

]1/2
. (H.13)

Therefore, the coefficients in Eq. (H.10) are given by

r =
√
πb
[
G1 e

+iπ/4 +G2 e
−iπ/4

]
, s = i

√
π

b

[
G1 e

+iπ/4 −G2 e
−iπ/4

]
. (H.14)

H.2. Two nearly coalescing complex stationary points

Normally, the location of the two stationary points x1 and x2 under consideration
is determined by a parameter α. In the following we assume that they are distinct
for α < α0, coalesce for α = α0 and become complex for α > α0 [OT94]. The
Airy uniform approximation as presented above can be used until the two real
stationary points coalesce, i.e. for for α < α0. However, the contribution to the
integral from the region under consideration should (in general) depend smoothly
on α. Thus, significant contributions to the integral are also expected for α > α0,
as long as f ′(x) 6= 0 is “small”. We therefore consider the point x0 defined by
f ′′(x0) = 0, where the oscillations along the real integration line are as slow as
possible. Around this point we can approximate the phase by a cubic polynomial
as before

f(x) ≈ f(x0) + f ′(x0)(x− x0) + f ′′′(x0)
6 (x− x0)3. (H.15)

Here, we assume that all higher derivatives are of the same order as f ′′′(x0) and
that f ′′′(x0) � f ′(x0). The last condition ensures that far away from x0 the
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Appendix H. Oscillating integrals with coalescing stationary points

oscillations are fast, i.e. that the integral is formed around x = x0. Within this
approximation we obtain

f ′(x) ≈ f ′(x0) + f ′′′(x0)
2 (x− x0)2, (H.16)

meaning that the stationary points xs of the phase are now complex and approxi-
mately given by

xs ≈ x0 ± i
√

2 f
′(x0)

f ′′′(x0) . (H.17)

Thus, the assumption f ′′′(x0) � f ′(x0) ensures that the imaginary part of the
true stationary points is small, i.e. that they are located close to the real line (in
the following we can assume that the first and the third derivative have the same
sign, as otherwise the stationary points are real).

As long as the imaginary part in Eq. (H.17) is small, the two complex stationary
points still influence the integral along the real line and significant contributions
arise from the region around x0. By using the expansion in Eq. (H.15), the contri-
bution to the integral coming from the region of the real line close to the complex sta-
tionary points is approximately given by [see Eq. (H.1)]

I ≈ 2πg(x0)
3
√
λf ′′′(x0)/2

eiλf(x0) Ai
[
λ2/3f ′(x0)
3
√
f ′′′(x0)/2

]
. (H.18)

This result is valid as long as the imaginary part of the stationary points is small,
i.e. for f ′(x0) � f ′′′(x0) [see Eq. (H.17)] [if g(x0) = 0 the linear term of the
preexponent must be used in the approximation].
Summarizing, we can apply Eq. (H.2) for isolated stationary points, Eq. (H.10)

for two (nearly) coalescing real stationary points and Eq. (H.18) for two (nearly)
coalescing complex stationary points, as long as they are close to the real in-
tegration line (complex stationary points far away from the real line can be
neglected).
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I. Numerical calculation of Fourier integrals

In this appendix we consider Fourier integrals with finite boundaries
b∫
a

dx eiωxg(x). (I.1)

As long as the required precision is not too high and the integral must be computed
for many different oscillation frequencies ω, the method of choice is the fast Fourier
transform (FFT). If, however, the integral should be computed for a single frequency
with a very high precision, the second approach based on Chebyshev expansions is
more suitable.

I.1. Fast Fourier transform (FFT)

Fourier-integrals (with finite limits) can be calculated very efficiently using the
fast Fourier transform (FFT) algorithm [CT65]. To this end we apply the approxi-
mation

b∫
a

dx eipxf(x) =
n−1∑
j=0

xj+1∫
xj

dx eipxf(x) ≈ δ
n−1∑
j=0

eipxjf(xj), (I.2)

where xj = a + jδ with δ = (b− a)/n. To be sufficiently general, we introduce
pk = p0 + [2π/(b− a)] k and obtain

b∫
a

dx eipkxf(x) ≈ ei[2πa/(b−a)] k δ
n−1∑
j=0

e2πi (jk/n) [eip0xjf(xj)
]
. (I.3)

After fixing a value for n and setting Xj = eip0xjf(xj), we can, e.g., use the
FFTW_BACKWARD algorithm [FJ05], which computes

Yk =
n−1∑
j=0

Xje
2πi (jk/n) (I.4)

to obtain an approximation for the Fourier integral with finite boundaries using
Eq. (I.3). Note that the case a = 0 is particularly convenient.

I.2. Chebyshev integration

Fourier integrals with finite limits can be calculated very precisely using Chebyshev
series expansions [PB75; PB84; Pie+83]. To this end we write

b∫
a

dx eiωxg(x) = δeiωc
+1∫
−1

dt eiΩtf(t), (I.5)

where we used the change of variables x(t) = c + δt with c = (a+ b)/2, δ =
(b− a)/2, f(t) = g[x(t)] and Ω = δω. If the function f(t) is slowly varying, its ex-
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Appendix I. Numerical calculation of Fourier integrals

pansion into a Chebyshev series is rapidly converging [Boy01; Olv+10]

f(t) =
∞∑′

n=0
cnTn(t), Tn(t) = cos(nθ), t = cos θ, (I.6)

where

cn = 2
π

+1∫
−1

dt
Tn(t)f(t)√

1− t2
= 2
π

π∫
0

dθ cos(nθ)f(cos θ) (I.7)

(the prime at the sum symbol indicates that the first coefficient in the sum is halved).
The Chebyshev series coefficients can be calculated very efficiently using FFT and
an estimate for the absolute error induced by the truncation of the Chebyshev series
is obtained from the last series coefficients [Boy01].

Having computed the series coefficients, the Chebyshev moments

Cn(z) =
+1∫
−1

dt T2n(t)eizt, Sn(z) = i

+1∫
−1

dt T2n+1(t)eizt (I.8)

must be determined in order to evaluate the integral in Eq. (I.5). To this end we note
the following three-term recurrence relations [Pie+83]

z2(n− 1)(2n− 1)Cn+1(z)− (n+ 1)(n− 1)
[
4z2 − 8(2n+ 1)(2n− 1)

]
Cn(z)

+ z2(n+ 1)(2n+ 1)Cn−1(z) = −16(n− 1)(n+ 1) cos(z) + 12z sin(z), (I.9a)

z2(2n− 1)nSn+1(z)− (2n+ 3)(2n− 1)
[
z2 − 8n(n+ 1)

]
Sn(z)

+ z2(2n+ 3)(n+ 1)Sn−1(z) = 4(2n− 1)(2n+ 3) sin(z) + 12z cos(z). (I.9b)

For certain parameters (e.g., for very large frequencies), the Chebyshev moments
can be calculated by applying the above relations in the forward direction (e.g.,
Sn can be calculated by starting from S0 and S1). However, this procedure
is in general numerically unstable and Olver’s algorithm must be used [Olv67;
Wim84]. By calculating Cn and Sn independently, we can estimate the nu-
merical error of the calculated Chebyshev moments by evaluating the relation
[Pie+83]

Sn(z) = sin z
2(n+ 1)n −

z

4nCn(z) + z

4(n+ 1)Cn+1(z). (I.10)
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