
Path Planning for Lock Entering

Maneuvers Using Nonlinear Programming

A. Lachmeyer ∗ B. Herzer ∗∗ E. D. Gilles ∗∗∗

∗ Institute for System Dynamics, Stuttgart, 70569 Germany (e-mail:
lachmeyer@isys.uni-stuttgart.de).

∗∗ Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, 39106 Germany (e-mail: herzer@mpi-magdeburg.mpg.de)
∗∗∗ Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, 39106 Germany (e-mail: gilles@mpi-magdeburg.mpg.de)

Abstract: This paper presents a path planning method for lock entering maneuvers that is
based on nonlinear programming. Fairway boundaries, lock walls and the input saturation of
the thrust devices of the vessel are accounted for as inequality constraints in the optimization.
The environmental constraints are modeled as polygons or constructive solid geometry objects.
Each of the methods is used to compute a path for a typical inland vessel with a bow thruster
and a rudder and propeller configuration.

Keywords: path planning, constraint satisfaction, marine systems, model-based control,
obstacle avoidance, optimization problems

1. INTRODUCTION

A lock entering maneuver requires the use of multiple
actuators such as bow thrusters, the rudder and the
main propellers. These actuators are subject to saturation.
Furthermore, there is only a confined maneuvering space,
the width of large inland vessels being only 0.4m less
than the width of a narrow lock. These circumstances
must be taken into account in an automatic lock entering
maneuver, at best already in the path planning phase.
There is a big variety of path planning algorithms aimed at
robot motion, Karatas and Bullo (2001) propose nonlinear
programming for trajectory planning of unmanned air
vehicles, whereas Wang and Lane (1997) deal with subsea
vehicles. To our knowledge the problem of automatic
lock entering maneuvers has not been addressed in the
literature so far. In this paper we propose to solve the
path planning problem with a nonlinear programming
approach.
Section 2 describes the dynamic model of the vessel
motion, section 3 introduces the nonlinear programming
problem formulation. The main difficulty is to convert the
shape of the maneuvering space into inequality constraints
for the nonlinear optimization software. In section 4 a
polygon-based method for object representation is derived,
section 5 contains a method proposed by Wang and Lane
(1997) based on constructive solid geometry.

2. VESSEL MODEL EQUATIONS

The model equations describe the surge (u), sway (v)
and yaw (r) motion of the vessel in a body-fixed (xb, yb)
coordinate frame, where the forward velocity is assumed
to be constant.

u= const. (1)

v̇ =
Cv

m+ma
· v −

m

m+ma
· u · r +

F1 + F2

m+ma
(2)

ṙ=
Cr

Jr
· r +

L

2 · Jr
· (F2 − F1) (3)

ψ̇ = r (4)

ẋcg = u · cosψ − v · sinψ (5)

ẏcg = u · sinψ + v · cosψ (6)

x= (v r ψ xcg ycg)
T

(7)

m ... mass of vessel
ma ... added mass
Cv ... coefficient of lateral force due to v
Cr ... coefficient of torque related to r
Jr ... moment of inertia about yaw axis
L ... length of vessel
x ... state vector with n states

The x-axis of the earth-fixed local coordinate frame is
parallel to the lock chamber walls (see Fig. 1). The position
of the vessel in the earth-fixed frame is denoted by xcg and
ycg, its heading ψ is measured relative to the earth-fixed
x-axis. The body-fixed coordinate frame originates in the
center of gravity (CG).
We define two control forces F1 and F2, where F1 is a bow
thruster force with fixed angle (yb direction) and a fully
variable but constrained thrust force

0 ≤ F1 ≤ F1max. (8)

F2 is the yb component of the rudder force caused by
the main propeller thrust. It is also supposed to be fully
variable with a maximum value

0 ≤ F2 ≤ F2max. (9)

8th IFAC Conference on Control Applications in Marine Systems
Rostock-Warnemünde, Germany
September 15-17, 2010

978-3-902661-88-3/10/$20.00 © 2010 IFAC 58 10.3182/20100915-3-DE-3008.00013

v

u F1

F2

ψ, r

xcg

ycg

x

xb

yb

y

ymid

L
2

L
2

CG

Fig. 1. Vessel dimensions and coordinate frames

The model does not take into account any effects of the
water flow around the hull when entering into the lock
such as squat or forward velocity changes.

3. NONLINEAR PROGRAMMING PROBLEM

In this paper we consider the optimization problem given
by the objective function

J(x,u) =

∫ tf

0

L(x,u) dt (10)

that is to be minimized, the equality constraints represent-
ing the differential equations of the vessel motion

h(x,u) = 0 (11)

and the inequality constraints

gl ≤ g(x,u) ≤ gu (12)

ul ≤ u(t) ≤ uu (13)

xl ≤ x(t) ≤ xu (14)

representing walls, constrained inputs and general state
bounds. In order to be able to solve this problem nu-
merically by using nonlinear programming methods, the
objective function and the equality constraints are ap-
proximated using collocation as explained by Betts (2001).
This leads to an Euler forward integration of the model
equations. The input variables u(t) are assumed to remain
constant during one time step ∆t. This results in the
following equality constraints:

h(k·n)+i = −xk + xk−1 + ẋk−1∆t (15)

with

k = 1 . . .
tf

∆t
+ 1. (16)

k is the number of the sample time steps, i = 1 . . . n
the number of states and tf the fixed stop time of the
maneuver.

4. POLYGON-BASED CONSTRAINTS

In this section polygons are used to represent lock walls,
fairway boundaries and other obstacles. They are con-
verted to inequality constraints that are needed in the

x

y

Pj Pb

Ps

Sj∆x

xwj

ywj

xwj−1

ywj−1

ψ

CG

Pc

Fig. 2. Location of vessel and wall polygon

nonlinear programming problem formulation. The wall
polygon is a set (xw,yw) of points, containing p points
on the left and q points on the right side, given in the
local earth-fixed coordinate frame:

xw = (xw1 . . . xwp xwp+1 . . . xwp+q)
T

(17)

yw = (yw1 . . . ywp ywp+1 . . . ywp+q)
T
. (18)

The vessel is described by a line segment from Ps (stern) to
Pb (bow). Since the width of the hull is neglected this way,
the polygons defining the environment must be adjusted
accordingly. The distance ∆y between a point Pj on a wall
segment Sj = {(xwj−1, ywj−1), (xwj , ywj)} and the bow as
depicted in Fig. 2 is computed as follows:

Pjx = Pbx (19)

Pjy = ywj−1 +∆y (20)

∆y=∆x
dy

dx
= (Pbx − xwj−1)

ywj − ywj−1

xwj − xwj−1
. (21)

For the stern, Pj is computed as in (20).
There is no collision between bow, stern and the left wall
if:

Pby − Pjy > 0 ∧ Psy − Pjy > 0 → gl1, gl2. (22)

For the right wall, the following must be true:

Pby − Pjy < 0 ∧ Psy − Pjy < 0 → gu1, gu2. (23)

Since the wall polygon may be convex, two more con-
straints are necessary to prevent the vessel from moving
over convex corner points. The projection of such a corner
point to the vessel line segment is called Pc and computed
as follows:

Pcx = xwj−1 (24)

Pcy = ycg + tanψ · (xwj − xcg). (25)

There is no collision between a left wall corner point and
the vessel if:

Pcy − ywj > 0 → gl5. (26)

For a right wall corner point the following must hold:

Pcy − ywj < 0 → gu6. (27)

CAMS 2010
Rostock-Warnemünde, Germany, Sept 15-17, 2010

59

−25 −20 −15 −10 −5 0 5
0

100

200

300

400

500

600
CG

Bow

Stern

−25 −20 −15 −10 −5 0 5
0

100

200

300

400

500

600

x
(m

)

x
(m

)

y (m)y (m)

Fig. 3. Polygon-based optimization: Vessel position and
orientation

This computation is done for all corner points between
bow and stern. Alltogether, there are N = 6 constraints
that represent the environment, two checking collisions be-
tween bow and the walls, two checking checking collisions
between the stern and the walls and two preventing corner
point contact.
The objective function for the lock entering maneuver
consists of three parts that are minimized. The first part
is a measure for the distance to the lock chamber middle
position ymid:

dmid = ycg − ymid. (28)

Additionallly, we introduce a function dl depending on the
distance between bow and stern and the left wall:

dl =
1

0.1 + (Pby − Pjy)2
+

1

0.1 + (Psy − Pjy)2
. (29)

The corresponding function dr for the right wall is com-
puted in the same way. These functions are used to intro-
duce a safety margin between the computed path and the
boundaries.
The objective function J is computed as a sum over all
sample time steps:

J =

h
∑

k=1

a1(d
k
mid)

2+a2(d
k
l +d

k
r)+a3((F

k
1)

2+(F k
2)

2). (30)

Furthermore, it minimizes the use of thrust force by in-
cluding F1 and F2. To change the characteristics of the
planned path the weight factors a1, a2 and a3 can be tuned
manually between optimization runs.
The optimization problem given above is solved using

the Ipopt large scale nonlinear optimization software pack-
age. The computation of jacobian and hessian matrices
is done by the ADOL-C automatic differentiation pack-
age. Waechter and Biegler (2006) give further information
about Ipopt, Griewank and Walther (2008) describe the
methods for automatic differentiation. ADOL-C offers a

0 100 200 300 400 500 600
−2

−1

0

1

2

3

4
x 10

4

Rudder

Bowthruster

time (s)

th
ru

st
fo
rc

e
(N

)

Fig. 4. Polygon-based optimization: Thrust force

C++ programming interface to Ipopt with the possibility
to exploit the sparse structure of jacobian and hessian
matrices.
Using the model parameters given in Appendix A with
step size ∆t = 3 s, the problem consisting of 1400 variables
was solved in 9.4 s on a CoreTM2 Duo CPU at 2.53GHz.
The resulting trajectory is shown in Fig. 3. The left plot
contains the positions of bow, center of gravity and stern.
The position of the midship line is plotted on the right
side in 30 s intervals. Fig. 4 shows the thrust force of
the bow thruster and the rudder with the propellers. The
vessel does not touch the lock walls and the obstacle, the
saturation of the thrust force is not reached. There is no
contact between the planned path and the corner points.
If viewed in detail, Fig. 3 shows that the corner point at
xc = 450m, yc = −1m is left of the trajectory.
The disadvantage of this polygon-based implementation
is that the constraints representing the environment are
evaluated only at the segments closest to bow and stern.
Therefore, the constraints cannot be differentiated cor-
rectly by the automatic differentiation software.

5. CONSTRUCTIVE SOLID GEOMETRY
CONSTRAINTS

To overcome this disadvantage we will present a second
method to define the boundaries. Wang and Lane (1997)
proposed to model the environment by combining several
simple geometric objects (primitives) using the boolean
operations AND and OR. The so called constructive solid
geometry (CSG) is very common in computer graphics and
can be used to build complex environments.
The primitive used to represent the lock walls is a de-
formed circle defined by its radius rc, its center point
(xc, yc) and its deformation coefficient b:

(x2·bc + y2·bc)1/b = r2c . (31)

The following equation can be used to test if Pb or Ps are
outside the wall objects:

((xc − Pbx)
2·b + (yc − Pby)

2·b)1/b > r2c . (32)

In the given example, this is done for no = 6 wall objects
for bow and stern at every sample time step tk. As in
section 4, relying only on constraints of the type given in
(32) results in a path moving over the corners of the walls.
To prevent that, a second type of constraints is introduced
that guarantees that no corner point (xwj , ywj) is inside
an ellipse defining the area covered by the ship. This is

CAMS 2010
Rostock-Warnemünde, Germany, Sept 15-17, 2010

60

−25 −20 −15 −10 −5 0 5
0

100

200

300

400

500

600

−25 −20 −15 −10 −5 0 5
0

100

200

300

400

500

600

CG

Bow

Stern

x
(m

)

x
(m

)

y (m)y (m)

Fig. 5. CSG-based optimization: Vessel position and ori-
entation

the case if the corner point transformed to the body-fixed
coordinate frame

xbwj = (xwj − xcg) · cosψ + (ywj − ycg) · sinψ) (33)

ybwj = (−xwj + xcg) · sinψ + (ywj − ycg) · cosψ) (34)

meets the following condition:

(xbwj)
2

L
+

(ybwj)
2

L
>

(

B

2

)2

. (35)

B is the width of the hull of the vessel.
For the wall setting shown in Fig. 3 we need to introduce
nc = 3 corner points as additional constraints, one on the
left wall and two on the right wall. The total number of
wall constraints per sample time step is

N = nc + 2 · no = 15. (36)

This number increases with the number of environment
objects, in contrast to the method presented in section 4.
With

J =
h
∑

k=1

a1(d
k
mid)

2 + a3((F
k
1)

2 + (F k
2)

2) (37)

as objective function, the nonlinear program is solved in
13.2 s given the same set of parameters that were used
in section 4. Fig. 5 and 6 show the computed path and
thruster actuation. Due to the rounded corners of the
objects, the path of bow and stern runs through areas that
were forbidden in section 4. To prevent this, the object size
must be increased.

6. CONCLUSION

We presented two methods for the planning of lock en-
tering maneuvers based on nonlinear programming. The
numerical solution of the optimization problem is com-
puted by the software packages Ipopt and ADOL-C. The
two methods differ in the way how inequality constraints

0 100 200 300 400 500 600
−6000

−4000

−2000

0

2000

4000

6000

Rudder

Bowthruster

time (s)

th
ru

st
fo
rc

e
(N

)

Fig. 6. CSG-based optimization: Thrust force

are derived from lock walls and fairway boundaries. The
advantage of the polygon-based approach is the constant
number of inequality constraints regardless of the com-
plexity of the polygons. However, the position-dependent
selection of the active parts of the polygon leads to difficul-
ties in the differentiation of the constraints. Nonetheless,
Ipopt was able to find an optimal solution. A method that
relies on constraints that can be differentiated correctly
was presented in section 5. In this case, the number of
inequality constraints increases with two times the num-
ber of environment objects. Closed-loop simulations with
real world lock environments and more detailed actuator
models will be carried out to test both methods for their
usability on a research vessel.

REFERENCES

Betts, J.T. (2001). Practical methods for optimal control
using nonlinear programming. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

Griewank, A. and Walther, A. (2008). Evaluating Deriva-
tives: Principles and Techniques of Algorithmic Dif-
ferentiation. Number 105 in Other Titles in Applied
Mathematics. SIAM, Philadelphia, PA, 2nd edition.

Karatas, T. and Bullo, F. (2001). Randomized searches
and nonlinear programming in trajectory planning. In
Proceedings of the 40th IEEE Conference on Decision
and Control, 2001, volume 5, 5032 –5037.

Waechter, A. and Biegler, L.T. (2006). On the implemen-
tation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Math-
ematical Programming, 106, 25–57.

Wang, Y. and Lane, D. (1997). Subsea vehicle path
planning using nonlinear programming and constructive
solid geometry. IEE Proceedings Control Theory and
Applications, 144(2), 143 –152.

Appendix A. MODEL PARAMETERS AND INITIAL
VALUES

L = 100.0m B = 10.0m
Cq = 3500 Cv = −350000

m = 2× 106 kg ma = 5× 105 kg

Cr = −2.0417 × 10+08 Jr = 1.6667× 10+09

F1max = F2max = 8.1667× 10+04

a1 = 0.0022 a2 = 1.0
a3 = 1.4994 × 10−09

u0 = 1m/s v0 = 0m/s
r0 = 01/s ψ = 0

xcg0 = 50m ycg0 = −5m

CAMS 2010
Rostock-Warnemünde, Germany, Sept 15-17, 2010

61

