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We present an embedding scheme for periodic systems that facilitates the treatment of the physically important
part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too
expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding
approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on
the concept of dynamical mean-field theory formulated in terms of Green’s functions. Our real-space dynamical
mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for
the periodic surrounding. The total energy is computed from the resulting Green’s functions. The performance of
our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation
theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with
respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational

supercell) size.
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I. INTRODUCTION

Density-functional theory (DFT) has become a widely
applied electronic structure theory method due to the balance
between accuracy and computational efficiency of local and
semilocal approximations such as the local-density (LDA) and
generalized gradient approximations (GGA). However, LDA
and GGAs suffer from certain intrinsic limitations such as
the self-interaction error [1-3], the absence of the derivative
discontinuity in the exchange-correlation potential [4—6], the
lack of long-range van der Waals interactions [7-9], and the
absence of image effects [10—-12]. These shortcomings limit
the predictive power of LDA and GGAs, in particular for lo-
calized electrons as found in d- or f-electron systems [13—17]
or for adsorbates and surfaces [18-21]. Furthermore, DFT
is inherently a ground-state method and therefore of limited
applicability for excited states and spectra. More advanced
electronic structure methods that overcome one or several of
the mentioned shortcomings exist, but they are typically com-
putationally much more demanding and thus limited to small
systems sizes or a subset of electronic degrees of freedom.
To overcome the efficiency-accuracy conundrum, much effort
has been devoted to combine the best of both worlds, that
is, to merge local and semilocal DFT approximations (DFA)
with advanced electronic structure methods [22-35]. The latter
includes, e.g., quantum chemistry methods [36], advanced
exchange-correlation functionals of the fourth and fifth rung
Jacob’s ladder [37], and Green’s function based many-body
perturbation theory [38].

We here advocate the concept of embedding. In this divide
and conquer approach, the full system is divided into two parts:
a small embedded region, which is treated with advanced,
computationally demanding approaches, and an embedding
environment that is treated with computationally more efficient
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approaches. A schematic illustration of the embedding concept
is shown in Fig. 1.

Following this general principle, various embedding
schemes have been developed in the past [22-35,39]. They
differ in scope (i.e., area of application), on how they treat the
coupling between the embedded region and the surrounding,
and in the approaches used to describe the two regions.
In (bio)chemistry, for example, one of the most popular
embedding schemes combines quantum mechanics (QM) and
classical molecular mechanics (MM). The embedded region
is treated quantum mechanically and the surrounding by
MM [23-27]. In surface science, fully quantum mechanical
schemes are more prevalent, e.g., for the description of surface
adsorbates. They divide space into regions for advanced
and less advanced electronic structure approaches and differ
mostly on how these two regions are coupled, e.g., through
maximal exchange overlap [28], density embedding [29], or
cluster extrapolation [30,31]. In solid-state physics, dynam-
ical mean-field theory [32-34] offers a natural embedding
framework by mapping an infinite, correlated lattice model
into an impurity model [40] immersed into a self-consistently
determined mean-field bath. When DFA is chosen as the
mean field, dynamical mean-field theory (DMFT) becomes
material specific [34,41,42]. The embedding is achieved by
means of Green’s functions facilitating the calculation of
spectra, band structures, but also phase diagrams. Recently,
Zgid and Chan [22] proposed to use DMFT as an embedding
framework for quantum-chemistry approaches such as the
configuration-interaction (CI) method. They since proposed a
simplified DMFT scheme based on density-matrix embedding
to access static properties (e.g., the ground-state energy and its
derivatives) [35]. However, at present all DMFT approaches
use a downfolding procedure to a low-energy subspace, which
is treated on the model Hamiltonian level.

We here extend the DMFT concept to couple two first-
principles regions. Our idea is similar to that of Zgid and
Chan [22], but we explore the possibility of using DMFT
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FIG. 1. Schematic depiction of the embedding concept. The
embedded region (red) is treated with a more accurate theory, whereas
the surrounding (gray) is calculated with less accurate and thus
computationally less expensive theories. The key challenge of our
and all previous embedding approaches is the appropriate treatment
of the red/gray boundary.

as a general embedding scheme for advanced first-principles
electronic structure methods. These can be advanced DFT
exchange-correlation functionals or excited-state methods
based on the GW approach [38], which are still computa-
tionally too expensive for large-scale systems. The difference
to previous DMFT schemes is that we treat the unit cell as
the local, embedded region, that is coupled to the rest of
the periodic system via the DMFT framework. All electrons
in the embedded region are treated at the same quantum
mechanical level, which removes the necessity of defining
a downfolded subspace and does not require any double-
counting corrections. This is possible in our scheme because
we do not attempt to solve the local many-body problem
exactly, which is a standard practice in conventional DMFT
schemes. The pros and cons of our strategy will be further
discussed in Sec. IT A.

We here present the concept of our real-space dynamical
mean-field embedding (RDMFE) approach and its imple-
mentation in the all-electron Fritz Haber Institute ab initio
molecular simulations (FHI-AIMS) code [43-45]. We first
benchmark it for hybrid density functionals for which we
have a periodic reference [46]. Then, we apply our scheme
to the GW approach. Due to its intrinsic self-consistency,
our RDMFE approach yields a self-consistent GW solu-
tion, which is a much coveted approach for solids right
now. While fully self-consistent GW implementations for
molecules are slowly emerging [47-52], we are only aware
of one recent implementation of fully self-consistent GW for
solids [53,54], which is, however, limited to small unit cells
due to its computational expense. An alternative, approximate
way to achieve self-consistency within GW is the so-called
quasiparticle self-consistent GW (QPscG W) scheme [55,56],
which was recently been widely applied to solids. We here
present self-consistent GW spectra and ground-state energies
for simple solids.

As is well known, the DMFT approach works best for the
Hubbard-type model Hamiltonian where only local Coulomb
interactions are present. One may question its ultimate
usefulness to be employed as an embedding scheme for
first-principles Hamiltonians. We think the answer to this
question is positive for the following reasons. First, what
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we wish to capture within RDMFE is not the full hybrid or
GW self-energies, but rather their difference to the LDA or
GGA exchange-correlation (XC) potentials. This difference
is relatively short ranged and easier to capture. Second,
our formulation is similar to cluster DMFT, whereby all
“interatomic” correlations within the embedded cluster are
included, and we explicitly check the convergence of the
calculated results with respect to the cluster size. Third, we
consider this formulation as a natural extension of our previous
work (Refs. [30,31]) where corrections to LDA/GGAs brought
by more advanced methods were only carried out for bare
clusters. Fourth, the RDMFE formalism can be easily extended
to embed a more sophisticated beyond-GW treatment into
a GW environment. Such a GW-based RDMFE scheme
would then treat long-range screening on the GW level and
short-ranged beyond-G W correlations in the local region.
The rest of the paper is organized as follows: The detailed
formalism of our Green’s function based embedding scheme is
derived in Sec II. Section III presents the computational details.
Benchmark results, including both total energies and band
structures for simple bulk systems, are discussed in Sec. I'V.
In Sec. V, we contrast our approach with the aforementioned
embedding schemes. Section VI concludes the paper.

II. SELF-CONSISTENT GREEN’s FUNCTION
EMBEDDING IN REAL SPACE

A. General concept

Inits original formulation [34], DMFT is a Green’s function
method for correlated model Hamiltonians that uses the
locality of the electronic interaction to embed a local onsite
region of the Hubbard lattice, typically a single d or f
level, into a periodic electronic bath defining a self-consistent
scheme. Treating the onsite region locally facilitates the use
of computationally very demanding and at the same time very
accurate (essentially exact) methods such as continuous time
quantum Monte Carlo [57], direct diagonalization, or renor-
malization group techniques [58]. The localized region is then
coupled through a hybridization self-energy to the surrounding
electronic bath, which is treated with computationally more
efficient methods. In the last few years, DMFT has proven
to be very successful in describing the spectral properties of
solids with localized d and f states [59-62].

Further developments include the extension of the DMFT
formulation from a single site to clusters [63,64], the com-
bination of DMFT with first-principles approaches [65-67],
and the formulation of DMFT for nanostructures [68]. A key
feature of all flavors of DMFT is that the local problem (a
single site or a cluster) is solved essentially exactly. To this
end, it is necessary to further reduce the electronic degree of
freedom of the local problem to a correlated subspace. This
is actually a highly nontrivial issue, and a recent discussion
along this line can be found in Ref. [69].

On the other hand, if one takes a step back, and does
not require that the local problem be solved exactly, then the
projection to a correlated subspace is not any more necessary.
The price to pay is that the thus formulated approach may
not be able to treat “strongly correlated problems” such as
the Mott-Hubbard metal-insulator transition. However, one
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Embedded Region

FIG. 2. The DMFT embedding concept for a Si unit cell. The atoms in the unit cell (red region) constitute the embedded submanifold.
Each unit cell of the periodic system is treated as a localized region, i.e., only local interactions £'° are treated. The unit cells are coupled to
the rest of the system via the hybridization self-energy A(iw) (green arrow).

should note that there are a large number of problems where
“Mott physics” is not dominating, yet approaches beyond
LDA/GGAs are required to get quantitatively accurate results.
These approaches include quantum chemistry methods [36],
advanced exchange-correlation functionals of the fourth and
fifth rung Jacob’s ladder [37], and Green’s function based
many-body perturbation theory [38]. They all treat electronic
systems at ab initio level, but are restricted to small systems.
In this work, we make use of the concept of DMFT (more
precisely cluster DMFT) and formulate it as a Green’s function
embedding scheme for the above-noted ab initio approaches.
The motivation is to extend the reach of these approaches
to unprecedented system size. In this work, we take hybrid
functionals and the GW approximation as examples. We
consider the unit cell (or any computational supercell that can
span the whole space when periodically repeated) as embedded
cluster (see Fig. 2). For clusters bigger than the primitive unit
cell, our formalism is similar to cluster DMFT (for a review,
see Ref. [64]), in particular the cellular DMFT scheme [63].
Consequently, the translational symmetry of the original lattice
is lost and only that of the supercell is retained (for further
discussions, see Sec. IV A). The difference of our approach to
cluster DMFT is that we do not attempt to solve the quantum
mechanical problem of the cluster exactly, and hence are able
to treat all electronic degrees of freedom on equal footings.

Compared to the traditional embedding approaches dis-
cussed in the Introduction, popular in computational chemistry
and materials science, our approach permits the charge
flow from one region to the other and therefore naturally
incorporates the boundary between the two regions. No special
treatment is necessary for atoms on the boundary, nor is it a
problem with the boundary cuts covalent bonds.

B. Embedding scheme based on DMFT
1. Green’s function in a nonorthogonal basis set

The embedding framework of DMFT is most conveniently
formulated in terms of Green’s functions. In a finite (and
generally nonorthogonal) basis set {¢;}, the Green’s function
G(r,r',iw) can be expanded as

Gr,r.io) =Y ¢i(r)Gijim)p;(x'), ey
ij

where G;;(iw)is the matrix form of the Green’s function. Here,
we use the Green’s function on the imaginary frequency axis
for computational convenience and without loss of generality.

For a noninteracting Hamiltonian Hi(; = (¢;|HO|¢ ;) le.g., the
Kohn-Sham (KS) Hamiltonian], the corresponding noninter-
acting Green’s function G° in its matrix form satisfies

> o+ w)Su — HY]GY; = 85 )
k

where S;; = (¢;|¢;) is the overlap matrix of the basis
functions, and p is the chemical potential. Using the Dyson
equation that connects the noninteracting Green’s function G°
with the fully interacting one (G), we obtain

Y [Go+ S — Hy, — Zuli)]Gyjliw) = 85, (3)
k
where X(iw) is the electronic self-energy. For periodic
systems, the Hamiltonian and the Green’s functions are
characterized by a Bloch k vector in the first Brillouin zone of
reciprocal space. Equation (3) thus becomes

> o+ wSik) — Hy (k) — Zi(k,io)|Gl(kio) = §;,
k

“

with the lattice Green’s function G"(k,iw). Our implementa-
tion is based on the all-electron FHI-AIMS code package [43],
which uses numerical atom-centered orbitals (NAOs) as its
basic functions. The basis functions {¢;} will thus be NAOs in
our work.

2. “Onsite” Green’s function for a periodic system
The Kk-dependent Green’s function and self-energy in
Eq. (4) can be Fourier transformed to real space,

1.BZ

~ D RRIRGE K iw),
1.BZ K

G¥(R; —Rj.iw) =

1.BZ

Zet(RfR.f»kzij(k,i@, &)

% (R — R;.iw) =
S ! Nipz

where R; and R; are Bravais lattice vectors denoting the
unit cells in which the basis functions i and j are located.
Please note that the Bravais vectors here do not necessarily
correspond to primitive unit cells. When choosing a supercell
as the embedded region, R; and R; then refer to the superlattice
formed by the repetition of the supercells. Ngz is the number
of Kk points in the first Brillouin zone (1.BZ). The concept of
DMEFT is based on the fact that the lattice self-energy becomes
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local, or k independent, in infinite dimension (D = oo) [32].
For a crystal with translational symmetry this implies

Yii(Ri —Rj,iw) = 2}?6("‘0)81"‘3/' 6)

Thus, the self-energy is nonzero only if the two basis functions
originate from the same unit cell. We call this the local (loc) or
“onsite” self-energy, following the terminology of the model
Hamiltonian studies. But, here i and j do not necessarily sit
on the same atom, nor within the same primitive unit cell, if
a supercell cluster is used. In this limit, the whole periodic
system can be mapped onto an effective impurity model of a
local unit cell dynamically coupled to an effective “external”
potential arising from the rest of the crystal.

The first step to establish this mapping is to define the
“onsite” Green’s function, i.e., G;;(R; — R;,iw) with R; =
R;. Using the locality of the self-energy and Eq. (4), we obtain
the following expression for the onsite Green’s function:

on—site
G, ; (iw)

1.BZ

Gl (k,iw)
Nipz Z J

1
Nipz

k

1.BZ

D Lo+ wSk) — H'®) — S(w)] ™. (7)
k

In the DMFT context, this equation is also known as the k-
integrated Dyson equation. So far we have not specified H°. In
our embedding scheme, the environment is treated by KS-DFA
in the LDA or the Perdew-Burke-Ernzerhof (PBE) [70] GGA.
A natural choice of HY is thus the KS Hamiltonian H¥S(k)
within LDA or GGA, that contains the kinetic-energy operator,
the external potential (vex), the Hartree potential (vy), and the
XC potential (vxc):

HS (k) = =1V + vex(K) + vu(k) + vxc (k). (8)

Next, we need to define X'°°(iw) in Eq. (7). If we start from
HXS(K), the onsite self-energy becomes the difference between
the dynamic, complex many-body exchange-correlation self-
energy Xxc(K,iw) and the KS XC potential, i.e.,

1.BZ
EIOC(l‘a)) - Z [Exc(k,iw) - v%(sj(k)]
Nipz 4

= D% (iw) — ViX. ©
Using Eqgs. (7) and (9), we finally obtain

1.BZ

G w) = N ; [(o+ w)Sk) — H (k)

— 2l iw) + vie] (10)

At this point, we would like to briefly comment on the double-
counting issue, which arises commonly when combining
DMEFT with first-principles DFT. The problem occurs because
the contribution of the KS XC potential within the correlated
model space, where the self-energy obtained from the DMFT
calculation is defined, is not clear. However, from the above
derivation, one can see that neither the usage of the KS
Green function as the reference, nor the local approximation
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of the self-energy correction, will necessarily lead to double
counting, provided that the KS XC potential and the many-
body self-energy can be defined and computed in the same
electronic space. This is the case of the RDMFE scheme,
where both the local KS XC potential and the hybrid/GW
self-energies are defined for the embedded cluster. Thus,
we conclude that our scheme is free of double-counting
ambiguities.

3. Embedded Green’s function

In the DMFT formalism, a periodic system is viewed as
a periodically repeated cluster (here the unit or supercell)
dynamically embedded into a self-consistently determined
environment. The coupling between the embedded subsystem
and its surrounding environment is described by a so-called
bath Green’s function G(iw), connecting the Green’s function
of the embedded cluster G*™(iw) and the local self-energy
via

[Giw)] ™" =[G (w)]™ + T (i w). (11)

Here, the local self-energy X'°(iw) is the same as introduced
in Eq. (9). The self-consistency condition of DMFT requires
that the Green’s function of the embedded cluster G*™ (i w)
equals the onsite Green’s function as given in Eq. (7):

G™(iw) = G (iw). (12)

Alternatively, one can also use a so-called hybridization
function A(iw) to describe the coupling between the embedded
cluster and its environment, which provides a more intuitive
picture. A(iw) is closely related to the bath Green’s function

Giw):
[Giw)]™" = (iw+ p)S — H™ — A(iw).  (13)

In Eq. (13), HJ™" is the Hamiltonian of the bare cluster
describing the noninteracting unit cell, i.e., without the v%(s:
contribution and without the presence of the other atoms from
neighboring unit cells (see Fig. 2). This corresponds to the
onsite term of the Hamiltonian of the periodic system, and in
practice can be conveniently obtained from the k-dependent
Hamiltonian

1.BZ

cluster __ KS _ .,KS
HS _—NLBZXk:[H (k) — vie®)]. (14)

Using Egs. (11)—(13), we obtain the following expression
for the Green’s function of the embedded cluster:

[Gemb(ia))]i;l — [(la)+ I»L)S _ H(():]us[er
— ZIG™(iw) — Aliw)];j.  (15)

Here, we have explicitly indicated that the local self-energy is
a functional of the embedded Green’s function. Thus, Eq. (15)
has to be solved self-consistently, which corresponds to the
inner loop of Fig. 3. The functional dependence of X'°*(i) on
G°™(iw) is given by the actual approximation for the localized
region, which will be the topic of the next section. However,
already here we see that our RDMFE approach lends itself
to those advanced electronic structure methods that can be
expressed by (self-consistent) Green’s functions.
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FIG. 3. The embedded [Eq. (15)] and the onsite [Eq. (7)] Green’s
functions define two Dyson equations that form two nested loops.
The two loops are iterated until self-consistency is reached.

Another point we would like to emphasize is the choice
of the cluster overlap matrix S in Eq. (13). We found when
updating the chemical potential of the cluster in the inner
loop that we needed to define the cluster overlap matrix as
— ¥ 5701~ [and not simply s= - 3y sao1 as done
by Kotliar et al. [41] to enforce the correct asymptotic behavior
of A(iw), i.e., lim,_, o A(w) — 0.

C. Local self-energy

So far we had not specified the approximation for the
local self-energy in Eq. (15). In our scheme the choice for
sloe[Gemb] can be quite flexible. In other words, we could
use any approximation that goes beyond LDA and GGAs.
However, our framework lends itself to Green’s function based
approaches. This includes density-matrix and density-based
approaches because both quantities can easily be extracted
from the Green’s function. Below we report on two different
examples, namely, hybrid density functionals that mix a frac-
tion of exact exchange with GGA semilocal exchange [70-72]
and the GW approximation [38]. In practice, we could also
go beyond GW, e.g.,, by including the screened second-
order exchange (SOSEX) self-energy that was developed
recently [73].

We here use the PBE hybrid functional family (PBEh) [74],
whose most prominent functional is PBEO [75]. We will also
use the short-ranged range-separated hybrid functional family
by Heyd, Scuseria, and Ernzerhof (HSE) [72]. In PBEh, the
local self-energy in Eq. (9) is given by

T (@) = [aE;gc (1 — o)y + vg’c] — vy
= (Y — vy°). (16)

In Eq. (16), vl"c is the onsite part of the GGA exchange, and
Z%?C is the exact-exchange matrix given by

[ZX°],; = D (ikljng™, (17

k.l

where (ik|lj) are two-electron four-orbital integrals, and nemb

is the density matrix of the embedded cluster which can be
obtained from the embedded Green’s function

1

L / do G™(iw) e (18)
2 ’

The two-electron Coulomb repulsion integrals are evaluated
using the resolution of identity (RI) technique in FHI-AIMS as
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documented in Ref. [45]. The PBEO functional is obtained for
a = 0.25[75].

The extension to an HSE type self-energy is straightfor-
ward. In HSE, a range-separation parameter is introduced that
cuts off the exact-exchange contribution at long distances. The
range is controlled via the screening parameter y so that the
local exchange self-energy becomes

R0 = 570 + 5, (19)

with SR and LR denoting the short- and long-range parts,
respectively. If we now replace T“"*(y) by vi®® and
introduce the o parameter again, the local HSE self-energy
assumes the following form:

@) = ¢ (S 0) — o (). (20)

Furthermore, we employ the GW approximation for the
local self-energy. Here, the computation of the G W self-energy
for a given input embedded Green’s function follows the
self-consistent GW implementation for finite systems in FHI-
AIMS [45,50]. On the imaginary-time axis, the G W self-energy
for the embedded cluster is obtained as

[zgg(n) ZM M} G GT)W G )], (21)
Zk;w

Here, p,v indices refer to the auxiliary basis set used
to expand the screened Coulomb interaction W' in the
RI approach [45,50]. Furthermore, Mi’z are the three-index
coefficients obtained as

Ml =Y (ik|)V,) 2, (22)
where
) = / e g $OBE) P o3
Ir —r'|
and
Vi = f dr ay O (24)
[r—r'|

with {P,(r)} being the auxiliary basis functions. For W we
thus obtain

Wisio) =Y Viall = T*(w)],,., (25)
where IT°(iw) the irreducible polarizability, whose Fourier
transform in the time domain is directly determined by the
embedded Green’s function
Mee(it) = —i Y MM}, G (TG (—iT).  (26)
ijlm

D. Self-consistency loops

In our formalism, Egs. (15) and (17) or (21) define an
additional inner self-consistency loop for the local self-energy
as depicted in Fig. 3. Good convergence is achieved by a linear
mixing

T = AT 4 (1 — A)Ze (27)

n—1°

with a mixing parameter A = 0.5. More advanced mixing
schemes could be implemented as well, but we found that
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convergence
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FIG. 4. Typical change in the chemical potential during the self-
consistency cycle for a bulk Si calculation. Convergence is reached
after five iterations of the outer loop. Already at the second iteration
the chemical potential is close to its converged value.

linear mixing works well for the examples presented in this
work. When the inner loop reaches convergence, we feed the
resulting %' back into the onsite GF and iterate the main loop
further using the same mixing as for the inner loop.

Finally, it is worth mentioning that the onsite Green’s
function as defined in Eq. (7) requires that our %'°° in the onsite
Green’s function in the zeroth iteration should be T{*° = Vi%.
Figure 3 shows a sketch of the embedding scheme as described
above. During the self-consistency cycle, we compute the
particle number N,, a quantity that is obtained from the
embedded Green’s function via

N, =—5-Tr / do G (@,we . (28)
To ensure particle-number conservation, we need to update the
electron chemical potential every time we receive a converged
self-energy from the inner loop. For the present test cases,
we found that the change in the chemical potential is relatively
small, as demonstrated in Fig. 4 for bulk silicon (Si). However,
we expect it to be more important for metallic systems.

E. Total-energy calculation

Once self-consistency in the embedding scheme is reached,
we can compute the total energy of the entire systems (the
embedded cluster plus the environment) using the converged
lattice Green’s function G;;(K,w). The actual total-energy
expression depends on the chosen methodology used in the
embedded region. For hybrid density functionals, we have

1
Eg' = N Z thi(k)nij(k) + Ees[n] + Exelngj,
1.BZ kK i)
(29)
where
V2 .
i) = Y (0| = —|gix R (30)

R

is the matrix form of the kinetic energy operator, E¢s the
electrostatic (Hartree plus external) energy, and E;ycb the XC
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energy. In Eq. (29), n;; is the k-dependent global density matrix
d :
nij (k) = / 2 Gl K iw)e ™" 31
27 Y

and n is the electron density obtained from n;;(k). We note
that Eq. (29) is the exact total-energy expression for the hybrid
density functional, and the only approximation is that the
density matrix n;;(k) (and hence electron density ) is obtained
from the RDMFE scheme and not from a periodic hybrid
functional calculation.

However, Eq. (29) cannot be directly applied since evalu-

ating E?(ycb as a functional of the k-dependent density matrix
n;;j(K) requires the computation of the exact-exchange energy
for the entire periodic system, which is exactly what we are
trying to avoid here. Instead of evaluating E;(ycb [n;;(k)] in full,

we thus only compute the change of E;ycb with respect to the
local or semilocal (LDA or GGA) energy in the embedded
region. This is the main approximation of our approach,
which is consistent with the spirit of the local self-energy
correction in the RDMFE scheme, and is suggested by the
nearsightedness of the XC energy of a bulk system (although
the exact-exchange energy is probably not the most nearsighted
self-energy we could have chosen) [76].

The Hartree energy depends on the electron density in a
highly nonlocal way and it is questionable if a local treatment
can be applied to the Hartree energy at all. Therefore, for
simplicity, we omit possible changes in the Hartree and the ex-
ternal energy for now, assuming that the electron density given
by the local or semilocal approximation is already sufficient.

Finally, we are left with the kinetic energy term which
also changes when moving from local or semilocal to hybrid
functionals. For consistency, kinetic and XC energy should
be taken together. In our scheme, we evaluate the changes
of the kinetic and XC energy caused by the local self-energy
correction within the embedded region.

Based on the above considerations, we propose the follow-
ing approximate total-energy expression for embedded hybrid
functional calculations:

hyb . KS emb KS
Eg ~ Etol + 2 :tji(n" —n )
ij

ij ij
+ Exc [nff*] = BRI, (32)
where n™ is the embedded density matrix as defined in

ij
Eq. (18), and n}$® is the onsite density matrix of KS-LDA/GGA

calculations. n¥S(r) is obtained from the onsite KS density
matrix

n*Sr) =Y gi(onf e, m), (33)
ij

and E)Ig(s: [nXS] is thus restricted to the embedded region.
For GW we can proceed in an analogous fashion

1
B =y Z;[rﬁ(km,-_,-(k)]

k

+ Eeln] + EGY[GH], (34)
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where

a 1 1 dCL) w0+
EggV[Gilt] =3 Z Nioy / Ezji(k,w)Gij(k,a))e 0
— N

(35)

following directly from the Galitskii-Migdal (GM) for-
mula [77]. Similar to the hybrid functional case, we will not
take the full k dependence in EGY [Gﬁ‘}‘(k,i )] into account.
Instead, we adopt the same philosophy as before and make a
local approximation

GW . pKS ( emb _ KS
Eg ~Eg + E :tj,(nij njj )
ij

+ESY[GiM™(iw)] — EXCIn®®], (36)
where

EGY[Gs™] = % / %zﬁcaw)c?;‘lb(iw)e*fwoﬂ (37)

To summarize this part, in RDMFE the total energy of the
entire system can in principle be obtained from the lattice
Green’s function. However, in practice, approximations are
needed to make the problem tractable. The expressions for
hybrid functional and GW calculations proposed above are
consistent with the local nature of the self-energy approxima-
tion in RDMFE, but their performance needs to be checked in
practical calculations. Future work needs to revisit total-energy
calculations in RDMFE.

III. COMPUTATIONAL DETAILS

We used tight FHI-AIMS integration grids for all our RDMFE
calculations. For the embedded PBEh and HSE self-energy we
used the tier 1 basis set. Figure 5 shows the embedded PBEh
total and cohesive energies with increasing basis set size. The
lattice Green’s functions were represented on a logarithmic
frequency grid with 40 points. The total-energy calculations for
2- and 8-atom silicon unit cells and the density of states (DOS)
calculations for 8- and 16-atom unit cells were performed on
a 4x4x4 k-point grid, which we increased to 10x 10x 10 for
DOS calculations in the 2-atom unit cell. GW calculations
were performed in a fier 3 basis set with 40 frequency/time
points in the inner loop and the same number of k points as
for PBEh. The linear mixing parameter A was fixed to 0.5,
which gave reasonably fast convergence. The periodic PBE
and PBEOQ reference calculations were performed using the
tier 1 basis set and a 12x12x 12 k mesh.

Densities of states are obtained in two different ways.
In PBEh and HSE we obtain a self-energy that defines
a converged Kk-dependent embedded Hamiltonian via the
converged lattice Green’s function once the self-consistency
cycle is converged. For the PBEh self-energy we can directly
diagonalize the embedded Hamiltonian H embed () = HO(k) 4
e, at each k point, which yields k-dependent eigenvalues
and eigenstates. The resulting density of states (DOS) is
nle(k)] = >, 8le(k) — €,(k)], where v labels the eigenstates
of H®™*d(k). To make the comparison to experiment easier,

PHYSICAL REVIEW B 93, 165106 (2016)
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FIG. 5. RDMFE(PBEQO) total energy (upper panel) and cohesive
energy (lower panel) for bulk Si with a two-atom unit cell as function
of the basis size. The energy zero is set at the value of the tier 1 basis.

we introduce a Gaussian broadening

~ 2
(&) = /dkexp<—€_TZ(k)> (38)

to obtain the DOS N(€) = ), £,(é). In this work we use a
Gaussian broadening of 0 = 0.2 eV.

For the GW self-energy, the spectrum at each k point is
directly given by the Green’s function as

Ak, w) = —%Tr{ImGl‘“(k,a))}. (39)

To determine G'*(k,w) on the real-frequency axis, we ana-
Iytically continue the self-energy from the imaginary to the
real axis. In practice, we fit a two-pole model, that has proven
to work very well for the systems we tested, to each matrix
element of the self-energy [45,78]

2

Siw)~ Y — (40)

ia)—ﬂn’

n

where o, and B, are complex fitting parameters. We then
evaluate Eq. (40) for real frequencies and solve Dyson’s
equation for G (k,w). The spectral function subsequently
follows from a k summation A(w) = ), A(k,w), which we
convolute with Gaussians as

A@) = f doe 7 A(w), 1)

with a broadening that we choose to be 0 = 0.01 eV to obtain
a DOS A(®) that we can compare with experiment.
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FIG. 6. RDMFE(PBEO) DOS comparison at each iteration of the
main loop. Convergence was achieved after five main-loop iterations.

IV. RESULTS

Having introduced the concept of RDMFE and our imple-
mentation in the previous sections, we now turn to benchmark
calculations for hybrid functionals, for which we have an
independent, periodic reference in FHI-AIMS [46]. Then, we
present self-consistent GW calculations for which such a
periodic reference does not yet exist in FHI-AIMS. We choose
bulk Si as test system since it is a reliable and well-studied
reference case.

A. Density of states and band structures

We begin our benchmark tests by calculating the DOS at
each iteration to investigate its evolution with each embedding
cycle. Figure 6 shows the DOS at different iterations of the
outer loop for a two-atom unit cell of silicon. We observe that
the largest change occurs at the first iteration when moving
from PBE to our embedded PBEO DOS. For subsequent
iterations, the DOS changes are much smaller.

When comparing the converged RDMFE(PBEO) DOS for
the two-atom unit cell with the periodic PBE and PBEO DOS
shown in Fig. 7, we observe that the band width and band gap
are larger than in PBE and are closer to the PBEO reference.

: o périoaic PBE 2 atoms in unit cell
0.8 RDMFE(PBEO)
% 0.6
8 0.4
a
0.2

91 5

0 5
Energy [eV]

FIG. 7. Comparison of the RDMFE(PBEO) DOS, the periodic
PBE, and the periodic PBEO DOS for a two-atom unit cell.
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FIG. 8. Comparison of the RDMFE(PBEO) DOS, with the peri-
odic PBEO DOS for an 8-atom unit cell (upper panel) and a 16-atom
unit cell (lower panel).

When increasing the unit-cell size to 8 and 16 atoms (see Fig. 8)
the difference between the embedded DOS and the periodic
PBEO DOS reduces systematically. The resulting RDMFE
band gaps for different unit cell sizes are compared with the
PBE and the PBEO values in Table I. With increasing unit-cell
size, the band gap increases and approaches the PBEQ value.
Next, we consider the band structure for the two-atom unit
cell shown in the upper panel of Fig. 9. We see the same trend
as for the DOS: the band gap and the band width approach
PBEO and so do the bands in general. However, at some high-
symmetry points the degeneracy of certain bands is lifted. The
origin of this degeneracy lifting is the break of the crystal
symmetry that we introduce with the local self-energy. It is
a well-known artifact and has been discussed extensively in
the context of cellular and cluster DMFT [80,81]. The local
self-energy simply does not “know” about the symmetry of
the crystal and can therefore not enforce it. The solution to
the problem is then obvious: the approximation of the locality
of the self-energy needs to be improved. If the self-energy
would extend over a larger region (i.e., supercell) it would
acquire more information about the crystal symmetry. Then,
the degeneracy splitting should reduce. In the two lower panels
of Fig. 9, we present an unfolded band structure [82] for the
16- and 32-atom unit cells. We indeed observe a reduction in
the splitting for both the 16- and 32-atom unit cells. However,
while the degeneracy is fully restored for some high-symmetry
points, it is still broken for others such as the X and Z points.
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TABLE 1. Comparison between PBE, PBEO, and RDMFE(PBEOQ) for different unit-cell sizes for the indirect band gap of silicon. The

experimental value [79] is shown for reference.

RDMFE(PBEO)
PBE PBEO 2 atoms 8 atoms 16 atoms Experiment (at 300 K) [79]
Band gap (eV) 0.68 1.85 1.20 1.257 1.569 1.12

To obtain the RDMFE(GW) band structure, we calculate the
RDMFE(GW) spectral function at each k point. We then turn
this information into a two-dimensional (2D) plot by color
coding the intensity. The result is illustrated in Fig. 10 for
bulk Na (with one atom in the unit cell) along the I'-N path
and shows that the two-pole fit [Eq. (40)] for the analytic
continuation is also applicable to metals. Our RDMFE(GW)
band structure exhibits a larger band width compared to
periodic PBE calculation and to previous quasiparticle self-
consistent GW calculations [55,83]. However, we like to
reiterate that our results are preliminary in the sense that the
calculations have been performed for only one atom in the unit
cell and the unit-cell size convergence will have to be checked
carefully.

We will now turn to the GW spectra. The total spectral
function for bulk Si with two atoms in the unit cell at the first
iteration is shown in Fig. 11. Since Dyson’s equation has been
solved once, this spectrum is not equivalent to perturbative
Gy W, spectra and we would expect to see plasmon satellites.
The spectrum shows a broad peak between —40 and —30 eV,
which has been identified as plasmon satellite [84,85]. Such
satellites are completely absent in KS band structures or in
Gy Wy because Gy W only corrects the KS states and does not
yield new states. The energy range of the RDMFE satellite
agrees well with previous periodic GW calculations [84,85]
and demonstrates that our dynamic, local RDMFE framework
can capture nonlocal phenomena such as plasmon satellites.
For scGW the converged DOS is also shown in Fig. 11. As
demonstrated by Holm and von Barth [86] for the electron gas,
full self-consistency in G and W leads to a deterioration in the
GW spectral function due to the neglect of vertex corrections.
Thus, the fact that the plasmon satellite disappears at self-
consistency is not surprising. We obtain a band gap of ~0.9 eV
for the two-atom unit cell, which is close to the experimental
value of ~1.12 eV [87]. This comparison together with the
one between the indirect band gap from our calculation and
experiment [79] are presented in Table II.

B. Embedded total energies:

For scGW we currently do not have a periodic reference to
compare to, as alluded to before. We can, however, construct
another test case and benchmark against our scG W implemen-
tation for finite systems [49,50], where the total energy was
computed from the Galitskii-Migdal formula [77]. We achieve
this by considering the molecular limit of a unit cell, i.e., the
limit of an isolated unit cell with a lattice constant of ~20 A.
The benchmark results for He, H,, and Na, are presented in
Table III, which shows the XC components that enter the total
energy as given by Eq. (37). &V is the molecular scGW
XC self-energy and G*¢%(iw) the corresponding Green’s

function at convergence. £ is local XC self-energy and
G (jw) the embedded Green’s function both obtained at
convergence of the RDMFE cycle. Table III illustrates that the
components entering the embedded total energy agree almost
to the meV level with the corresponding components from
the finite systems scGW calculation, which demonstrates the
reliability and robustness of our implementation.

We then investigated the convergence of the total energy
with respect to the increase of the unit-cell size for RDMFE
PBEO and scGW. For embedded PBEOQ, we performed calcu-
lations for bulk Si up to 32 atoms in the unit cell, whereas for
GW we considered bulk He in the fcc structure up to 64-atom
unit cells. To reach larger systems, a full parallelization of our
implementation would be required. The upper panel of Fig. 12
shows the comparison of our embedded PBEO cohesive energy
with the periodic PBE and the periodic PBEO energy. We also
include a third reference in which we added the kinetic and XC
energy of a PBEO calculation to the PBE energy, which most
closely resembles our RDMFE approximation. We see that
with increasing unit-cell size the embedded cohesive energy
approaches the periodic PBEQ value, but then dips below. This
is not surprising since our embedded cohesive energy does
not account for changes in the electrostatic energy. Instead,
the RDMFE curve approaches the PBEO reference value from
which the electrostatic change has been removed. However, the
convergence to the periodic limit is relatively slow. This can
be related to the long-range nature of the HF exact exchange
as we will show later on using a range-separated self-energy
(see the discussion of Fig. 13). For the GW self-energy,
however, the total energy seems to converge much faster and
only changes in a very small range. This is shown in the lower
panel of Fig. 12.

To better visualize the interplay between locality and
unit-cell size in our scheme we also present results of the
HSE range-separated exact-exchange self-energy. We vary
the range-separation parameter to model different degrees
of locality, but keep the percentage o of exact-exchanged
fixed. We then translate the range-separation parameter into
a radius Rgphere in real-space using the relation y = Rs_plllere
and determine the number of atoms that fit inside. We have
considered range-separation parameters y that correspond to
spheres enclosing 2-, 4-, 8-, and 16-atom unit cells. For each
y, the resulting embedded total energy is plotted in Fig. 13
as a function of the size of the unit cell (upper panel). The
lower panel shows the volume of the surrounding sphere for
the different y parameters and for the different unit-cell sizes.
We indeed observe that the total energy converges faster with
unit-cell size, the shorter the range of the nonlocality in the
HSE self-energy. This proves that RDMFE becomes a viable
option for self-energies, whose range only encompasses a few
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FIG. 9. Upper panel: the RDMFE(PBE(O) band structure for
bulk Si compared to the periodic PBEO one. The local self-energy
breaks the translation symmetry and the degeneracy gets shifted at
some high-symmetry k points. Middle panel: the RDMFE(PBEO)
unfolded band structure for the 16-atom unit cell. The degeneracy
shifting gets reduced compared to the 2-atom case. Lower panel: the
RDMEFE(PBEO) unfolded band structure for the 32-atom unit cell.
Also, here the degeneracy is restored in most of the high-symmetry
points.
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RDMFE(GW)

Energy [eV]

FIG. 10. The band structure of bulk Na determined from the
k-resolved RDMFE(GW) spectral function along the I'-N direction,
compared to the periodic PBE one (blue solid line). Both band
structures are aligned at the same chemical potential.

nearest atoms. In that sense, PBEQ had been the toughest test
because its range is infinite.

Finally, we briefly discuss cohesive properties as described
by the RDMFE scheme. In Fig. 14, we show the total energy of
bulk Si as a function of the lattice constant for RDMFE(PBEO),
scGW, and for periodic PBEO. For RDMFE(PBEO) (upper
panel) our calculations for a 2-atom unit cell already give a
minimum that is below the PBE one and very close to the
experimental value of 5.43 A [88] (see Table IV). However,
for an 8- and a 16-atom unit cell, the lattice constant reduces
slightly and reaches its converged value already for the
8-atom unit cell. For RDMFE(GW), the minimum for the
2-atom unit cell (lower panel) also lies below the PBE value
and already agrees fortuitously well with the experimental
value. Our RDMFE(GW) lattice constant is slightly larger
than that reported by a recent periodic self-consistent GW
calculation [53]. We also performed a Birch-Murnaghan [89]
fit of the total-energy curves to extract the bulk moduli for
RDMFE(PBEO) and RDMFE(GW). The resulting values are
reported in Table IV. For the RDMFE(PBEO) calculation,
the bulk modulus of the 2-atom unit cell is smaller than the

6 T T T T T T T T T T
Bulk Si
[~ 2 atoms unit cell ]
broadening: 0.01 eV

— 4} |
>

<
~
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FIG. 11. Gaussian broadened (with broadening o = 0.01 eV)
quasiparticle spectrum for the RDMFE(GW) self-energy at first
iteration (red curve) and at self-consistency (blue curve). Only
occupied states are shown.
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TABLE II. Direct and indirect band gaps as calculated from RDMFE for the GW self-energy. Comparison is made with the periodic scGW
work of Kutepov et al. [53] and the quasiparticle self-consistent GW calculation of Kotani et al. [56] and experiment.

Band gap RDMFE(GW) Periodic scGW [53] QPscGW [56] Experiment (at 300 K)
Direct (I'y5.) (eV) 3.70 347 3.40 [79]
Indirect (E,) (eV) 0.90 1.55 1.25 1.12 [87]

experimental value. For the 8-atom unit cell, however, the bulk
modulus is considerably increased before it takes a value that is
reasonably close to experiment for the 16-atom unit cell. For all
unit-cell sizes the RDMFE(PBEOQ) bulk modulus is larger than
the periodic PBEO value. Conversely, the RDMFE(GW) bulk
modulus for the 2-atom unit cell is considerably smaller that
the periodic scGW reference and the experimental value. This
suggests that an investigation of larger unit cells is mandatory
and will be carried out in future work.

V. DISCUSSION

We have presented an embedding scheme for periodic
systems that builds on DMFT. In our approach, the electron
interacting across periodically repeated unit cells is mapped
onto an onsite problem, in which the electrons only interact
directly in one unit cell, but are dynamically coupled to a pe-
riodic bath of electrons. The coupling between the embedded
system and the surrounding is constructed naturally by means
of Green’s functions. Due to its dynamic nature, the bath can
exchange electrons with the embedded region. Our embedding
scheme is most suitable for systems with periodic boundary
conditions, as the translational symmetry with respect to
the computational supercell is preserved. Furthermore, we
transfer the nonlocality of a self-energy into a frequency
dependence, a concept that has previously been explored by
Gatti et al. [91] and in the spectral density-functional theory
of Kotliar er al. [92]. We note that the only approximation
introduced in our scheme is that the nonlocal XC coupling
between neighboring unit cells (or computational supercells)
isincluded only at the KS GGA level, and neglected in the more
advanced (here hybrid functional or G W) treatment. In other
words, the self-energy correction to the GGA XC potential is
k independent, an intrinsic feature of DMFT.

We now compare our scheme to other embedding schemes.
For the hybrid QM:MM approach a clear separation between
the embedded region and the surrounding and the treatment of
the boundary atoms is not always obvious [26,93]. For system:s,
in which classical electrostatics dominate such as ionic or

molecular solids, the separation between ions and molecules
is natural. However, for covalently bonded systems it becomes
more difficult to define the QM:MM partitioning. Thus,
typically covalent bonds are cut at the QM:MM boundary,
which produces dangling bonds that need to be saturated. A
multitude of models with different levels of accuracies have
been developed to tackle these issues. One example is the
CHEMSHELL framework [94,95] that supports Hartree-Fock
and hybrid functionals in the embedded region and that has
recently been coupled to FHI-AIMS [39].

Another popular approach is “our own N-layer integrated
molecular orbital molecular mechanics” (ONIOM) by Mo-
rokuma and co-workers [25,96]. ONIOM is a so-called
extrapolative (or subtractive) scheme in which the total energy
of the whole system is given by

Eoniom = ErL — EmL + Ewvn, (42)

where the RL refers to the real (or full) system at the lower
level, ML refers to the model (or embedded) system at the
lower level, and MH labels the model system for the higher
level theory. In contrast to the additive QM:MM scheme,
ONIOM does not need an additional coupling Hamiltonian to
describe the QM/MM interation. When a QM/MM boundary
cuts through a covalent bond, link atoms (mostly hydrogen
atoms) are added to cap the unsaturated QM boundary for the
model calculations. Even if it is common to use MM methods
for describing the surroundings, the ONIOM scheme was
recently extended to deal with two-layer two-QM embedding,
ONIOM(QM1:QM2), where HF was used for the surroundings
and the embedded model region is described by MP2 or
B3LYP. The QM1/QM2 interactions, including electrostatic
interaction, mutual polarization, and charge transfer, are
described at the lower QM level.

Our RDMFE scheme is distinctly different from the
ONIOM(QM1:QM?2) approach. First, the RDMFE scheme is
formulated in terms of Green’s functions, whereas ONIOM is
based on a partition of total energies. As such, spectral proper-
ties come out naturally from RDMFE, while the evaluation of
total energies is more involved, as discussed in Sec. IIE. The

TABLE III. Exchange (X) and correlation (C) components of the RDMFE(GW) total energy, ESY [G*™], as given by Eq. (37) in the
limit of an isolated unit cell (large lattice constants): a benchmark against the standard scGW calculation for finite systems [49], labeled by

EZV[G*C"]. All energies are in eV.

Term He H, Na,

EGVIGe™] = 1 [ dosieGemb(jw)e o0 —27.173906 —17.503642 —760.630196
EGVIG =1 [ %EggGwascGW(iw)e*m"* —27.181325 —17.505250 —760.632183
EEGVIGe™] = 1 [ 4o 5le(iw) G (iw)e 0" —1.744578 —2.3053908 —2.457104
EGVG* M =1 [ %EgGW(iw)G“GW(iw)f"w"* —1.737910 —2.304200 —2.455707
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FIG. 12. Upper panel: the RDMFE(PBEOQ) cohesive energy for
bulk Si for increasing unit-cell size. Lower panel: the RDMFE(GW)
total energy for bulk He for increasing unit-cell size, where the blue
region indicates a change in the range of ~ 20 meV. Both curves are
referenced to the PBE total energy.

opposite is true for the ONIOM(QM1:QM2) scheme. Second,
within RDMFE, the effect of the environment is encoded in the
bath Green’s function that describes an electron reservoir with
which the embedded cluster can exchange electrons freely.
In other words, the electronic states in the embedded system
are not forced to localize within the cluster, but are allowed
to delocalize into the surrounding system. Thus, dangling
bonds pose no conceptual problem and boundary effects are
not significant since they diminish quickly as the size of the
cluster increases. In contrast, in ONIOM(QM1:QM2), like in
most other embedding schemes in computational chemistry,
link atoms are needed to saturate the dangling bonds when
chemical bonds are broken. Therefore, ONIOM(QM1:QM?2)
is most appropriate for describing systems with localized
electrons, whereas RDMFE has no problem in dealing with
delocalized electrons, especially metallic systems. Third,
RDMEE, as is formulated right now, is only applicable to
periodic systems that are relevant to solid-state physics, while
ONIOM(QM1:QM2) is most suitable for describing molecules
and clusters that are of interest to chemical and biological
applications.

Addressing the problem of CO adsorption on Cu(111) [18],
Hu, Reuter, and Scheffler [30,93] developed a cluster ex-
trapolation scheme that is based on performing a cheap
(LDA/GGA) calculation for the periodic system then cor-
recting the resulting total energy by AExc = ES&'[LDA/
GGA] — Eg® [“better”], where E$&''[LDA/GGA] and
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FIG. 13. Upper panel: the RDMFE(HSE) total energy for bulk
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better comparison. Lower panel: the change of the sphere radius and
screening parameter y (on a reciprocal scale) with the volume of the
sphere surrounding the 2-, 4-, 8-, and 16-atom unit cells.

E;ggs‘“[“better”] are the cluster XC-energy parts of a cluster
calculation with the cheaper (LDA/GGA) and the “better”
theory, respectively, while the cluster itself has been cut out
from the periodic system. Increasing the cluster size, they
could then show that the correction AExc converges for
relatively small cluster sizes (~16 atoms) and thus much faster
than E{&'[“better”] alone. This cluster extrapolation concept
is similar to that of ONIOM(QM1:QM2) described above, but
link atoms were not used for the cluster calculations.

Whitten and co-workers also approached molecular adsor-
bates on metal surfaces [28]. They developed an embedding
scheme that builds on identifying a localized subspace that
has maximal exchange overlap with the valence orbitals of the
atoms within and bordering the adsorbate. The localized sub-
space is then solved using the CI method, for a fixed Coulomb
and exchange potential constructed from the localized orbitals.
However, the approach mimics the real periodic system using
a large cluster of atoms, which fails in describing the system
accurately. Additionally, no systematic cluster extrapolation
has been studied. In a similar spirit, Huang and Carter
developed a density-functional-based embedding scheme [29].
The scheme relies on the fact that the density is additive, i.e.,
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FIG. 14. The RDMEE total energy for bulk Si as a function of the
lattice constant: RDMFE(PBEOQ) is shown in the upper panel, where
the values for the 2-atom unit cell (blue curve) and 16-atom unit cell
(red curve) are compared to the periodic PBEO (green curve) and
experiment [88] (vertical cyan solid line). The equilibrium lattice
constant for the 8- and 16-atom unit cells is indicated with the
vertical red solid line. The RDMFE(GW) total energy (red curve) is
illustrated in the lower panel. Comparison is made with the periodic
PBE (black curve). Lattice constant from periodic scGW from the
work of Kutepov et al. [54] is indicated by the vertical green solid
line.

that the total electron density can be partitioned into the density
of the embedded region and the density of the embedding
surrounding. Proceeding as such allows the definition of
an embedding density potential, that is a functional of the
total and the embedded density. Adding this potential to
the embedded Hamiltonian and solving the resulting KS
Schrodinger equation self-consistently leads to the desired
embedded density. For the embedded region, correlated wave-
function methods are typically used, while for the embedding
potential the optimized effective potential method or kinetic
energy density functionals are employed. Moreover, due to
the static nature of the embedding potential, no dynamical
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methods can be used to describe the embedded region, which
limits the applicability to ground-state properties.

For point defects in semiconductors, Scheffler e al. [26]
devised a self-consistent Green’s function method to compute
the change in density induced by the presence of the defect.
They considered this change as being a perturbation to the
perfect crystal and solved the resulting Dyson equation self-
consistently. Using the fact that defects are well localized in
real space, they correct the Hellmann-Feynman force of the
perfect crystal, calculated with force fields, by a contribution
containing the change in density due to the defect, calculated
with KS-DFA. They showed that the resulting Hellmann-
Feynman force is comparable in accuracy to a full DFA
calculation.

Finally, it is also worth mentioning that we perform fully
self-consistent GW calculations [45,50] in our scheme, which
is conceptually different from the so-called quasiparticle
self-consistent GW concept [55,56] (QPscGW). In QPscGW
a series of GoW, calculations is performed. In each iteration,
the “best” G is determined that most closely resembles
the GW Green’s function of the current cycle. In practice,
a static, nonlocal potential is constructed that approximates
the GoWy self-energy. This nonlocal potential defines a new
noninteraction Hamiltonian H, that produces a new input
Green’s function G¢. Since the QPscGW concept also requires
the calculation of the full nonlocal GoW, self-energy, our
expectation is that it will be easier to go beyond GW in our
RDMEE framework.

VI. CONCLUSIONS

We have presented an embedding scheme for periodic
systems based on Green’s functions in the DMFT framework,
which maps an infinite periodic system to a single-site (single
unit cell) problem coupled to an electronic bath that needs to
be determined self-consistently. Our RDMFE Green’s function
mapping allows a natural definition of the embedded region
and defines a self-consistency loop which, at convergence,
yields self-consistent Green’s functions. The coupling to the
surrounding is of dynamical nature enabling electron exchange
between the embedded region and the surrounding. We showed
that our scheme produces densities of states and total energies
that converge well with increasing size of the embedded region.
We also demonstrated that the main features of the “better”
theory are rapidly captured within our scheme; for example,
the plasmon satellite already appears in RDMFE(GW) calcu-
lations for two atoms in the Si unit cell. RDMFE is therefore a
promising embedding scheme, that has the potential to make
sophisticated and computationally expensive first-principles
theories available for periodic systems.

TABLE IV. Bulk Si equilibrium lattice constant and bulk moduli B, for the RDMFE(PBE(O) and RDMFE(GW). Comparison is made with
periodic PBEQ performed with FHI-AIMS, the periodic scGW work of Kutepov et al. [54], and experiment [88,90].

RDMFE(PBEO) Periodic PBEO RDMFE(GW) Periodic scGW [54] Experiment
Unit-cell size 2 atoms 8 atoms 16 atoms 2 atoms 2 atoms
Lattice constant (/f\) 5.45 5.40 5.40 5.43 543 5.39 5.43 [88]
Bulk modulus B, (GPa) 95.14 129.07 101.33 84 80.37 100.7 99 [90]

165106-13



CHIBANIL REN, SCHEFFLER, AND RINKE

ACKNOWLEDGMENTS

X.R.acknowledges the helpful discussion with Professor D.
Vollhardt and Professor L. Chioncel. This work was supported
by the Academy of Finland through its Centres of Excellence

PHYSICAL REVIEW B 93, 165106 (2016)

Programme under Projects No. 251748 and No. 284621.
Work at University of Science and Technology of China was
supported by the Chinese National Science Foundation Grant
No. 11374276.

[1] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[2] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev.
Lett. 49, 1691 (1982).
[3] P. Mori-Snchez, A. J. Cohen, and W. Yang, J. Chem. Phys. 125,
201102 (2006).
[4] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
[5] L. J. Sham and M. Schliiter, Phys. Rev. Lett. 51, 1888 (1983).
[6] P. Mori-Sanchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett.
100, 146401 (2008).
[7] O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274
(1976).
[8] J. F. Dobson and J. Wang, Phys. Rev. Lett 82, 2123 (1999).
[9] A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005
(2009).
[10] I. D. White, R. W. Godby, M. M. Rieger, and R. J. Needs,
Phys. Rev. Lett. 80, 4265 (1998).
[11] K. S. Thygesen and A. Rubio, Phys. Rev. Lett. 102, 046802
(2009).
[12] C. Freysoldt, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 103,
056803 (2009).
[13] T. C. Leung, X. W. Wang, and B. N. Harmon, Phys. Rev. B 37,
384 (1988).
[14] J. Zaanen, O. Jepsen, O. Gunnarsson, A. Paxton, O. Andersen,
and A. Svane, Phys. C (Amsterdam) 153-155, 1636 (1988).
[15] W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).
[16] L. E. Mattheiss, Phys. Rev. B 5, 290 (1972).
[17] L. E. Mattheiss, Phys. Rev. B §, 306 (1972).
[18] P. J. Feibelman, B. Hammer, J. K. Ngrskov, F. Wagner, M.
Scheffler, R. Stumpf, R. Watwe, and J. Dumestic, J. Phys. Chem.
B 105, 4018 (2001).
[19] I. Mehdaoui and T. Klner, J. Phys. Chem. A 111, 13233
(2007).
[20] 1. Mehdaoui and T. Kliiner, Phys. Rev. Lett. 98, 037601 (2007).
[21] 1. Mehdaoui and T. Klner, Phys. Chem. Chem. Phys. 10, 4559
(2008).
[22] D. Zgid and G. K.-L. Chan, J. Chem. Phys. 134, 094115 (2011).
[23] U.C. Singh and P. A. Kollman, J. Comput. Chem. 7, 718 (1986).
[24] M. J. Field, P. A. Bash, and M. Karplus, J. Comput. Chem. 11,
700 (1990).
[25] F. Maseras and K. Morokuma, J. Comput. Chem. 16, 1170
(1995).
[26] M. Scheffler, J. P. Vigneron, and G. B. Bachelet, Phys. Rev. B
31, 6541 (1985).
[27] J. Bormet, J. Neugebauer, and M. Scheffler, Phys. Rev. B 49,
17242 (1994).
[28] J. L. Whitten and T. A. Pakkanen, Rev. Phys. B 21, 4357 (1980).
[29] C. Huang and E. A. Carter, J. Chem. Phys. 135, 194104 (2011).
[30] Q.-M. Hu, K. Reuter, and M. Scheffler, Phys. Rev. Lett. 98,
176103 (2007).
[31] X. Ren, P. Rinke, and M. Scheffler, Phys. Rev. B 80, 045402
(2009).

[32] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

[33] A. Georges and G. Kotliar, Rev. Phys. B 45, 6479 (1992).

[34] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys. 68, 13 (1996).

[35] G. Knizia and Garnet Kin-Lic Chan, Phys. Rev. Lett. 109,
186404 (2012).

[36] A.Szabo and N. S. Ostlund, Modern Quantum Chemistry: Intro-
duction to Advanced Electronic Structure Theory McGraw-Hill,
New York, 1989).

[37] J. P. Perdew and K. Schmidt, in Density Functional Theory and
its Application to Materials, edited by V. Van Doren, C. Van
Alsenoy, and P. Geerlings (AIP, Melville, NY, 2001).

[38] L. Hedin, Phys. Rev. 139, A796 (1965).

[39] D. Berger, A. J. Logsdail, H. Oberhofer, M. R. Farrow, C. R.
A. Catlow, P. Sherwood, A. A. Sokol, V. Blum, and K. Reuter,
J. Chem. Phys. 141, 024105 (2014).

[40] P. W. Anderson, Rev. Phys. B 124, 41 (1961).

[41] G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet,
and C. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[42] K. Held, Adv. Phys. 56, 829 (2007).

[43] V. Blum, F. Hanke, R. Gehrke, P. Havu, V. Havu, X. Ren, K.
Reuter, and M. Scheffler, Comput. Phys. Commun. 180, 2175
(2009).

[44] V. Havu, V. Blum, P. Havu, and M. Scheffler, J. Comput. Phys.
228, 8367 (2009).

[45] X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A.
Sanfilippo, K. Reuter, and M. Scheffler, New J. Phys. 14, 053020
(2012).

[46] S. V. Levchenko, X. Ren, J. Wieferink, R. Johanni, P. Rinke,
V. Blum, and M. Scheffler, Comput. Phys. Commun. 192, 60
(2015).

[47] A. Stan, N. E. Dahlen, and R. van Leeuwen, Europhys. Lett. 76,
298 (20006).

[48] C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, Phys. Rev.
B 81, 085103 (2010).

[49] F. Caruso, P. Rinke, X. Ren, M. Scheffler, and A. Rubio,
Phys. Rev. B 86, 081102(R) (2012).

[50] F. Caruso, P. Rinke, X. Ren, A. Rubio, and M. Scheffler,
Phys. Rev. B 88, 075105 (2013).

[51] F. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Rubio,
and M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013).

[52] P. Koval, D. Foerster, and D. Sanchez-Portal, Phys. Rev. B 89,
155417 (2014).

[53] A. Kutepov, S. Y. Savrasov, and G. Kotliar, Phys. Rev. B 80,
041103 (2009).

[54] A.Kutepov, K. Haule, S. Y. Savrasov, and G. Kotliar, Phys. Rev.
B 85, 155129 (2012).

[55] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett.
96, 226402 (2006).

[56] T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B
76, 165106 (2007).

165106-14


http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1063/1.2403848
http://dx.doi.org/10.1063/1.2403848
http://dx.doi.org/10.1063/1.2403848
http://dx.doi.org/10.1063/1.2403848
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.51.1888
http://dx.doi.org/10.1103/PhysRevLett.51.1888
http://dx.doi.org/10.1103/PhysRevLett.51.1888
http://dx.doi.org/10.1103/PhysRevLett.51.1888
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRevB.13.4274
http://dx.doi.org/10.1103/PhysRevLett.82.2123
http://dx.doi.org/10.1103/PhysRevLett.82.2123
http://dx.doi.org/10.1103/PhysRevLett.82.2123
http://dx.doi.org/10.1103/PhysRevLett.82.2123
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.80.4265
http://dx.doi.org/10.1103/PhysRevLett.80.4265
http://dx.doi.org/10.1103/PhysRevLett.80.4265
http://dx.doi.org/10.1103/PhysRevLett.80.4265
http://dx.doi.org/10.1103/PhysRevLett.102.046802
http://dx.doi.org/10.1103/PhysRevLett.102.046802
http://dx.doi.org/10.1103/PhysRevLett.102.046802
http://dx.doi.org/10.1103/PhysRevLett.102.046802
http://dx.doi.org/10.1103/PhysRevLett.103.056803
http://dx.doi.org/10.1103/PhysRevLett.103.056803
http://dx.doi.org/10.1103/PhysRevLett.103.056803
http://dx.doi.org/10.1103/PhysRevLett.103.056803
http://dx.doi.org/10.1103/PhysRevB.37.384
http://dx.doi.org/10.1103/PhysRevB.37.384
http://dx.doi.org/10.1103/PhysRevB.37.384
http://dx.doi.org/10.1103/PhysRevB.37.384
http://dx.doi.org/10.1016/0921-4534(88)90436-4
http://dx.doi.org/10.1016/0921-4534(88)90436-4
http://dx.doi.org/10.1016/0921-4534(88)90436-4
http://dx.doi.org/10.1016/0921-4534(88)90436-4
http://dx.doi.org/10.1103/RevModPhys.61.433
http://dx.doi.org/10.1103/RevModPhys.61.433
http://dx.doi.org/10.1103/RevModPhys.61.433
http://dx.doi.org/10.1103/RevModPhys.61.433
http://dx.doi.org/10.1103/PhysRevB.5.290
http://dx.doi.org/10.1103/PhysRevB.5.290
http://dx.doi.org/10.1103/PhysRevB.5.290
http://dx.doi.org/10.1103/PhysRevB.5.290
http://dx.doi.org/10.1103/PhysRevB.5.306
http://dx.doi.org/10.1103/PhysRevB.5.306
http://dx.doi.org/10.1103/PhysRevB.5.306
http://dx.doi.org/10.1103/PhysRevB.5.306
http://dx.doi.org/10.1021/jp002302t
http://dx.doi.org/10.1021/jp002302t
http://dx.doi.org/10.1021/jp002302t
http://dx.doi.org/10.1021/jp002302t
http://dx.doi.org/10.1021/jp075703i
http://dx.doi.org/10.1021/jp075703i
http://dx.doi.org/10.1021/jp075703i
http://dx.doi.org/10.1021/jp075703i
http://dx.doi.org/10.1103/PhysRevLett.98.037601
http://dx.doi.org/10.1103/PhysRevLett.98.037601
http://dx.doi.org/10.1103/PhysRevLett.98.037601
http://dx.doi.org/10.1103/PhysRevLett.98.037601
http://dx.doi.org/10.1039/b805597a
http://dx.doi.org/10.1039/b805597a
http://dx.doi.org/10.1039/b805597a
http://dx.doi.org/10.1039/b805597a
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1002/jcc.540070604
http://dx.doi.org/10.1002/jcc.540070604
http://dx.doi.org/10.1002/jcc.540070604
http://dx.doi.org/10.1002/jcc.540070604
http://dx.doi.org/10.1002/jcc.540110605
http://dx.doi.org/10.1002/jcc.540110605
http://dx.doi.org/10.1002/jcc.540110605
http://dx.doi.org/10.1002/jcc.540110605
http://dx.doi.org/10.1002/jcc.540160911
http://dx.doi.org/10.1002/jcc.540160911
http://dx.doi.org/10.1002/jcc.540160911
http://dx.doi.org/10.1002/jcc.540160911
http://dx.doi.org/10.1103/PhysRevB.31.6541
http://dx.doi.org/10.1103/PhysRevB.31.6541
http://dx.doi.org/10.1103/PhysRevB.31.6541
http://dx.doi.org/10.1103/PhysRevB.31.6541
http://dx.doi.org/10.1103/PhysRevB.49.17242
http://dx.doi.org/10.1103/PhysRevB.49.17242
http://dx.doi.org/10.1103/PhysRevB.49.17242
http://dx.doi.org/10.1103/PhysRevB.49.17242
http://dx.doi.org/10.1103/PhysRevB.21.4357
http://dx.doi.org/10.1103/PhysRevB.21.4357
http://dx.doi.org/10.1103/PhysRevB.21.4357
http://dx.doi.org/10.1103/PhysRevB.21.4357
http://dx.doi.org/10.1063/1.3659293
http://dx.doi.org/10.1063/1.3659293
http://dx.doi.org/10.1063/1.3659293
http://dx.doi.org/10.1063/1.3659293
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevLett.98.176103
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevB.80.045402
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/PhysRevB.45.6479
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRevLett.109.186404
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1063/1.4885816
http://dx.doi.org/10.1063/1.4885816
http://dx.doi.org/10.1063/1.4885816
http://dx.doi.org/10.1063/1.4885816
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1080/00018730701619647
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.jcp.2009.08.008
http://dx.doi.org/10.1016/j.jcp.2009.08.008
http://dx.doi.org/10.1016/j.jcp.2009.08.008
http://dx.doi.org/10.1016/j.jcp.2009.08.008
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1016/j.cpc.2015.02.021
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.81.085103
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.86.081102
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevB.88.075105
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevLett.110.146403
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.89.155417
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.85.155129
http://dx.doi.org/10.1103/PhysRevB.85.155129
http://dx.doi.org/10.1103/PhysRevB.85.155129
http://dx.doi.org/10.1103/PhysRevB.85.155129
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106
http://dx.doi.org/10.1103/PhysRevB.76.165106

SELF-CONSISTENT GREEN’s FUNCTION EMBEDDING ...

[57] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 (2006).

[58] D. Zgid, E. Gull, and Garnet Kin-Lic Chan, Phys. Rev. B 86,
165128 (2012).

[59] S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature (London)
410, 793 (2001).

[60] K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.
87, 276404 (2001).

[61] B. Amadon, S. Biermann, A. Georges, and F. Aryasetiawan,
Phys. Rev. Lett. 96, 066402 (2006).

[62] J. M. Tomczak, F. Aryasetiawan, and S. Biermann, Phys. Rev.
B 78, 115103 (2008).

[63] G. Biroli and G. Kotliar, Phys. Rev. B 65, 155112 (2002).

[64] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 (2005).

[65] V. 1. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O.
Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359
(1997).

[66] A. I Lichtenstein and M. 1. Katsnelson, Phys. Rev. B 57, 6884
(1998).

[67] S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett.
90, 086402 (2003).

[68] S. Florens, Phys. Rev. Lett. 99, 046402 (2007).

[69] K. Haule, C.-H. Yee, and K. Kim, Rev. Phys. B 81, 195107
(2010).

[70] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett 77,
3865 (1996).

[71] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[72] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118,
8207 (2003).

[73] X. Ren, N. Marom, F. Caruso, M. Scheffler, and P. Rinke,
Phys. Rev. B 92, 081104(R) (2015).

[74] M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029
(1999).

[75] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).

[76] W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).

[77] V. M. Galitskii and A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 239
(1958) [Sov. Phys.—JETP 7, 96 (1958)].

[78] H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 74,
1827 (1995).

PHYSICAL REVIEW B 93, 165106 (2016)

[79] Ioffedatabase,
bandstr.html

[80] G. Biroli, O. Parcollet, and G. Kotliar, Phys. Rev. B 69, 205108
(2004).

[81] A. L. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62,
R9283(R) (2000).

[82] Unit cells larger than the primitive unit cell give rise to a folded
band structure. To cast the band structure back onto the Brillouin
zone of the two 2-atom unit cell we use the unfolding approach
of Nemec.

[83] H. Kitamura, J. Phys.: Condens. Matter 25, 065505 (2013).

[84] M. Guzzo, G. Lani, F. Sottile, P. Romaniello, M. Gatti, J. J. Kas,
J.J. Rehr, M. G. Silly, F. Sirotti, and L. Reining, Phys. Rev. Lett.
107, 166401 (2011).

[85] J. Lischner, D. Vigil-Fowler, and S. G. Louie, Phys. Rev. Lett.
110, 146801 (2013).

[86] B. Holm and U. von Barth, Phys. Rev. B §7, 2108 (1998).

[87] S. O. Kasapa and P. Capper, in Springer Handbook of Electronic
and Photonic Materials (Springer, New York, 2006), Vol. 54,
p. 327.

[88] T. Hom, W. Kiszenik, and B. Post, J. Appl. Crystallogr. 8, 457
(1975).

[89] F. Birch, Phys. Rev. 71, 809 (1947).

[90] C. O. Rodriguez, V. A. Kuz, E. L. Peltzer y Blanc4, and O. M.
Cappannini, Phys. Rev. B 31, 5327 (1985).

[91] M. Gatti, V. Olevano, L. Reining, and I. V. Tokatly, Phys. Rev.
Lett. 99, 057401 (2007).

[92] S. Y. Savrasov and G. Kotliar, Phys. Rev. B 69, 245101 (2004).

[93] Q.-M. Hu, K. Reuter, and M. Scheffler, Phys. Rev. Lett. 99,
169903(E) (2007).

[94] P. Sherwood, A. H. de Vries, M. F. Guest, G. Schreckenbach,
C. A.Catlow, S. A. French, A. A. Sokol, S. T. Bromley, W. Thiel,
A. J. Turner, S. Billeter, F. Terstegen, S. Thiel, J. Kendrick,
S. C. Rogers, J. Casci, M. Watson, F. King, E. Karlsen, M.
Sjevoll, A. Fahmi, A. Schéfer, and C. Lennartz, J. Mol. Struct.:
(THEOCHEM) 632, 1 (2003).

[95] A. A. Sokol, S. T. Bromley, S. A. French, C. R. A. Catlow, and
P. Sherwood, Int. J. Quantum Chem. 99, 695 (2004).

[96] L. W. Chung, H. Hirao, X. Li, and K. Morokuma,
WIREs Comput. Mol. Sci. 2, 327 (2012).

http://www.ioffe.ru/SVA/NSM/Semicond/Si/

165106-15


http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1038/35071035
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.87.276404
http://dx.doi.org/10.1103/PhysRevLett.96.066402
http://dx.doi.org/10.1103/PhysRevLett.96.066402
http://dx.doi.org/10.1103/PhysRevLett.96.066402
http://dx.doi.org/10.1103/PhysRevLett.96.066402
http://dx.doi.org/10.1103/PhysRevB.78.115103
http://dx.doi.org/10.1103/PhysRevB.78.115103
http://dx.doi.org/10.1103/PhysRevB.78.115103
http://dx.doi.org/10.1103/PhysRevB.78.115103
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/PhysRevB.65.155112
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1103/RevModPhys.77.1027
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1088/0953-8984/9/35/010
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevB.57.6884
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1103/PhysRevLett.90.086402
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1103/PhysRevLett.99.046402
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevB.81.195107
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1103/PhysRevB.92.081104
http://dx.doi.org/10.1103/PhysRevB.92.081104
http://dx.doi.org/10.1103/PhysRevB.92.081104
http://dx.doi.org/10.1103/PhysRevB.92.081104
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.478401
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://dx.doi.org/10.1103/PhysRevLett.74.1827
http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html
http://dx.doi.org/10.1103/PhysRevB.69.205108
http://dx.doi.org/10.1103/PhysRevB.69.205108
http://dx.doi.org/10.1103/PhysRevB.69.205108
http://dx.doi.org/10.1103/PhysRevB.69.205108
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1103/PhysRevB.62.R9283
http://dx.doi.org/10.1088/0953-8984/25/6/065505
http://dx.doi.org/10.1088/0953-8984/25/6/065505
http://dx.doi.org/10.1088/0953-8984/25/6/065505
http://dx.doi.org/10.1088/0953-8984/25/6/065505
http://dx.doi.org/10.1103/PhysRevLett.107.166401
http://dx.doi.org/10.1103/PhysRevLett.107.166401
http://dx.doi.org/10.1103/PhysRevLett.107.166401
http://dx.doi.org/10.1103/PhysRevLett.107.166401
http://dx.doi.org/10.1103/PhysRevLett.110.146801
http://dx.doi.org/10.1103/PhysRevLett.110.146801
http://dx.doi.org/10.1103/PhysRevLett.110.146801
http://dx.doi.org/10.1103/PhysRevLett.110.146801
http://dx.doi.org/10.1103/PhysRevB.57.2108
http://dx.doi.org/10.1103/PhysRevB.57.2108
http://dx.doi.org/10.1103/PhysRevB.57.2108
http://dx.doi.org/10.1103/PhysRevB.57.2108
http://dx.doi.org/10.1107/S0021889875010965
http://dx.doi.org/10.1107/S0021889875010965
http://dx.doi.org/10.1107/S0021889875010965
http://dx.doi.org/10.1107/S0021889875010965
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1103/PhysRevB.31.5327
http://dx.doi.org/10.1103/PhysRevB.31.5327
http://dx.doi.org/10.1103/PhysRevB.31.5327
http://dx.doi.org/10.1103/PhysRevB.31.5327
http://dx.doi.org/10.1103/PhysRevLett.99.057401
http://dx.doi.org/10.1103/PhysRevLett.99.057401
http://dx.doi.org/10.1103/PhysRevLett.99.057401
http://dx.doi.org/10.1103/PhysRevLett.99.057401
http://dx.doi.org/10.1103/PhysRevB.69.245101
http://dx.doi.org/10.1103/PhysRevB.69.245101
http://dx.doi.org/10.1103/PhysRevB.69.245101
http://dx.doi.org/10.1103/PhysRevB.69.245101
http://dx.doi.org/10.1103/PhysRevLett.99.169903
http://dx.doi.org/10.1103/PhysRevLett.99.169903
http://dx.doi.org/10.1103/PhysRevLett.99.169903
http://dx.doi.org/10.1103/PhysRevLett.99.169903
http://dx.doi.org/10.1016/S0166-1280(03)00285-9
http://dx.doi.org/10.1016/S0166-1280(03)00285-9
http://dx.doi.org/10.1016/S0166-1280(03)00285-9
http://dx.doi.org/10.1016/S0166-1280(03)00285-9
http://dx.doi.org/10.1002/qua.20032
http://dx.doi.org/10.1002/qua.20032
http://dx.doi.org/10.1002/qua.20032
http://dx.doi.org/10.1002/qua.20032
http://dx.doi.org/10.1002/wcms.85
http://dx.doi.org/10.1002/wcms.85
http://dx.doi.org/10.1002/wcms.85
http://dx.doi.org/10.1002/wcms.85



