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Abstract: In this study, we used invasive tracing to evaluate white matter tractography methods based
on ex vivo diffusion-weighted magnetic resonance imaging (dwMRI) data. A representative selection
of tractography methods were compared to manganese tracing on a voxel-wise basis, and a more qual-
itative assessment examined whether, and to what extent, certain fiber tracts and gray matter targets
were reached. While the voxel-wise agreement was very limited, qualitative assessment revealed that
tractography is capable of finding the major fiber tracts, although there were some differences between
the methods. However, false positive connections were very common and, in particular, we discovered
that it is not possible to achieve high sensitivity (i.e., few false negatives) and high specificity (i.e., few
false positives) at the same time. Closer inspection of the results led to the conclusion that these prob-
lems mainly originate from regions with complex fiber arrangements or high curvature and are not
easily resolved by sophisticated local models alone. Instead, the crucial challenge in making tractogra-
phy a truly useful and reliable tool in brain research and neurology lies in the acquisition of better
data. In particular, the increase of spatial resolution, under preservation of the signal-to-noise-ratio, is
key. Hum Brain Mapp 36:4116–4134, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Tractography is a class of techniques that aim to extract
information about white matter fiber systems from
diffusion-weighted magnetic resonance imaging (dwMRI)
data [e.g., Kaden et al., 2007; Mori and van Zijl, 2002; Mori
et al., 1999; Tournier et al., 2011]. While the resulting fiber
pathways certainly contain valuable information about the
underlying architecture, they are subject to a number of
serious pitfalls and limitations [Jones, 2010; Jones and Cer-
cignani, 2010; Jones et al., 2012]. In order to assess the con-
fidence we may place in results from different
tractography methods and to gain deeper insight into the
nature of the various problems, validation against a
“ground truth” would be invaluable. However, such a
ground truth regarding the fiber connectivity within the
entire brain is very difficult to obtain. Although classical
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in vivo tracing techniques in animals yield very accurate
quantitative estimates of the connectivity, they can typi-
cally only be applied to just one injection site per animal,
and require painstaking procedures [e.g., Dauguet et al.,
2007; Schmahmann et al., 2007]. For example, in a recent
study Jbabdi and colleagues [2013] successfully used trac-
ers for long-range connections of the ventral prefrontal
cortex in macaque monkeys and compared this to ex vivo
tractography.

On the other hand, in vivo manganese tracers can be
visualized by magnetic resonance imaging (MRI) and
thereby used to characterize the connectivity of an injection
site with the entire brain, which is very comparable to the
connectivity profile of a seed region obtained by tractogra-
phy [Dyrby et al., 2007; Gutman et al., 2013; Lin et al.,
2001]. Therefore, manganese is an excellent means of vali-
dating diffusion tractography. However, because it is inevi-
table that the substance is not completely taken up by the
cells and then transported down the axons, but also dif-
fuses in intra-axonal space, some extra calibration is
needed, which is provided by a histochemical tracer. Dyrby
and colleagues [2007] used this technique to assess the per-
formance of a multitensor probabilistic tractography
method and showed by direct comparison (the same brain
that received a tracer was also imaged) a generally high
agreement between tracer and tractography results, which
was reproducible across brains. However, they also demon-
strated that well-known sources of error, such as regions
with crossing fibers, impact upon the performance of the
tractography. Over time, a whole range of tractography
methods have emerged that primarily aim to ameliorate
these problems. Hence, it is important to assess, using the
same validation method, to what extent and under which
circumstances these different methods succeed in doing so.

Therefore, we applied a representative selection of trac-
tography techniques to ex vivo diffusion data in pig
brains, involving both probabilistic [Behrens et al., 2007;
Descoteaux et al., 2009; Kaden et al., 2007] and determinis-
tic [Conturo et al., 1999; Lazar et al., 2003; Mori et al.,
1999] tracking algorithms, as well as local models (fitted to
the data in a voxel-wise way) based on single tensors
[Basser et al., 1994], multiple compartments [Behrens et al.,
2003; Liu et al., 2004; Tuch et al., 2002], and diffusion fiber
orientation density functions (ODF) [Aganj et al., 2010;
Alexander, 2005b; Dell’Acqua et al., 2010; Descoteaux
et al., 2007; Patel et al., 2010; Tournier et al., 2007; Tournier
et al., 2004; Tuch, 2004]. Moreover, in order to cope with
the well-known path length dependence of probabilistic
tractography scores, we used a novel method called itera-
tive confidence enhancement for tractography (ICE-T)
[Liptrot et al., 2014]. This method is applied as a wrapper
to existing probabilistic tractography methods. In contrast
to our previous work [Dyrby et al., 2007], where waypoint
masks were utilized to reduce the incidence of false posi-
tives, we did not use any additional constraint other than
the seed region.

First, we will report a systematic quantitative assess-
ment of the specificity and sensitivity of the different
methods with respect to manganese tracing and their
dependence upon the threshold settings. Second, we will
discuss, in detail, the qualitative performance of the differ-
ent methods in terms of reaching the relevant tract sys-
tems, their robustness toward threshold settings, and the
occurrence of spurious connections (false positives). The
software packages we used to run the various tractogra-
phy algorithms offer a number of changeable parameters.
We used the default parameter settings, as far as possible.
In addition, although a complete parameter study would
have been beyond the scope of this article, we investigated
the impact of varying the most important parameters of
each method.

We demonstrate that typical difficulties for tractography,
such as crossing fibers, high curvature (relative to the
image resolution), and long path lengths, are problematic
for all methods in a similar way. However, models that
are able to account for complex fiber layouts within a
voxel do perform better in some cases. In fact, with cur-
rent methods and data, valid results with few false posi-
tives can be obtained, but at the expense of not finding all
true tracts. We conclude that further sophistication of local
models and tractography algorithms might only unfold its
full potential for the reconstruction of more details of the
fiber architecture, if they are combined with better data,
that is, higher spatial and angular resolution, higher
signal-to-noise ratio (SNR), more and higher b-values.

MATERIALS AND METHODS

Manganese Tracing

Manganese maps of three young, normal G€ottingen mini
pig brains (P1, P2, P3) used in a previous study [Dyrby
et al., 2007] were re-used here for tractography validation.
Each of the three brains had received a single injection,
comprising two in vivo tracers, in either the left motor cor-
tex (MC), the right somatosensory area (SC), or the right
prefrontal cortex (PFC). Two types of tracers had been
employed: manganese, a paramagnetic tracer visualized in
vivo on T1-weighted MRI, and biotinylated dextran amine
(BDA), a histochemical tracer. Manganese t-score maps
were computed by comparing 16 repetitions of T1w
images two days before manganese injection with 16 repe-
titions on day 2 after injection [Dyrby et al., 2007]. Because
not the entire manganese is taken up by the neurons and
then transported along the axons, there is also significant
manganese concentration diffusing in the extracellular
space, especially around the injection site. In order to
reduce the bias caused by that background signal, we
need to define a suitable threshold for the t-score map,
which lies above the normal significance threshold (e.g.,
P< 0.05). While for the quantitative comparison (see
below) we systematically varied that threshold, for the
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qualitative comparison (see below) we optimized the
threshold for defining the seed region-of-interest (ROI)
such that, within the injection area of the BDA, the tracer
signal and the manganese positive volume coincided as
much as possible.

Visualization procedures for the manganese in vivo
tracer (manganese t-maps), and the method by which
t-maps obtained from P2 and P3 were warped onto the
image space of P1 that is used for tractography in this
study are described elsewhere [Dyrby et al., 2007] and are
made available at http://dig.drcmr.dk/downloads upon
publication of this article. The brains had all been perfu-
sion fixated, following the procedure described in [Dyrby
et al., 2011]. All procedures followed the Guidelines for
the Care and Use of Experimental Animals and were
approved by the Danish Animal Experiments Inspectorate.

Magnetic Resonance Imaging

The ex vivo diffusion-weighted MRI dataset of P1 used
in this study was originally described by Dyrby et al.
[2007]. It was acquired on a preclinical 4.7T Varian MR
scanner using a pulse gradient spin echo (PGSE) sequence
(TR 5 6,500 ms, TE 5 67.1 ms; voxel resolution 0.51 3 0.51
3 0.5 mm2) with a b-value of 4009 s/mm2 (gradient dura-
tion, d 5 27 ms; time between gradient-pulse onsets,
D 5 33.5 ms; gradient strength 56 mT/m), as specified in
Dyrby et al. [2011].

Note that the relatively high b-value was chosen, because
the diffusivity in postmortem tissue is approximately one-
third of the in vivo value [D’Arceuil et al., 2007; Dyrby
et al., 2011; Sun et al., 2005]. This should make the angular
attenuation profile similar to the one obtained in living tis-
sue with a b-value of about 1,300 s/mm2, which is close to
commonly used values in clinical scanners. We can afford
to use such a high b-value, because the main disadvantage
of this choice, that is, lowered SNR can be easily compen-
sated by prolonged scanning and the use of smaller volume
radio frequency (RF) coils designed for fixed brain tissue.

The diffusion-weighted MRI dataset included 3 scans
with b 5 0 s/mm2, and 61 diffusion encoding directions
with a NEX of 2. The brain tissue had been stabilized to
room temperature before MR scanning, and a dummy run
lasting 15 h had been implemented to avoid the introduc-
tion of short-term instabilities in the diffusion MRI dataset
[Dyrby et al., 2011].

Seed Regions

Three seed ROIs were drawn on the dataset from P1: in
the right PFC, in the right SC and in the left MC. The seed
ROIs were the same as those used by Dyrby et al., [2007]
(http://dig.drcmr.dk/downloads) and were manually
drawn with the guidance of the three injection sites identi-
fied from the (warped) t-maps of the manganese tracer.
Note that the seed region is used differently by the differ-

ent tractography algorithms: probabilistic tractography is
seeded only in the seed region (local seeding), while deter-
ministic tractography is seeded in the entire brain with
subsequent selection of the fibers that pass through the
seed region (global seeding).

Tractography Methods

We selected a set of tractography methods to include
some of the most commonly used techniques and sample
the most important algorithmic choices, such as probabilis-
tic versus deterministic tracking and single tensor versus
multi-compartment and constrained spherical deconvolu-
tion (CSD) local models. Moreover, the recently proposed
ICE-T [Liptrot et al., 2014] was considered. Each of the
methods has been published and most of them are included
in publically available software packages. The methods
involve certain parameter choices, such as fractional anisot-
ropy (FA) thresholds. The parameters chosen for each algo-
rithm were mostly following the default values given by
the respective software developers. This ensured that the
algorithms were used in the same manner as that chosen
by most other users. In some cases, parameters were
changed to match the special properties of our pig brains as
opposed to the normally used human brains (in particular
the FA threshold). In addition, we also explored the influ-
ence of the variation of some of the most important param-
eters, although a full-fledged parameter study of all
algorithms was considered beyond the scope of this work.

Deterministic diffusion tensor

We used the diffusion tensor (DT) model [Basser et al.,
1994], which assumes a Gaussian distribution to approxi-
mate the diffusion propagator. The principal eigenvector of
the tensor is usually interpreted as the main fiber direction
and used for streamline tracking [Mori et al., 1999]. The
tracts are computed by integrating the vector field of these
principal eigenvectors. A drawback of this approach is that
the tensor information beyond the first eigenvector is disre-
garded. In other words, an almost round tensor with very
weak directionality has the same impact as a very pointed
one. An alternative approach is the tensor deflection
method [Lazar et al., 2003] implemented in MedINRIA
(Version 1.6, http://www-sop.inria.fr/asclepios/software/
MedINRIA), which will be used in this study.

One streamline was started in the center of every white
matter voxel with a FA value> 0.13, and subsequently ter-
minated upon reaching the boundaries of the white-matter
mask defined by this FA threshold. Note that this critical
FA value was chosen to separate gray and white matter in
our postmortem pig data and differs from those usually
optimal for in vivo human data (FA> 0.2). All lines
shorter than 10 mm were excluded and the smoothness
parameter in MedINRIA was set to 10. Finally, only those
streamlines crossing the seed area were retained from this
whole brain tracking result. A connectivity map was
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created by counting the number of streamlines crossing
each voxel (streamline count map).

Deterministic constrained spherical deconvolution

To model the distribution of crossing fibers in each voxel,
we computed the fiber orientation density function (fODF)
by CSD [Tournier et al., 2007], based on spherical harmon-
ics of order 6, as implemented in MRTrix (www.brain.org.
au/software/mrtrix). Note that CSD with higher order har-
monics (order 8) has already been successfully used in in
vivo human data with b 5 3,000 s/mm2 [Tournier et al.,
2009]. However, with our postmortem data (which are
comparable to human data with b 5 1,300 s/mm2, see
above) that choice turned out instable. We have shown pre-
viously that in human data with b 5 1,000 s/mm2 and 60
directions, CSD with sixth order harmonics was stable and
capable of resolving fiber crossings of up to three bundles
[Riffert et al., 2014].

The FA threshold for the computation of the deconvolu-
tion kernel was 0.7. Whole brain deterministic streamline
tracking was initialized in all brain voxels. The brain mask,
including gray and white matter as possible seed points,
was generated using a low (FA> 0.13) threshold. The track-
ing algorithm followed all local maximum directions with a
fODF value> 0.1. The tracking procedure repeatedly
selected a random initialization point within the brain mask
and started a new streamline until a total of 100,000 stream-
lines with a minimum length of 10 mm were computed.
Only those streamlines crossing the seed area were selected
and used for the computation of the streamline count map.

Probabilistic DT

We used the particle jump algorithm proposed by Koch
et al. [2002], with the 3D implementation [Anwander et al.,
2007]. This method samples the transition probability
between neighboring voxels from a sharpened version of
the neighboring tensors and uses the sampled values in a
random-walk algorithm. Note that the term “probabilistic,”
though commonly used, is not entirely correct here, as the
tensor describes a probability distribution of the water dif-
fusion and not of the fiber orientation. Although there is a
relation between the two, more formally correct approaches
have been proposed [Jones and Pierpaoli, 2005]. Here, how-
ever, we stick to the approach and terminology that is com-
monly used.

The algorithm was initialized by 100,000 particles in the
seed region and the tracking space was limited by a mask
of FA> 0.05. Finally, the dynamic range of the streamline
count map was reduced by logarithmic transformation.

Probabilistic ball and stick

The multiple ball-and-stick (B&S) model decomposes the
diffusion-weighted MRI signals into an isotropic (ball) and
several anisotropic (sticks) compartments. The latter repre-

sent estimates for the principal fiber directions. In the work
of Behrens et al. [2007], a fixed maximal number of sticks
were used for each voxel. Herein, however, the number of
directions supported by the data in each voxel was com-
puted by automatic relevance determination. For each of
these directions, an indicator of their creditability according
to the diffusion-weighted MRI data was determined. The
direction of a stick was only used when its indicator was
above a threshold computed by the algorithm, which means
it was supported by the data. Here, we used the probtrackx

procedure implemented in FSL (http://fsl.fmrib.ox.ac.uk/
fsl/fsl-4.1.9/fdt/fdt_probtrackx.html; version 4.1.9). The
probabilistic tracking was initialized in the seed region
using default parameters of 5,000 samples per voxel and up
to two sticks per voxel. As stopping criteria, a curvature
threshold of 0.2 and a maximum of 2,000 steps were used.

Probabilistic multi-tensor

Probabilistic tractography based on the multiple DT
(MDT) model [Alexander, 2005a] implemented in the soft-
ware Camino [Cook et al., 2006] was used following the
same setup as was used by Dyrby et al. [2007], except that
here we did not use any additional constraints other than
the seed ROIs. In contrast, Dyrby and colleagues [2007]
used constrained tractography for extracting specific path-
ways via waypoint ROIs. The MDT model was fitted to
the diffusion-weighted MRI data set. The number of ten-
sors to be initially fitted in each voxel was determined
from the classification algorithm by Alexander et al.
[2002]. The stepwise projection of streamlines used a
modified non-interpolated fiber assignment by continuous
tracking (FACT) method [Mori et al., 1999) with 64,000
streamlines starting from the seed area. The stopping crite-
ria comprised a maximal curvature of 808 within a single
voxel and the propagation into non-brain voxels.

Probabilistic multi-tensor with ICE-T

We applied the ICE-T framework to the probabilistic
multi-tensor method described above to address the path-
length dependency issue inherent in probabilistic methods
[Liptrot et al., 2014]. The ICE-T framework iteratively
grows the seed region by binarizing the confidence map
generated by probabilistic tracking at the ICE-Tthreshold and
uses that as an extended seed region for the next iteration.
The iterative process stops when the seed region has
stopped growing. Here, the final seed region after growing
was then used as the seed region for MDT probabilistic
tractography. ICE-T has two parameters: ICE-Tthreshold con-
trols which supra-threshold voxels are aggregated into the
current seed region for the next iteration and was set to
0.01, ICE-Tstreams determines the number of streamlines
per voxel per iteration and was set to 20. These values
have been shown to be suitable for efficiently growing a
seed region along the tract system [Liptrot et al., 2014].
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Global Voxel-Wise Assessment

To evaluate the global agreement between manganese trac-
ing and tractography, we computed a number of measures
which were based on the assumption that manganese repre-
sents the ground truth. As a basis, we computed the num-
bers of “true positives” (TP; voxels that were positive in
both manganese tracing and tractography), “false positives”
(FP; voxels that were positive in tractography but negative in
manganese tracing), “true negatives” (TN; voxels that were
negative in both methods), and “false negatives” (FN; voxels
that were positive in manganese tracing, but negative in trac-
tography). From that, we derived the “sensitivity” by com-
puting the fraction of manganese positive voxels (according
to our assumption, the “truly” connected voxels) that were
also detected by tractography: SENS 5 TP/(TP 1 FN), and
the “specificity” by computing the fraction of tractography
positive voxels that were also found by tracing: SPEC 5 TP/
(TP 1 FP). These measures depended upon thresholding of
the images to decide whether a certain voxel was considered
positive or negative. Both thresholds varied between 0 and
100% of the image maximum (the maximum connectivity or
streamline count value, which is usually reached in the seed
region) and the measures were plotted as function of them.

Voxels within a distance of 10 mm of the injection site
were ignored because extracellular diffusion of the manga-
nese renders tracing unreliable in that area.

Qualitative Assessment

In order to obtain qualitative insight into the ability of
tractography to reconstruct certain pathways, we first deter-
mined, for each injection site, a suitable manganese thresh-
old for which all the tracts that were also identified by the
histochemical BDA tracing would be found [Dyrby et al.,
2007], with as little unspecific spreading around the injection
site as possible (see Appendix for the values). Then, we var-
ied the thresholds for the tractography methods in order to
assess the relationship between sensitivity (finding all tracts)
and specificity (not finding false tracts) and, where possible,
to identify an optimal compromise between the two.

RESULTS

Global Voxel-Wise Assessment

Here, we studied the threshold-dependent voxel-wise over-
lap between manganese tracing and diffusion tractography in
order to assess the sensitivity and specificity of the different
tractography algorithms. For example, for the injection site in
the prefrontal cortex (PFC), high thresholds for the manga-
nese tracing images (>50% of the range) limited the con-
nected voxels to the vicinity of the injection site. Lowering
the threshold to about 40% resulted in the appearance of ini-
tial sections of the pathways. At threshold levels of about
20% all tracts were revealed down to their respective targets,
while further lowering led to implausible connectivity esti-

mates covering large parts of the brain. See also Figure 1.
Similar observations were made for the other two injection
sites (results not shown).

Accordingly, for very low manganese thresholds (ca. 10%
and less), specificity went mostly to unity and sensitivity
dropped to zero for all methods, irrespective of the tractogra-
phy threshold (Fig. 2). On the other hand, for manganese
threshold above about 50%, the scores referred only to
restricted areas near the injection site. The interesting range
of manganese thresholds is between 20 and 40–50%. In that
range, we generally observed that sensitivity was very low
and fairly independent of tractography thresholds (except for
extremely low tractography thresholds, where almost the
entire brain appeared connected). One exception was the
probabilistic tensor tractography, yet even here no threshold
combination existed that provided acceptable specificity and
sensitivity at the same time. This meant that most of the vox-
els that were connected in the manganese image, at any
threshold that insured that the tracing reached the putative
target sites, were not found by any of the tested tractography
methods or, in the case of the probabilistic tensor method,
were associated with a large number of false positives.

To what extent these problems may be more fundamental in
nature, such as whether or not manganese-positive fiber tracts
are actually attainable with tractography, or whether they may
just be due to the fact that tractography stays in a narrower
channel whilst following the main fiber direction, is left as a
question for the qualitative assessment (next section). In contrast
to sensitivity, specificity is quite high for all tractography meth-
ods, meaning that most of the voxels reached by tracking are
“true,” as defined by manganese. However, there are varying
degrees of tractography threshold dependence. For example,
the B&S method can reach 100% specificity for most tractogra-
phy thresholds, provided that the manganese threshold is suffi-
ciently low. However, the specificity is much lower for very
low tractography thresholds, exactly where the sensitivity
reaches acceptable levels (see also the choice of the thresholds
for the quantitative analysis, Tab. A1). On the other hand, prob-
abilistic tensor tractography needs rather high tractography
thresholds for most manganese thresholds. Interestingly, the
multiple tensor tracking with ICE-T showed, for two of the
injection sites, an increase in specificity toward lower tractogra-
phy thresholds, which was in contrast to all other methods.
This might indicate some systematic deviation between tracing
and tracking. In contrast to all the other tracking methods, ICE-
T demonstrates minimal dependency upon the threshold.

Qualitative Assessment

In order to gain insight into the origins of the global voxel-
wise results described in the previous section, we qualita-
tively assessed, for each injection/seed site, which of the
major tracts reached by manganese tracing were also found
by the tracking methods, and which false tracts were indi-
cated. The thresholds, both for manganese tracing and diffu-
sion tractography, were manually chosen such that an
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Figure 1.

Top axial (a) and right sagittal (b) views of a three-dimensional isosurface representation of man-

ganese tracing from the PFC injections site, at different thresholds (as percentage of the maximal

range). The 10% image is shown from, both, the left and right sides, because with this low

threshold the connected volume extends to both hemispheres. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

http://wileyonlinelibrary.com


optimal balance between sensitivity and specificity was
achieved. Of course, the choice of the threshold was critical,
as shown by the global assessment. However, varying the
threshold either additionally removed the true positive tracts
(when the threshold was increased) or generated more false

positive tracts (with decreased threshold), as the sensitivity
and specificity plots in Figure 2 suggest. The threshold values
are given in Appendix Table AI.

Generally, it is important to note that many of the algo-
rithms found tracts to the true targets (e.g., to the substantia

Figure 2.

Plots of voxel-wise sensitivity and specificity of different tracto-

graphy methods with respect to manganese tracing, as a function

of manganese and tractography thresholds. See text for detailed

explanation. The gray areas indicate threshold combinations

where a computation was not possible, because there were no

manganese positive (for sensitivity) or no tractography position

(for specificity) voxels, respectively. Note that the radius 5 1 cm

environment of the injection site was excluded from analysis.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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nigra), but their actual routes through the brain were differ-
ent from the ones revealed by manganese tracing. The ori-
gin of this phenomenon, as well as for the occurrence of
many false positive tracts, seems to lie in the centrum semi-
ovale, where complex fiber configurations can only be par-
tially captured by the image resolution employed.

Detailed descriptions of the results follow below. See
also Table I for an overview.

Injection in Prefrontal Cortex

Manganese tracing

Widespread local connectivity around the injection site
was found. Moreover, the tracer visualized the cortico-

nigral tract that terminated in substantia nigra, the cortico-
thalamic tract that terminated in the medial-dorsal (MD)
nucleus, and a cortico-cortical tract that propagated
through the genu of the corpus callosum before terminat-
ing in the contralateral cPFC. See Figure 3 (top panel).

Deterministic tracking

See Figure 3 (bottom panel, left column). Both DT and
CSD tractography were able to follow the cortico-nigral
and contralateral cortico-cortical pathways. However, only
CSD was able to follow them for the entire length towards
the projection site (cPFC or substantia nigra (SN), respec-
tively). The connection to the MD nucleus of the thalamus,
as documented by manganese tracing, could not be found

TABLE I. Overview on the qualitative assessment of the tractography performance

Injection Projection DT det CSD det DT prob B&S MDT MDT 1 ICE-T

right PFC true SN (�)a � (�)a (�)b � �
MD — — — — — —
cPFC (�)a � � � � �

false SL 3 3 3 3 — —
CE 3 3 3 — — —
Cing — 3 3 3 — —
FSC 3 — — — — —
ventral PFC — — — — 3 3

near injection — — — 3 — —
left MC true VA/VL (�)a � � � � �

Cd — — — — — —
cMC (�)a (�)a (�)a (�)a (�)a �

false CI 3 — 3 — — —
cCI/CE — 3 3 3 — —
Fx 3 — — — — —
PFC 3 — — — — —
near injection — — 3 3 — —
other contra — — — — — 3

right SC true SN (�)c (�)c — — (�)c (�)c

VP/VPL — (�)c — (�)3 — —
cSC (�)c (�)c (�)a (�)c (�)c (�)c

false FSC 3 — — 3 — —
ventral PFC 3 — — — — —
CE 3 — 3 —
Cing — — — 3 — —
Fx — — — 3 — —
BS — — 3 — — —
cCI — — — 3 — —
near injection 3 3 3 3 3 3d

True positive connections labeled with � if present. If the path was not followed to the end (“destination not reached”) or took a similar, but
deviating trajectory (�) war used. False positive connections are labeled with 3 if present. See text and Figures 3–5 for more details.
Anatomical labels: SN; substantia nigra; MD; medio-dorsal nucleus of thalamus; (c)PFC; (contralateral) prefrontal cortex; SL; nucleus sep-
talis lateralis; CE; external capsule; (c)CI; (contralateral) internal capsule; Cing; cingulum; FSC; subcallosal fasciculus; VA/VL; ventro-ante-
rior/ventro-lateral thalamus; Cd; caudate nucleus; (c)MC; (contralateral) motor cortex; Fx; fornix; VP/VPL; ventral posterior/ventral
posterior lateral thalamus; (c)SC; (contralateral) somatosensory cortex; BS; brain stem. Methods: DT; diffusion tensor; CSD; constrained
spherical deconvolution; B&S; ball and stick; MDT; multiple diffusion tensor; ICE-T, iterative confidence enhancement for tractography.
aFinal destination not reached.
bWrong path from SEM.
cDeviating trajectory.
dLess than MDT.
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by either method. On the other hand, a number of false
positive tracts appeared. Both methods produced false
contralateral nucleus septalis lateralis (SL) (branching off
from the genu of the corpus callosum at the level of the
mid-sagittal slice) and external capsule (CE) tracts. Also,
for CSD a false positive cingulum tract was found that
branched off the ipsilateral centrum semiovale (SEM) at
the point where the cortico-nigral and the contralateral
cortico-cortical tracts departed. For the DT, the subcallosal
fasciculus (FSC) appeared just on the superior boundary
of the caudate, originating from the same point. For both
methods, increasing the tractography threshold removed
the false positive tracts, but the true pathways could then
only be recovered in an incomplete way.

Probabilistic tracking

See Figure 3 (bottom panel, middle and right columns).
When using the DT local model, we found the cortico-nigral
and the contralateral cortico-cortical tract. However, the
cortico-nigral tract ended in WM around the internal capsule
area between the caudate and putamen. This may indicate

unwanted path length dependency effects. On the other
hand, there were false-positive tracts branching off from the
centrum semiovale, following the external capsule and the
ipsilateral cingulum. Moreover, we found a false positive
tract following the ipsilateral nucleus SL, branching of at the
splenium in the mid-sagittal plane. Increasing the tractogra-
phy threshold did not ameliorate the situation.

In contrast, the B&S method found, clearly and continu-
ously, the anterior part of the cortico-nigral tract, as well as
the contralateral cortico-cortical tract toward cPFC. How-
ever, in the centrum semiovale, the cortico-nigral tract sud-
denly took a different, more dorsal and lateral, route
through the internal capsule. Moreover, false positive tracts
included the contralateral SL, part of the cingulum and
local cortical projections near the injection site. Increasing
the tractography threshold removed most false positives,
but of the true tracts, only the part of the cortico-nigral tract
anterior to the centrum semiovale remained.

Finally, using the MDT method yielded a somewhat dif-
ferent picture. While the true projections to the contralat-
eral PFC and the substantia nigra were found clearly,
many of the false positive tracks found by all the other

Figure 3.

Connectivity of right PFC, reconstructed using manganese trac-

ing (top panel, middle) and tractography (bottom panel). Thresh-

olded tracts are surface-rendered (for thresholds, see Appendix

A1). True positive tracts are labeled in blue, false positive ones

in red. For reference, slices of a T2 image are used (right view

of a mid-sagittal slice, and top view of an axial slice through the

anterior commissure; see top panel, right). Note that the T2 sli-

ces may obscure some of the rendering. Abbreviations: PFC,

prefrontal cortex; cPFC, contralateral prefrontal cortex; SEM,

centrum semiovale; CC, corpus callosum; SN, substantia nigra;

CE, external capsule; MD, medio-dorsal thalamus; SL, nucleus

septalis lateralis; DT, diffusion tensor; CSD, constrained spherical

deconvolution; B&S, ball and stick; MDT, multiple diffusion ten-

sor; ICE-T, iterative confidence enhancement for tractography.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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methods, including the deterministic ones, did not show
up, such as the SL, cingulum, subcallosal fasciculum, and
external capsule. However, the method did produce a false
positive pathway running from the centrum semiovale to
the ventro-medial PFC.

The same method used with the ICE-T wrapper (thresh-
old 33%) yielded very compact pathways to the true pro-
jection sites and showed minimal dependence on path
length and threshold. However, this method also pro-
duced some false positive tracts, for example, a connection
between the centrum semiovale and a more lateral PFC
region.

Injection in Motor Cortex

Manganese tracing

The tracers revealed a cortico-thalamic tract to the ven-
tral-anterior/ventral-lateral (VA/VL) nucleus, a cortico-
striatal tract that terminated in caudate nucleus and a
cortico-cortical tract that traversed the mid-body of corpus
callosum and terminated in the contralateral MC. See
Figure 4 (top panel).

Deterministic tractography

See Figure 4 (bottom panel, left column). Both the CSD
and DT variants of deterministic tractography revealed the
initial sections of the tracts through the corpus callosum
and downward toward the thalamus and caudate, mostly
without reaching the actual projection sites (however, CSD
did reach the thalamus). These true connections were
overshadowed by much more prominent false positive
tracts, following the ipsilateral internal capsule pathways,
fornix (Fx) and a projection toward PFC (for DT), and the
contralateral internal capsule (cCI) (for CSD).

Probabilistic tractography

See Figure 4 (bottom panel, middle and right columns).
Both the DT and B&S local models enabled tracking of the
pathway to the thalamus (VA/VL region), but not the
pathway to the caudate nucleus. False positive tracts
include connections projecting toward the brain stem area
and to gyri near the injection site. At the given thresholds
(see Appendix), DT shows only very weak connections to
the contralateral hemisphere (to the MC), while the B&S

Figure 4.

Connectivity of left MC, reconstructed using manganese tracing

(top panel, middle) and tractography (bottom panel). Thresh-

olded tracts are surface-rendered (for thresholds, see Appen-

dix). True positive tracts are labeled in blue, false positive ones

in red. For reference, slices of a T2 image are used (left view of

a mid-sagittal slice, and frontal view of a coronal slice through

the thalamus; see top panel, right). Note that the T2 slices may

obscure some of the rendering. Abbreviations: MC, motor cor-

tex; cMC, contralateral motor cortex; SEM, centrum semiovale;

VA/VL, ventro-anterior/ventro-lateral thalamus; Ca, anterior

commissure; CC, corpus callosum; CE, external capsule; CI,

internal capsule; CrC, Crus cerebri; DT, diffusion tensor; CSD,

constrained spherical deconvolution; B&S, ball and stick; MDT,

multiple diffusion tensor; ICE-T, iterative confidence enhance-

ment for tractography. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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method crossed the corpus callosum. However, the DT
did follow some false-positive ipsilateral ventral projec-
tions within the internal and external capsules that were
not visualized by manganese. Lowering the threshold also
revealed the contralateral MC connection, but produced
false positive projections into many parts of the white mat-
ter, originating from the centrum semiovale (both ipsilat-
eral and contralateral) (not shown).

Using the MDT model yielded a similar result as the
B&S, but from the contralateral centrum semiovale it did
not manage to follow the tract toward the contralateral
MC, except at very low thresholds, at which specificity
was largely lost. With ICE-T, the contralateral MC was
reached via a relatively wide section of the corpus cal-
losum, which was identical to the one found by manga-
nese tracing. Also, the cortico-thalamic tract toward VA/
VL was mainly correctly reconstructed. However, there
are a number of false positive tracts branching off along
the pathway. For example, they followed the ipsilateral
internal capsule beyond the thalamus and produced

another lateral projection. Also, additional lateral and
medial projections in the contralateral hemisphere were
introduced.

Injection in Somatosensory Cortex

Manganese tracing

The tracer revealed a cortico-nigral tract that terminated
in the substantia nigra, a cortico-thalamic tract that termi-
nated in the ventral posterior (VP)/ventral posterior lateral
(VPL) nucleus, and a cortico-cortical tract that propagated
through the genu of the corpus callosum and terminated
in the contralateral SC. See Figure 5 (top panel).

Deterministic tracking

See Figure 5 (bottom panel, left column). For the DT
model, tracts projected through the internal capsule, but
then turned more inferior and projected toward the brain

Figure 5.

Connectivity of right SC, reconstructed using manganese tracing

(top panel, middle) and tractography (bottom panel). Thresh-

olded tracts are surface-rendered (for thresholds, see Appen-

dix). True positive tracts are labeled in blue, false positive ones

in red. For reference, slices of a T2 image are used (right view

of a mid-sagittal slice, and top view of an axial slice above the

anterior commissure; see top panel, right). Note that the T2 sli-

ces may obscure some of the rendering. Abbreviations: SC,

somatosensory cortex; cSC, contralateral somatosensory cor-

tex; PFC, prefrontal cortex; SEM, centrum semiovale; VA/VL,

ventro-anterior/ventro-lateral thalamus; CC, corpus callosum;

SN, substantia nigra; CE, external capsule; CI, internal capsule;

DT, diffusion tensor; CSD, constrained spherical deconvolution;

B&S, ball and stick; MDT, multiple diffusion tensor; ICE-T, itera-

tive confidence enhancement for tractography. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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stem region. The thalamus was not reached. A false posi-
tive tract was found, entering the external capsule and fol-
lowing the FSC and a spurious tract from centrum
semiovale toward ventral part of PFC. The corpus cal-
losum was crossed more posteriorly compared to the man-
ganese tracing, and the tract reached the contralateral SC
but continued (erroneously) into a neighboring gyrus.

The CSD method yielded tracts that projected, via the
capsula interna, toward the thalamus, but skirted around
VP/VPL and continued toward the brain stem region.
Also, some frontally neighboring gyri were reached, which
were not obvious in manganese tracing. The corpus cal-
losum was crossed more posteriorly than in the manga-
nese tracing, and the tract reached the contralateral SC
(slightly beyond the reach of the manganese tracing). Low-
ering the threshold did not qualitatively change the con-
nections, but just broadened the tracts.

Probabilistic tracking

See Figure 5 (bottom panel, middle and right columns).
For DT, tracts traversed through the internal capsule, after
which they curved off along a more inferior route than the
manganese, and continued on towards the brain stem
region. Additionally, false positive tracts were found going
to the external capsule (two paths) and the neighboring
gyri (superior and middle frontal gyri). On passing
through the corpus callosum, the tracking followed the
manganese pathway, but did not cross the corpus cal-
losum to the contralateral hemisphere. When using the
B&S model, the centrum semiovale was not traversed over
to the internal capsule (as shown by manganese tracing),
but instead the tracking followed an alternative, more
superior and medial path and terminated at the ventral
anterior nucleus of the thalamus. False positive tracts fol-
lowing the subcallosal fasciulus, cingulum, and fornix
were also found. Further, ipsilateral cortico-cortical con-
nections to neighboring frontal gyri were found. Contralat-
eral projections crossed the corpus callosum (posterior to
manganese tracing), crossed the contralateral centrum
semiovale, skirted around the cSC, and projected toward
neighboring ventral gyri and into the internal capsule.

The MDT model resulted in cortico-nigral tracts reach-
ing the vicinity of the ipsilateral substantia nigra and
beyond (but somewhat inferior to the manganese tract)
and the contralateral SC (crossing the corpus callosum
more dorsally than the manganese tracing). No cortico-
thalamic connection was found. False positive ipsilateral
tracts reached the superior frontal gyrus. Using ICE-T
the results were principally the same, but the tracts
were more condensed and less spread out, especially
near the seed region. Moreover, the tracts were followed
for their whole length over a broad range of thresholds.
This is supported by the quantitative specificity results
in Figure 2.

Variation of Tractography Parameters

Deterministic tensor tracking (MedINRIA)

MedINRIA allows varying the minimum FA for the
tracking region, a smoothness parameter controlling the
fiber stiffness and the minimum fiber length. We varied
these parameters within reasonable limits: smoothness
between 0 and 30; fiber length between 5 and 20 mm, FA
threshold between 0.1 and 0.15. As expected, the mini-
mum fiber length caused only very minor changes. Varia-
tion of the other parameters caused a few isolated effects:
(1) injection into prefrontal cortex: increase of the FA
threshold to 0.15 caused the cortico-nigral pathway (Fig. 3)
to disappear; (2) injection to motor cortex: decreasing the
smoothness to 0 caused another false positive tract in the
contralateral internal capsule (the same as for the deter-
ministic CSD tracking, see Fig. 4); (3) injection into somato-
sensory cortex: increasing the smoothness to 20 or more
removed the false positive tract to the ventral PFC (Fig. 5).

Deterministic constrained spherical deconvolution

(MRTrix)

The following main parameters may influence the
MRTrix streamtrack procedure, when used for deterministic
CSD tracking, and were varied (see ranges in brackets):
the FA threshold defining the tracking region (0.05–0.15),
the minimum curvature radius controlling the fiber stiff-
ness (0–1 mm), the minimum fiber length (5–20 mm), the
threshold for the local fODF maximum (0.05–0.2), and the
FA threshold for the computation of the deconvolution
kernel (0.4–0.8). While the first three of these parameters
are also used in tensor tracking, the latter two are specific
for spherical deconvolution. The variation of the parame-
ters caused the following effects: (1) injection into prefron-
tal cortex: while the other parameters had no effect in
terms of the presence or absence of pathways, the curva-
ture parameter proved very influential, as the introduction
of a minimum curvature radius of 0.5 or 1 mm (i.e., one or
two voxels) resulted in an effective suppression of false
positive pathways, while the true positive ones remained
unaffected; (2) injection to motor cortex: this tractography
was somewhat more sensitive towards tracking parame-
ters – minimum curvature constraints caused both true
and false tracts to disappear, large minimum length
(20 mm) caused more false tracts to appear, and a larger
local ODF threshold (0.2) as well as rather low FA thresh-
olds for kernel estimation (<0.6) also caused true and false
tracts to disappear; (3) injection into somatosensory cortex:
here, only few parameter dependencies were found—for
larger minimum curvature (0.5 mm), tracts tended to dis-
appear, and for higher local ODF threshold, the true con-
tralateral SC was reached. Also, FA thresholds below 0.6
removed cortico-thalamic pathway (which was recon-
structed with a deviating pathway for higher thresholds).
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Probabilistic tensor tracking (vdconnect, MPI Leipzig)

Varying the FA threshold for tracking from 0.05 to 0.13
(the value used by deterministic tensor and CSD tracking)
changed the tracking result only very little, and did not
cause any changes with respect to found tracts.

Probabilistic B&S (probtrackx, FSL)

Here we varied the number seed points per voxel
(default: 5,000, tested values: 3,000 and 10,000) and the
minimum curvature parameters (default 0.2, tested values:
0.1 and 0.3). Both parameters turned out to not influence
the result with respect to the found tracts. In addition, the
underlying local model employs another important param-
eter with potential to influence the result: the maximum
number of fiber bundles (“sticks”) per voxel. The default
is to use maximally two fiber populations per voxel.
Increasing this value to 3 caused virtually no change in
the results, while reducing it to just 1 had the surprising
effect that a number of false positive tracks disappeared,
without a notable increase in false negatives.

Probabilistic multi-tensor (Camino)

The main parameters are the number of streamlines ini-
tialised (tested: 3,000, 5,000, 64,000, and 500,000) and the
minimum curvature threshold (default 808, also tested 708

and 908). While the number of streamlines did not have
any visible influence on the result within the tested range
(thus, 3,000 streamlines were enough in our case), chang-
ing the curvature threshold exercised a slight influence,
but did not change the selection of tracts found.

DISCUSSION

Performance of the Algorithms

We evaluated diffusion tractography methods by com-
paring their results to the ones obtained by manganese
tracing. We employed two different modes of comparison.
In the “global voxel-wise comparison,” we studied the
overall sensitivity and specificity of each tractography
method, as measured in the voxel space, compared to
manganese tracing, under the assumption that manganese
tracing represents the ground truth. This analysis was
designed to reveal, using one single number, to what
extent any particular tractography method was capable of
characterizing axonal connectivity in a quantitative way.
In an additional “qualitative assessment,” we manually
assessed the ability of each tractography method to find
particular fiber systems that had been revealed by manga-
nese tracing. This analysis was employed to extend the
results of the global voxel-wise comparison in two impor-
tant ways. First, it allowed for a tract-specific assessment
of the tractography performance and thereby gave cues for
the identification of particular weaknesses of the algo-

rithms. Second, this analysis also enabled an assessment at
a more conceptual level rather than providing mere voxel
agreement. For example, a particular tractography method
might follow the same principal pathways and reach the
same target areas as manganese tracing, but fails to fill the
full volume of the manganese results, thereby decimating
voxel-wise agreement.

The global voxel-wise comparison revealed that, for all
tested tractography methods, it was impossible to reach a
high degree of sensitivity (i.e., finding most of the true
connections) and specificity (i.e., not finding many false
connections) at the same time (i.e., for the same set of
thresholds). It was, however, possible to define a range of
thresholds for which manganese tracing yielded plausible
results, based on the anatomy of the pig brain i.e. [Felix
et al., 1999] and histochemical BDAs tracing [Dyrby et al.,
2007; Jelsing et al., 2006]. Within that range, it appears that
the overall voxel-wise sensitivity of all tested tractography
methods is rather poor. The qualitative assessment
revealed that one major reason for this lack of sensitivity
is the fact that tractography only follows the central, most
coherent part of the tracts, while manganese tracing fol-
lows all the axons and thereby produces tract representa-
tions with larger cross-sectional areas. This results in a
large number of false negative voxels (i.e. positive in Mn,
but negative in tractography). Note, however, that this
could also be due to some lack of specificity in the manga-
nese tracing (or the way it is analyzed). See below (section
“Study limitations”) for more details on possible caveats
of using manganese tracing as a reference for tractogra-
phy. To a somewhat lesser extent, missing entire tracts
(false negatives) and biased trajectories of tracts are also
responsible for this loss of sensitivity. Such problems
appear to mainly occur after tracts have passed regions
with complex fiber arrangements (e.g., the centrum semi-
ovale) or high curvature (e.g., the genu of corpus cal-
losum). The particular choice of tractography method
played a significant role in this aspect of performance:
clearly algorithms using advanced local models (B&S,
CSD, and MDT) were more often able to find the true con-
nections than the DT-based methods (see Table I and Figs.
3–5). This corroborates conclusions from previous studies,
for example, Behrens et al. [2007].

When it comes to specificity, it seems from global voxel-
wise assessment that, within the plausible manganese thresh-
old range, most tractography algorithms perform quite well.
However, when a tractography threshold is selected at which
all or most major fiber tracts are followed along their whole
length, many false positive tracts appear. Hence, even if one
does not take into account the compromising of the sensitiv-
ity that results from not finding the entire cross-section area
found by the manganese tracts, some inherent incompatibil-
ity between sensitivity and specificity remains. Also with
respect to specificity, the qualitative assessment revealed con-
siderable performance differences among the tractography
methods (see Tab. I and Figs. 3–5). Most notably, the
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multiple tensor-based probabilistic tractography imple-
mented in Camino yielded higher specificity (i.e., fewer false
tracts) as compared to the rest of the approaches, while the
(single) tensor based approaches, and also the B&S method,
produced many false positives. As already found for the sen-
sitivity problems, the origin of many of the false tracts seem
to lie in regions with complex fiber architecture, such as the
centrum semiovale. Apparently, the ability of many of the
employed local models to account for fiber crossings was not
sufficient for the correct identification of tracts.

The postprocessing using ICE-T led to some gain in sensi-
tivity (contralateral MC was reached), but also to some loss
in specificity (some false contralateral connections with the
MC injection site). The method appears to promote very con-
centrated tracts that do not always overlap precisely with the
manganese tracts. Moreover, the performance of the method
is relatively independent of the threshold and the path length.
Path length dependency is a property of the most current
tractography schemes, both deterministic and probabilistic,
resulting from the iterative nature of the algorithms and the
consequent error accumulation [for a discussion, see Li et al.,
2012]. It causes larger spread and lower streamline counts for
more distant targets. Note, however, that there also can be a
path length dependency in the underlying ground truth, as
more and more axons branch off from a major tract the fur-
ther one moves away from a seed area. This effect is a com-
plex phenomenon that varies, for example, between brain
areas [Markova et al., 2013]. It has been demonstrated experi-
mentally using tracer experiment [Ercsey-Ravasz et al., 2013;
Markova et al., 2013]. Also, in our manganese tracing results,
there is a clear interaction between SNR (as reflected by the
threshold) and distance from the injection area (see Fig. 1).
So, when using ICE-T, one should bear in mind that besides
the artifactual path length dependency also the natural one
might get eliminated.

Influence of Tractography Parameters

Although it was not within the scope of this work to per-
form a full-fledged parameter study of the investigated trac-
tography algorithms, the parameter variations that we did
perform suggest that some of the parameters have an impact
onto the number of tracts found, but do not really distin-
guish between true and false tracts. In other words, a param-
eter change that lets false positive tracts disappear also tends
to remove true positives (e.g., minimum curvature in deter-
ministic CSD tracking). An exception is the maximum num-
ber of fiber bundles per voxel in the B&S algorithm, where,
in our examples, using just one fiber bundle consistently
yielded fewer false positives than using two or three bun-
dles. This result is somewhat surprising in the light of previ-
ous findings. After all, it is well established that with usual
image resolutions a large proportion of the voxels in the
brain contain more than one fiber population [Behrens et al.,
2007; Jeurissen et al., 2013], and, therefore, assuming just a
single direction per voxel should lead to missing tracts (i.e.,

false negatives), as demonstrated impressively by Behrens
et al. [2007]. However, our results demonstrate that this has
also a downside, as, at least in the tested configurations, false
positive tracts can be generated. This problem might be
rooted in insufficient image resolution, because even with
sophisticated fiber orientation models crossing, it is very dif-
ficult to distinguish between bending and “kissing” of fiber
populations within one voxel [see, e.g., Jones et al., 2012].

Of course, there are potentially many more algorithmic
choices that might have a profound influence on the per-
formance of tractography algorithms. A rigorous evaluation
of these would be of great interest, but requires the imple-
mentation of a generic framework within which all the algo-
rithms can be placed. One potentially important factor is the
seeding strategy. Here, we follow the current practice that
probabilistic tractography is usually seeded only in the area
of interest (local seeding), while deterministic tractography is
mostly seeded in the entire brain with subsequent selection
of the fibers by means of an inclusion region (global seed-
ing). However, a systematic influence of the seeding strategy
onto the tractography results is to be expected, as global
seeding emphasizes connections that involve large and long
tracts, while local seeding yields larger connectivity values
for short tracts. A systematic evaluation of these effects,
using the same (probabilistic) tractography method, has been
performed by Li et al. [2012]. When comparing ex vivo track-
ing in macaque brains with the previous tracer results none
of the tested seeding strategies was clearly superior. On the
other hand, when deriving graph based measures (small-
world indices, hubs, and hemispheric asymmetries) from the
tractography results, substantial differences between seeding
methods were observed. As stated by these authors more
work on the effect of seeding strategies, also involving more
different tractography methods, is needed.

Significance of Results and Possible

Ways Forward

In summary, both global voxel-wise comparison and
qualitative assessment revealed that, for all tested tractog-
raphy methods, reaching a high degree of sensitivity (i.e.,
finding all true tracts) and specificity (i.e., not finding false
tracts) at the same time is difficult or impossible. Such
problems have been known since the advent of diffusion
tractography. As a major consequence, researchers have
developed a whole range of sophisticated methods, in par-
ticular those for modeling the local fiber configuration
within a voxel [Seunarine and Alexander, 2009]. In fact,
our results confirm that these efforts have been at least
partially fruitful. However, it is also evident that none of
the methods performed without errors and that all the
local models seem to have similar problems, even if they
are able to accommodate crossing fiber configurations. We
do not conclude from this that the more realistic local
models have no benefit for tractography [Behrens et al.,
2007], but simply that their power is not sufficient for the
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challenges posed in this specific case. However, our results
are strikingly in line with a recent study of Thomas and
colleagues [2014], who used high-resolution ex vivo trac-
tography of macaque in comparison with atlas data from
tracer studies to assess the accuracy of various methods.
They also reach the conclusion that gains in sensitivity are
generally achieved by loss in specificity and vice versa.
This is all the more remarkable, as in our study we are
using a quite different set of techniques to assess (par-
tially) the same set of tractography methods: (1) we use a
within-subject comparison rather that a comparison with
atlas data; (2) we use voxel-wise and qualitative tract-wise,
rather that region-wise, comparison.

At first glance somewhat in contrast to these and our
results are the findings of Jbabdi et al. [2013], who
reported good agreement between in vivo tracer and B&S
tractography results in macaques. While in their data the
voxel-wise agreement between tracing and tractography
seems also quite limited (as it appears from the figures),
the qualitative agreement is remarkable. They used a tech-
nique that has not been used here, namely the use of
inclusion and exclusion masks. This is a very potent way
of incorporating prior assumptions into the tracking proce-
dure and of course reduces the chance for false positives
dramatically.

It should be noted that a certain incompatibility between
sensitivity and specificity is a general property of every
attempt to reconstruct the underlying sources from noisy
and undersampled data (see below). With given data, at
some point trying to reveal even more detail from the data
(by using more complex models with more degrees of
freedom) goes along with the risk of interpreting noise
and generating false positives. So, it is important to state
that our results also show that with current methods and
data it is quite possible to make valid (i.e., highly specific)
reconstructions, albeit at the cost of some loss in
sensitivity.

Our findings suggest that the observed performance
problems are not solely due to the constraints imposed by
the local models and the type of employed tractography,
but they are also a consequence of the limited amount of
available data. In fact, the estimation of the diffusion prop-
agator (i.e., the particle displacement distribution function)
is subject to subsampling in four dimensions [Jones et al.,
2012]: spatial, angular, diffusion time, and diffusion length
(displacement of molecules). In practice, each of these fac-
tors is severely undersampled: voxels are so big that they
contain multiple fiber populations; commonly used angu-
lar resolution (e.g., 60 directions) allows for reconstruction
of fiber bundles separated no less than 30–458 [Descoteaux
et al., 2009]; and using just one or a few (and often rather
low) b-values limits the angular resolution between
parallel-oriented barriers, such as axonal membranes
[Descoteaux et al., 2009; Dyrby et al., 2011]. The relative
importance of these factors is a matter of ongoing debate.
However, our experience with the application of high

angular resolution local models in complex regions (e.g.,
the centrum semiovale) suggests that the main source of
deficiency is the lack of sufficient spatial (voxel) resolution,
leading to partial volume effects (PVE). However, also a
lack of angular resolution, mainly caused by small b-val-
ues, may play an important role. As a consequence, we
argue that, while there are certainly benefits of using
sophisticated local models and tracking strategies, they
will only have a chance to be fully effective once this data
deficiency has been overcome (minimal PVE). A major
obstacle on the road to better spatial and angular resolu-
tion is scanning time—particularly within clinical settings.
One of the most successful ways of accelerating multiple
slice acquisitions is multiband imaging [Moeller et al.,
2010; Setsompop et al., 2012]. Another promising improve-
ment in that respect is the recent development of multi-
plexing [Feinberg et al., 2010; Reese et al., 2009], along
with compressed sensing [Doneva et al., 2010; Landman
et al., 2011; Landman et al., 2010; Menzel et al., 2011;
Michailovich and Rathi, 2010; Michailovich et al., 2011].
Stronger gradients in clinical scanners play a key role
for ensuring improved SNR (via minimizing TE), higher b-
values, as well as contrast to microstructural details
[Dyrby et al., 2013]. Also, the use of high static magnetic
fields in combination with parallel imaging and reduced
field-of-view has been shown to improve the SNR and
allow for superior voxel resolution [Heidemann et al.,
2011; Heidemann et al., 2010]. Substantial advances
towards higher SNR, faster scanning and improved resolu-
tion have been achieved by the Human Connectome Pro-
ject [for overviews, see Setsompop et al., 2013;
Sotiropoulos et al., 2013].

Alternatively, tractography algorithms might profit
from the incorporation of additional knowledge of the
fiber tracts to be reconstructed. We know, for example,
that DWI datasets contain a high degree of spatial coher-
ence, due to extended bundles of projecting axon, and
tractography might still not use the full potential of this
information. Dyrby et al. [2014] show that interpolating
either the raw diffusion MRI data or the reconstructed
local model (e.g., the DT) potentially enables the extrac-
tion of finer anatomical details that are normally seen
only at the higher image resolution. The authors argue
that the anisotropic spatial coherence is likely to be the
underlying source of this additional information. Simi-
larly, “Track Density Imaging” by Calamante et al. [2010]
uses, instead of interpolated raw data, the streamlines as
“’spatial interpolators” at a very high image resolution
and can map fine anatomical structures that were not
visible at original image resolution. Rowe et al. [2012] use
anatomical knowledge on how fiber tracts can disperse at
the front-end of the tracking and demonstrate promising
new features and robustness in tracking . Finally, the use
of inclusion/exclusion maps is an effective means of
eliminating many a priori senseless tracts [Jbabdi et al.,
2013].
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Study Limitations

There are a number of potential caveats for the univer-
sality of the above conclusions. First, it has to be made
clear that manganese tracing does not necessarily repre-
sent the absolute truth in terms of fiber architecture: Man-
ganese tracing also has a limited image resolution, leading
to a considerable incidence of PVE, especially in narrow
passages such as the tracts to the substantia nigra and the
thalamus. There is also a substantial intercellular spread of
manganese around the injection site, creating a large dif-
fuse region of false positives. This also causes some uncer-
tainty about exactly which axons take up the manganese.
Possibly a similar, but less prominent, extracellular diffu-
sion effect also occurs at the projections sites where trans-
ported manganese is accumulated. This unspecific
spreading forces higher thresholds, which in turn leads to
reduced detectability of the actual fiber tracts. Also, if fol-
lowing a number of axons originating at the injection site,
the branching-off of more and more axons may lead to a
general path length dependency of tracer results [Ercsey-
Ravasz et al., 2013; Markova et al., 2013]. As a conse-
quence, the aforementioned imperfections of manganese
tracing may lead to systematic false negatives at the far
ends of the tracts, that is, tracts do not appear to reach
their final destination in gray matter.

A second issue in this study is that in order to be able
to use the ground truth information provided by invasive
tracing, we used mini pig brains. This leads to a potential
problem in the applicability of the results to humans. In
order to minimize this problem, the imaging parameters,
e.g., voxel size, were chosen such that they were equiva-
lent to commonly used image resolution in human experi-
ments. Also, the chosen b-value was adapted to the ex
vivo situation and corresponded closely to a clinical in
vivo experiment [Dyrby et al. 2011]. However, due to the
strongly non-linear relationship between the white matter
fiber architectures in pigs and humans, this compatibility
cannot be perfect. For example, pig brains have, in relation
to their size, much thinner white matter than humans
[Lind et al., 2007]. This may render the effective image
resolution in pigs coarser than that in humans and explain
some of the difficulties tractography has in complex
regions like the centrum semiovale. On the other hand, in
terms of image quality (artefacts, SNR, motion) the present
data are significantly better than average clinical human
data. Therefore, the observed problems are most likely to
also be present in human experiments, at least partially.

Another potential caveat to the analysis provided here
lies in the co-registration between in vivo manganese trac-
ing and ex vivo diffusion MRI, as well as between differ-
ent pig brains. In order to assess the quality of the
registration, we matched visible landmarks in the manga-
nese images (i.e., projection sites) with their known ana-
tomical counterparts in the diffusion MRI data. We found
an agreement on the order of the size of a single voxel.
Therefore, and considering the spatial extent of the tracts,

it is not likely that co-registration problems explain a
major part of our results.

Also, the suggestion that higher spatial resolution might
be the road to success in improving the situation seems to
be partially at odds with the findings of Thomas and col-
leagues [2014], who detected similar problems at half the
voxel size we used (with roughly similar brain size
between macaque and mini pig). The question remains
whether this can be interpreted as general proof that better
voxel resolution will not solve the problem, or whether
their voxel resolution of 0.25 mm is still too coarse. How-
ever, a direct quantitative comparison between their and
our results is not possible because of the strongly different
assessment techniques.

Finally, the study is limited by the fact that we were not
able to test all known tractography methods. Herein we
have chosen a range of popular methods spanning most
major classes of techniques. We, therefore, believe that the
problems found are not solvable by better algorithms
alone.

It is clear from the above considerations that manganese
tracing alone, in spite of its undisputed merits (that have
motivated us to use it in the first place), does not provide
a “gold standard” for axonal connections, but only a
“silver standard.” Many independent methods for valida-
tion of tractography already exist, but they all have their
advantages and drawbacks. Among the tracer methods,
manganese is important, because it can be globally imaged
in the intact brain and thereby easily compared with trac-
tography results. Unfortunately, this advantage is inher-
ently linked to some major limitations (related to, e.g.,
MRI voxel size and SNR), so cross-validation with alterna-
tive methods is needed (as also done in this study). In the
future, validation approaches might therefore use a kind
of “committee strategy,” where several independent (typi-
cally invasive and some of them tissue destructive) meth-
ods are combined for providing a more complete picture
of the challenges and possibilities that tractography meth-
ods face in in vivo brain tissue. Such a committee valida-
tion strategy could combine different types of invasive
tracers [Innocenti et al., 2013; Jelsing et al., 2006; Markov
et al., 2014; Schmahmann et al., 2007], for knowing the
exact projections from particular starting regions (connec-
tion oriented approach), with polarized light imaging
[Caspers et al., 2015] and structure tensor analysis [Budde
and Annese, 2013], for providing high-resolution accounts
of the orientational structure of the tissue and the spatial
relationships between fiber populations (volume oriented
approach). For cross-validation, also microscopic myelin
imaging together with optical clearing methods (e.g., with
clear lipid-exchanged acrylamide-hybridized rigid imag-
ing) [see, e.g., Spence et al., 2014] might play an important
role. While the above techniques can be applied in labora-
tory animals or postmortem samples, and therefore their
results are fairly realistic with respect to the domains of
practical application of tractography (mostly in vivo
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human), physical phantoms are much more of an abstrac-
tion of reality. On the other hand, they do provide a real
ground truth. Certainly, the comparative evaluation of
tractography methods with the help of phantoms [Fillard
et al., 2011; Neher et al., 2013; Schreiber et al., 2014] can
deliver important insights into the specific strengths and
weaknesses of the methods. However, it must be born in
mind that the results of such a comparison might be
biased by the degree to which the tested methods conform
with the particular simplifications embodied in the phan-
tom, for example the parallelism of the fibers or the spe-
cific way of interdigitation at crossings. It is, therefore,
quite possible that those techniques that perform well in a
certain type of phantom do not so in the real brain.

CONCLUSIONS

In this study, a representative selection of tractography
methods was evaluated by comparing them with invasive
manganese tracing. We found that, in general, tractogra-
phy methods were capable of finding the major fiber
tracts, with some important performance differences exist-
ing between the methods, thus confirming the benefit of
using some of the more sophisticated approaches. With
moderate thresholds and therefore limited sensitivity (i.e.,
some tracts are missed) specificity can be kept high and
results are valid (with no or few false positives). However,
we also discovered that at higher thresholds false positive
connections were very common, and it is difficult to
achieve high sensitivity (i.e., few false negatives) and high
specificity (i.e., few false positives) at the same time. We
observed that these problems mainly originate from
regions with complex fiber arrangements or high curva-
ture and are not easily resolved by sophisticated local
models alone. Instead, the crucial challenge in making
tractography a truly useful and reliable tool in brain
research and neurology lies in the acquisition of better
data. In particular, we hypothesize that the increase of
spatial resolution, whilst preserving the SNR, is the key.
The validity of this assumption remains to be investigated
in future studies.

ACKNOWLEDGMENTS

The study was a part of the EU FP7 project CONNECT
(consortium of neuroimagers for the non-invasive explora-
tion of brain connectivity and tracts). None of the authors
have any conflict of interest to declare with the subject
matter.

APPENDIX: THRESHOLD VALUES FOR

QUALITATIVE COMPARISON

The thresholds for tracing and tracking shown in Table
AI were manually chosen to optimize the balance between
specificity and sensitivity. They are expressed as percent-
age of the maximum value.
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