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The spatial pattern across the continental United States of the interannual variance

of warm-season water-dependent evapotranspiration, a pattern of relevance to

land-atmosphere feedback, cannot be measured directly. Alternative and indirect

approaches to estimating the pattern, however, do exist, and given the uncertainty of

each, we use several such approaches here. We first quantify the water-dependent

evapotranspiration variance pattern inherent in two derived evapotranspiration datasets

available from the literature. We then search for the pattern in proxy geophysical variables

(air temperature, streamflow, and NDVI) known to have strong ties to evapotranspiration.

The variances inherent in all of the different (and mostly independent) data sources show

some differences but are generally strongly consistent—they all show a large variance

signal down the center of the U.S., with lower variances toward the east and (for the

most part) toward the west. The robustness of the pattern across the datasets suggests

that it indeed represents the pattern operating in nature. Using Budyko’s hydroclimatic

framework, we show that the pattern can largely be explained by the relative strength of

water and energy controls on evapotranspiration across the continent.

Keywords: land-atmosphere interaction, climate variability, interannual variability, evapotranspiration,

continental-scale

Introduction

Meteorological variables (e.g., precipitation and air temperature) vary across multiple time scales.
Seasonal-to-interannual variations in these variables can manifest themselves in many ways—as an
abnormally hot summer, for example, or as a crippling drought. Understanding the mechanisms
underlying such long-term variability is a critical first step toward predicting societally-relevant
variations well ahead of time and quantifying societal vulnerabilities to such variations in the face
of climatic shifts.

The time scales of atmospheric processes are generally not amenable to the maintenance of
seasonal meteorological anomalies. For such long time scales, other, slower-moving components
of the climate system must come into play. Oceanic heat anomalies, for example, vary at long time
scales; the prediction of oceanic variations and their consequent impacts on atmospheric variations
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at long leads underlies today’s operational seasonal forecasting
efforts (e.g., Kirtman et al., 2014).

Soil moisture is another slower-moving climate system
component, with residence times of order weeks to months
(Vinnikov and Yeserkepova, 1991; Entin et al., 2000); it thus has
the potential to contribute to monthly or seasonal predictions
(e.g., Koster et al., 2011). For summer in midlatitudes (the
focus of this paper), soil moisture indeed has the potential
to contribute more skill to seasonal forecasts than can ocean
conditions (Koster et al., 2000). The primary conduit by which
soil moisture variations can induce variations in atmospheric
variables and thus aid in prediction is through its control
over the evapotranspiration rate and, by extension, through
its control over the surface energy balance as a whole (e.g.,
the generation of sensible heat and concomitant impacts on
boundary layer growth, etc.). A basic understanding of how
interannual variations in soil moisture are communicated to the
atmosphere thus requires a characterization of the interannual
behavior of evapotranspiration and how it is controlled by the
availability of water in the soil.

This paper aims to provide such a characterization. More
specifically, it aims to quantify the spatial pattern over the
continental United States (U.S.) of the interannual variability of
May–September total evapotranspiration, focusing in particular
on that part of the variability associated with variations
in water availability (see Section Methods: Water-dependent
Evapotranspiration Variability). That is, we aim to determine
where this variance is large and thus potentially relevant to land-
atmosphere feedback, as well as where it is small, suggestive of
little feedback. Such information is not easily accessible in the
literature.

Here we quantify the spatial pattern of water-dependent
evapotranspiration variance through analysis of observations-
based datasets, avoiding estimates obtained through numerical
climate modeling or reanalysis, since they necessarily reflect
numerous modeling assumptions and associated model biases.
This focus on observations, however, imposes an important
caveat to our study. Given a dearth of relevant soil moisture
observations, we instead characterize water availability in this
paper with contemporaneous and antecedent precipitation
(see Section Methods: Water-dependent Evapotranspiration
Variability). We are, in essence, assuming a first order
relationship between soil moisture and precipitation, with high
(low) precipitation leading to high (low) soil moisture. This
required assumption must be kept in mind when interpreting
our results in the context of land-atmosphere feedback. Also,
note that we focus here solely on the U.S., mainly because
it is a large continental region with multiple hydroclimatic
regimes and because it is, for the most part, well-instrumented
throughout.

We look first at the interannual variability inherent in
two multidecadal, gridded estimates of evapotranspiration
available in the literature (Section Analysis of Gridded
Evapotranspiration Datasets). Recognizing that these
datasets, though observations-based, do not represent direct
measurements of evapotranspiration itself and are thus
inherently uncertain, we follow this up (Section Analysis

of Relevant Proxy Variables) with the analysis of the water-
dependent interannual variance of three independent proxy
variables (namely, temperature, streamflow, and normalized
difference vegetation index, or NDVI), each of which should
show variability patterns mimicking those of evapotranspiration.
The agreement in the patterns across all of the datasets, while
not perfect, is remarkably strong, providing confidence that the
main patterns generated are accurate. For additional context,
we provide in the discussion section (Section Discussion) an
analysis of the evapotranspiration variability implied by the
hydroclimatic analysis framework of Budyko (1974).

Methods: Water-dependent
Evapotranspiration Variability

Evapotranspiration, E, is controlled by more than just moisture
availability. Interannual variations in evapotranspiration
can also reflect interannual variations in incident radiation,
wind speed, temperature of incoming advected air, and
so on. Because, however, we are particularly interested in
evapotranspiration as the conduit linking soil moisture
variability with meteorological variability, we seek in this
paper to quantify the evapotranspiration variability specifically
associated with moisture availability.

Water-dependent evapotranspiration variability is quantified
here with σ

2
E
∗, the statistically-derived portion of the total

interannual evapotranspiration variance that is “explained” by
variations in the availability of moisture for evapotranspiration.
We define σ

2
E
∗ as:

σ
2
E
∗
= σ

2
E r

2 (E,W) , (1)

where σ
2
E is the total variance of E and r2(E,W) is the square

of the correlation coefficient between E andW, the variable used
to represent moisture availability. We thus employ the standard
interpretation of r2(E,W) as the fraction of the variance of E
“explained” by variations in W (It can be shown, in fact, that if
E is regressed on W, so that E is approximated with the linear
equation Eest = aW + b, then σ

2
E
∗ is the variance of the

resulting Eest values). Equation (1) effectively allows us to isolate
the water-dependent part of evapotranspiration variability from
that associated with other sources, such as variations in radiation
or humidity.

Again, our focus here is on the warm season in the U.S., the
period when evapotranspiration should be largest. The E-values
used in the calculation of σ2E and r2(E,W) at a given location are
the evapotranspirations averaged over May through September
(MJJAS), one value per year in a given dataset. The W-values
would optimally be the corresponding MJJAS root zone soil
moisture averages, one value per year; however, we avoid using
soil moisture here because direct measurements of root zone
soil moisture do not exist across the U.S. over multiple decades
and because model-generated soil moisture products, while
widely available, reflect model-specific assumptions regarding
soil moisture’s connection to evapotranspiration, something we
want to avoid. We instead rely on precipitation, a relatively well-
observed variable, to characterize moisture availability. For W
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in Equation (1) we use the observed precipitation averaged over
April–September. The connection between soil moisture and
contemporaneous or slightly antecedent precipitation (indicated
here by our inclusion of April precipitation) follows largely from
mass balance considerations (larger precipitation amounts wet
the soil more) and is well established in the literature (e.g., Pan
et al., 2003; Brocca et al., 2014).

In using precipitation for W in the term r2(E,W), we test
for positive values of r, which would be consistent with a causal
impact of precipitation on water supply and thus on evaporation.
Negative values of r are zeroed because, if they don’t result
from sampling error, they may reflect irrelevant connections.
For example, due to cloudiness, total warm season precipitation
may be negatively correlated with average warm season net
radiation, which would be positively correlated with E [so that
r(E,W) would be negative], or the precipitation may be positively
correlated with humidity, which would be negatively correlated
with E [so that again, r(E,W) would be negative]. In our analyses,
statistically significant negative correlations in fact turn out to be
rare.

In this paper, unless otherwise stated, the precipitation data
used are from the high quality Climate Prediction Center (CPC)
U.S. Unified Precipitation dataset (Chen et al., 2008a,b). These
data, along with the evapotranspiration estimates examined, are
gridded to a resolution of 2.5◦ × 2.5◦ to emphasize large scale
patterns in σ

2
E
∗.

Results

Analysis of Gridded Evapotranspiration Datasets
While some direct observations of land surface
evapotranspiration are obtained, for example, with lysimeters
or eddy correlation systems, these measurements are too
sparse to allow the direct quantification of evapotranspiration
and its variability across continental scales. Investigators
thus use alternative means to quantify continental-scale
evapotranspiration. Estimates, for example, can be obtained
by driving a land surface model across the continent with
observations-based meteorological forcing (e.g., Dirmeyer
et al., 2006). While model-derived estimates can be useful,
we avoid using them here specifically because the simulated
rates reflect built-in assumptions regarding the sensitivity of
evapotranspiration to variations in soil moisture. We also avoid
the use of satellite-based estimates of evapotranspiration (e.g.,
Ferguson et al., 2010), as these estimates rely on many of their
own algorithmic assumptions and because they do not provide
the multiple decades of data needed to characterize interannual
variability.

There are, however, gridded estimates of evapotranspiration
spanning multiple decades that are strongly tied to observations
and that do not rely on assumed evapotranspiration-soil moisture
relationships. In this section, we quantify the σ

2
E
∗ values inherent

in two such datasets.

ETRHEQ-based Evapotranspiration Product
The Rigden and Salvucci (2015) evapotranspiration dataset was
derived from meteorological data using a method based on

the relationship between the diurnal cycle of relative humidity
and evapotranspiration (Salvucci and Gentine, 2013)—a
method known as “ETRHEQ” (evapotranspiration based on
relative humidity at equilibrium). Specifically, Salvucci and
Gentine (2013) found that the surface conductance to water
vapor transport, the key rate-limiting parameter of typical
evapotranspiration models, can be estimated as the value
that minimizes the vertical variance of the calculated relative
humidity profile averaged over the day. The key advantage of this
approach is that biophysical and hydrological surface parameters
(stomatal conductance, soil texture, soil moisture, etc.) are not
required to estimate evapotranspiration. Evapotranspiration
estimates instead require diurnal measurements of five
meteorological variables: screen height air temperature,
humidity, wind speed, pressure, and downwelling shortwave
radiation.

To estimate evapotranspiration across the U.S., Rigden and
Salvucci (2015) applied the method at 305 weather stations for 50
years (1961–2010). The procedure involved adjusting the weather
station data to match PRISM (Parameter-elevation Relationships
on Independent Slopes Model) estimates (Daly et al., 2008) for
the given month to mitigate site-specific bias in temperature
and humidity and to improve the data’s continuity over the
period of record. Vegetation height (needed to characterize the
surface roughness length) was inferred from satellite-derived
land cover data. Sub-daily evapotranspiration estimates were
temporally averaged to monthly values at each station. To
create the gridded evapotranspiration dataset from the station-
based estimates, Rigden and Salvucci (2015) spatially interpolated
the average monthly evapotranspiration estimates to a 0.25◦ ×

0.25◦ grid using the ANUSPLIN software package (Hutchinson,
1995; Hutchinson and Xu, 2007), which interpolates using a
multivariate thin-plate smoothing spline. Land cover data was
also used in the interpolation.

For this study, the gridded ETRHEQ-based
evapotranspiration data from Rigden and Salvucci (2015)
were aggregated spatially to 2.5◦ × 2.5◦ and were temporally
averaged, for each year during the period 1961–2010, over
the period May–September. Using these yearly MJJAS values
and corresponding April–September values of precipitation
from the CPC U.S. Unified dataset, we computed, at each
2.5◦ × 2.5◦ grid cell, the values of σ

2
E and r2(E,W), which are

shown in Figures 1A,B. The interannual variance of MJJAS
evapotranspiration is strongest in the west, as is the square of the
correlation between evapotranspiration and water availability.

The σ
2
E and r

2(E,W) values are shown in the figure mostly for
background; the quantity of chief interest here is their product,
σ
2
E
∗, shown in Figure 1C. It too is largest in the west. The

diagnostic indeed shows a large maximum lying in the far
west, but not touching the coast; secondary maxima appear to
indicate high values along a north–south swath down the center
of the U.S. In the eastern half of the U.S., water-dependent
evapotranspiration variance is very small.

MTE-based Evapotranspiration Product
The product of Jung et al. (2010, 2011) is based on an
empirical approach that combines monthly eddy covariance
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FIGURE 1 | (A) Variance of MJJAS evapotranspiration, σ
2
E, as

determined from the evapotranspiration dataset of Rigden and

Salvucci (2015). (B) Square of the correlation coefficient, Corr2(E,P),

between MJJAS evapotranspiration from the dataset of Rigden and

Salvucci (2015) and April–September precipitation [referred to in text

as r2(E,P)]. (C) σ
2
E
∗, or the product of σ

2
E and Corr2(E,P), as

derived from the dataset of Rigden and Salvucci (2015). (D–F) Same

as (A–C), but for the dataset of Jung et al. (2010).

evapotranspiration observations from about 200 FLUXNET sites
(Baldocchi et al., 2001), remotely sensedmeasurements of FAPAR
(fraction of absorbed photosynthetically active radiation), and
meteorological variables in a machine learning approach called
Model Tree Ensembles (MTE, Jung et al., 2009). The density of
the FLUXNET sites used is largest in North America (the focus of
this paper) and Europe. While more than 40 predictor variables
were used to train theMTE, only three of them vary interannually
and thus contribute directly to the interannual variance of E:
precipitation, temperature, and FAPAR. The interannual variance
of the MTE-based ET product appears to be underestimated
(Jung et al., 2011).

As with the ETRHEQ-based evapotranspiration estimates, the
data of Jung (covering 1982–2008) were aggregated temporally
and spatially to MJJAS totals at 2.5◦ × 2.5◦. Figures 1D–F

shows the corresponding derived values of σ
2
E, r2(E,W),

and σ
2
E
∗. The quantities show some interesting differences

with the ETRHEQ-based values. The interannual variance of
MJJAS evapotranspiration (Figure 1D) is maximized along the
aforementioned north–south swath down the center of the U.S.,
with low values seen in the west, and the r2(E,W) values in
Figure 1E are similar in pattern to those in Figure 1B but with
larger magnitudes.

Again, though, the diagnostic of chief importance for us
is the water-dependent MJJAS evapotranspiration variance,
which is shown in Figure 1F. This variance is very clearly
maximized along the north–south swath, with no largemaximum
in the far west. The differences in the two σ

2
E
∗ fields are

particularly interesting because the ETRHEQ-based and MTE-
based evapotranspiration products were found by Rigden and
Salvucci (2015) to be similar in terms of annual means and
mean seasonal cycles across the U.S. Figure 1 suggests that this
similarity in means does not imply a corresponding level of
similarity in interannual variability.

Analysis of Relevant Proxy Variables
The σ

2
E
∗ patterns from the two evapotranspiration datasets

(Figures 1C,F) show both similarities (e.g., the low values in the
east and higher values in the middle of the U.S.) and differences
(particularly in the west). We note again that neither plot is
based on direct evapotranspiration measurements; such direct
measurements spanning the continent over multiple decades do
not exist. Given this uncertainty, we now explore further the
σ
2
E
∗ pattern that actually exists in nature by looking at the

signal inherent in proxy geophysical variables, each of which has
been well measured over multiple decades across the U.S., and
each of which has a variability that is strongly tied to that of
evapotranspiration. The three proxy variables we consider here
are air temperature, streamflow, and NDVI.

By direct analogy with Equation (1), we define the water-
dependent interannual variance of a given proxy variable X as

σ
2
X
∗
= σ

2
X r2 (X,W) (2)

where σ
2
X is the total variance of X and r2(X,W) is the square

of the correlation coefficient between X and W. As before,
W is taken to be precipitation averaged over April–September,
except (as discussed below) when the proxy variable involves
streamflow.

Temperature
In contrast to directly measured evapotranspiration data,
air temperature data are abundant. The connection between
seasonally-averaged near-surface air temperature and seasonally-
averaged evapotranspiration is conceptually well-established
(Seneviratne et al., 2010). Put simply, in water-limited
evapotranspiration regimes, higher (lower) evapotranspiration
rates lead to increased (decreased) evaporative cooling of the
land surface and thereby to reduced (increased) surface air
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temperature, particularly given that synoptic variability is
averaged out through the seasonal averaging. Accordingly, areas
with higher evapotranspiration variance should have larger air
temperature variance. Again, this is particularly true in areas for
which soil moisture variations control evapotranspiration rates,
which are the regions of interest in this paper. In wetter regimes,
other effects come into play; evapotranspiration, controlled by
energy availability, can co-vary positively in these regions with
air temperature. An earlier study (Koster et al., 2006a) used a
set of atmospheric model experiments to show that observed
temperature variances do seem to reflect these mechanisms;
those findings are, in effect, expanded here through the use of
the water-dependent variance calculation, Equation (2).

The air temperature data used here are from the Global
Historical Climatology Network (GHCN) station dataset
(Peterson and Vose, 1997). We examined all stations within
North America that satisfy two constraints: (i) the existence
of at least 30 years of MJJAS air temperature values, and (ii)
the coexistence of monthly GHCN precipitation data for the
same years, for either the same site or for a station within a
few kilometers of the site. For the temperature analysis, we
indeed use these GHCN precipitation data rather than the CPC
gridded precipitation data to computeW. The average MJJAS air
temperature, T, is the variable X in Equation (2).

Figures 2A–C show the associated spatial patterns of σ
2
T,

r2(T,W), and σ
2∗
T. Values are plotted as color-coded circles at each

measurement station’s location. The precise magnitudes of σ
2
T

and σ
2
T
∗ are not shown because our only aim here is to provide

the spatial pattern of evapotranspiration variability—all variance
values within a given plot are scaled by a map-specific factor to
allow the patterns to be compared directly to those for the other,
correspondingly scaled proxy variables.

The temperature data show a total variance that is largest in
the center of the country but is still large toward either coast. The
square of the correlation between T and P, however, is decidedly
maximized in the swath down the center of the country, and thus
σ
2
T
∗ is also maximized along this swath, with values close to zero

toward either coast. The σ
2
T
∗ pattern in Figure 2C, a proxy for

the evapotranspiration pattern we are seeking in this paper, is
strongly reminiscent of that found for the Jung et al. (2010) data
in Figure 1F.

Streamflow
The second data type examined is streamflow, which
has an obvious connection to evapotranspiration: annual
evapotranspiration in a region is roughly equal to the annual
precipitation in the region minus the annual streamflow
generated in the region, with any imbalance associated with
(assumed small) changes in yearly soil moisture storage.
Furthermore, annual evapotranspiration is a strong indicator
of MJJAS evapotranspiration, since the warm season produces
by far the most evapotranspiration in most areas (For example,
the average May–September evapotranspiration over the U.S.
from the ETRHEQ data set is over four times that of the average
November–March evapotranspiration). Here we examine
streamflow data from 23 gauged basins in the continental
United States. The streamflow data cover at least 39 years

and generally exceed 60 years; see Table 2 in Mahanama et al.
(2012) for a full description of the basins examined and their
associated data. For precipitation, we use the gauge-based dataset
constructed by Andreadis et al. (2005) rather than the CPC U.S.
Unified Dataset because two of the basins extend outside of
the continental U.S. and because the former dataset goes back
further in time, allowing more of the streamflow measurements
to be utilized.

Note that several of the monitored basins are “nested” within
others. In this paper, if Basin B, for example, is nested within
Basin A, results for Basin A refer only to that part of Basin A
that does not include Basin B. In other words, before any other
calculations are performed, the measured annual streamflow, Q,
examined for Basin A is transformed as follows:

QBasinA
′
= QBasinA − QBasinB. (3)

We correspondingly define PBasinA, the precipitation for Basin A,
to be the annual precipitation falling on the portion of Basin A
that does not include Basin B.

For streamflow, the quantity X in Equation (2) for Basin
N is PBasinN–QBasinN, which, again, assumes that interannual
variations in storage can be neglected. Note that in addition we
apply an area-dependent scaling factor to σ

2
P–Q

∗ to account
for differences in basin size—all things being equal, a larger
basin will show lower variability than a smaller basin simply
due to the more extensive “averaging out” of spatial variability
within the former. The applied scaling factor aims to convert
a computed P–Q variance into the corresponding value for a
smaller interior basin of a specific nominal size (as would be
computed if such small-scale streamflow measurements were
available), thereby allowing the results from the disparately-sized
basins to be directly compared. The scaling factors are derived
from the factors relevant to the precipitation data covering the
basin. If Basin A contains N small grid cells, the scale factor, S,
for P–Q is computed as

SBasinA =
(1/N)

∑

n= 1,N σ
2(Pn)

σ2(PBasinA)
(4)

where σ
2(Pn) is the variance of precipitation in grid cell n, and

σ
2(PBasinA) is the variance of the basin-averaged precipitation.

While the statistical properties of P–Q will differ from those of
P, use of Equation (4) is deemed much more sensible than either
ignoring the impact of area on variance (i.e., setting SBasinA to 1)
or assuming that P–Q in the different N grid cells are spatially
uncorrelated (i.e., setting SBasinA to N). Equation (4) offers the
best estimate of SBasinA possible given available data.

One final note about the processing of the streamflow
data is needed: because we are working with annual totals
of precipitation and runoff (shorter averaging periods make
no sense for estimating evaporation from P and Q, given
interseasonal storage of moisture, Milly, 1994), we use here
the annual (October–September) precipitation rather than the
April–September precipitation for W in Equation (2). As an
aside, we computed the spatial distributions (not shown) of
warm season water-dependent variances for the other variables
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FIGURE 2 | (A) Variance of MJJAS air temperature, σ
2
T, as determined from

GHCN air temperature data. (B) Square of the correlation coefficient,

Corr2(T,P), between MJJAS air temperature and April–September

precipitation. (C) σ
2
T
∗, or the product of σ

2
T and Corr2(T,P). (D–F) Same as

(A–C), but for the difference between annual basin-averaged precipitation

and annual basin-averaged streamflow, and with the correlations computed

against annual precipitation. (G–I) Same as (A-C), but for NDVI data

averaged over August–September.

(ETRHEQ-based evaporation, air temperature, etc.) using annual
precipitation instead of April–September precipitation for W
and found very little impact on the results, presumably because
most of the annual precipitation across the U.S. falls during the
warm season. We could thus have used annual precipitation
for the other variables as well, producing essentially the same
plots.

The streamflow-based results are presented in Figures 2D–F,
with basins color-coded according to the value of the quantity
considered in each plot. The primary difference between the
streamflow results and those of the other data sources considered
so far is the very high level of correlation between P–Q and P in
Figure 2E, which is not surprising given that the two quantities
are not independently measured. The pattern of r2(P–Q, P) in
Figure 2E has the effect of transforming the pattern of σ

2(P–Q)
in Figure 2D, which shows a weak maximum of variance down
the center of the country, into the much more pronounced swath
of high values for σ

2
P–Q

∗ in Figure 2F. In strong agreement with
the temperature-based results, the streamflow-based analysis
shows that in general, evapotranspiration variability associated
with moisture variations is maximized along a swath down
the center of the continent. The swaths for T and P–Q
are indeed co-located; they both even show a slant to the
northwest in their northern sections. One distinction does
exist, however: for the streamflow-based data, values in the
northern part of the swath are smaller than those in the
southern part. Even so, the values in the northern part are
still, in general, substantially larger than those toward either
coast.

Normalized Difference Vegetation Index
The final proxy variable considered here is satellite-based
NDVI data, variations of which reflect variations in the
lushness, or leafiness, of vegetation. Rather than assuming
a simple cause-and-effect relationship between NDVI and
evapotranspiration (higher NDVI implies more leaves and thus
greater transpiration), we consider both evapotranspiration
and NDVI as acting in response to moisture availability—low
soil moisture during the warm season leads to both a low
warm season evapotranspiration and to a reduced greenness of
vegetation by the end of summer, when the initially reduced
water stores have been depleted and vegetation becomes water-
stressed and less green. Support for this interpretation—and thus
for the consideration of late-summer NDVI rather than NDVI
averaged overMJJAS for the calculation of σ2NDVI

∗—comes from
calculations (not shown) indicating that correlations between
NDVI and antecedent precipitation are relatively low in May and
June and are highest across the continent in August (See also
Figure 5 of Zeng et al., 2013).

The NDVI data used in this analysis is the Global Inventory
Modeling and Mapping Studies data, or GIMMS (Tucker et al.,
2005). The data’s native resolution is 8 km and semiweekly, and
the data used here span the period July 1982–2008. The data are
derived from the Advanced Very High Resolution Radiometer
(AVHRR) instrument with known limitations compared to the
more advanced MODIS instrument (Kaufman et al., 1998).
However, the longer temporal coverage of GIMMS relative to
MODIS (29 vs. 11 years) and the good correspondence between
their measurements (Tucker et al., 2005; Beck et al., 2011) makes
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it well suited to the analysis presented here.We aggregate the data
to 2.5◦ × 2.5◦, again in order to highlight large-scale structures
in variance. The term X and W in Equation (2) are taken to be,
respectively, the NDVI averaged over August–September (AS)
and the corresponding April–September precipitation.

Results are shown in Figures 2G–I. Values of r2(NDVI,P) are
high in the west and low in the east (Figure 2H), and the raw
variance of AS NDVI is small in the west and larger in the east
(Figure 2G). Only in the center of the country, down the now-
familiar north–south swath, are both values high, leading to a
pattern of σ

2
NDVI

∗ (Figure 2I) very similar to that found for
temperature and streamflow and that found for the Jung et al.
(2010) data. As before, the magnitudes of the variances are not
shown, the focus here being on spatial pattern—particularly the
spatial pattern of σ2NDVI

∗.

Discussion

All three proxy variables (air temperature, streamflow, and
NDVI) support certain findings from the analysis of the
two gridded evapotranspiration datasets, namely, that water-
dependent evapotranspiration variance is small in the eastern half
of the U.S. and large in a long swath stretching northward from
western Texas. The large maximum of σ

2
E
∗ seen in the far west

for the ETRHEQ-based evapotranspiration data (Figure 1C)
does not appear in the proxy data, though the proxy data do show
some hints of larger-than average values in the region. Note that
the strength of the western maximum in Figure 1C could also
stem from data limitations in the Western U.S. The ETRHEQ-
based gridded evapotranspiration dataset is based on data
collected at long-term weather stations, which tend to be located
in low elevation, populated regions. The evapotranspiration
estimates in the Western U.S. are therefore based on relatively
few stations. In addition, although elevation and land cover data
were used to spatially interpolate the station evapotranspiration
across the U.S., capturing the evapotranspiration dynamics in
the topographically complex Western U.S. may require a more
robust spatial interpolation method (see e.g., Daly, 2006) than
used here.

A word about data independence is warranted. The three
proxy variables in section Analysis of Relevant Proxy Variables
represent independent measurements, and thus Figures 2C, F,
I are indeed independent estimates of the distribution of σ

2
E
∗.

The two evaporation products examined in Section Analysis
of Gridded Evapotranspiration Datasets, however, are not as
independent. As noted above, theMTE-based evapotranspiration
data have an interannual variability that reflects the interannual
variability of the input variables temperature, precipitation, and
FAPAR (which in turn is strongly related to NDVI), and this
explains in large part the similarities of the σ

2
E
∗ patterns

in Figure 1F with those in either Figure 2C or Figure 2I.
Accordingly, the MTE-based evapotranspiration results are
not presented here as an independent estimate of the σ

2
E
∗

pattern. While their presence here is arguably redundant, they
nevertheless represent a unique and learned combination of
the NDVI and temperature data. The ETRHEQ-based data are

perhaps more independent of the proxy variables, since they
depend largely on independent relative humidity measurements.

Note that the spatial pattern of water-dependent
evapotranspiration variance could alternatively be computed
from output of numerical climate models or from reanalyses—
either full atmospheric reanalyses (e.g., Dee et al., 2011) or
output from land data assimilation systems (e.g., Mitchell et al.,
2004). Any patterns so obtained, however, would be subject to
assumptions and biases in the land models producing the data
and, certainly for the free-running atmospheric models, to biases
in the simulated climate. By avoiding the use of climate models
and their land model components in this analysis, we have in fact
generated a pattern that could serve as a useful validation target
for the models. For a climate model to capture properly the
connection between soil moisture and the atmosphere at seasonal
time scales and thus the corresponding impacts of soil moisture
on interannual climate variability, it must capture the indicated
pattern in σ

2
E
∗. (We repeat, however, our caveat that we used

precipitation rather than soil moisture to characterize water
availability). Analyses of simulated feedback with observations
are rare (though see Dirmeyer et al., 2006), largely due to the
scarcity of useful observational targets.

The σ
2
E
∗ pattern also has relevance, for example, to

determining where in situ soil moisture measurements and/or
satellite-based soil moisture measurements [e.g., from the Soil
Moisture Ocean Salinity (Kerr et al., 2010) and Soil Moisture
Active Passive (Entekhabi et al., 2010) missions] may be most
useful for atmospheric forecasts—usefulness should increase
where evaporation variations are more strongly connected
to water variability. It may even have relevance to water
management, given that higher σ

2
E
∗ values imply lower values

of streamflow variability, all else being equal.
Why does the spatial pattern of σ

2
E
∗ look as it does? From

the time of Budyko (1974), energy availability rather than water
availability has been assumed to control evapotranspiration
rates in wetter areas; this is consistent with the small values
of σ

2
E
∗ seen in the east. In the dry west, water availability

does control evapotranspiration, but water variations—and thus
evapotranspiration variations—are small. According to such
arguments, only in the middle of the U.S. does water-limited
evapotranspiration combine with a large interannual variability
in water abundance to produce large values of σ

2
E
∗. This

thinking underlies various interpretations of evapotranspiration
variability in climate models (Guo et al., 2006). It is used
to explain the positions of “hotspots” of land-atmosphere
feedback (i.e., regions for which prescribed variations in soil
moisture induce predictable variations in precipitation and air
temperature) uncovered in the multi-model analysis of Koster
et al. (2004). The North American hotspot in that study is indeed
similar to the north–south swaths for σ

2
E
∗ seen in Figures 1, 2.

For further context, it is interesting to compare the results
above to those obtained through the application of Budyko’s
decades-old hydroclimatic framework. Using energy and water
balance considerations in conjunction with existing empirical
relationships, Budyko (1974) characterized the ratio of annual
evapotranspiration E to annual precipitation P in terms of the
dryness index Rnet/λP, where Rnet is the annual net radiation and
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FIGURE 3 | Distribution of σ
2
E

∗ (mm2/day2) as derived from the

hydroclimatic analysis framework of Budyko (1974).

λ is the latent heat of vaporization of water:

E/P =
{

(Rnet/Pλ) tanh (Pλ/Rnet)
[

1 − cosh (Rnet/Pλ)

+ sinh (Rnet/Pλ)
]}1/2

= F (Rnet/Pλ) . (5)

Budyko (1974) showed the equation to be strongly consistent
with the hydrological data available to him at that time.
Starting from Equation (5), and making the assumption that the
interannual variability of λRnet is significantly smaller than that
of P, Koster and Suarez (1999) derived an equation for the ratio
of interannual evapotranspiration variance σ

2
E to interannual

precipitation variance σ
2
P:

σ
2
E/σ

2
P= [F(Rnet/Pλ) − (Rnet/Pλ)F′(Rnet/Pλ)]

2
(6)

where F′(Rnet/Pλ) is the derivative of the function F with respect
to Rnet/Pλ. Koster et al. (2006b) showed that both Equation (5)
and Equation (6) are consistent with state-of-the-art estimates of
precipitation, net radiation, and streamflow across the globe.

In effect, Equation (6) provides an estimate of σ
2
E from

precipitation and net radiation data alone. Given the assumptions
underlying the semi-empirical framework—particularly the idea
that year-to-year variations in evapotranspiration reflect only
year-to-year variations in precipitation—the equation by default
provides a direct estimate of σ

2∗
E for annual evapotranspiration

and, through the assumption that most evapotranspiration
occurs during the warm season, for MJJAS evapotranspiration.
Using Equation (6) with the gridded CPC U.S. Unified
Precipitation dataset and the net radiation data of Stackhouse
et al. (2004) from the Surface Radiation Budget (SRB) project,
as described in Koster et al. (2006b), we produce the map of σ2E

∗

shown in Figure 3.
Budyko’s semi-empirical hydroclimatic framework produces

σ
2
E
∗ patterns with some strong similarities to those derived from

the evapotranspiration and proxy variable datasets. The high
values along the swath sweeping northward from western Texas
are clearly seen, as are low values on either side of the swath,

toward either coast. The magnitudes of the variances, however,
are much larger than those from the two gridded evaporation
datasets (note the different scale on the color bar), partly because,
unlike the values derived for the evaporation datasets, the values
from the Budyko framework are not reduced by that part
of r2(E,W) associated with measurement or representativeness
error. Notice also that the Budyko framework produces high
values in California that are probably not realistic, since the
framework does not deal well with areas for which seasonal
precipitation and net radiation maxima are wholly out of
phase (Koster et al., 2006b). The Budyko framework does hint
at the far west maximum seen in the ETRHEQ-based data
(Figure 1C), though the relative magnitude of the maximum
is quite a bit lower. Interestingly, the Budyko framework
suggests that the σ

2
E
∗ values in the north–south swath down

the center of the country peter out toward the northern end,
a feature captured (to some degree) only by the streamflow
data.

Any differences between the pattern in Figure 3 and
corresponding σ

2
E
∗ patterns in Figures 1, 2 are in fact

not a concern, since again, Figure 3 is presented mainly
for historical context. The Budyko (1974) framework is an
approximate, semi-empirical framework for capturing the broad
controls of energy and water availability on evapotranspiration.
For this reason, we expect the σ

2
E
∗ patterns obtained

from the evapotranspiration datasets (Section Analysis of
Gridded Evapotranspiration Datasets) and proxy datasets
(Section Analysis of Relevant Proxy Variables) to be more
accurate than that in Figure 3.

Summary

A common pattern of water-dependent evapotranspiration
variance is captured in five separate datasets, most of which are
based on wholly independent observations. The robustness of
the pattern across the datasets implies that it is representative
of the pattern operating in nature: in nature, the variance is
high down the center of the North American continent, low in
the east, and probably low in the west. While theoretically this
pattern is not unexpected (Budyko, 1974; Koster et al., 2004), it is
nevertheless reassuring to see this key facet of climate variability
and of the global hydrological cycle appear in the observational
data.
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