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In marketing and finance, surprisingly simple models sometimes predict more accurately than more complex,
sophisticated models. Here, we address the question of when and why simple models succeed — or fail — by
framing the forecasting problem in terms of the bias–variance dilemma. Controllable error in forecasting consists
of two components, the “bias” and the “variance”. We argue that the benefits of simplicity are often overlooked
because of a pervasive “bias bias”: the importance of the bias component of prediction error is inflated, and the
variance component of prediction error, which reflects an oversensitivity of a model to different samples from
the same population, is neglected. Using the study of cognitive heuristics, we discuss how to reduce variance
by ignoring weights, attributes, and dependencies between attributes, and thus make better decisions. Bias
and variance, we argue, offer a more insightful perspective on the benefits of simplicity than Occam’'s razor.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Do complex problems require complex solutions? Consider man-
agers in the retail industry who often need to distinguish between
active and inactive customers. One strategy is to use observations of
past customer activity to estimate the parameters of a sophisticated
probabilistic model. For example, the Pareto/NBD model estimates
the parameters of a Poisson process modeling customer purchasing
behavior and the parameters of exponential distribution modeling cus-
tomer dropout rates (Schmittlein, Morrison, & Colombo, 1987).

Combined with further probabilistic assumptions about the hetero-
geneity of customers within the population, categorization decisions
are then made using a computationally demanding maximum
likelihood calculation (Fader, Hardie, & Lee, 2005). An alternative strat-
egy is to use a simple hiatus rulewhere customerswhohave notmade a
purchase within a hiatus period of, say, 9 months are classified as
inactive, and all other customers are categorized as active. Researchers
suffering fromwhat we term the “bias bias” place their faith in complex
models like the Pareto/NBD model and expect that the simple hiatus
rule will perform poorly in comparison.

Putting this intuition to the test, Wübben and Wangenheim (2008)
compared the Pareto/NBD model and simple hiatus rules using
transaction data from the apparel, airline, and music industries. First,
they used 40 weeks of customer transaction data to estimate the
parameters of the Pareto/NBD model. Using transaction data for the
subsequent 40 weeks, they then estimated how accurately each model
Brighton),
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predicted future customer activity. For the apparel, airline, and music
customers, the Pareto/NBD model achieved predictive accuracies of
75%, 74%, and 77%. Hiatus rules with cutoff periods recommended by
experienced managers, on the other hand, predicted customer activity
with accuracies of 83%, 77%, and 77%. Here, a simple hiatus rule either
matched or outperformed the Pareto/NBD model. This example
illustrates the potential of the bias bias to mislead. But what exactly is
the bias bias?

Our use of the term bias makes reference to the bias–variance
decomposition in understanding the prediction error incurred by statis-
tical models (Bishop, 2006; Geman, Bienenstock, & Doursat, 1992;
Hastie, Tibshirani, & Friedman, 2001;O'Sullivan, 1986). The bias compo-
nent of prediction error reflects the inability of a model to represent the
systematic patterns that govern the observations. The variance
component of prediction error reflects the sensitivity of the model's
predictions to different observations of the same problem, such as a
different sample from the same population. Together, bias and variance
additively contribute to the total prediction error:

Totalerror ¼ biasð Þ2 þ varianceþ noise: ð1Þ

The “bias bias” refers to a cluster of commonly held statistical
intuitions that consider bias but pay little attention to variance:

The bias bias: To suffer from the bias bias is to develop, deploy, or
prefer models that are likely to achieve low bias, while simulta-
neously paying little or no attention to models with low variance.

For example, the Pareto/NBDmodel aims to accurately represent the
probabilistic structure of the problem. Thismodeling strategy is likely to
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Five common symptoms of the bias bias.

Symptom Relationship to the bias bias

1. Relying solely on goodness of
fit to evaluate models

Designing, deploying, and evaluating models
by considering their ability to fit rather than
predict observations is one symptom of the
bias bias. Variance is irrelevant to achieving a
good fit, but critical to prediction. For this
reason, the majority of researchers in
education, sociology, and many other
branches of the social and behavioral sciences
suffer from the bias bias. Roberts and Pashler
(2000), for example, estimated that in
psychology alone, the number of articles
relying on a good fit as the only indication of a
good model runs into the thousands. See
Section 2.

2. Equating model complexity
with parametric complexity

Penalizing models that achieve a good fit by
considering only parametric complexity (for
example, by using AIC and BIC, discussed in
the main text) is the second symptom of the
bias bias. Although the researcher attempts to
assess the generalizability of a model, the
policy of only considering parametric
complexity will mask other factors
contributing to model complexity, such as the
functional form of the model and the range of
possible values that the model parameters can
be assigned. See Sections 2, 3 and 5.

3. Drawing conclusions from a
single model

Testing a single model, such as linear or
logistic regression, as opposed to competitive
testing of several models is the third symptom
of the bias bias. Without comparing diverse
models, the ability of a particular model to
strike a good balance between reducing bias
and variance is impossible to estimate. See
Sections 4 and 6.

4. Seeking unbiased models Designing and deploying models capable of
achieving low or zero bias by placing little or
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incur low bias, whereas a simple 9-month hiatus rule is likely to incur
high bias. However, because a hiatus rule has only one parameter to
estimate (the length of the hiatus), it will incur low variance. The ability
to incur lowvariance explainswhy simple hiatus rules, and other simple
models, can outperformmodels deemedmore “accurate” and “sophisti-
cated” (e.g., Wright and Stern, 2015-in this issue). This is why a re-
searcher suffering from the bias bias is likely to assume, incorrectly,
that a hiatus rule will achieve lower predictive accuracy than the Pare-
to/NBD model.

The importance of model simplicity and robustness has long been
recognized in management science (Little, 1970). Our concern here is
that, even among those aware of the benefits of simplicity, the role of
variance reduction is frequently overlooked during the search for
predictive models. Table 1 summarizes five common symptoms of this
bias bias: (1) relying solely on goodness of fit to evaluate models;
(2) equating model complexity, that is, the ability of a model to fit
diverse patterns of data, with a model's parametric complexity, that is,
the number of parameters estimated by themodel; (3) drawing conclu-
sions from a single model; (4) seeking unbiased models without
assessing the predictive accuracy of biased models; and (5) assuming
the existence of an accuracy–effort tradeoff. To take point 2 as an
example, parametric complexity provides only a limited view onto the
benefits of simple, low-variance models. When focusing on factors
such as these, subtle trade-offs exist that are not easily understood, or
discovered. For instance, in marketing, portfolio management, and
problems of financial regulation, implementing “wrong” constraints
can often increase the predictive accuracy of a model (e.g., Haldane &
Madouros, 2012; Jagannathan & Ma, 2003). Drawing on the study of
simple heuristics, we show how factors such as limited search provide
another means to limit variance. Put simply, our goal is to illustrate
how simplicity can guide the search for predictive models in many
ways, but it is often more insightful to view simplicity as addressing a
single, more fundamental problem: variance reduction.
no restrictions on the class of functions that
the model is capable of approximating is the
fourth symptom of the bias bias. This policy
assumes that models need to closely
approximate the underlying data-generating
process in order to achieve high predictive
accuracy. However, by virtue of reducing more
variance than they add bias, biased models can
result in higher predictive accuracy. A
practitioner suffering from the bias bias is
likely to overlook such models and implicitly
assume that sophisticated “accurate” models
adequately reduce variance. See Sections 4
and 6.

5. Assuming an accuracy–effort
tradeoff

Designing and deploying models under the
assumption of an accuracy–effort tradeoff is
the fifth symptom of the bias bias. Believing in
the general existence of an accuracy–effort
tradeoff is to assume that more information
and computation will always result in more
accurate predictions. Effort can refer to the
computational resources expended, the
number of variables considered, or the
complexity of the assumed relationships
between variables. This widely held belief
(e.g., Shah & Oppenheimer, 2008) is another
example of the bias bias.
2. Simplicity and complexity in forecasting

Uncertainty exists when we have limited observations and knowl-
edge of the causal processes of interest. Under uncertainty, problem
solving is a process of search guided by heuristics of discovery. When
developing forecasting models in areas such as finance, management,
marketing, consumer research, and healthcare, a preference for simple
models, commonly referred to as Occam's razor, can steer the discovery
process away from overly complex models prone to overfitting. Models
that overfit excel at describing the past, but offer poor predictors of the
future. Why, though, believe that simple models are more likely to
result in accurate predictions? Using predictive accuracy as a criterion
of success, statistical measures of model complexity provide the most
direct formal relationship to forecasting accuracy (e.g., Solomonov,
1964; Pearl, 1978; MacKay, 1992; Rissanen, 2007; Li and Vitányi,
1997; Grünwald, 2005; Myung et al., 2000).

Generally speaking, statistical notions of complexity consider “the
flexibility inherent in a model that enables it to fit diverse patterns of
data” (Pitt, Myung, & Zhang, 2002, p. 473). Fig. 1 provides a basic
illustration of the role of model complexity in prediction. Readers famil-
iar with this relationship can skip the remainder of this section. First of
all, Fig. 1(a) plots two polynomial models fitted to London's mean
daily temperature on each day of the year 2000. The first model is a
degree-3 polynomial (a cubic equation with 4 parameters), and the
second is a degree-12 polynomial (which has 13 parameters). Com-
paring these two models, we see that the degree-12 polynomial cap-
tures monthly fluctuations in temperature while the degree-3
polynomial captures a simpler pattern charting a rise in temperature
that peaks in the summer, followed by a slightly sharper fall. Which
of these two models best captures the process governing London's
daily temperature?
2.1. Goodness of fit and model complexity

Goodness of fit, whichmeasures the discrepancy between themodel
and the observations, is one criterion for judgingmodels. To understand
the relationship between goodness of fit andmodel complexity, we will
consider the problemof selecting amodel after observing a sample of 50
observations of London's daily temperature, drawn at random. Using
least squares, these 50 observations are used to estimate the parameters
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Fig. 1.Modeling London'smean daily temperature in 2000:Herewe examine the relation-
ship between polynomial models of increasing degree (and therefore increasing paramet-
ric complexity), their error in fitting the observations, and their error in predicting
temperatures on unobserved days. Plot (a) shows London's mean daily temperature in
2000, alongwith two polynomialsfitted to these observations. As a function of polynomial
degree, Plot (b) shows both the mean error incurred when fitting 50 randomly drawn
observations, and the mean error for the same polynomials when predicting the mean
temperature on unobserved days. For the task of data fitting, greater parametric complex-
ity ensures lower error. For the task of predicting temperatures on unobserved days, a U-
shaped relationship exists, where low to intermediate parametric complexity yields the
lowest prediction error.
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of a series of polynomialmodels increasing in complexity fromdegree-1
to degree-12. Specifically, we measure goodness of fit as the sum
squared difference between the 50 observed temperatures and the
temperature estimates of the model on the same 50 days. A lower
score indicates a better fit. The solid line in Fig. 1(b) plots the mean
goodness of fit, relative to 5000 samples of size 50, achieved by each
model as a function of its degree. As the polynomial degree increases,
the error decreases, revealing that models with more parameters
achieve lower error by virtue of their increased flexibility, a property
that enables them to fit the observations accurately.
2.2. Predictive accuracy and model complexity

Predictive accuracy, the issue driving this discussion, is another
criterion for judgingmodels. Continuing the temperature example, pre-
dictive accuracy is measured by taking the fitted polynomials models
used above but instead of measuring their ability to fit the observations
we measure their ability to predict the temperature on those days we
did not observe. Plotting predictive accuracy as a function of polynomial
degree, the broken line in Fig. 1(b) reveals a different, U-shaped
relationship between complexity and prediction error. Unlike goodness
of fit, prediction error first decreases, and then increases as a function of
model complexity. Models that result in poor predictive accuracy due to
excess complexity are said to overfit. This trade-off between model
complexity and predictive accuracy is a basic, yet often overlooked
problem in statistical modeling and scientific inquiry more generally
(Einhorn, 1972; Hitchcock & Sober, 2004; Pitt et al., 2002; Roberts &
Pashler, 2000). To understand the merits of simplicity more generally
and the principles needed to explain when and why simple models
perform well, we will first distinguish different aspects of simplicity.

2.2.1. Model complexity and Occam's razor
Model complexity is typically used to guide the selection of compet-

ingmodels via themodel selection criteria that penalize the goodness of
fit achieved by each model by a complexity term; the greater the
complexity of the model, the less weight should be placed on its ability
to fit the observations. Model complexity is determined by two
properties:

1. The number of parameters needed to specify themodel. For example
a line in a two dimensional space y= ax+ b is defined by 2 param-
eters (a and b), and a polynomial of degree 3, y= ax3+ bx2+ cx+ d
is defined by 4 parameters (a, b, c and d).

2. The functional form of the model. Functional form refers to how the
dependent variable(s) are related to the response variable. For exam-
ple, the two models y = b ⋅ ln(x + a) and y = b ⋅ xa both have 2
parameters, but differ in functional form. Functional form plays a
critical role in defining which patterns themodel is capable of fitting
(e.g., Pitt et al., 2002; Myung et al., 2000).

Popularmodel selection criteria includeAkaike's information criteri-
on (AIC, Akaike, 1973) and the Bayesian information criterion (BIC,
Schwarz, 1978), both of which consider only the number of model pa-
rameters. More sophisticated criteria such as the minimum
description length principle (MDL) take into account the contribution
of the number of parameters, the functional form of the model, and
other factors such as the range of values that each parameter can poten-
tially be assigned (Grünwald, 2005; Pitt et al., 2002; Rissanen, 1996). In
short, there exist several formal measures of complexity, with the
application of one measure rather than another often depending on
practical considerations.

3. A closer look at simple heuristics

Informal use of the terms “simple” and “complex” tend not to refer
to the statistical measures of complexity mentioned above. The terms
aremore often used to refer to how easy it is to define amodel or under-
stand it, or what computational costs are incurred when applying the
model, factors that are typically regarded as unrelated to the statistical
measures of complexity used in the formal application of Occam's
razor (e.g., MacKay, 1992; Domingos, 1999). In practice, however, com-
putational costs and statistical complexity often go hand-in-hand.
Indeed, we will use the study of simple heuristics to examine this rela-
tionship further and to shed light on the role of computational
simplicity as ameans to discover predictivemodels. Table 2 summarizes
the key concepts that we will use to examine the relationship.

The study of simple heuristics examines the hypothesis that
cognitive systems of humans and other animals often rely on

Image of Fig. 1


1775H. Brighton, G. Gigerenzer / Journal of Business Research 68 (2015) 1772–1784
surprisingly simple strategies to make accurate inferences in uncertain
environments (Gigerenzer & Brighton, 2009; Gigerenzer & Gaissmaier,
2011; Gigerenzer, Todd, & The ABC Research Group, 1999). Use of the
term “simple” in the study of heuristics refers to a range of strategies
for ignoring information, such as ignoring dependencies between
cues, making a prediction using a single cue, or foregoing the computa-
tion of cue weights. Use of the term “surprising” refers to the benefits of
ignoring information, relative to commonly assumed models of infor-
mation processing that attempt to integrate all information, calculate
weights, and model potential dependencies between cues (Chater,
Oaksford, Nakisa, & Redington, 2003; Gigerenzer & Brighton, 2009).

Strategies for ignoring information can result in reduced computa-
tional complexity, reduced model complexity, or both. Absolutely key
to this approach is the hypothesis that these simplifications can increase
predictive accuracy. This is in contrast to the commonly held belief
that heuristics reduce effort at the expense of accuracy (Shah &
Oppenheimer, 2008). This belief can be seen as another example of
the bias bias (see Table 1), given that it appeals to the intuition that ac-
curate inferences require accurate, usually complex representations of
the problem, which in turn require complex calculations to apply. In
contrast, our “simplicityfirst” approach views computational simplifica-
tions as a key consideration in the search for predictive models.
Table 2
A glossary of key terms. Note that, in principle, the three categories of simplicity/complex-
ity defined above are orthogonal. In practice, however, they tend not to be: Computation-
ally demanding models tend to be more flexible and harder to interpret.

Term Description

Categories of simplicity/complexity

1. Computational
complexity

A measure of the time and space resources used when
estimating the parameters of a model and when using
the model to make predictions. For example, a 9-month
hiatus has low computational complexity because it has
no parameters to estimate, whereas the Pareto/NBD
model has higher computational complexity as several
parameters must be estimated using a maximum
likelihood procedure.

2. Model complexity A measure of the ability of the model to fit diverse
patterns of data. As we discussed in the main text, the
two key contributors to model complexity are the
number of parameters and the functional form of the
model.

3. Model
comprehensibility

How easy the model is to use and explain, or how
transparent the relationship is between the assumptions
made by the model and its predictions. For example, a
9-month hiatus rule is trivial to explain and use, while
the Pareto/NBD model is far harder to use and interpret

Occam's razor Usually defined as the following maxim: Among
competing explanations consistent with the observed
phenomena, the simplest should be preferred.

Bias–variance
decomposition

For a given problem, a statistical decomposition of a
model's expected prediction error into three
components: bias, variance, and noise (see Eq. (1)).

Bias For all k possible samples of a given size, we fit k models.
Bias is the difference between the “mean” response of
these k models and the “true”model. Bias usually reflects
the inability of the model to represent the predictive
regularities governing the observations.

Variance A measure of the degree to which the k models described
above vary about their mean. The variance component of
prediction error reflects an oversensitivity of the
parameter estimates to different observations of the
same problem.

Bias–variance dilemma A dilemma exists because bias and variance are not
independent: Methods for reducing variance tend to
increase bias, and methods for reducing bias tend to
increase variance.

Bias bias To suffer from the bias bias is to develop, deploy, or
prefer models that are likely to achieve low bias, while
simultaneously paying little or no attention to models
with low variance.
Adopting this approach in no way assumes that simple models will
necessarily outperform more complex models. Rather, the search for
predictive models should be guided by an analysis of both simple and
complex models. The bias bias describes a tendency among many
researchers to focus on complex models at the expense of simple
models.

3.1. Simple models in marketing and finance

Simple heuristics have been applied to problemsof finance,manage-
ment, marketing, and consumer research. Consider the problem of
investing money into N funds. Harry Markowitz received the Nobel
prize in economics for finding the optimal solution, the mean–variance
portfolio (Markowitz, 1959). Taking seven investment problems,
DeMiguel, Garlappi, and Uppal (2009) compared a simple 1/N heuristic,
which allocates money equally to N funds, with 14 optimizing models,
including the mean–variance portfolio and Bayesian and non-Bayesian
models. These optimizing strategies had 10 years of stock data for esti-
mating their parameters and on that basis had to predict the next
month's performance; after this, the 10-year window was moved
1 month ahead, and the next month had to be predicted, and so on
until thedata ran out. 1/N, in contrast, did not need anypast information
because it has no parameters to estimate. In spite (or because) of this,
1/N ranked first (out of 15) on certainty equivalent returns, second on
turnover, and fifth on the Sharpe ratio, respectively. Even with their
complex estimations and computations, none of the optimization
methods could consistently earn better returns than this simple 1/N
heuristic.

More broadly, simple heuristics have been used to describe how
consumers narrow down their consideration sets (Dzyabura & Hauser,
2011; Hauser, Toubia, Evgeniou, Befurt, &Dzyabura, 2010), how compa-
nies develop strategies to copewith fast-moving and uncertainmarkets
(Bingham & Eisenhardt, 2011; Eisenhardt & Sull, 2001), and why early-
stage ventures succeed or fail (Åstebro & Elhedhli, 2006; Furubotn,
2009; Guercini, 2012).

Our focus here is to understand how the analysis of simple cognitive
heuristics— specifically, uncovering the statistical basis for their success
and failure — can contribute to the broader question of simplicity in
forecasting (Goldstein & Gigerenzer, 2009; Makridakis & Hibon, 2000;
Makridakis, Hibon, & Moser, 1979). Why might hiatus rules used in
marketing and the 1/N heuristic used in finance, for instance, result in
higher predictive accuracy than the more established, sophisticated
methods? To explore the benefits of simplicity further, we will consider
perhaps the most intensively studied simple heuristic, take-the-best
(Gigerenzer & Goldstein, 1996).

3.2. Take-the-best

Take-the-best models how decision makers infer which of two
objects, say houses, scores highest on some criteria of interest, such as
price. The decision maker is assumed to base this inference on a set of
m binary cues {c1, c2, …, cm} describing the task environment. Each
cue describes a feature of the objects in the environment, such as the
presence of swimming pool, garage, or whether the house has three or
more bedrooms. Each object in the environment also has an associated
criterion value – the dependent variable – such as the price of the house.

When deciding which of two objects has a greater criterion value,
take-the-best operates as follows:

1. Search rule: Search through cues in order of their validity.
2. Stopping rule: Stop on finding the first cue that discriminates

between the objects (i.e., cue values are 1 and 0).
3. Decision rule: Infer that the object with a cue value (0 or 1) that

correlates positively with the criterion has the higher criterion value.

If none of the cues discriminate between the two objects in question,
take-the-best guesses as to which object has a larger criterion value.



Table 3
A description of the inference algorithms used in the model comparison appearing in
Fig. 3.
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Take-the-best simplifies decision-making by both stopping after finding
the first discriminating cue and ordering cues unconditionally by
validity, which for the ith cue, ci, is given by

v cið Þ ¼ number of correct inferences using ci
number of possible inferences using ci

: ð2Þ

Viewed as a statistical model, the functional form of take-the-best is
shown in Fig. 2(a): Take-the-best can be viewed as a decision tree,
where the boxes contain comparisons between objects using a given
cue, and the cue value (1 or 0) that determines the choice of which
object is inferred as having the greater criterion value is contained in
each circle. The process of parameter estimation fills in the boxes and
circles, as shown in Fig. 2(b).

The validity cue order determines which cues are placed in which
boxes, and the values in the circles are determined by whichever cue
value correlates positively with the criterion. This tree structure imple-
ments a form of noncompensatory processing: the search stops when
thefirst discriminating cue is found, and all subsequent cues are ignored
irrespective of their values. Noncompensatory processing is a form of
simplicity studied extensively in marketing research, where it has
proven highly predictive of how consumers form small consideration
sets when faced with a large number of potential products (Hauser
et al., 2010; Yee, Dahan, Hauser, & Orlin, 2007).
(a) Functional form (b) Parameterized model

Fig. 2.Which parameters does take-the-best estimate? Here, we illustrate the structure of
the models induced by take-the-best. These models are formally equivalent to a decision
tree. In (a), the functional form of the unparameterized decision tree used by take-the-
best is shown, where boxes denote comparisons between the two objects using a single
cue, and circles denote decisions made on the basis of these comparisons. If none of the
cues discriminate between the two objects, take-the-best guesses. In (b), a parameterized
decision tree illustrates the ordering of them cues (c1,…, cm), and the “direction” of each
cue. The cue directions define which cue value is used to infer which of the two object
scores higher on the criterion. Here, cue directions are denoted by one of {+,−}, where
“+” indicates that a positive cue value indicates a larger score on the criterion, and indi-
cates a lower score.
3.3. Six alternative models

Whereas early studies compared take-the-best with decision-
making models such as linear regression and unit-weighted linear
models (Czerlinski, Gigerenzer, & Goldstein, 1999), we will conduct a
comparison focusing on tried-and-tested models used in cognitive
modeling, data mining, and machine learning, models that “should”
outperform take-the-best (Chater et al., 2003). In particular, we will
compare take-the-best with six models that are summarized in
Table 3: Logistic regression (Hosmer & Lemeshow, 2000), classification
and regression trees (CART, Breiman, Friedman, Olshen, & Stone, 1994),
a single-layer neural network (Bishop, 1995; Rosenblatt, 1959), the
nearest neighbor classifier (Cover & Hart, 1967; Fix & Hodges, 1951), a
support vector machine (Schölkopf & Smola, 2002), and a variant of
take-the-best that differs only in how cues are searched (Martignon &
Hoffrage, 2002; Schmitt & Martignon, 2006). These models provide a
broad span of widely used and fairly sophisticated modeling strategies.

The variant of take-the-best, referred to as greedy take-the-best, will
serve as a “control condition” because it differs in one important
respect: The validity of a cue is computed conditionally on the decisions
made by cues appearing earlier in the cue order. For example, the
validity of the final cue in the cue order is, in practice, likely to change
Model Description

Logistic regression A linear model for binary classification similar to
multiple linear regression. Instead of estimating a
numeric independent variable, logistic regression
provides a probability estimate of an observation
belonging to a given class (e.g., Bishop, 2006; Hosmer
& Lemeshow, 2000).

Classification and
regression trees (CART)

Decision trees guide the decision maker through a
series of decision nodes until a leaf node is reached
that specifies which class to predict. The path through
the tree is determined by the values of the dependent
variables. CART provides a set of techniques for
constructing decision trees by recursively partitioning
the observations into subsets containing observations
of approximately the same class (Breiman et al.,
1994).

Single-layer neural
network

Neural networks model a collection of artificial
neurons connected with varying degrees of strength.
By feeding the values of the dependent variables into
the input nodes, the network propagates the values to
an output node that codes the prediction. Training a
neural network involves adjusting the connection
strengths between neurons to minimize the errors
made in predicting the independent variable (Bishop,
1995; Rosenblatt, 1959).

Nearest neighbor
classifier

Store all observations, and when called to assign a
class to a novel observation, predict the class of the
most similar stored observation (Cover & Hart, 1967;
Fix & Hodges, 1951).

Support vector machine Observations can be seen as points in a
multidimensional feature space. Support vector
machines transform the observations into a space
where a linear decision boundary separates the two
classes by some (preferably large) margin. By
transforming the observations into a higher
dimensional space, support vector machines can treat
complex nonlinear problems as linear problems
(Schölkopf & Smola, 2002).

Take-the-best Take-the-best decides which object has a higher
criterion value by searching the cues in sequence of
validity order and using the first discriminating cue to
make the prediction (Gigerenzer and Goldstein
(1996); see main text).

Greedy take-the-best Identical to take-the-best except that cues are
searched in conditional validity order rather than
validity order (Martignon and Hoffrage (2002);
Schmitt and Martignon (2006); see main text).

Image of Fig. 2
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Fig. 3.An illustration of take-the-best achieving greater predictive accuracy than a range of widely used, relatively complex learning algorithms. For the problem of inferringwhich of two
German cities has a greater population, (a) plots the predictive accuracy of take-the-best, its greedy variant, classification and regression trees, and logistic regression as a function of the
sample size r; (b) compares take-the-best with a single-layer neural network, the nearest neighbor classifier, and a support vector machine. Take-the-best outperforms all thesemethods
across nearly all sample sizes.
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because some of the comparisons contributing to its validity will have
been made by cues appearing earlier in the order. Greedy take-the-
best addresses this issue by estimating validities sequentially,
recomputing them at each stage in the construction of the tree.
Specifically, we will compare the predictive accuracy achieved by
each model in a task environment detailing German cities with a
population greater than 100,000 (83 cities). Here, the task is to infer
as to which of two cities has a greater population. Each city is described

Image of Fig. 3


1778 H. Brighton, G. Gigerenzer / Journal of Business Research 68 (2015) 1772–1784
by nine binary cues indicating the properties of the cities, such as the
presence of an airport, a top-flight soccer team, or a university. For a
given sample size, say 10 cities, we first generate a training set of paired
comparisons between the cities and allow each model to estimate its
parameters using these observations. The predictive accuracy of each
model is then estimated by measuring how accurately they predict
which city is largest among all possible comparisons between the cities
in the test set, which contains those cities not appearing in the training
set. For a range of sample sizes, we report mean predictive accuracy
with respect to 5000 random partitions of the data into training and
testing sets.

Fig. 3(a–b) shows the result of the model comparison. On the x-axis
is the sample size, the number of cities used to generate the training sets
used to estimate the model parameters. The y-axis represents the out-
of-sample predictive accuracy. The result is clear: Simplicity, again,
wins out. Take-the-best outperforms all the alternative models over
nearly all sample sizes.

3.4. Can Occam's razor explain the success of take-the-best?

The preceding analysis of take-the-best poses a conundrum.
Occam's razor – the idea that performance differences arise due to
factors related to model complexity – should explain the success
of simple heuristics like take-the-best, but a close inspection of
Fig. 3(a), in particular the relative predictive accuracies achieved
by take-the-best and its greedy counterpart, rule out an explanation
based on model complexity.
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Fig. 4. An illustration of the role of bias and variance. Plot (a) shows the function h(x), whic
observations of h(x) on randomly selected days. For four such sets of 40 observations, Plot (b)
where y xð Þ is the mean response of the four polynomials shown in (b) — which are plotted to
degree, decomposed into bias and variance. Notice how, in (d), the solid line plotting (bias)2 +
found in Fig. 1(b). In (d), note that for polynomials of degree 4 and higher, the negative conse
These two algorithms achieve very different degrees of performance,
yet inducemodels drawn from the same class, with the same number of
parameters and identical functional form. The only difference between
the twomodels is the criterion used to order the cues (that is, the search
rule). In addition, the greedy variant of take-the-best provably achieves
a betterfit to the observations than take-the-best (Schmitt &Martignon,
2006). So, why does take-the-best achieve a higher predictive accuracy
than its greedy counterpart here, and for many other problems? To
answer this question, a more in-depth treatment of what causes a
model to “overfit” is required.

4. The analysis of bias and variance

Informally stated, a “no free lunch” theorem holds in statistical
pattern recognition: Without restricting the range assumed problem
characteristics, any two forecasting models will have precisely equal
predictive accuracy when averaged over all possible problems (Duda,
Hart, & Stork, 2001; Wolpert, 1996). Thus, no single predictive model
is inherently superior to any other; the assumptions implicit in a
model must to one degree or another match the characteristics of the
problem at hand in order to yield accurate inferences. One way of un-
derstanding the match between a model and problem, and the proper-
ties of the model responsible for this match, is to decompose the
prediction error of the model into bias, variance and noise:

Totalerror ¼ biasð Þ2 þ varianceþ noise:
h(x)
yi(x)
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h determines units sales of some product for each day of the year, along with 40 noisy
shows four induced polynomials. Bias measures the difference between h(x) and y xð Þ —
gether for comparison in (c). In (d), we plot prediction error as a function of polynomial
variance follows the same U-shaped relationship between polynomial degree and error

quences of the bias bias become evident.
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The noise component of error cannot be reduced, however we
design the model. Bias and variance, in contrast, arise from the
interaction between properties of the model, properties of the prob-
lem, and the sample size. Decomposing error into these three
components, and the analysis of their relative contribution, provides
a great deal of insight on the art of forecasting (Bishop, 2006; Geman
et al., 1992; Hastie et al., 2001; O'Sullivan, 1986; Van Der Putten &
Van Someren, 2004).

4.1. An illustration of bias and variance

Consider the problem of modeling product sales throughout the
year. In Fig. 4(a) we have plotted a function h(x) governing unit sales
of some product over the course of a year. We have also plotted 40
observations of h(x) on a random sample of days, each subject to
some measurement error. A modeler who has observed these sales
levels, but does not know h(x) uses the observations to construct a
model for the entire year. For five such samples of 40 observations,
Fig. 4(b) plots the fivemodels, y1(x),…, y5(x), induced by the forecaster
for these different “replays” of the tape of experience. In addition to
these five models, we have plotted y xð Þ, which is the mean prediction
of these five models. Bias, when used to analyze the prediction error
of a statistical model, is the difference between h(x) and y xð Þ, both
depicted in Fig. 4(c). Variance measures how much the five individual
models, y1(x),…, y5(x), vary about their mean, y xð Þ.

Fig. 4(d), much like Fig. 1(b), plots the mean prediction error as a
function of polynomial degree. Here, though, we have also plotted the
prediction error and its components, bias and variance. For polynomials
of degree 10, for example, bias is zero and variance is high. Notice how
the plot of “(bias)2+ variance”mirrors the relationship betweenmodel
complexity and prediction error discussed earlier, and depicted by
Fig. 1(b). When broken down into bias, variance, and noise, models
with too many free parameters suffer from excess variance and models
with too few parameters suffer from excess bias.

A tempting and commonly drawn conclusion is that considerations
of bias and variance simply rephrase the problem of balancing goodness
of fit and parametric, or some other measure of complexity. The
comparison of take-the-best and its greedy variant in Fig. 3 illustrates
that the picture is not quite so simple, and a more accurate interpreta-
tion reverses this relationship: Model complexity provides a window
into more general considerations of bias and variance.

4.2. The bias/variance dilemma

Bias and variance highlight a fundamental problem in inductive
inference known as the bias/variance dilemma (Geman et al., 1992).
At one extreme, a statistical model could express a wild guess by ignor-
ing the observations altogether and always selecting the same parame-
ter values. For example, the marketing executive who uses the same
hiatus rule for distinguishing active from inactive customers adopts
this policy. This approach guarantees zero variance, but can lead to
high bias unless the guess turns out to be correct or close to correct. At
the other extreme, the statistical model could hedge its bets, let the
observations speak for themselves, and select from a highly flexible
model space capable of approximating any function. Given enough
observations, this policy could in principle guarantee zero bias, but
usually at the expense of high variance, since the flexibility of the
model space is likely to lead to an oversensitivity to the vagaries of par-
ticular samples.

The bias/variance dilemma arises because methods for minimizing
variance tend to increase bias and methods for minimizing bias tend
to increase variance. The two need to be balanced, a process that should
be guided by knowledge of the task at hand. As pointed out above, high
model complexity can lead to excess variance and overfitting but it is
not the only cause. Similarly, reducing the complexity of a model is
not the only way of reducing variance.
4.2.1. Bias and variance in practice
Recall that a theorist suffering from the bias bias views problems

through the lens of bias, and places little or noweight on considerations
of variance. To avoid the bias bias during the search for predictive
models, and sidestep the pathologies summarized in Table 1, different
points in the trade-off between bias and variance need to be assessed.
This is an exploratory task that ideally involves a comparison between
models with varying complexity. A critic, however, may wonder how
relevant the above “toy” prediction example is to real-world forecasting,
or how critical variance will be when large samples of observations are
available.

In practice, variance is always critical. Van Der Putten and Van
Someren (2004), for example, conducted a bias–variance analysis of 8
classes of model submitted to the Computational Intelligence and
Learning Cluster (CoIL) challenge, a competition to predict insurance
purchases. They found that differences between submitted models
were overwhelmingly due to the variance component of error. The
best performing competitor was the naïve Bayes classifier, which, like
take-the-best, makes the typically “false” assumption that cues are
conditionally independent (an issuewediscuss further below). Findings
such as these are easily explained by appealing to bias and variance: the
naïve Bayes classifier tends to have high bias in practice but achieves
low prediction error due to incurring low variance (Domingos &
Pazzani, 1997; Hand & Yu, 2001; Hastie et al., 2001).

Questioning the increasingly complex measures imposed by regula-
tors to avoidfinancial crises, Haldane andMadouros (2012) used a bias–
variance decomposition to assess a range of models for forecasting
return volatility and concluded that misspecified, and hence biased,
low-variance models achieved higher out-of-sample predictive
accuracy. Their conclusion that “simple does not just defeat complex;
it trumps the truth” (Haldane & Madouros, 2012, p. 17) has a natural
interpretation when considering bias and variance. In short, the bias
bias describes a general reticence in trying and trusting simple models.
In the case of predicting insurance purchases, Van Der Putten and Van
Someren (2004) reported that many competitors abandoned simple
models in favor of fine-tuned, better fitting models prior to entering
their final model into the competition. These competitors suffered
from the bias bias.

5. A bias bias in the analysis of simple heuristics

The question of when and why simple heuristics like take-the-best
achieve high predictive accuracy has been the topic of sustained
research (e.g., Hogarth and Karelaia, 2006, 2007; Katsikopoulos and
Martignon, 2006; Martignon and Schmitt, 1999; Schmitt & Martignon,
2006). Previous analyses can be seen as focusing on bias and asking
the question of when heuristics like take-the-best make accurate infer-
ences when cue validities are known rather than estimated from a
sample. This approach does not consider the role of variance. Instead,
we will conduct a bias–variance decomposition of take-the-best's
performance in a more realistic setting where cue validities are uncer-
tain and must be estimated from observations. By considering the
impact of variance, we will show that the conditions favoring take-
the-best differ significantly from those identified when focusing on
bias. Specifically, we will analyze the performance of take-the-best
and its greedy variant in two artificial environments. Working under
these restricted “laboratory conditions” will allow us to understand
more clearly when and why two models with equivalent complexity
perform so differently.

5.1. Noncompensatory models and environments

Recall that a noncompensatory model, such as take-the-best,
searches cues sequentially, selects one cue to make a decision,
and ignores all subsequent cues. A foundational result in the study
of simple heuristics seeks to establish a correspondence between



1780 H. Brighton, G. Gigerenzer / Journal of Business Research 68 (2015) 1772–1784
noncompensatory models and noncompensatory environments. The
general idea is that “Take The Best ‘bets’ that the cues in the environ-
ment are noncompensatory” (Martignon & Hoffrage, 2002, p. 47). A
noncompensatory environment is one where the validities or weights
of the cues under consideration are highly skewed, such that when
ordered by their validity, a decision made by a given cue cannot be
overturned by any combination of cues that appear subsequently in
the cue order.

The two environments used to examine this correspondence
include, first, an instance of the class of binary environments, which
have a noncompensatory structure such that the weights of the cues
decay rapidly, such as 1; 12 ;

1
4 ;… The second environment is a member

of the class of Guttman environments, where all cues have a validity of
1.0, and are therefore “compensatory.” Appendix A provides a detailed
definition of these classes of environments, and a discussion of this anal-
ysis can be found in Gigerenzer and Brighton (2009). The important
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Fig. 5.When does take-the-best excel, and what role do bias and variance play in determining
environments. In the main plots shown on the left, (a) shows an analysis of take-the-best and
noncompensatory cue validities, take-the-best performs poorly. Plot (b) shows the same analy
and take-the-best outperforms its greedy variant. In the sub-plots shown on the right, in both
sample size. Variance proves to be the key determinant of the observed performance differenc
point to note here is that the structure of take-the-best is “mirrored”
by binary environments, but not Guttman environments.
5.2. Performance at environmental extremes

On the left-hand side of Fig. 5, we compare the predictive accuracy of
take-the-best and its greedy counterpart in a (a) binary environment
with 6 cues and 32 objects, and (b) a Guttman environment with 32
cues and 33 objects. For both environments, we have also decomposed
the error of both models into bias and variance, shown by the subplots
on the right-hand side. First, notice that take-the-best performs poorly
in comparison to its greedy variant in the binary environment. This is
not what we should expect to see, given the preceding discussion.
Second, in the Guttman environment, take-the-best outperforms its
greedy variant by a significant margin. Again, this finding runs counter
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performance? Here, we compare take-the-best and its greedy counterpart in two artificial
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to the idea of a general correspondence between noncompensatory
models and noncompensatory environments.

This mismatch is easily explained by appealing to bias and variance.
Fig. 5(a) shows that given enough observations, take-the-best achieves
maximum predictive accuracy in the binary environment. This tells us
that take-the-best is unbiased. Crucially though, no previous analysis
considered take-the-best's variance, which for this environment is
high in comparison to practically all other models. In the Guttman envi-
ronment, we see the opposite: Take-the-best has low variance, and will
outperformmostmodels. Critically, in both environments, bias is largely
irrelevant, with performance differences arising due to variance. Put
simply, early work on the question of when simple heuristics like
take-the-best succeed suffers from the bias bias: Previous analyses
considered conditions for achieving low bias, but not low variance.

5.2.1. The “trick” behind take-the-best
Recall that familiar measures of model complexity failed to explain

the performance differences between take-the-best and its greedy
variant. The key difference between these two models, the property
that leads to the extreme differences in performance, is the method
used to infer the cue order from observations. Take-the-best relies on
the trick of using the naïve measure of cue validity to order cues and
construct a decision tree, rather than conducting the extra computa-
tions required when estimating potential dependencies between cues.
Unlike the greedy variant of take-the-best, no attempt is made to find
an ordering of cues that maximize goodness of fit. Relative to its greedy
counterpart, this is a computational shortcut that often works very well
in natural environments. As shown in Fig. 5(a–b), the shortcut “works”
or “fails” to the degree that it reduces variance.

A number of studies have attempted to explain when andwhy take-
the-best succeeds. Almost without exception, the noncompensatory
nature of take-the-best has been viewed as the key property of interest
(which is justified when the ecological validity of cues is known, rather
than being estimated from a sample). Here, and elsewhere, we have
shown that the high predictive accuracy of take-the-best relative to
many other models can, informally speaking, be switched “on and off”
(Brighton & Gigerenzer, 2007; Gigerenzer & Brighton, 2009). Rather
than a property of how cues are processed once a cue order has been
selected, we have shown that the performance differences are a proper-
ty of the method for selecting the cue order. The noncompensatory
nature of take-the-best contributes little or nothing to the problem of
variance reduction. The issue of noncompensatory processing is, how-
ever, relevant to the bias of take-the-best. As we have shown, however,
bias is irrelevant to the performance differences we observe.

5.3. Questioning Occam's razor

These findings serve as a cautionary tale, with broader implications.
As a basic consequence of the design of amodel, themethod for estimat-
ingmodel parameterswill have an impact on the stability of themodel's
predictions with respect to perturbations to the observations. Instabil-
ities tend to cause variance and need to be controlled. Clearly, the stabil-
ity properties of a model will depend on the statistical properties of the
problem. This is what we observe in Fig. 5, where take-the-best's
achieves low variance in the binary environment, but not in the
Guttman environment. Thus, rather than a characteristic of the class of
models being selected from, stability is a property of the interaction
between the model and the environment (Poggio, Rifkin, Mukherjee,
& Niyogi, 2004). In some cases, model complexity will provide an
insightful perspective on this phenomenon: The more flexible the
choice of model is, the greater the opportunity for instability to result
in a given environment.

The idea that model complexity, a formal measure of a model's
inherent flexibility, fails to provide a sufficiently fundamental concept
to fully explain performance in general is not new. Domingos (1999)
discusses a range of counterexamples to Occam's razor in the machine
learning and data mining literature (see also Webb, 1996). The use of
ensemble methods, which can improve predictive accuracy by
combining the predictions of multiple models, is another class of coun-
terexamples commonly explained by appealing to problems of variance
reduction (e.g., Breiman, 1996, 2001a; Seni & Elder, 2010). Thus, consid-
erations of bias and variancedo not imply a straightforward relationship
between simple models and predictive accuracy; the problem of
variance reduction can also be addressed by adding complexity through
combining multiple forecasts (Armstrong, 2001, 2005; Graefe,
Armstrong, Cuzan, & Jones, forthcoming).

Of particular relevance to this discussion is the proposal that
overfitting is often a pathology associated with failing to control for
different sample sizes when conducting and comparing multiple statis-
tical tests during the parameter estimation process (Jensen & Cohen,
2000; Zahálka & Železný, 2011). Greedy take-the-best, for example, cal-
culates cue validities with respect to reference classes of observations
which decrease significantly as the decision tree is built one level at a
time. No attempt is made to control for these size differences. Take-
the-best, on the other hand, computes unconditional estimates of cue
validity relative to a single reference class containing all the observa-
tions. An interesting avenue for future research would be to investigate
the relationship between strategies like greedy take-the-best that
“oversearch” and variance. Here, the relevant notion of complexity
appears to be computational rather than model complexity.

6. General discussion

In an ideal world, the problem of forecasting would be reduced to
the problem of formalizing accurate probabilistic representations of
the causal processes determining future event of interests, and then
applying the laws of probability theory to yield optimal predictions. In
reality, forecasters face degrees of uncertainty that make optimality an
unobtainable goal: Underlying causal processes tend to be latent,
complex, interacting, and often nonstationary. Moreover, observations
tend to be sparse, rendering reliable parameter estimation problematic.
Operating outside the idealized world of mathematical statistics, the
practice of forecasting is more accurately seen as a process of explorato-
ry data analysis, an incremental search for models that reduce but do
not resolve uncertainty (Breiman, 2001b; Tukey, 1962, 1977). Our
goal has been to clarify the role of simplicity in guiding this search,
and to understand why it appears to be such a powerful heuristic of
discovery.

6.1. What is the bias bias?

To recap, a theorist suffering from the bias bias views problems
through the lens of bias, and places little or noweight on considerations
of variance. Underestimating the variance component of error, the bias
bias masks the benefits of simplicity, obscures the search for predictive
models, and reinforces an overly simplistic view on the problem of
statistical inference. Recall that the bias component of error reflects an
inherent inability of the model to consistently recover predictive
regularities. The variance component reflects the sensitivity of the
method used to recover these regularities from different samples of
the same underlying process.

Contemporary use of the bias–variance perspective owes a great
deal to a landmark paper by Geman et al. (1992), who used the analysis
of bias and variance to clarify why the ability of neural network models
to provide a universal framework for modeling learning systems does
not, by itself, solve the learning problem. Models relying on complex
systems of representation need constraints in order to learn under
conditions of uncertainty, constraints that keep variance within accept-
able limits. The bias bias, which is manifest to varying degrees across
most disciplines, exacerbates this problem. Put simply, models capable
of representing a problem cannot be assumed to address the problem
adequately, because issues of representation fail to offer a complete



Table 4
An example of a binary environment, h_binary (3). This environment codes 8 objects
(labeled A–H) using the 3 cues c_1, …, c_3. Cue validities follow a noncompensatory
pattern, and range from 1 to .5.

Object Cues Criterion

C1 C2 C3

A 0 0 0 1
B 0 0 1 2
C 0 1 0 3
D 0 1 1 4
E 1 0 0 5
F 1 0 1 6
G 1 1 0 7
H 1 1 1 8
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view on the issue of variance reduction. It should be stressed that our
claim is not that sophisticated models relying on rich representations
result in inaccurate predictions. Our claim is that under uncertainty,
the search for predictive models is a matter of comparison rather than
confirmation, and that an informative comparison requires diverse
competitors. Simplicity, in its various guises, provides dimensions of
variation for introducing diversity.

6.2. Overcoming the bias bias

How can practitioners overcome the bias bias? The first step is to
recognize the importance of variance and its causes. The second step
is to investigate strategies for reducing variance. Although there is no
set recipe for reducing variance, such as using fewer parameters, there
are a number of techniques to consider. Before summarizing these tech-
niques, it should be stressed that simplicity also plays a role in the pro-
cessing and preparation of observations; discretizing continuous cues is
one heuristic trick that can improve predictive accuracy (Liu, Hussain,
Tan, & Dash, 2002), as is ignoring a large proportion of observations al-
together (Brighton & Mellish, 2002). As we mentioned above, it should
also be stressed that variance can be reduced by adding complexity, for
example, by combining the forecasts of multiple models (Armstrong,
2001, 2005; Breiman, 1996, 2001a; Graefe et al., forthcoming; Seni &
Elder, 2010).

6.2.1. Predict using a single cue
Predictions based on a single cue are perhaps the most simple of all

strategies: A single cue is vanishingly unlikely to provide an unbiased
model of system being predicted. For instance, taking a “simplicity
first” approach, Holte (1993) compared how a single cue model, 1R,
and more familiar statistical models, which tend to use all available
cues, performed on 16 prediction tasks. Holte found that 1R's perfor-
mance oftenmatched or approached the performance of more sophisti-
cated methods. In cases like these, single-cue models provide a useful
benchmark for assessing the potential benefits of using more cues or
more sophisticated models, the advantages of which are sometimes
inflated (Hand, 2006). In other cases, single cue models have been
shown to outperform more sophisticated models relying on more
cues. The hiatus rule for distinguishing active from inactive customers,
discussed earlier, is one example. Forecasting elections, sporting events,
and the stockmarket bymeasuring lay people's recognition of the alter-
native candidates, players, or stocks can also prove remarkably predic-
tive (Borges, Goldstein, Ortmann, & Gigerenzer, 1999; Gaissmaier &
Marewski, 2011; Goldstein & Gigerenzer, 2009; Scheibehenne &
Bröder, 2007; Serwe & Frings, 2006).

6.2.2. Ignore or restrict cue weights
Multiple linear regression is the most widely used and trusted

statistical model in use today. In the 1970s, the discovery that unit
weights (either−1 or 1) in a linear regression can increase in predictive
accuracy was a key discovery (Dawes, 1979; Dawes & Corrigan, 1974;
Einhorn & Hogarth, 1975; Schmidt, 1971; Wainer, 1976). When Robyn
Dawes presented the results at professional conferences, distinguished
attendees told him that they were impossible. This reaction illustrates
the negative impact of the bias bias: Dawes' paper with Corrigan was
first rejected and deemed premature, and a sample of recent textbooks
in econometrics revealed that none referred to their findings (Hogarth,
2012). These examples are an extreme case of shrinkage, a statistical
technique for reducing variance by imposing restrictions on estimated
parameter values (Hastie et al., 2001; Hoerl & Kennard, 2000). Portfolio
management is one application of this technique, where by imposing
“wrong” constraints — assumptions that are known not to hold in
practice — practitioners can increase bias in order to achieve a greater
reduction in variance, and lower overall error (Jagannathan & Ma,
2003).
6.2.3. Make the naïvety assumption
The naïvety assumption, also termed the assumption of conditional

independence, concerns the relationship between the available cues
and the independent variable being predicted. For example, if urban
customers tend to purchase more than rural customers, and customers
who own cars also tend to purchase more than those without, then
making the conditional independence assumption means that when a
given urban customer purchases more than a given rural customer,
this information tells us nothing about whether the urban customer
also owns a car. As we saw, take-the-best implicitly makes this assump-
tion by relying on cue validities to make inferences: Validities are
calculated independently from the contribution of other cues. Linear
regression and logistic regression models, on the other hand, attempt
to estimate these dependencies. The most widely used naïve method,
the naïve Bayes classifier, is closely related to logistic regression
(Ng & Jordan, 2002) but its assumption of conditional independence
has been found, in many contexts, to yield higher predictive accuracy.
Indeed, the naïve Bayes classifier is ranked in the top 10 models in
data mining (Wu et al., 2007), and like take-the-best, its low variance
often results in improved predictive accuracy over more sophisticated
methods, even when its assumption of conditional independence is
known to be incorrect (Domingos & Pazzani, 1997; Hand & Yu, 2001;
Van Der Putten & Van Someren, 2004).

7. Conclusion

What is the right level of simplicity for forecasting methods? We
have approached this question by framing the forecasting problem as
one of exploratory data analysis and specifically, an incremental search
for improved responses to the bias/variance dilemma. This changes the
question to the following: What role does simplicity play in the search
for models with low variance? Simplicity provides a powerful heuristic
of discovery, but the term “simple” refers to a broad range of techniques
for — and perspectives on — limiting variance. Thus, without consider-
ing and comparing simplifications that differ in both degree and kind,
the benefits of simplicity cannot be judged. What we term the bias
bias obscures the often subtle and surprising benefits of simplicity
in this search for predictive, low-variance models. Moreover, the bias/
variance perspective also clarifies why adding complexity, such as com-
bining multiple forecasts, can also reduce variance and increase
forecasting accuracy.

When is simplicity likely to confer a performance advantage? In
broad terms, we have stressed the role of simplicity under conditions
of high uncertainty, where observations are sparse and little is known
about the causal processes that determine future events of interest.
This is when variance is most problematic. Indeed, we have shown
how the bias bias can obscure the analysis of conditions under which
simple models perform well relative to more familiar, sophisticated
models. The benefits of simple heuristics like take-the-best, 1/N, and
hiatus rules center on their ability to reduce variance, and the conditions
under which a model will achieve low variance are much harder to



Table 5
An example of a Guttman environment, h_Guttman (7). This environment codes 8 objects
(labeled A–H) using the 8 cues c_1,…, c_7. Cue validities are all 1.0 because for all pairs of
objects, the cues that discriminate between the objects always points to the one with the
larger criterion value.

Object Cues Criterion

C1 C2 C3 C4 C5 C6 C7

A 0 0 0 0 0 0 0 1
B 1 0 0 0 0 0 0 2
C 1 1 0 0 0 0 0 3
D 1 1 1 0 0 0 0 4
E 1 1 1 1 0 0 0 5
F 1 1 1 1 1 0 0 6
G 1 1 1 1 1 1 0 7
H 1 1 1 1 1 1 1 8
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determine than when a model will achieve low bias. Thus, overcoming
the bias bias is critical to discovering new models, but also to under-
standing when and why they work.

Appendix A. Binary and Guttman environments

The class of binary environments has the noncompensatory
property discussed in the main text. Parameterized by the number of
cuesm, binary environments are defined as follows:

hbinary mð Þ ¼ Bm ið Þ; iþ 1h i : 0≤ i≤2m−1
� �

: ðA:1Þ

This expression defines a set of 2m objects, each one mapping m
binary cues onto an integer-valued criterion. For illustrative purposes,
Table 4 lists the 8 objects in the environment hbinary(3) where, for
each object, the cue values are given as a function of the criterion
value by Bm : Z ↦ (c1, …, cm), which maps integers onto their m-bit bi-
nary encodings [e.g., B3(2) = (0, 1, 0)]. Each bit of the binary encoding
represents a cue value. Environments in this class always have cue
validities (and β-weights) with the noncompensatory property, and
use the minimum number of cues required to unambiguously code N
objects, which is log2(N) cues.

The class of Guttman environments, also parameterized by the
number cues m, is defined by

hGuttman mð Þ ¼ Bm

Xj−1

i¼0

2i

 !
; j

* +
: 1≤ j≤m−1

( )
: ðA:2Þ

This expression defines a set of m + 1 objects. Table 5 lists the 8
objects in the environment hGuttman(7). Guttman environments are in-
spired by the Guttman (1944) scale: The ith object in the environment
has the first i − 1 cue values set to 1, and all others set to 0. Guttman
environments represent an opposing extreme to noncompensatory
environments: cues have a validity of 1. Guttman environments are
therefore “compensatory,” and provide an inefficient coding of objects
in comparison to binary environments because they require N − 1
cues to code N objects.
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