
Low Latency transient search of Gravitational Waves for the Advanced Detectors

M. Drago1

1Max Planck Institute for Gravitational Physics (Albert Einstein Institute),
Callinstrasse 38, D-30167 Hannover, Germany and Leibniz Universiat Hannover,

Welfengarten 1-A, D-30167 Hannover, Germany
(Dated: July 13, 2015)

The reliability of the first detection is one of the most interesting challenges for the gravitational
wave community. To increase the detection confidence, the LIGO and Virgo collaboration have
already started coincident observations between gravitational waves detectors and other astronom-
ical instruments, like electromagnetic or neutrino detectors. This can be done in two directions:
searching for gravitational waves triggered by the electromagnetic informations, or pointing the
electromagnetic telescopes to the sky position given in real time by the gravitational wave analysis.
The success of the latter case depends strongly on the analysis speed of gravitational wave pipelines
to analyze data and extract any gravitational wave candidate with as much information as possible.
In this paper we discuss the case of the coherent Waveburst pipeline, the main pipeline used in the
past scientific LIGO-Virgo analyses for the search of gravitational wave transients, reporting the
capability of making an all-sky and all-time analysis and the analysis speed performance.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym, 04.30.Db

I. INTRODUCTION

The gravitational wave (GW) community has achieved
significant progresses towards the search for GWs, thanks
to the innovative operation of the Laser Interferometer
Gravitational Wave Observatory (LIGO) [1] and Virgo
detector [2]. The era of gravitational wave astronomy
is going to start in the next years, with the starting of
Advanced LIGO and Advanced Virgo, as we expect to
detect numerous GW signals before 2020 [3, 4].

Transient gravitational waves can be produced by a
wide range of astropysical processes (compact binary sis-
tem merging [5, 6], core-collapse supernovae [7], neutron
star collapse to black holes [8]), for most of them the we
do not have a precise model of the GW signature. This
forces to implement a search that must be sensitive to
the widest possible variety of waveforms.

This un-modeled search has the great disadvantage
that it is difficult to distinguish a possible true signal
from noise glitches that mimic a true GW (false alarms),
even if coherent searches already significantly reduce the
number of false alarms with respect to single detector or
time-coincidence searches.

To assign a more reliable confident to any GW de-
tection, a coincidence observation with electromagnetic
(EM) or neutrino counterpart would be an interesting
approach. Moreover, joint multimessenger observation
would bring a more complete information on the source,
like idenfitication of host galaxies or the unveal of its
inner dynamics.

A variety of GW emission processes are likely to be
associated to also EM emission, like: Gamma-Ray bursts
(GRBs) [9–11], or merger of two compact objects leading
to a supernova-like transient [12]

The LIGO and Virgo collaborations has already per-
formed GW searches associated with other astrophysi-
cal manifestations (Gamma-Ray Bursts [13, 14] or neu-

trino [15, 16]). The idea is to restrict the GW search
around the time and sky position given by the partners
(ex-triggered). This has a natural advantage: informa-
tion from external triggers of sky position and arrival
time allows to make a specific targeted search. This nat-
urally reduces the rate of false alarms, simply because less
data are analyzed, both in time and sky area. Moreover,
restricting the parameters space allows to assess more
confidence on the eventual detected GW trigger. [17]

In the last scientific run (2010), the LIGO and Virgo
communities developed the follow-up procedure: GWs
become the triggers for other astrophysical experiments.
To allow this possibility, have been implemented algo-
rithms able to make a fast search in real time and report-
ing information to EM partner so to point telescopes to
the directions in the sky given by the GW alerts [18, 19].

The success of this approach depends on two capabili-
ties of the considered algorithms: make an accurate sky
locations of the GW and get a enough low-latency be-
tween the trigger arrival time and the alert to the EM
community.

Studies on sky localization accuracy have been already
performed in a huge variety in literature: from analytical
studies [21–26] to applications of coherent netwok analy-
ses [27–29].

In this paper we consider the coherent WaveBurst
(cWB) algorithm [30]. Sky localization accuracy for this
algorithm has been already reported in [31] and [32].
Here we describe how the cWB is structured to allow a
fast alert to EM partners.

The paper is organized as follows: in Sec II we describe
the algorithm characteristics, and the adopted solutions
to allow a fast search, in Sec III we shows the perfor-
mances of the algorithm on the last LIGO engineering
run.

ar
X

iv
:1

50
7.

02
87

1v
1

 [
gr

-q
c]

 1
0

Ju
l 2

01
5

2

II. SEARCH ALGORITHM

A. Offline search

The Coherent WaveBurst (cWB) algorithm[30] has
been already used for the search of transient signals in
the past scientific run of LIGO and Virgo collabora-
tions [33, 34]. A new version of this algorithm (cWB
2G) [35] has been developed in preparation of the Ad-
vanced Detector Era.

cWB is c++/ROOT[36] based excess power algorithm
that combine the data coming from a network of detec-
tors calculating the maximum coherent likelihood along
a discrete grid in the sky. First of all, it applies a time-
frequency (TF) transformation [37] at different TF res-
olutions, so to adapt the TF transform to the character-
istic of the signal. For instance, a signal which is well
localized in frequency, is better described by high fre-
quency resolution TF transformation. Instead, a signal
which covers a large frequency band, is better described
by low frequency TF transform. Then cWB selects from
the TF transforms of the detector data the pixels with en-
ergy above an adaptive threshold (depending on the noise
level). These selected pixels are collected in a unique clus-
ter if they satisfy some “neighbours” rule. Then cWB
applies Principal Component analysis on all the TF res-
olution to find what is the optimal set of pixels that is
more adapted to the signal TF characteristics. A typi-
cal coalescence signal, for instance, should be described
by TF pixels with higher frequency resolution during the
coalescence stage, while the post-merger stage should be
described by higher time resolution.

For each of these clusters, the pipeline choose the esti-
mated sky location from a probability sky map depending
on the likelihood, and for such sky location all the event
parameters are calculated according to the chosen sky
position. Then an event is selected if it satisfy some inter-
nal threshold, i.e. the network correlation coefficient and
the correlated amplitude [33, 34]. The significance of the
trigger is compared to the background estimation per-
formed using time-slides between detectors. Time-slides
are performed for each segment in a “circular” way, this
means that if we have the segment [t0, t0 + T] and we
are making a shift of length t of the first detector with
respect to the second, the time period [t0 +T − t, t0 +T]
of the first detector is considered “coincident” with the
time period [t0, t0 + t] of the second detector (Fig. 1).

FIG. 1: Simple visualization of circular lags.

To perform time-shifts greater than the segment
length, it is possible to consider “coincident” a segment
[t0, t0 +T] of the first detector with a segment [t1, t1 +T]
of the second. We call this feature super-lags (Fig. 2).

FIG. 2: Simple visualization of super-lags.

This is the standard algorithm that is used for the
high-latency, which is usually performed at the end of a
scientific run data taking (“offline”). The main informa-
tion required from the analysis are: the frame files (FR)
containing detector data and data quality (DQ) files of
analyzable times. These information are usually given
by the scientists during or at the end of the run. In
the low-latency analysis the algorithm should get these
informations directly in real time.

B. Online infrastructure

The online cWB infrastructure is a set of python code
that extracts the available information as soon the FR are
reported on the cluster machines, selects the analyzable
periods, launchs the cWB pipeline on these periods to
extract the triggers and sends the alerts to a dedicated
database.

Usually FR contains four seconds of data and the infor-
mation about their proper start and duration can be ex-
tracted directly from the file name. The FR contains, in
addition to the GW data channel, a DQ channel record-
ing the time periods that can be analyzed. The pipeline
extract the list of interesting time periods and wait for a
minimal amount of continous available time. When this
amount is reached, it prepares the standard configura-
tion of the offline analysis for this segment and launch
the analysis. The minimal amount should be decided to
be great enough to allow a safe application of linear pre-
dictor filter (an algorithm that clean the persistent noise
with high energy that characterize each detector, pro-
duced by enviromental and electronical issues [38]) and
whitening. More this minimal value is smaller, faster is
the pipeline to analyze it, and giving information on the
extracted trigger. Unfortunately, this increase the prob-
ability to loose signals that can be near the segment bor-
der, or between two continous segments. To avoid this
issue, the pipeline can afford multiple analysis instances
that are shifted among each other less than the segment
length. Then the pipeline compare the results from each
instance, counting only once the triggers that comes up
from the multiple analyses, so not to give more times the
same trigger to the EM partners.

At the same time, the algorithm perform time-slides on

3

the data to assess a confidence on the detected triggers.
This step is crucial because ideally we would like to have
a huge number of time slides to assess the trigger confi-
dence with a high significance. However, we are limited
by two main issues: duty cycle and computational load.
For two detector cases we need a minimal continouos time
period of coincidence data to perform a certain number of
time-slides. For instance, with a time step δ to perform
N time slides, we need at least a continuous coincidence
time of lenght Nδ, that it is less probable as more time
slides we planned. Fortunally, the introduction of super-
lags allow to perform analyses considering segment with
a length T that is less than the requested time, so to de-
crease the computational load for each analysis process.
Indeed, we are using in this case M = Nδ/T processes,
each performing L = N/M lags. However, more time
slides we are performing, more computing time we need
to run the analysis. A possible solution is to split the
number of time slides to small subset, so to run in paral-
lel K instances of less time-slides each. This means that
we need M ·K different machines if we want to perform
as fast as possible the total N set of time-slides. The
length T , the number M and K are free parameters that
can be decided to obtain a good compromise between
the desired N lags, the running time of each job and the
number of total jobs (Fig. 3).

FIG. 3: Simple visualization of lags splitting in different anal-
yses to reduce the computational load of the pipeline.

III. PERFORMANCE

The most important value to quantify the performance
of the algorithm is how much time it needs to send an
alert after the instrinsic trigger time (alert time). How-
ever, we can identify different processes that leads to this
final value.

First of all the time needed to read the frame files and
launching the algorithm on a given segment (job). This
is defined as the difference between the GPS time when
the job effectively starts running and the GPS time of
the segment end (delay launch).

Secondly we are interested in the effective job running
time, i.e. the time between the jobs effectively starts and
stop running. Moreover, this information is completed
by the finished time which takes in account also for the
other instances to finish. This quantity reports the time

from the run start and the end of comparison procedure
for the eventual triggers coming from the two instances.

The total sum of all these factors is resumed in the
completion time, i.e. the time between the end GPS
of the segment and when the comparison procedure is
done. The alert time of each trigger is related to the
completion time of the related job where we have to add
the time distance between the trigger time and the job
GPS end.

The algorithm has been applied during the seventh
LIGO engineering run (June 2015): about 2 days of coin-
cidence data considering the LIGO detectors only (Liv-
ingston and Hanford). This is the expected configuration
when the two Advanced Detectors will become online for
the first scientific run (September-December 2015). All
of the statistics considered in this work refers to this par-
ticular run.

The analysis consisted of two instances of 60 seconds
length shifted of 30 seconds.

The delay launch time can be from one to two minutes,
as reported in Fig. 4

FIG. 4: Launch time distribution: Time between the running
start and the GPS segment end.

The running time of each single 60 segment depends
strictly from the noise level of the data, but on average
the pipeline finishes one job in about 34-37 seconds for
both instances (Fig. 5).

FIG. 5: Running time distribution of the two instances of 60
second jobs.

If we add the time for the trigger comparison, the fin-

4

ished time shows a mean value around 40-60 seconds (Fig.
6.

FIG. 6: Finished time distribution: time between the starting
of the main instance job and the comparison procedure.

Finally the total completion time is for most of the
segments less than 3 minutes (Fig. 7).

FIG. 7: Completed time: time between the GPS segment end
and the comparison procedure.

From these we expect that the alert time is at least
five minutes after the trigger intrinsec time.

For assessing significance on the triggers we made 1000
lags (N = 1000) using two super-lags of 600 second seg-
ments (T = 600, M = 2) with 5 instances of 100 lags
each (K = 5).

FIG. 8: Running time of the background jobs.

Most of background jobs of 100 lags run in 12-15 min-
utes (Fig. 8). These jobs were distributed in parallel
among ten different machines, so the multiple jobs of 100
lags each run approximately at the same time.

IV. CONCLUSIONS

We resume in the Table I the speed performances of
the various step of the analysis, as explained in Sec III.

Stage Mean Std Min Max

Delay Launch Time [s] 76 26 25 226

Running Time 1 [s] 32 5 22 59

Running Time 2 [s] 32 5 22 58

Job Finished Time [s] 46 11 26 119

Job Completion Time [s] 122 33 52 318

Time slides [m] 12.4 2.9 8.2 45.8

TABLE I: Statistics about speed performances of the different
stages of the analysis, reporting in the various columns the
mean (Mean) and standard deviation (Std), and the minimum
(Min) and maximum (Max) values for each step.

This results are similar to the obtained during the last
scientific run [39, 40], where the alter latency was around
five minutes. This is a short time compared to the hu-
man validation step, a collection of consistency checks
which decides if the alerted trigger should be send to
the EM partners. This validation occurs around thirty
minutes during the last run [39, 40], this means that the
pipeline alert latency is risible with respect to the total
alert. Anyway, making this alert faster will reduce the to-
tal process. It is possible to reduce the latency discarding
the waiting for both instances to finish: a trigger found
from instance 1 is send as soon it is detected, if the same
trigger is detected with a bigger significance from the in-
stance 2, it is simply substituted on the alert database.
This will reduce the total time of around the difference
between Finished time and the Running time. We are
also investigating if we can reduce the delay launch time
optimizing the extraction of information from the frame
files.

The cWB online algorithm is adapted to run for low-
latency analysis in the search of gravitational waves for
transient signals. We demonstrated that the all pipeline
infrastructure is able to be enough fast to alert the elec-
tromagnetic partners in some minutes after the incoming
of the triggers. We can say that the pipeline is ready for
the upcoming era of gravitational wave astronomy, when
the Advanced LIGO will be online, and the Advanced
Virgo detector will join the search in the next year.

References

5

[1] B.P. Abbott et al., Rep. Prog. Phys 72, 076901 (2009)
[2] F. Acernese et al., Class. Quantum Grav. 23, S635 (2006)
[3] J. Abadie et al, Class. Quantum Grav. 27, 173001, (2010)
[4] J. Aasi et al, arXiv:1304.0670
[5] F. Pretorius, arXiv:0710.1338
[6] Z.B. Etienne et al., Phys. Rev. D 77, 084002 (2008)
[7] C.D. Ott, Class. Quantum Grav. 26, 063001 (2009)
[8] L. Baiotti et al., Class. Quantum Grav. 24, S187 (2007)
[9] C.S. Kochanek and T. Piran, ApJL, 417, L17 (2003)

[10] S. Kobayashi and P. Meszaros, ApJ, 589, 861 (2003)
[11] J. Abadie et al. ApJ, 760, 12 (0212)
[12] L. Li and B. Paczynski, ApJL, 507, L59 (1998)
[13] LIGO-Virgo Collaboration, Astrophys. J. 715 1438

(2010)
[14] LIGO-Virgo Collaboration, Astrophys. J. 760 12 (2012)
[15] ANTARES Collaboration and LIGO-Virgo Collabora-

tion, JCAP 1306 008 (2013)
[16] IceCube collaboration and LIGO-Virgo Collaboration,

Phys. Rev. D 90 102002 (2014)
[17] M. Was, P.J. Sutton, G. Jones, I. Leonor Phys. Rev. D

86, 022003 (2012)
[18] J. Kanner et al, Class. Quantum Grav. 25, 184034 (2008).
[19] LIGO-Virgo Collaboration, ApJS 211 7 (2014)
[20] LIGO-Virgo Collaboration and Swift collaboration,

ApJS 203 28 (2012)
[21] P. Jaranowski and A. Krolak, Phys. Rev. D 49, 1723

(1994)

[22] J. Markowitz, M. Zanolin, L. Cadonati, and E. Kat-
savounidis, Phys. Rev. D 78, 122003 (2008)

[23] S. Fairhurst, New J. Phys. 11, 123006 (2009)
[24] S. Fairhurst, arXiv: 1205:6611 May 30 (2012)
[25] L. Wen and Y. Chen, Phys. Rev. D 81, 082001 (2010)
[26] B.F. Schutz, Class.Quant.Grav. 28, 125023 (2011)
[27] Y. Gürsel and M. Tinto, Phys. Rev. D 40 (1998)

[28] É.É. Flanagan and S.A. Hughes, Phys. Rev. D 57, 4566
(1998).

[29] S. Klimenko, S. Mohanty, M. Rakhmanov and G. Mitsel-
makher, Phys. Rev. D 72, 122002 (2005)

[30] S. Klimenko et al, Class. Quantum Grav. 25, 114029
(2008)

[31] S. Klimenko et al.m, Phys. Rev. D 83, 103001 (2011)
[32] R. Essick et al., arXiv:1409.2435
[33] J. Abadie et al, Phys. Rev. D 81, 102001 (2010)
[34] J. Abadie et al, Phys. Rev. D 85, 122007 (2012)
[35] S. Klimenko and G. Vedovato, in preparation
[36] https://root.cern.ch/drupal/
[37] V. Necula et al., J. Phys.: Conf. Ser. 363, 01203 (2012)
[38] W. Tiwari et al., arXiv:1503.07476
[39] J. Aasi et al., The Astrophysical Journal Supplement Se-

ries 211, 7 (2014)
[40] J. Abadie et al., Astronomy & Astrophysics 539, A124

(2012)

	I Introduction
	II Search Algorithm
	A Offline search
	B Online infrastructure

	III Performance
	IV Conclusions
	 References
	 References

