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Abstract

The collisionless tearing mode is investigated by means of the 0 f-PIC code EU-
TERPE solving the gyrokinetic equation. In this thesis the first simulations of
electromagnetic non-ideal MHD modes in a slab geometry with EUTERPE are pre-
sented.

Linear simulations are carried out in the cases of vanishing and finite temperature
gradients. Both cases are benchmarked using a shooting method showing that EU-
TERPE simulates the linearly unstable tearing mode to a very high accuracy. In the
case of finite diamagnetic effects and values of the linear stability parameter A’ of
order unity analytic predictions of the linear dispersion relation are compared with
simulation results. The comparison validates the analytic results in this parameter
range.

Nonlinear single-mode simulations are performed in the small- to medium-A' range
measuring the dependency of the saturated island half width on the equilibrium
current width. The results are compared with an analytic prediction obtained with
a kinetic electromagnetic model.

In this thesis the first simulation results in the regime of fast nonlinear reconnec-
tion (medium- to high-A’ range) are presented using the standard gyrokinetic equa-
tion. In this regime a nonlinear critical threshold has been found dividing the
saturated mode from the super-exponential phase for medium-A’ values. This crit-
ical threshold has been proven to occur in two slab equilibria frequently used for
reconnection scenarios. Either changing the width of the equilibrium current or the
wave number of the most unstable mode makes the threshold apparent. Extensive
parameter studies including the variation of the domain extensions as well as the
equilibrium current width are dedicated to a comprehensive overview of the critical
threshold in a wide range of parameters. Additionally, a second critical threshold
for high-A’ equilibria has been observed.

A detailed comparison between a compressible gyrofluid code and EUTERPE is
carried out. The two models are compared with each other in the linear regime
by measuring growth rates over wave numbers of the most unstable mode for two
setups of parameters. Analytical scaling predictions of the dispersion relation rele-
vant to the low-A’ regime are discussed. Employing nonlinear simulations of both
codes the saturated island half width and oscillation frequency of the magnetic is-
lands are compared in the small-A’ range. Both models agree very well in the limit
of marginal instability and differ slightly with decreasing wave vector. Recently,
the full polarisation response in the quasi-neutrality equation was implemented in
EUTERPE using the Padé approximation of the full gyrokinetic polarisation term.
Linear simulation results including finite ratios of ion to electron temperature are
benchmarked with the dispersion relation obtained from a hybrid model. Finite
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temperature effects influence the saturated island width slightly with increasing ion
to electron temperature ratio which has been verified by both models.
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Nomenclature

nO,s
fs = M/ msg

Pi = A/ mikBTo,i/(eB)
PS,e = \/ mikBTo,e/(eB)

Q, = q.B/m;

vs = \/kpTos/ms
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p = v /(2B)
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p

Boltzmann constant

species label, s = (i, e)

mass of species s

charge of species s (¢g. = —e, ¢ =€)

constant background temperature of species s
(equal to TQ if TO,i = TO,e)

constant background density of species s (equal
to No if No,i = TLQ&)

ratio of ion mass to species mass mg (fte = ft, ft; =

1)

ion gyroradius

ion sound Larmor radius

Larmor frequency

thermal speed

perpendicular velocity

magnetic moment per unit mass

absolute value of the equilibrium magnetic field
magnetic unit vector in direction of B

flux label

background parallel magnetic vector potential
plasma pressure

electron plasma beta as the ratio of electron pres-
sure over magnetic pressure (short notation [3)

ratio of species temperature 7j s to electron tem-
perature Ty, (1, =7, 7. = 1)

xi



VA = BO,z/\/,uonOmi

Leqr =2/Vz

ta = Leq,B/'UA
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Alfvén speed based on the guiding field strength
BO,Z

scale length of the equilibrium gradients of quan-
tity x, being density ng, temperature 7T, or
magnetic field B

Alfvén time

ratio of temperature to density gradient scale
plasma frequency

collisionless skin depth of species s
perturbed of the electrostatic potential
perturbed parallel magnetic vector potential
complex eigenvalue of the mode

growth rate of the mode as the imaginary part
of w

frequency of the mode as the real part of w
wave vector

parallel wave vector



1 Introduction

1.1 Magnetic reconnection

Magnetic reconnection is a fundamental process in plasma physics which describes
the topological restructuring of magnetic field lines. Following a more general term,
it is a change in magnetic connectivity of plasma elements due to the violation of
the frozen-in magnetic flux constraint of ideal MHD theory [, 2].

During reconnection the magnetic energy as a source of free energy is converted
into kinetic energy of the plasma, thermal energy and acceleration of particles. It is
believed to play a crucial role in astrophysics as a way for explaining solar eruptions,
coronal mass ejections, stellar flares, coronal heating and the generation of energetic
particles. It also affects high velocity clouds in the galactic halo [3]. Reconnection
events were proven to occur in the magnetotail of the earth and mercury and theo-
retically investigated in these domains [1, 1-0].

A very important additional research part of reconnection physics concern the as-
pects relevant for fusion by magnetic confinement. Neglecting the ideal MHD ap-
proximation of fusion plasmas, resistive tearing mode instabilities can evolve rel-
atively fast and can lead to a strongly reduced plasma confinement. Moreover,
nonlinear aspects of these reconnection events can lead to a high acceleration of the
tearing instability which has to be controlled in experimental devices |7].

A very recommendable overview of the field of magnetic reconnection and detailed
discussions are given in Ref. [1]. For advanced studies Ref. [2] contains a collection
of rather specialised reports. It gives also a short and valuable introduction to re-
connection and related topological concepts.

The concept of magnetic reconnection was founded by Giovanelli (1946) trying to
explain the heating of the solar corona. Also Dungey (1953) recognised that the
large amount of magnetic energy on the surface of the sun can be a source of a
sudden acceleration of charged particles. Solar flares and coronal mass ejections ex-
hibit the clearest visual examples of magnetic reconnection. Soft X-ray images gave
more experimental insight into the magnetic structures and acceleration of charged
particles [5]. Recently the RHESSI satellite was launched (2002) to provide high
resolution ~-spectroscopy images of the sun used to explain impulsive reconnection
events on the sun’s surface.

A more detailed physical picture of reconnection can be given by inspecting Ohm’s
law of the fluid model under consideration. In Sec. 1.2 the relevance of Ohm’s law
is described comprehensively in terms of a hydrodynamic analogon of magnetic re-
connection.



1 Introduction

Within the non-ideal MHD plasma description one can assume [3]

— . = - 8_') _"XB)
E+va:nj—Vp+dia—‘i+jne . (1.1)

This equation can be traced back to the momentum balance of the electron fluid
in the derivation of the MHD model. It describes the response of the current j
under the influence of an electric field F. Here, n, v and p are the plasma density,
velocity and scalar pressure, respectively. There are several strong restrictions when
applying this law in the MHD context [1].

Neglecting the right hand side of Eq. (1.1) the plasma is ideal and the magnetic field
lines are just guided with the plasma motion. The resistivity n and the inertia term
proportional to d? lead to a violation of the constraint of the frozen-in magnetic
flux allowing the magnetic field to decouple from the plasma flow. The resistivity
introduces dissipation in the system causing a conversion of magnetic energy into
Joule heating. Without resistivity the system is dissipation-free and an effective
impedance remains due to the finite electron inertia proportional to d?. The pres-
sure term does not support non-ideal effects since it is a gradient field. The pressure
gradient here causes a process so-called slippage and has similar features of recon-
nection [2]. However, off-diagonal components of a pressure tensor can indeed break
the frozen-in magnetic flux constraint [9]. The last part on the right hand site is
known as Hall term. This term for itself does also not cause magnetic reconnection
but makes Alfvénic waves dispersive (whistlers).

One of the earliest models, referred to as the Sweet-Parker (SP) model, describes
a steady reconnection process within the resistive MHD context [1]. On the right
hand side of Eq. (1.1) only the term proportional to n remains. A field line geometry
which is antiparallel near the so-called singular layer underlies this model, motivated
by modelling the complex magnetic dipole structures on the surface of the sun. It
describes magnetic reconnection as a combination of a large scale ideal MHD-regime
which accounts for the equilibrium length scales far away from the singular layer,
and a thin non-ideal domain of width dsp around the singular layer. Within this
non-ideal diffusion domain the magnetic field lines are able to reconnect because
the frozen-flux constraint is broken due to resistivity. The magnetic field diffuses
into the layer, reconnects and accelerates the plasma along the singular layer in the
elongated direction with an upstream-velocity v ,,. However, the elongated diffu-
sion region of length A limits the rate of reconnection due to the Alfvén limit on
the ion outflow velocity. Assuming a steady-state reconnection in an incompressible
plasma, the continuity equation yields for the inflow velocity [10, 11]

dsp
Vip ™~ K ,UA/u‘p << UA,up- (12)
It relates the length dsp of the diffusion region to the macroscopic elongated scale A
which causes the reconnection rate, v;,/va ,, to be relatively small. However, the
comparison with experimental observations of the reconnection rate clearly failed

since the approximations used in this theory are quite crude.



1.1 Magnetic reconnection

In the early 60ies this model has been improved by Petschek. He assumed that slow
mode shocks in the Sweet-Parker outflow region greatly speed up the mass flow. As
the external plasma crosses the shocks it is accelerated in the downstream direction.
The structure of the shocks along the outflow direction is characterised by a new
microscopic scale A*, and the macroscopic scale A of the Sweet-Parker model. An
analysis shows that the reconnection rate is increased by a factor of /A/A*,

S AN
i N\ A Ve U (13

Although the model of Petschek was impressive it is very controversial. Biskamp
(1986) reported the results of numerical simulations which appeared to disprove the
Petschek model. In particular, assuming constant resistivity over the whole sim-
ulation domain, the shocks emerged at distances much larger than predicted by
Petschek [].

The plasma in the solar corona can not always be considered as conductive. Colli-
sionless mechanisms have been investigated leading to fast reconnection resulting in
much higher reconnection rates compared to the resistive case which suites better
the explanation of astrophysical observations. These mechanisms base, for instance,
on inertia effects of the electrons breaking the frozen-in constraint [5]. This case cor-
responds to taking only the term proportional d? of the right hand side of Eq. (1.1)
into account. The influence of the Hall-term was investigated as well leading to an
increase of the reconnection rate [2].

Experiments with fusion devices have also shown strong hints of reconnection phe-
nomena, as was first observed by Goehler (1974) in tokamaks. So-called sawtooth
crashes may occur, which have been observed by soft X-ray emissions. The elec-
tron temperature profile peaks and suddenly flattens. This has been explained
by Kadomtsev (1975), assuming that the MHD helical mode with mode number
m = 1, n = 1 displaces the equilibrium magnetic axis of the tokamak. After that
the magnetic fields are allowed to reconnect at the ¢ = 1 surface with ¢ the safety
factor.

Since the 70ies the most intensively studied instability for the formation of X-points
and reconnection is the tearing mode. It has attractive properties since there are
collisionless and collisional variations. To describe reconnection in the magnetotail
of the earth the collisionless tearing mode without a guiding field, often modelled by
a so-called Harris configuration [12|, has been established as a standard concept in
magnetic reconnection physics. The tearing mode offers also the possibility to create
spontaneous reconnection in contrast to forced reconnection driven by an external
equilibrium flow.

In particular, it is important to extend the understanding of tearing modes in hot
plasmas encountered in fusion devices which maintain a strong magnetic guiding
field. Due to the high core temperature binary coulomb collisions can be neglected
which makes the plasma highly conductive. Considering the confinement of fusion
plasmas on large times scales the approximation of ideal MHD is not valid anymore.
Waiting long enough, the magnetic field can diffuse perpendicular to the guiding
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field which makes the description of finite resistivity of the plasma necessary.

One could suppose that the perpendicular magnetic diffusion causing destabilisation
of the plasma is quite slow. Since the involved spatial scales are very small and a
large amount of magnetic energy contained in the equilibrium can be released, the
growth rate of the resistive tearing mode can be very high [13, 14]. The resistive
tearing mode typically grows on a hybrid time scale 7,;1 ~ tQA/ ’ tzﬁ between the short
MHD time scale t5 and the very long resistive time scale tz ' [13].

Tearing modes are well known for the formation of magnetic islands which alter
the magnetic topology and thus the confinement properties of fusion devices. The
description of tearing modes can be extended by including electron temperature
gradients. If additionally a sufficiently large resistivity is present so-called micro-
tearing modes can be excited which form small scale islands |15, 16]. These modes
trigger the stochastisation of magnetic islands causing a rapid deconfinement of the
plasma.

From the 60ies until nowadays, the analytical work on tearing modes multiplied.
The milestone work of Furth, Killeen and Rosenbluth (1963) within the resistive
MHD context founded the linear boundary layer analysis of tearing modes [14].
They calculated the dispersion relation for the first time in terms of the stability
parameter A’ describing the ideal solution on large scales outside the tearing layer.
The famous analytical result of Rutherford (1973) stated the algebraic growth of the
nonlinear resistive tearing mode [17]. During these decades the computational work
concentrated mainly on fluid calculations. Sonnerup (1970) and Vasyliunas (1975)
began to verify numerically that other solutions than Petschek’s prediction exist in
the regime of fast reconnection.

Drake and Lee (1977) used a drift kinetic model for both electrons and ions to pre-
dict collisionless and collisional linear dispersion relations in the low-A’ limit [18].
Although quite early, this work is still a standard reference of present reports.
Drake and Lee also proposed a nonlinear saturation mechanism of the tearing mode
both without and with collisions [19]. The latter result confirmed the prediction of
Rutherford.

During this period numerical work on simulations of kinetic models started which
were discretised by particle-in-cell (PIC) methods. Katanuma (1980) investigated
the nonlinear evolution of tearing modes in a slab [20|. However, this work focused
on presenting a few single time series to enlight the physical saturation mechanism
rather than a comprehensive numerical verification of available nonlinear predictions.
Birdsal and Langdon (1985) seconded, but their approach included large spatial and
temporal discrepancies of the scales involved (Debye length and system size, plasma
frequency of the electrons and small growth rates) and thus made it intractable to
obtain kinetic simulation results in a reasonable period of time. This numerical field
gained much drive when the gyrokinetic equation derived by Hahm (1988) had been
established. This kinetic description allows for tearing solutions circumventing the
previously mentioned numerical disadvantages for simulations.

! The Alfvén time to = Leqp/va as well as the time of resistive diffusion, tp = po quﬁB/n are
related to the equilibrium magnetic field scale Leg,B-



1.2 Preparation for reconnection: A hydrodynamic analogon

Porcelli (1991) succeeded in calculating a dispersion relation of the tearing mode
with a fluid approach of the electrons and a gyrokinetic description of the ions. This
dispersion relation includes diamagnetic effects, collisionality and finite ion temper-
ature effects and still serves as a standard formula in benchmarking results of linear
fluid simulations [21, 22|. Since the 90ies MHD modelling, minimal two-field and
four-field models have seen explosive growth and usage due to the technological
progress in computing power and numerical techniques [5, 23]. MHD codes could
face demands of realistic 3D global domains like 3D simulations of earth’s magne-
tosphere in the presence of the solar wind. The collaboration entitled Geospace
Enviromental Modeling (GEM) project enfolded several important results on nu-
merical studies of two-fluid reconnection describing Earth’s magnetosphere (Shay
and Drake (1998), Daughton (2006)) [5].

Nonlinear studies by Aydemir (1992) discovered the so-called “explosive” reconnec-
tion when simulating the m = 1 mode in a tokamak [7]. Using a four-field model
in the high-A’ regime and low collisionality he showed that in the early nonlinear
phase the actual growth rate «(¢) of the tearing mode increases by one order of
magnitude with respect to the linear growth rate ~,. The strong increase of the
reconnection rate in the early nonlinear phase was confirmed by Ottaviani (1993)
and Kleva (1994) in the high-A’ regime within a slab model [23]. A physical mech-
anism explaining this acceleration could not worked out but a heuristic differential
equation describing the island evolution was derived. An comprehensive nonlinear
theory explaining this subject is still under discussion [35].

Grasso (1999) extended the model of Ottaviani by taking finite Larmor radius (FLR)
effects into account [21]. The numerical investigation included the dependency of
the field structure of the tearing mode on finite ion temperature as well as the ac-
celeration of the amplitude in the early nonlinear phase.

Progress has also been made investigating secondary island formation (plasmoids)
using a resistive MHD model employing a turbulent background [15]. For sufficiently
small resistivity the reconnection rate becomes independent from collisionality. Re-
cently, a kinetic hybrid model was used to figure out numerically that Landau-
damping can be mainly responsible for electron heating during two-dimensional
reconnection [46, 47|. In particular, the width of the saturated island half width is
found to be the same as predicted in MHD theory for sufficient large system sizes.

1.2 Preparation for reconnection: A hydrodynamic
analogon

This chapter prepares for magnetic reconnection within a pure hydrodynamic con-
text describing the detachment of a liquid drop. This chapter here follows mainly the
work of [2, 18].

The term reconnection is not restricted to processes which involve electromagnetic
fields. It can appear in a very general fashion, for instance, describing non-ideal
processes within hydrodynamics. In the following example, the dynamical magnetic
vector field B is translated into a generic smooth scalar quantity P as shown in
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Figure 1.1 which can be thought of as a colour or density of a fluid. The Figure
might show a fluid, where the white, lighter phase is associated to P = 0 and the
black, heavier phase to P = 1, whereas in between the quantity undergoes a smooth
transition. The temporal evolution of this unstable configuration is depicted from
left to right. The flow ¢ is a solution of the Navier-Stokes equations, while P is
assumed to be just advected with the local flow, i.e. being described by a transport
equation

OP (Z,1)

ot

However, the detachment can never achieved using Eq. (1.4). To describe detach-
ment, the boundary of the P = 1 domain must be advected to the stagnation point
in a finite time. This is not possible for any smooth velocity field. The flow at the

REAEAR)

Figure 1.1: Temporal evolution of the detachment of a drop as an example of scalar
reconnection. The Figure is taken from Ref. [18].

+ @ VP(Z,1) =0. (1.4)

stagnation point x = 0, y = 0 can be well approximated by ¢ = (—x, y, 0). The
time for transporting a fluid element over the last distance € to the stagnation point
is

At—/oid —/eld — In()[ = (1.5)
_Evmx_oxx—nxo—oo. .

This situation is again shown in Figure 1.2, but in contrast to Figure 1.1 the coor-
dinate system is rotated by /2.

In reality the detachment is of course quite possible. The physical reason for the
contradiction is that the description by Eq. (1.4) fails during the detachment. In
nature the decreasing thickness of the P = 1 domain reaches molecular distances
in finite time and at least then it is not clear whether a fluid description can be
maintained. To stay within the macroscopic fluid description and to account tenta-
tively for the detachment, one can introduce a correction term in Eq. (1.4). It is not
assured that this concept will be successful, since on those small scales involved the
complex particle dynamics should be better described by a kinetic model. Adding
a generic non-ideal term r to Eq. (1.4) one obtains

OP (1)

4T VP (@) =1 (&1). (1.6)

The only condition is that » must be small compared to the advection term, ex-
cluding the points, where the advection term vanishes. This equation will be the
analogon of Ohm’s law Eq. (1.1) and r can be translated to the term proportional



1.2 Preparation for reconnection: A hydrodynamic analogon

-

Figure 1.2: The reconnection process is not possible in finite time with an ideal
transport equation for P. The Figure is taken from Ref. [18].

- e

Figure 1.3: The reconnection process is now possible in finite time with non-ideal ef-
fects r in the transport equation of P. The Figure is taken from Ref. [18]

to the resistivity 7]5'. The exact form of r almost plays no role.
Eq. (1.6) can be rewritten as

oP (Z,t
(1) + @ - VP (Z,1) =0, (1.7)
ot
assuming r = —0v - VP and defining @ = v+ dv. The new velocity @ is not smooth

since V P vanishes at the point of detachment where r 2 0. It requires a singularity
in 0¢ and consequently in @ of the type [60] ~ 1/ |V P|.

Indeed, for a generic saddle point of the form P ~ a—bx?+cy? detachment becomes
possible as shown Figure 1.3. Since the singularity of the flow scales like w, ~ —1/z
with respect to the z-direction this leads to the estimation of the travel time

€

01 2
At = —dx = — 1.8
/sz r=5 (1.8)

which is now finite.
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1.3 Current research and motivation for this work

At the very first magnetic reconnection is a numerical and analytical challenge. Even
global simulations in a slab geometry are still attractive and frequently used for in-
vestigations [25, 26]. The relative simple slab geometry admits the investigation of
fundamental physical mechanisms of reconnection caused by the highly nontrivial
aspects of boundary layer dynamics.

In this work the standard gyrokinetic equation are solved to model reconnection with
a modern kinetic approach [27]. The gyrokinetic equation is solved by means of a
0 f-PIC method implemented in the EUTERPE code. This high performance and
fully parallised code is an advanced tool for full gyrokinetic plasma simulations [28].
EUTERPE can provide a detailed view on the phase space dynamics which is a
unique benefit in contrast to fluid models that are often forced to use a defined
physics specified by the applied closures schemes. Since reconnection simulations
are accompanied with a high computational effort the PIC scheme itself has to be
compared by frequently used kinetic continuum codes, which tend to be rather slow
due to high resolution of the multi-dimensional phase space [29, 31-33].

The numerical investigation of linear tearing modes is still a current topic of mag-
netic reconnection in the low-3 regime. However, numerically exact benchmarks of
simulation results are a challenging task, rather it is common to compare with less
exact analytic dispersion relations [29, 30]. This work shows that EUTERPE is able
to simulate linear reconnection processes to very high accuracy by comparing with
an adopted shooting method. Moreover, the performance of linear simulations verify
that the computationally “cheap” PIC scheme is suitable for reconnection simula-
tions.

There is a tremendous lack of simulation results of physically important parameter
regimes concerning tearing modes. This can be traced back to the high number
of relevant spatial scales which are able to modify the reconnection process sensi-
tively. For instance, in the range of fast reconnection employing electron temperature
gradients, the linear tearing mode has not been much investigated so far. In the
presence of equilibrium gradients of length scales Lt ., L, . a critical threshold of
n = Lye/Lr,. occurs and is not quite well understood. Closely connected to finite
equilibrium gradients in the presence of reconnecting events is the investigation of
micro-tearing modes, which are important for understanding electron transport dur-
ing island formation. The numerical description of micro-tearing modes with PIC
methods is not well developed.

An important point marks the nonlinear saturation of the tearing mode which is
also a key feature of the present work. Since a coupling of the most unstable mode
to modes with higher poloidal mode numbers is not expected, it is a very well ar-
ranged situation to observe the single-mode evolution. In contrast to, for instance,
ITG-modes which can drive turbulent plasmas exciting a whole spectrum of inter-
acting modes, analytical predictions of the saturated island half width of nonlinear
single tearing modes are easier to validate, but not proved numerically so far for
a broad range of parameters. Only rare systematic numerical investigations of the
saturated island half width are available in the literature [26]. Either the weak col-
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lisional regime has been investigated [17] or high-£ cases [30] which do not match
the present purposes. The comparison of predictions of the saturated island half
width [19] with numerical simulations is a further important contribution of this
thesis.

Nonlinear tearing in terms of Hamiltonian fluid models has been discussed at length
both in the high- and low-A’ regime [12—14]. Despite of the wealth of numerical
results obtained so far reasonable predictions like saturated island width depend-
ing on important plasma parameters are missing. The Hamiltonian fluid equations
can be formulated in terms of topological invariants which might enhance analytical
work. However, even this class of more intuitive models compared to pure kinetic
approaches are still investigated rather numerically and show a lack of analytical
work on nonlinear reconnection.

The need for simulation results and physical understanding becomes even more nec-
essary in the high-A’ regime. Early attempts of the theoretical description of non-
linear destabilisation in the high-A’ regime started with fluid simulations and semi-
analytical statements based on the evaluation of the vector potential and plasma
flow pattern [23]. Important progress has been achieved in understanding nonlinear
destabilisation mechanism by applying the energy principle on a two-fluid model
in the high-A" [35]. However, in general this range of fast reconnection is harder
to treat numerically the higher A’. In this thesis the focus lies on the transition
between the saturated phase and nonlinear destabilisation to get deeper insight into
the difference of both regimes circumventing the range of large values of the stability
parameter. Although a final answer to the physical mechanism of acceleration can
not be given this transition will be one of the most interesting fields in nonlinear
tearing physics. Attacking these simulations in real three-dimensional geometries
would be a delicious task and is left for further work.

Since the last two decades reconnection was mainly investigated by fluid simulations
[21, 23, 36]. Due to the influence of kinetic effects like finite Larmor radius effects
or dominating phase space dynamics like superthermal particle acceleration on lin-
ear reconnection, a comparison between kinetic and fluid simulations is necessary.
Beside kinetic effects, it is still not clear whether fluid models contain nonphysical
effects like artificial saturation with respect to kinetic approaches when entering the
nonlinear phase of reconnection [341]|. During the last decade mainly two branches of
gyro-flavoured models dominated magnetic reconnection physics: in the late 80ies
the gyrokinetic approach came up as a standard tool in plasma physics [27]. In
the early 90ies gyrofluid models were derived from the gyrokinetic equation and
simplified versions of these models were used intensively in strongly magnetised
plasmas [34, 37, 40]. These fluid models were also collated with arbitrary guide-field
models in low-g limits [11]. After proposing and deriving these models a compre-
hensive comparison of these different models is needed, especially with the original
gyrokinetic equation. Linear comparisons of fluid and gyrokinetic approaches have
been performed both in a low- and high-/ slab configuration [32, 38, 39]. However, an
exact benchmark has not been presented as well as a systematic comparison of both
models in the nonlinear regime. This thesis is also dedicated to a systematic com-
parison of the standard gyrokinetic model and a compressible gyrofluid model [51]
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both in the linear and nonlinear regime. When focussing on linear simulations both
approaches are accompanied with numerically exact benchmarks.

1.4 Collisionless tearing mode instability

The tearing mode is a non-steady spontaneous electromagnetic instability causing
magnetic reconnection. Even if a plasma is stable with respect to ideal MHD, non-
ideal effects can make the plasma unstable. The dynamics of this instability is
mainly influenced by a very thin diffusion region of the order of the collisionless
electron skin depth d. where non-ideal effects become important. In the following a
calculation of the linear growth rate -, in a similar fashion as Ref. [13], but within
the context of a simplified electron fluid model in a magnetised plasma is given to
get in touch with boundary layer and tearing mode physics.

1.4.1 The linear tearing mode

The simplest configuration of a magnetic field By = (0, By, Bo.) in a slab which is
tearing unstable, is provided by an equilibrium current of amplitude jj , and width a,
flowing in the direction of the guiding field By . .. The only non-zero perpendicular
component of the magnetic field is then given by

By,r —a<z<a
By, (z) = -B, v<-a (1.9)
By, T>a.

Usually the derivative of the magnetic field By, (0) is expressed in terms of the shear
length defined by I, = By ./ By, (0).

This equilibrium is MHD stable, but introducing non-ideal effects like electron inertia
makes it unstable. The resulting diffusion of the magnetic field lines leads to a new
magnetic configuration and is expected to be of high influence at a resonant surface
defined by the condition ky(x) = k - Bo(z) = 0.

A simple model which supports magnetic reconnection is an electron fluid model
given by the equations of motion [51] !

one
I A (1.10)
o
0 = HT_E e ), (1.11)
ue = AU, (1.12)

IThe equations are normalised to Alfvén units. This normalisation procedure is described in
Sec. (4.1). The model originates from a more general gyrofluid model. Here only electrons are
taken into account.

10



1.4 Collisionless tearing mode instability

where n, denotes the density, u, the current density of the electrons and W the
magnetic flux. Eq. (1.12) is parallel Ampeére’s law. The electron skin depth d,
in Ohm’s law, Eq. (1.11), is retained in order to provide a physical mechanism
for breaking the frozen-in constraint. The electron continuity equation, Eq. (1.10),
closes the system. The Poisson bracket for two arbitrary fields f, g is defined by
f,gl=b-VfxVq.

To investigate the linear tearing mode, Egs. (1.10-1.12) are linearised keeping only
terms proportional to the fluctuating fields. The Fourier ansatz Wy ~ e'(kv¥=t for
the perturbed magnetic flux and analogously for u. and n. relates the eigenvalue w
to the wave number k,. The following calculation deals only with two-dimensional
reconnection setting 0, = 0 for the perturbations, so the resonant surface is located
at x = 0. The linearised equations are

82\110 2 2
0= wny + k‘y \I/1 -+ 611111 - k?y\Ill 8x11107

_aaz\I/O
0=w (\Ifl - di [82\111 - ]{3;\1/1}) + ,0%76711 kf”

(1.13)

A possible equilibrium vector potential ¥y representing setup Eq. (1.9) is given by

—22/(21,) —a<r<a
Uy(x) = v/l +1/(2l;) < —a (1.14)
—z/ls+1/(2l5) x> a.

After eliminating the density response nq, the final differential equation becomes
0=w* (VU —d [030; — k2W4])

2 i (“EPoy e, 2w
‘|“,OS,e I B 1‘|‘[l« 1 Yy 1}

0,y

(1.15)

It is quite possible to solve this eigenvalue equation straightforward numerically to
get the complex eigenvalue w and the eigenfunction ;. However, this does not
illuminate the physical picture behind reconnection.

The problem of calculating the growth rate can be solved approximately by account-
ing directly for the domains which differ strongly regarding the relevant physics. The
approximative solution of the eigenvalue problem rests upon a distinction between
the outer ideal (reduced) MHD region and the inner diffusion region. The motiva-
tion for this strategy can be explained by inspecting the typical eigenmode structure,
shown in Figure 1.4. The equilibrium magnetic length a, obeying typically a < L.,
is the largest scale in the system and is related to the outer solution. Although
Eq. (1.15) is always valid, the non-ideal term proportional to d. can be neglected on
the scale a. The differential equation simplifies and its solution describes the outer
part. In contrast to the outer domain the spatial structure of the mode mostly
varies close to the resonant surface due to the creation of a perturbed current sheet
of width 6. deforming the eigenmode on the small scale d.. At this distance the
non-ideal effects can not be neglected anymore which motivates the derivation of an
inner layer differential equation coming from Eq. (1.15). The resulting differential

11
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wi

Figure 1.4: Different scales involved in boundary layer analysis of the tearing mode.
The outer ideal MHD solution varies slowly on a. The strongly varying
structure around § = 0.5 is caused by the perturbed electron current
channel of width J. and typically scales with d.. ps. represents the dis-
tance at which the pressure profile changes.

equation accounts for magnetic field line diffusion.

Since the outer region is governed by the ideal MHD description and this solution
varies on the length scale of the magnetic equilibrium x ~ a ~ k:;l it is assumed
that it is much larger than all remaining scales, thus d., ps. < a. The ideal MHD
equation follows then from Egs. (1.15) by neglecting the term proportional to w '
resulting in

02 B
20y = (k2 ) Wy 1.16
o = (24 %) v, (119

This differential equation is qualitatively different from Eq. (1.15). The magnetic
equilibrium is divided into three domains according to Eq. (1.9), for which one
has to solve Eq. (1.16) together with the proper boundary conditions in between.
Here the differential equation is trivial to solve and gives an exponentially decaying
solution for > a and x < —a. This reflects the spatially localised character of the
eigenmode also on the equilibrium scale a. If a < L, 2, the boundary conditions of
the eigenmode play a minor role. The solution ¥, is characterised by a jump in the

! In the ideal MHD domain the Alfvén time is much shorter than the time scale of the tearing
mode, thus |w| < 1.
2 This is the usual ordering of the magnetic equilibrium scale and extent of the system size.

12



1.4 Collisionless tearing mode instability

slope at the resonant surface * [13],

1 /0¥,
A=—|(— . 1.1

The linear stability parameter A’ is an important quantity in the context of tearing
mode analysis. It allows to compare roughly different equilibria using only one value.
A’ is a function of k,, a and the extension of the domain L,. It contains the whole
equilibrium geometry and scale of the perturbations £, under consideration, even
for more complex global domains like a tokamak.

The value A’ can be calculated analytically for the specific slab equilibrium used
here, Eq. (1.9), giving [13]

om
ox

=40

2kya (e7*v* — 2kya + 1)
A (k = Y . 1.18
(kya) e~2kye 4 2k, a — 1 (1.18)

The system size L, does not appear in this expression, since it is assumed that
L, > a and so ¥, decays fast enough to suppress the influence of the boundary
conditions. The dependency A’(k,a) is shown in Figure 1.5 for a = 1. The mode
becomes unstable, if this quantity is positive, otherwise it is stable. For wave vectors
k, > 0.64 the reconnection process is inhibited.

It is important to note that many currently used equilibria in the literature follow
the same qualitative structure as described in Eq. (1.9) and so A’ differs not much.

Ar

0.3 04 0.5 0.6 0.7 0.8 0.9

Figure 1.5: The tearing mode stability parameter depending on k,. For k, > 0.64
the mode becomes stable.

The instability is mainly influenced by the thin current channel of width 6. at the

3 One can show that also outer solutions of Eq. (1.16) exist which do not have a jump at x = 0.
However, these modes are physically not relevant [13].

13
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resonant surface which is driven by a parallel electric field F). Ideal MHD does not
contain this quantity and so the ideal solution has to break down when approaching
the layer |z| — 0. The current layer serves as a kind of surface current j,; “seen”
by the outer scale a which produces the jump in 0,V;.

Since ¥, must be differentiable, it cannot have a jump in the slope at all. The inner
layer solution scales with ¢;, which will be defined later. This length resolves the
current channel correctly. Far away from the current channel with respect to the
small scale, i. e. |z| > d;, but nevertheless d;, < a, the inner solution will match
asymptotically the outer solution to produce a smooth W; in the whole domain.
Close to the resonant layer x = d, the skin term in Eq. (1.15) and the strong variation
of ¥y (0, > k,) becomes dominant. This modifies the differential equation (1.15)
qualitatively describing now the small scale dynamics with

070y (VA4 pE kf) +47 0 = 0. (1.19)

Usually it is assumed that the equilibrium magnetic field is a linear function close
to the resonant surface, By, ~ x/l;. The second term on the left hand side of
Eq. (1.19) contains the assumption of a constant value of the perturbed magnetic
flux, Uy, reflecting the constant-U approximation across the layer. This assumption
is only valid in the limit of marginal instability and clearly not applicable in the case
A’ > 1. The characteristic length scale d;, can be estimated by balancing the first
two terms of Eq. (1.19) giving ;, = (Is7de)/(ps.eky). Also one can show that the
tearing mode is purely growing (w = 0), since there are no equilibrium gradients of
temperature or density [13, 20].

Finally, both the solutions of the singular layer differential equation, Eq. (1.19)
and the ideal solution from Eq. (1.16), will be combined to describe the mode struc-
ture over the whole domain L, in order to get the final dispersion relation. In the
following the method of asymptotic matching will be applied. First one rescales
the inner solution according to X = x/0;,, assuming that J;, is arbitrary small with
respect to a. In terms of the variable X, the stability parameter, Eq. (1.17) becomes

1 o0 d2\I’1
A = = X A~ 1.2
1/ W ixe (1.20)

[e.9]

This expression can also be formulated by integrating the differential equation of
the layer, Eq. (1.19), respecting the redefined coordinate X,

1 /°° 20, 6 o 1
= dX == dX
2 2 2
LZ‘ — 00 dX ;e — 0o 1 +X (121)

This expression makes contact with A’ of the ideal solution, Eq. (1.20), in the
asymptotic limit. Knowing this value for a particular magnetic geometry, the growth

14
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rate can be calculated as

v = A/ PS.e ky de

, (1.22)
7l

which agrees with Porcelli [19] in the limit A’ — 0. It makes also clear that the
distance §;, scales as d;, ~ A’d* which is also known from kinetic theory of colli-
sionless reconnection [18]. If d., and thus the non-ideal term of Eq. (1.11) vanishes,
the mode becomes stable (v = 0). Also, if the strength of the sheared magnetic
field becomes arbitrary small, [, — oo, reconnection can not act, since only the
homogeneous guiding field remains.

This analytical eigenvalue analysis shows that the tearing mode is a non-steady
reconnection process which involves boundary layer dynamics. Many strongly dif-
fering, but physically important scales are involved. This insight would clearly not
be possible when simply integrating Eq. (1.15) numerically.

The model equations (1.10-1.12), serve as a starting point for more complicated
analyses. The inclusion of the electrostatic potential ¢ into the dynamics leads to
a coupled system of differential equations of fourth order [11, 50]. Additionally, the
ions can be included as well, but due to the large natural mass ratio u, they play
a minor role in the dynamics. The complete model from which Eq. (1.10-1.12) can
be deduced [51], states that the plasma is advected with the flow ¥ = —V ¢ x B.
Therefore, a second differential equation for the electrostatic potential has to be in-
cluded, thus ¢ is now also subject to a boundary layer problem that scales typically
with ps . [13].

Consequently, the complete analytic calculation of the growth rate has to handle
a double boundary layer analysis discriminating additionally the cases d. > ps.
and d. < ps. assuming ps. < a as well. Usually the analytical work consists of
applying a generalised Fourier transformation to the initial differential equations
for A and ¢ as well as a subsequent identification of the layer regions and several
matching procedures of the fields |11, 19]. In this analysis it is customary to deal
not only with the limit A’d, — 0 when matching both inner and outer solutions,
but also with the opposite case A’ d, > 1. This results in the application of a gen-
eralised asymptotic boundary condition for both fields ¥; and ¢ when approaching
the resonant layer [19, 52].

1.4.2 Overview of analytical dispersion relations

There is a large amount of analytical calculations of the dispersion relation of col-
lisionless tearing modes because of subtle relations between parameters and the
underlying type of models. This section gives an overview of available dispersion
relations for collisionless tearing modes in low-£ configurations.

As a general remark the tearing mode stability parameter A’ plays a key role when
classifying dispersion relations and comparing magnetic equilibria. In general the

15
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large-A’ range is defined by the inequality [10]

/ d 1/3
ANd, > | ——— . 1.23
(pS,e\/ 1+ T) ( )

The opposite case is referred to as small-A’ range. Parameter values frequently used
in this work correspond to the estimate d. < pg. and therefore the small-A’ region is
then characterised by A’d, < (d./ps.)"? ~ 1 for vanishing ratio of ion to electron
temperature.

In Table (1.1) recent and for this work important references are shown that investi-

Lr,=0,7=0 [21,38, 11],Eq. (1.22)

Lrn=0,7~1 [3¢]
Lyn~1,7=0 [18, 56]
Lrya~1,17~1 [49, 54, 57]

Table 1.1: References of analytic dispersion relations for the collisionless tearing
mode.

gate collisionless reconnection with either a kinetic, fluid or hybrid approach. In this
thesis the influence of finite ion temperature effects, 7 ~ 1 on the tearing mode will
be subject to simulations. For finite equilibrium scales of density and temperature
in the simulation domain, L, ~ 1 and Ly ~ 1, the tearing mode gets a finite
oscillation frequency @ [18, 44, 56].

The ratio d/ps. = 1/y/Bp and related cases d2 > p§, (8 < me/m;, “iner-
tia regime”) and d7 < pg, (B > me/m;, “kinetic regime”) define certain limits
of validity of dispersion relations [51]. The analytic work of reference [50]| using
a two-fluid model includes linear dispersion relations valid for arbitrary guiding
field strengths and may serve as a demonstrating explanation. The authors ap-
ply matched asymptotic expansion techniques which include the identification of
different physical structures around the resonant layer depending on (3. At very
small plasma-/3 values obeying 8 < m./m;, ion and electron flow are coupled in
the tearing layer width yielding a single MHD fluid description. For finite plasma-(
(8 < (me/m;)Y4), electrons and ions are decoupled on scales smaller than pg.. The
mode is then referred to as kinetic Alfvén-driven tearing instability. Two sublayers
are present: a narrow layer of width d, where electron diffusivity is important and a
two-fluid specific layer on scales ps.. If 8> (m./m;)/* reconnection is influenced
by whistler waves and not of interest here. In Table (1.2) dispersion relations are
shown valid for 7 = 0 and Lt , = 0 in various limits ' .

For the case pg. > d. Table (1.3) lists the growth rates and real frequencies of the
tearing mode in a slab configuration. In the case A’d, < 1 an algebraic equation

! In Ref. [10] a short overview of linear dispersions is given in this regime. The original results
were developed in Refs. [55, 50]

16



1.4 Collisionless tearing mode instability

Lpy=0,7=0 ps.e < de [10] pse > de [38]

Ad, <1 v =022k, A%/, v = kydeps A/ ()
Ad, > 1 v = kyd,/l, v = ky (2d./m)'"? pel2 1,

Table 1.2: Analytical dispersion relations in the drift kinetic limit 7 = 0 without
equilibrium gradients.

is presented which must be solved for w [54]. The algebraic equation contains the
poloidal plasma beta 3, at a, the diamagnetic frequency w* and a complex func-
tion R(wg) depending on wy ~ w* (1 +1./2) *. The linear electron current layer
width is given by ¢ = w*l/ (k,ve). In the case A’d, > 1 and vanishing equilibrium

gradients as well as 7 — 0, the corresponding result of Table (1.2) can be restored
2

1.4.3 The nonlinear tearing mode

The island formation of resistive and collisionless tearing modes is well known, but
differs clearly in both cases.

The magnetic islands in the resistive case do not saturate after the linear phase,
rather the island width in the low-A’ regime grows algebraically in time [17]. In
the collisionless case the tearing mode stabilises nonlinearly in the small-A’ range.
The magnetic island width oscillates with a characteristic frequency for all times
later than the initial nonlinear phase. If ¥ does not vary too much over the tearing

! The diamagnetic frequency of the electrons is given by w* = kykpT./(ge Bo.») (dng/dx)/no . in
SI units and w* = ky(dng,./dz)/ng, in EUTERPE units.

2 Reference [11] generalises the dispersion relation (k,) to the case with diamagnetic effects.
However, the term for v (k,) in this reference is not consistent with Refs. [10, 38]. In this thesis
the term (k) of Ref. [38] is adopted.

Lry~1,17~1 ¥ w

B . T % % A’ad}
Ad <1, (5 EEEE 8 () = () 22 4 (14 1/7) R

2

Nde>1, (1] = - [P (14 )] b= Rgre (1)

Yo = ky/l (2dep3, (14 7) fm)"?

Table 1.3: Analytical dispersion relations, valid only for ps. > d., including finite
ion temperature and diamagnetic effects.
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Figure 1.6: Qualitative structure of a magnetic island. The X-point is located at
z = 2m/ky, r = 0 and the O-point at z = 7/k,, r = 0. The half width w
is the half of the maximum extension of the separatrix regarding r.

layer, the constant-U (constant-A) approximation can be applied. Let A(t) be the
value of the perturbed vector potential across the layer at the O-point and assuming
By, (z) ~ x, the field lines close to the resonant surface can be represented by

2

F(r, z)= ;_l + A(t) - cos (kyz) = const. (1.24)
The contour lines of F'(r, z) are sketched in Figure 1.6. During island formation the
open field lines move to the X-point, tear and reconnect. The newly reconnected
field lines are accelerated towards the O-point. As shown in this Figure, the set of
open and closed magnetic field lines is divided by the magnetic separatrix. The half
of the maximum elongation with respect to r defines the island half width w(t). In
the constant-¥ approximation the island width is given by [13]

w(t) = 24/A() L. (1.25)

In this approximation the island half width is obtained by measuring the vector
potential over time at the O-point.

The magnetic island grows and alters the magnetic confinement properties of the
plasma. If the amplitude of the mode is sufficient large the charged species become
trapped in this newly formed island structure. When the width of the magnetic
islands reaches the width of the perturbed linear current channel ¢., the plasma
inflow towards the layer is strongly reduced and the mode saturates [18].

The nonlinear evolution of tearing modes in the high-A’ limit differs completely
from their evolution in the opposite limit. The mode shows “explosive” reconnection
indicated by an accelerated growth when entering the nonlinear phase [23| and the
island width can reach macroscopic level of order w(t) = O(a, L).
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2 Gyrokinetics

2.1 Gyrokinetic description

In this chapter a comprehensive description of gyrokinetics will be given to get in
touch with this formalism, followed by the formal description of the theory in the
next chapter.

The collisionless kinetic approach studying plasma physics consists of using the
Vlasov equation for each species s [58]

~0. (2.1)

= «I»’U

—

The one-particle phase space distribution functions Fj (7, ¥) are defined on the six-
dimensional phase space.

Maxwell’s equations describing the electromagnetic fields E and é, together with
the sources p and j obtained from Fj, close this system of equations.

The applicability of Eq. (2.1) is limited because it rests on the assumption that pair
correlations between the particles can be neglected. Therefore, the Vlasov equation
is valid as long as a typical correlation or collisional time scale ¢, is much larger than
the characteristic time scale of the correlation-free system, ¢ < to. This situation
can be found in the hot core region of fusion plasmas since the collisional time scale
increases with the temperature T roughly as to ~ T%/2. The collisionless approach
is also valid in astrophysics when the mean free path of the species is much larger
than the characteristic spatial scales of the mode of interest. If the correlation-
free description fails, the collisional kinetic approach known as Boltzmann equation
would apply.

It is a computationally expensive task to solve Eq. (2.1). Conventional fusion devices
are characterised by a strong magnetic guiding field along a specific direction and
relatively weak magnetic fields perpendicular to it. Therefore, the physics becomes
strongly anisotropic and the theoretical models are designed to account for this
property, accompanied by a simplification of the resulting equations.

In a strongly magnetised plasma each charged particle performs a gyromotion around
the guiding field shown in Figure 2.1 (left). The gyration can be described by

7 = R+ p,
v
s = Q—L(005aé1+sinaég).

S
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/n

Figure 2.1: Left: Microscopic dynamics of gyrating species (red) around a magnetic
field line (blue). Right: Averaging over the fast gyromotion to pass to
gyrokinetics. The gyrocenter is described by its position ]%, the parallel
canonical momentum p| along the magnetic field line and g (giving p).

R is the gyrocenter position, p, the gyroradius, a the gyrophase and v, the perpen-
dicular velocity.

The applicability of the gyrokinetic model assumes that the gyrofrequency 2, is the
smallest timescale in the system. All other processes with a typical frequency w
evolve on a much longer timescale.

Thus the first step in introducing gyrokinetics consists of removing the fast frequen-
cies ), from the system with an appropriate formalism without loosing essential
information about larger timescales. In a sense, one averages over the fast gyromo-
tion of the kinetic equation (2.1) to get the gyrokinetic equation [59, 60]

dfs _9fs | 5 . Ofs
1~ o +R Vf5+p|| 8p” =

0. (2.2)

It describes the evolution of a five-dimensional phase space distribution func-
tion fs(é, p||, us) of the gyrocenters. The physical particle is replaced by a quasi-
particle that consists of a charged ring and carries a conserved magnetic moment ug
by definition, i.e. dug/dt = 0. The new microscopic description of the particles is
shown in Figure 2.1. In contrast to the description of the full gyration of the particles
(left), the quasi-particle is just guided along the magnetic field (right). In general
the gyrating particles experience also V B-, curvature- and E x B-drifts caused by
the electromagnetic equilibrium background fields. For the sake of simplification
they are not discussed here, but are of course included in the gyrokinetic theory as
well.

Additionally, in the gyrokinetic approach one assumes that the variations of the
equilibrium quantities varies on scales L, which are much larger than the gyrora-
dius. However, it is still possible that the spatial scales of the perturbation k:ll can
be of the order of the Larmor radius. This situation is displayed in Figure 2.2, left.
In case of two species s = (i, e), typically only for the ions an explicit gyrokinetic
description is necessary due to the large natural mass ratio p the electron Larmor
radius p. can be neglected.

If the essential spatial scales related to magnetic reconnection, i.e. L, k., d. and p;,
are much larger than the Debye length, the plasma appears quasi-neutral. Charge
separation can be neglected and thus the condition of quasi-neutrality holds, i. e.
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(D

Figure 2.2: Left: The gyrokinetic model allows for small scale perturbations that
are of the order of the gyroradius. Right: schematic explanation of
the gyroaveraged density (n,). At location & (blue point) one wishes
to compute the density (n,) () to which all gyro-particles (black rings)
contribute, whose gyrorings pass through .

equating the number densities of the physical particles, n. () = n; (Z). This ex-
pression serves as an additional field equation, since the densities are obtained by
integrals of the distribution functions over the phase space which depend on the
fluctuating electromagnetic fields.

In the gyrokinetic framework one has to express the number densities ng(Z) of the

physical particles in terms of the density of gyrocenters ny(R). To get the physical
density one first defines the gyroaveraged density (n,) (Z) according to *

(ns) () = / B dRdpydpu dad (B + 5(R) = 7) of, (R, py pm) . (23)

This expression relates the gyrocenter position R with the variable Z, where to eval-
uate the gyroaveraged density. In Figure 2.2 (right) the schematic evaluation of
the gyroaveraged density (n,) at Z (blue point) is sketched for three quasi-particles.
The expression (2.3) forces only those quasi-particles (black circles) to contribute
to (ns) (Z) that have any point on their gyroring in common with Z. In the deriva-
tion of the gyrokinetic quasi-neutrality condition an additional polarisation density
Npol,s () which depends on the electrostatic field corrects the gyroaveraged density
to give finally the physical number density ng (Z) = (ns) (Z) + npors (T)-

The second field equation is provided by parallel Ampére’s law which describes the
perpendicular magnetic fluctuations 6B, . Eq. (2.2) and both quasi-neutrality and
parallel Amperére’s law form the standard electromagnetic gyrokinetic model [59].

It is customary to treat only the perpendicular magnetic fluctuations in a low-
[ plasma, defined by the condition f < 1 [61]|. If § is allowed to reach values of
order unity, # = O(1), the parallel magnetic field fluctuations d 5 become as impor-
tant as the perpendicular magnetic perturbations. Consequently, the perpendicular
Amperére’s law must be introduced.

! The quantity B* will be defined in Sec. (2.2).
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2 Gyrokinetics

2.2 Electromagnetic gyrokinetic equations in a slab

The standard gyrokinetic equations result from an ordering procedure [60] with
respect to the ratios p;/L, kj/k1 and w/Qg much smaller than unity. Nevertheless,
this ordering allows the perturbation to be comparable to the Larmor radius, &k, p; =
O(1). The gyrokinetic equation

df,  of. . 0f.
i - o + R Vf5+p|| 8p|| =

0, (2.4)

describes the evolution of the distribution functions of the gyrocenters in phase

space. This equation will be solved by EUTERPE using the method of charac-
teristics. The characteristics of Eq. (2.4) in a slab read in terms of the variable
py/ms = v +qs A/mg t % [59)

5 _ Py 9y 1 - D
iy
M (2.5)
mS mS mS
g = 0.

The averaging procedure of the field fluctuations,

1 2w

(4, 0)(R) = do (A, 0) (7, D)| 3= i1, () (2.6)

2r Jo

introduces a mean field at ﬁ, where the quasi-particle is affected by the forces.
When performing PIC simulations it is advantageous to split the full phase space
distribution function f; using the 0 f-ansatz |26, (2]

fs - fO,s (ﬁ, %a MB) + 5fs (ﬁ, %a MBat) . (27)

S S

The time-independent background Maxwellian is assumed to be given analytically,

(—») (%‘“0,3(“)>2+Ui
f075 - Lxg e 205 ()2 ) (28)
2mvg(x)?

The 0 f-ansatz reduces the particle-induced noise. The bulk velocity v s allows for
a parallel equilibrium current which depends only on the spatial slab coordinate x.

UIf not stated otherwise the equations are always normalised to the unit system used in EUTERPE.
The normalisation procedure is explained in Sec. (4.1).

2The Egs. contain the quantity B* = B +my/qs (p|/ms) b- (ﬁ X 5) For the outlines discussed
here it is customary to use the approximation B* ~ B [2(].
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2.2 Electromagnetic gyrokinetic equations in a slab

Inserting Eq. (2.7) into Eq. (2.2) gives

dafs dfO,s f S
= - = —J0,5Ps;
dt jlt q ) ) i 29)
Se= kR - Vo + —"— [— (—”—uo,s) b-V{p——L A)
msvs () My my
Furthermore, one defines
P 2
3 (2 —uou@) +ut
Rs = Rn_s RT.s 5 - 2'Us (.T)2 - K'uo,sa
(2 i)
m * duO,s
/{Uo,s - ’US(.I’)2 d{L‘ ) (210)
1 dTy,
Ia% s = — [
T T(],s dz
1 dnos
Rns = — - -
' ngs dx

The quasi-neutrality condition demands for the physical charge densities
> g (@) = 0, (2.11)

for drift kinetic electrons, and gyrokinetic ions [59, (2]

m(@) = () @)+ o (@), 2.12)

1

The first term on the right hand side of Eq. (2.12) has been defined in Eq. (2.3),
while the second term represents the polarisation density n,, s(Z).

The exact expression for Ty in Eq. (2.12) is a complicated nonlocal operator in real
space and difficult to treat numerically. It is usually formulated in Fourier space
where it reads Ty (k% p?), defined in terms of the modified Bessel function Iy(z) of
the first kind according to Ty (z) = e "I (z) [62].

The simplest approximation of the polarisation density in the ion response consists
of using the long wavelength approximation, k, p; < 1. Expanding Iy in a Taylor
series in this limit the ion density response becomes I'y &~ 1 + k? p? which in real
space reads

ni () = (ng) () +Vie (D). (2.13)

Only in the range of small gyroradii, k; p; < 0.5, the long wavelength approximation
is useful to describe finite Larmor radius effects correctly [63].
A further common approximation of the polarisation density is provided by the
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2 Gyrokinetics

Padé approximation [62]. The advantage of the Padé approximation is that it gives
reasonable results for arbitrary values of k2 p? compared with the exact gyroaveraged
result and can be calculated easily. The Padé approximation replaces I'y in Fourier
space by T'g (k2 p?) — 1/(1 — k% p?). One can show that the resulting density of the
ions in real space is given by

ni (7) = (ni) (¥) + Vi (%) + ViV [(ni) (&) — ne (7). (2.14)

Therefore, the field equation for ¢ is given by n. (¥) = n; () with either the ion
response according to Eq. (2.13) or Eq. (2.14).

The Vlasov-Maxwell system is closed by Ampére’s law. The physical parallel cur-
rents jpp s are the sources for the parallel vector potential A according to

—%vim) = S G @) (2.15)

S

However, the current response in the pj-description as it is used here, is derived
from the first moment of the perturbed distribution function with respect to the
momentum canonical p/m,. In this formalism Ampére’s law reads

—SVA@ + Y@ EA@ = Yl @), (2.16)

S S

The so-called skin terms proportional to the field amplitude appear on the left hand
side. Formally, the skin term cancels completely the adiabatic response of the right
hand side of Eq. (2.16) which would result again in Eq. (2.15) [62].

The gyrooperation for the current in Eq. (2.16) is defined equivalently to Eq. (2.3),

—

(Ji.s) () = /B*dédﬁda5<é+ﬁs(3)—f) sf. 2L

- (2.17)

In the standard gyrokinetic equations shear Alfvén waves are admissible solutions
while compressional Alfvén waves do not appear, since the perpendicular Amperére’s
law is not taken into account.

In the description of tearing modes an usual ordering of the reconnection relevant
scales is imposed originating from experimental observations. The electron skin
depth d. and the perpendicular scale of the perturbation k:ll is assumed to be much
smaller than the gyroradius, kll ~ d. < p;. The gyroradius, which is approxi-
mately the Larmor sound radius ps . for 7 = O(1), is smaller than the variation of
all equilibrium gradients, either magnetic field or density and temperature variation,
Pi = PS,e < Leq,z-

The observed growth rate of the tearing mode in experimental devices is typically
much smaller than the gyrofrequency of the ions and electrons, v < §2,. Therefore,
the assumptions of the standard gyrokinetic equations are fulfilled.
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3 The PIC method

3.1 Implementation of the PIC method

The kinetic simulations were performed with the PIC code EUTEPRE. It solves
the Vlasov-Maxwell system in global and toroidal three-dimensional geometry using
the method of characteristics. The PIC code shows a good parallel scaling with a
large number of processors. The magnetic background equilibrium is provided by a
VMEC file, from which all relevant magnetic equilibrium quantities are derived.
This numerical method contains principally the same computational cycle as every
particle-in-cell method [64]. EUTERPE uses the §f-approach to reduce particle
noise in contrast to a full-f method. The perturbed part of the distribution func-
tion is discretised by using numerical particles, called markers. The statistics in-
duced by the marker representation improves with increasing number of markers [V,
as 1/1/N, [63].

The temporal integration of the characteristics of the gyrokinetic equation and
weight evolution is performed by a Runge-Kutta scheme of fourth order. A re-
cently implemented Fehlberg integrator allows also the use of an adaptive time step
method [70]. The particle trajectories are pushed in a cylindrical coordinate sys-
tem, ¥ = (r, z, &)

The charge and the current densities as the sources of the field equations are pro-
vided by a corresponding Monte-Carlo integration over the phase space using mark-
ers. The field equations are discretised in real space by a B-spline finite element
method [68] and solved by sparse matrix tools [65]. The solver works in a straight
field line coordinate system, E: (§, X, gz_ﬁ) [66]. Both coordinate systems can be
converted into each other using the VMEC file .

To further reduce the statistical noise induced by the markers, it is possible to use
a Fourier filter to extract a specific poloidal mode number m and a toroidal mode
number n of the fields. Furthermore, it is possible to filter the field in a limited rect-
angular domain in Fourier space (—Mmax, - -« Mmax) X (—Tmaxs - - - » Pmax)s if Mmax
and np., are the maximum poloidal and toroidal mode numbers.

3.1.1 Discretisation of the distribution function

In EUTERPE the perturbed distribution function ¢ f, is sampled by N, markers

with the coordinates ﬁn, P|,n/Ms and pp, in the reduced phase space. Each marker
carries a weight w, (t) that is traced along the characteristics of the gyrokinetic

!'The coordinate transformation between both systems is explained in Sec. (4.3)
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3 The PIC method

equation. The perturbed distribution function is assumed to have the form [68]

Np
h=> s (R ) o (L2 S ). )

n=

Around each marker position 2, = <I§n, p”,n/ms, MB,n) a small phase space volume

2,5 is located representing the phase space volume carried by the marker at this
position. The values of (2, s are predefined with the only constraint that the sum
of all small phase space volumes has to fill out the phase space completely without
overlap or holes.

The markers are distributed in phase space using a numerical probability function
g (%) that is constant along the marker trajectory (dg/dt = 0). It is assumed here
that g can be split into a pure spatial part gg and a part g, that describes the dis-
tribution in momentum space, thus ¢ = ggr - g,. The pure spatial part gg can be set
constant over the real volume V', gg = 1/V. A uniform marker loading in momen-
tum space as it is employed here is defined by setting g, dvdug daw = const. One
can show from the condition [ dZ'g = 1 that in this case g =1/ (V (T Ky s vs)Q vl),
being x, s the radius of the momentum sphere in terms of v;.

The source terms of the field equations are provided by phase space integrals of
the perturbed distribution function. From the numerical point of view the high-
dimensional phase space integrals can be carried out efficiently using a Monte-Carlo
integration. This approach replaces the integration by an evaluation of an expecta-
tion value E, using the numerical distribution function g (). The expectation value
is then approximated by the usual estimator for an arbitrary function A (2)

(% 1)

f
:/dGZh(Z, t) %-g(i) (3.2)

E[h]:/d6Zh(2, t)-6

N
LA
— Fp ; h(Z,, t) wy (t) + €stat-

The weights are defined by w (z,, t) =6f (2, t) /g (Zn) = Q0 f (2, t). The statis-
tical error €y, reduces with increasing marker number, €z ~ 1/ \/ﬁp.

The temporal evolution of the weight follows from inserting Eq. (3.1) into Eq. (2.2)
and integrating over €2, g,

dw,,

dt

= -5 f0.55s- (3.3)

The term S is given by Eq. (2.9) (Sec. 2.2). According to Eq. (3.2) the source terms
of the field equations can be computed by selecting h = 1 or h = p;/m, for density
or current, respectively.
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3.1 Implementation of the PIC method

3.1.2 Discretisation of the field equations

The field equations for the electrostatic potential ¢ and the parallel vector potential
A, Eqs. (2.12, 2.16) are discretised with a finite element method using the represen-

tation
() = > M(E),  A) = > A Ai(E). (3.4)

—

A(&) represents a B-spline finite element with multi-index | = (iy, is, i3). It is as-
sumed to factorise according to A(€); = Ay, (5) Ay, (X) Ay, (¢). In this thesis each
B-spline was chosen to be of order two. This corresponds to quadratic splines, whose
spatial derivatives and so the forces on the particles still depend continuously dif-
ferentiable on the coordinates 5

The quasi-neutrality equation in the long wavelength approximation and Amperére’s
law can be projected into the B-spline basis, Eq. (3.4) [62]

- / EN(E) V2o = / EME ()@ —n)  (35)
/ d€ Ak (€) (Z %A—%A) = / d€ Aw(€) () () (3.6)

Using Eq. (3.4) and performing an integration by parts one obtains the set of linear

equations
A A
S MP o =N > MY A =N, (3.7)
1 1

The elements of the matrices M,ng) and MélA) are calculated and stored at the begin-
ning of every simulation. Eqs. (3.7) are solved during every computational cycle by
parallel preconditioned iterative methods using of the tools the PETSc library [65].

3.1.3 Requirements in electromagnetic simulations

In EUTERPE the gyrokinetic equation is discretised within the p|-formalism orig-
inating from the historical development of PIC methods. Early attempts failed in
discretising the electromagnetic slab equations using the vj-formalism due to the
partial time derivative of the vector potential [67].

Although the pj-approach is successful for the description of many electromagnetic
instabilities, simulations of e. g. damped modes are more sophisticated due to the
so-called cancellation problem, magnified for high-3 scenarios ("high-3 problem”) or,
for instance, MHD modes with medium fS-values (8 = O(1%)) in the limit k; — 0.
It is caused by the different discretisation of the left hand side of Ampére’s law,
Eq. (3.6) and the "current” density on the right hand side. The left hand side is dis-
cretised by B-splines, whereas the current density is represented by particles. From
the mathematical point of view the skin term perfectly cancels the adiabatic part
of the current. These two different kinds of discretisations do not necessarily lead
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3 The PIC method

to a numerical cancellation.

In this thesis an enhanced control variates method has been used for simulations
with EUTERPE to safely perform electromagnetic calculations. This algorithm rests
upon an iterative method which gradually removes the adiabatic part of the current
response within each computational cycle |62, 68|. The scheme has been proven to
achieve simulations of Alfvén modes in a slab to very high accuracy [62, 69].
During this work it has been observed that the tearing mode is rather robust with
respect to the cancellation of the adiabatic current response. Simulations of the
tearing mode in a slab can be performed with a sufficient high number of particles
without using the iterative procedure. For the benchmark of the Alfvén wave the
iteration scheme was applied, but it was not used in general.

3.2 Diagnostic tools

1le+06
10000
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0.01
0.0001
1le-06
1le-08
le-10

le-12 '—
0 50 100 150 200 250

t

€pot,e

Figure 3.1: Temporal evolution of the perturbed field energy. The slope is propor-
tional to the growth rate ~.

EUTERPE provides a lot of tools to extract information about the simulations
both in time and space. The energy of the system over the volume V' of the simula-
tion domain is given by the sum of kinetic energy FEji, s and field energy Ejgeq s over
V according to E(t)/V = 1/V Y [Exin,s(t) + Epot,s(t)] = const. The corresponding
contributions are defined by

Bpous/V = 5= | dE (g.(n) 6 — (i) A))
1V v . (3.8)
Eiins/V = v /Q d°z 7 (v] + i) (fos +0fs(2)) -
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3.2 Diagnostic tools

In the last term the part related to fy s describes the initial kinetic energy Fiin o s
while the contribution of 6 fs describes the perturbed part of the kinetic energy,
€xine- For the simulations presented in this work the electrons mainly influence the
dynamics of reconnection, thus the field energy of the electrons €,qt ((t) is used to
obtain first quantitative statements for instance measuring the growth rate of the
excited modes.

Figure 3.1 shows the evolution of the electron field energy €, .(t) of a tearing mode.
After the initial transient phase, ¢ < 50, the exponential behaviour dominates. In
this phase the growth rate can be computed by the rescaled temporal derivative of
the field energy according to (depote/dt) /€pot.e = 27-

When investigating nonlinear tearing modes the quality of the simulations is indi-
cated by the conservation of energy. The quantity Ac is introduced for electrons and
defined by Ae = | (Exino.e + €xine + €pot.e) /Exinoe — 1]. An order of Ae = O(1%)
reflects a reasonable conservation of energy during the simulations.

A further important diagnostics is the spatio-temporal field structure that can be
extracted directly from EUTERPE. From these data important values like, for in-
stance, the island half width can be obtained by evaluating the mode structure.
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4 Electromagnetic simulations in
a slab

4.1 Normalisation procedures

The equations and relations used in EUTERPE are normalised to a proper unit
system according to

A ~

) i A é
t=0f, o= A= R S — 41
PS.e BO,Z PS,e BO,Z pge QZ ( )

where carets denote dimensional quantities. The density 7, and temperature 7} is
normalised to the constant background density ny and the flat temperature profile
of the electrons T, respectively. If not stated otherwise this will be the standard
normalisation for all relations presented in this work.

In chapter 7.1 a fluid model is compared with the gyrokinetic model implemented
in EUTERPE. This fluid model adopts Alfvén units

£ i A b
— = A=—r—, ¢ 0
tA BO,Z Leq,B

t =

(4.2)

Y

Leq,B BO,Z Leq,B VA

The gyrofluid model describes the evolution of the gyrocenter densities n, and
current fields @, that are normalised according to
Leq,B TALS Leq,B 'Ils

Ug = —= . 4.3
2 on (4.3)

Ng = —=
d; ng

4.2 MHD slab equilibria for reconnection
simulations
In this thesis two kinds of ideal MHD equilibria are used for simulations which is

motivated by different equilibria presently used in literature.
For both equilibria a strong guiding field in the toroidal direction 2 of strength B .

L Although this notation is misleading, it is customary in literature to write us for the current
field [10].

31



4 Electromagnetic simulations in a slab

is present. The first equilibrium (magnetic configuration I) is given by

Lg

By, (x) = —gC\/ﬁaerf (x - 2 ) . (4.4)
The error function erf(x) varies significantly over a distance a = Leq . The strength
of the perpendicular magnetic field is controlled by the dimensionless parameter
C > 0. The direction of guiding and perpendicular magnetic field is shown in
Figure 4.1. This equilibrium forces the resonant surface to be at x = L, /2 in two-
dimensional simulations.
The equilibrium configuration II is frequently used in fluid simulations [44, 51] and

Figure 4.1: Schematic representation of magnetic equilibrium I.

given by

Boy (z) = —=—=. —_ (4.5)

The stability parameter can be obtained analytically for L, > a [71],

ANa = 2 [3 + (kya)ﬂ ) [5 - (kya)ﬂ ' (4.6)

(kya)2 4+ (kya)z

Thus, the mode becomes stable if k,a > V5.
The stability parameters A’(kya) of the equilibria are summarised in Figure 4.2.
The function A’ related to setup Eq. (1.9) (Sec. (1.4)) ' is plotted for a = 1 and

! This equilibrium refers to Ref. [13] and is denoted as “GR” (Goldston Rutherford)
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4.2 MHD slab equilibria for reconnection simulations

4 “GR: a=1 fixed (L=®) —— ||
10 GR: a=1 fixed (L,=10) -
Conf. I: k,=21710 fixed ———
10° Conf. II: a=1 fixed —— |
10?

< N \
") ~
) ~
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\
\

Figure 4.2: Comparison of stability parameters A’ of magnetic configuration
I (black), magnetic equilibrium II (blue), the analytic expression
Eq. (1.18) for an infinite extend of the domain in the z-direction (GR,
red solid) and a finite extend (GR, red dashed). The stability threshold
of the linear mode is given by the condition A’ = 0. In this Figure the
EUTERPE normalisation is used.

various k,. If the domain extension L, becomes arbitrary large, Eq. (1.18) can be
applied (red solid line) as was shown in Figure 1.5. For a finite z-domain L, = 10
the function slightly differs from this formula if k, is small enough (red dotted
line). The mode becomes stable if k, > 0.64, while for very small wave vectors
k, < 0.2 the large-A’ regime is covered. The stability parameter for configuration
I was obtained numerically by solving Eq. (1.17) (black dashed line). Here, the
domain L, = 10 is fixed and additionally k, = 27m/10 = 27/10 representing
the m = 1 mode. Making the magnetic equilibrium scale a small enough, the
stability parameter reaches arbitrary large values as well (high-A’ regime). The
stability parameter of configuration IT is also depicted in Figure 4.2 (blue solid line)
using Eq. (4.6) and setting a = 1. Although the shape of A’(k,a) is similar to the
previous cases an offset is present.

In general the perpendicular equilibrium magnetic field By, is connected with a
parallel equilibrium current of both species, jo s(z) = ¢s 70 s uos(x). Since electrons
are much faster than ions it is assumed here that only the electrons with bulk
profile ug .(z) cause the perpendicular magnetic field while for ions ug;(z) = 0. For
a given magnetic field the current jO,e and the corresponding bulk velocity ug .(x) can
be calculated via Ampére’s law as implemented in EUTERPE. Thus, the Maxwellian
for the electrons is of the form

P 2
noe () o (m_[_uo’em> +1

? 3 20 . (47)
V2T

fO,e(xa P vi) -
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4 Electromagnetic simulations in a slab

This is an admissible solution of the Vlasov equation to zero-th order (dfy./dt = 0).
A natural mass ratio g = 1836 is chosen in this thesis if not stated otherwise. Due
to the ideal MHD pressure balance a consistent Maxwellian must lead to a spatially
varying density mngs(z) [20]. In a low-g equilibrium the density profile can be
approximated very well by constants ng s [13].

4.3 Implementation of the slab geometry

The code EUTERPE is designed to solve for the gyrokinetic equation in three-
dimensional toroidal geometries. To account for a one-dimensional slab it has to be
modified. As the code is three-dimensional in its structure the slab implementation
must fit into this framework and is thus somewhat counterintuitive.

EUTERPE uses two intrinsic coordinate systems for computations. The trajecto-
ries of the particles are pushed in cylinder coordinates & = (7’, z, é) The second
coordinate system is a straight field line system and used for solving the field equa-
tions, E = (5, X, gz_ﬁ) ={&} (1 = 1,2,3). It can be deduced directly from the
three-dimensional magnetic equilibrium. These both coordinate systems are char-
acterised by the toroidal coordinate ¢, while the in-plane coordinates are (r, z) re-
spectively (s, x).

In analytic calculations, however, usually the coordinate system (z, y, 2) is used as
depicted in Figure 4.1. Here, the toroidal coordinate is 2 and the in-plane coordi-
nates are xz, y. Thus, the three coordinate systems are linked qualitatively by the
mappings (r, z, q@) > (5, X, q@) < (z, y, 2). In this chapter the mapping of ¥ to E
is discussed.

In general three-dimensional geometry the equilibrium is assumed to have nested
flux surfaces. These two-dimensional surfaces themselves are curved manifolds and
their interior geometry is directly connected to the three-dimensional magnetic equi-
librium. However, a slab geometry is a one-dimensional equilibrium, whose flux
surfaces are planes.

The task of implementing a slab geometry in EUTERPE is twofold: on the one
hand it is necessary to choose proper geometric quantities,i.e. a suitable metric for
a slab which describes the coefficients of the field equations. On the other hand the
slab domain is subject to boundary conditions of the fluctuating fields which have
to be specified at § =0 and s = 1, in contrast to the toroidal case where the fields
have only to be specified at s = 1.

In the following the geometric construction of the slab is outlined. To illustrate
the action of the geometric quantities on the mathematical structure of the field
equations, the quasi-neutrality equation is used. Without loss of generality the
quasi-neutrality is written in the long wavelength approximation

ne = (i) + Ap = (n;) + Z % 86@ (\/ggij 8%] ) . (4.8)

ij=1
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4.3 Implementation of the slab geometry

An analogue to Eq. (4.8) can be formulated for Ampére’s law in curvilinear co-
ordinates. In this form the magnetic topology is fixed by choosing values for the
metric coefficients ¢¥, defined in terms of the local gradients ¢ = V&' - V&7, and
its determinant g. On this stage the only constraint with respect to the magnetic
coordinates used in EUTERPE is that 5 € [0, 1], x € [0, 27] and ¢ € [0, 27]. The
inhomogeneous coordinate is by definition s.
The concrete extensions of the slab and the relations between particle- and solver-
coordinates will be described by the following specifications of the simulation domain
which is shown in Figure 4.3. The specification of the geometry as explained above
must be only managed in the (s, x) plane, since EUTERPE has already a so-called
cylinder mode. It represents a straight, non-toroidal, geometry periodic in the ¢-
direction.

As sketched in Figure 4.3 the magnetic axis is located at (r, z) = (g, 0) (blue

Az
Az,
s=0 |s=const s=1
N 7z=0 ]
-Azg,
ro-Qreq Mo rotAreq
-A\z

Figure 4.3: The Figure shows the dimensions of the slab used for all simulations with
EUTERPE. The blue point represents the location of the magnetic axis.
The connection between the particle coordinate system r, z, (¢ = const.)
and the solver coordinates s, y is explained in the text.

point). The larger of both boxes represents the coordinate background which ranges

in the interval rq,...,ry horizontally and —A z, ..., Az vertically.
The smaller box is the equilibrium box and encloses the whole plasma. Its extension
is specified by [rg — Areg, ..., 70+ Arey] X [=Azeq, ..., Azy]. The parameters are

chosen to be Ar., = L,/2 and Az, = L,/2 here.

The radial coordinate § is proportional to r, including additionally the condition s €
[0, 1]. As depicted in Figure 4.3 the § = 0 surface coincides with r = rg — L, /2,
while §=1isset at r =g+ L,/2.

The x-values range from 0, ..., 27, when z ranges in the interval —L,/2,..., L, /2.
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4 Electromagnetic simulations in a slab

Finally, the transformation of the coordinate systems can be summarised as

L,
r(§):§L$+TO—7, 2(x) ==L, ——. (4.9)
The corresponding gradients are Vs = ¢é,/L,, Vx = ¢é,2n/L, and Vé = é;/r1. The
parameter r; can be chosen freely, but was fixed here as vy = rq — L,. The only
non-zero components of the metric are

S5

g =

1 ©2r)? 1
—, g = 0 o= = 4.10
L% ) g LZ Y g T% ( )
Due to the choice of the metric g” the slab gets a physical length 27 - r1 in the
¢-direction and L, in the y-direction.

The second step of implementing the slab in EUTERPE is to specify the boundary
conditions of the fields with respect to the solver coordinates. The perturbed fields
respect Dirichlet boundary conditions at § = 0, 1 and are treated periodically in
the ¢- and y-direction.

The particle trajectories are also subject to boundary conditions with respect to s, .
At the boundaries of the simulation domain the particles are reflected at s = 0, 1
and periodically injected at x = 0, 2w. The points on the gyroring obey periodic
boundary conditions in both directions. It turns out that this specific choice of
the particle boundary conditions in the s-direction has no essential impact on the
simulations results since the dynamics of the tearing mode is mainly concentrated
around the resonant layer.

4.4 Linear benchmark in slab geometry

At the very beginning of the simulations it has to be proven that the slab modifica-
tion works correctly. One possibility is to measure the frequency @ of shear Alfvén
waves. In this benchmark the magnetic equilibrium has only a toroidal guiding field
component, B= (0, 0, 1) which is subject to perpendicular magnetic perturbations
characterised by the wave vector k, = (k,, ky). The mode number (m, n) = (10, 1)
was extracted during the simulations. The equilibrium domain has an extension
of L, = L, = 150. In this benchmark N, = 107 electron markers were used, accom-
panied by one iteration cycle of the enhanced control variate method per time step.

In this test the electrons are the only kinetic species and ions are fixed serving as a
neutralising background. Thus, the weights of the ions are set to zero.

Only Ampére’s law is taken into account to simplify the physical setup. The quasi-
neutrality condition is switched off by setting the B-spline coefficients of the elec-
trostatic potential ¢ to zero.

From a generalised dispersion relation of a sheared slab the dispersion of Alfvén
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4.4 Linear benchmark in slab geometry
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Figure 4.4: The frequency of the shear Alfvén wave over 5. The benchmark is suc-
cessful, thus the slab geometry has been implemented correctly.

modes can be derived as '
Bd+1 = 2725(C). (4.11)

Here, (. = w/ (\/2/1 k”) is the complex argument of the plasma dispersion function
of third order, Z3. The n-th order plasma dispersion function Z, ((.) is defined
by [62]

Y
et

7,(0) = %/w . (4.12)

The complex algebraic equation (4.11) was solved for w () numerically with a root
finder.

In Figure 4.4 the frequency depending on 3 is shown. The length scale of the
perturbation in z-direction is L,/25. The frequency obtained with EUTERPE and
the results of the eigenvalue (EV) solver agree to high accuracy. Therefore, the
benchmark is successful and the slab geometry has been implemented correctly.

!'The most general dispersion relation of a sheared slab with constant equilibrium gradients will
be derived in Sec. 5.1.
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4 Electromagnetic simulations in a slab
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5 Linear simulations of the tearing
mode

5.1 Linear dispersion relation

In this chapter the dispersion relation of linear tearing modes is discussed. The most
general linear eigenvalue problem of the gyrokinetic equation in a slab is derived by
means of Eqs. (2.5-2.10) without any restriction of the scales involved.

Both kinetic ions and electrons contribute to the source terms of the field equa-
tions. The plasma is assumed to be inhomogeneous in general by employing a local
approach of temperature and density gradients in contrast to the global current pro-
file, i. e. the gradients have constant values ng . and Tg , respecting the z-direction.
The linear mode is assumed to be two-dimensional, thus setting 0, = 0. This re-
striction does not narrow the essential physics, since otherwise only the resonant
surface is shifted in space. However, three-dimensional nonlinear tearing can indeed
differ substantially from two-dimensional tearing [2, 72].

Using the ¢ f-ansatz, the linearised Eq. (2.10) for the perturbed part of the distri-
bution function reads

afO,s

a0fos _ 00fs 5 00fs o 00f,
OR

+p

[ o ot Y Dy apy

S1
RS

The unperturbed and perturbed contributions of the particles trajectories are given
by Egs. (2.5) (Sec. 2.2).

Applying the usual Fourier ansatz for the spatio-temporal structure, 0; — —iw,
0y — i k,, one obtains

<¢ - A) ) P
o= b =y [k e (ﬁ” . uovsu«))] Y

Two-dimensional reconnection leads to a parallel wave vector ky(z) = ky By, ().
The generalised gradient term g has been defined in Eq. (2.10) (Sec. 2.2).The
x-dependency of the problem is kept, since it is necessary to resolve the spatial
structure of the layer.

The field equations close the Vlasov-Maxwell system. For vanishing ion to electron
temperature ratio 7 < 1, the approximation (n;) ~ n; is employed and analogously
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5 Linear simulations of the tearing mode

for the current (j;;) *. This is an important modification for all subsequent bench-
marks carried out, since otherwise the exact gyroaveraging operator leads to an
eigenvalue problem for a relatively complicated set of integro-differential equations.
The effort to solve this problem is quite beyond the scope of this work.

In the subsequent benchmarks the long wavelength approximation is used. With
these assumptions the quasi-neutrality equation reads

on; + Ap = on,

2
/ 2r vy dvy d(p/ms) 6 fi + Ap = / 2r v, dvy d(p)/me) 6 fe. (5:2)
The density responses dn, contain terms dn, 4 related to the electrostatic potential,
and terms dng 4 related to the vector potential resulting from the corresponding
terms related to ¢, A in Eq. (5.1).
The “current” in Ampére’s law is given by the first moment of d f; with respect to
the momentum coordinate py/m;

~Y 4 / 2w v, dvy d(py/my) (py/ms) 6fs  (5.3)
— Z 87,

The contribution of each species to the current contains parts 07, 4 related to A, and
terms 074 related to ¢. The complete set of differential equations, Eqs. (5.2,5.3),
can be cast into the final eigenvalue problem

d*¢

T k20— s (g ¢+ ong aA)
d*A s ‘ .
@ = B Z qus + ky A - Z B (5.]87¢¢ + 5JS7AA) .

! By experience with EUTERPE the approximation (n;) ~ n; is valid to a high degree for the
benchmarks of the tearing mode considered here. The simulation results practically do not change
when varying 7 = O(1073),...,0(1).

2 Note that normalised quantities are used so g. = —1, ¢; = 1 and v; = /T, v, = N
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5.1 Linear dispersion relation

The coefficients are obtained by inserting Eq. (5.1) into Egs. (5.2, 5.3)

1
Mgy = o (/nyO =k <Vsl>) (5.5)
5 _ uOS kKO _5 1 1 qs 2
Nea = + Zhy(Vh kK /<;|<V) (5.6)
ky Ts ’fu
ey = —2 (kKM Lgv2y) - L0 (g KO 4 k”<v;> . (5.7)
’ Ky Ts Ky
8u25 S 2 S S
Sjoa = - kf (k K°+z—k”<v;1>) %(k‘ K+t ~h <v2>) (5.8)

+ Iy (k: K2+ 4 k||(V3>)

The functions K!"(x,w) with m integer contain all gradient terms according to

du07s <Vm+1>

S

1 m
~ ks (V™) + kp o (V") — e

K (2, w) = ’fn,sa/sm) 5

(5.9)

The moments (V") are defined in terms of Z, ({;) with (s = (’fiu — u0,5> / (\/51)5),

n —t?

) ) et 1 00 t"e
(VM (r,w) = <\/§“8> Nz /oo o t— [\/%v (kHu()z) - Uo,s(ﬂf)>]
= (van)" z.(c).

It is important to note that ky(z) and ugs(z) depend on x. These functions also
appear within the plasma dispersion function, so the solution of this kinetic eigen-
value problem is quite ambitious.

It is important to take care of the correct use of Z,((;) in the complex plane when
crossing the layer from z > 0 to # < 0, where k| crosses zero. Since the solution of
the dispersion relation Eq. (5.4) should always give an instability, it must hold v > 0
everywhere. Let kj(x) > 0 if > 0, and vice versa. If kj > 0, then I (¢;) > 0 and
one can use the plasma dispersion function Z,((;) defined in Eq. (5.10). If one
crosses the layer, the sign of kj switches because the direction of the equilibrium
magnetic field lines switches as well. Then $((;) < 0, although v > 0 is still de-
manded. The application of Eq. (5.10) describes now a stable mode. However, the
domain x > 0 has no special features compared with = < 0. This can be understand
by inspecting the mode structure of A, which is known to be symmetric with respect
to x and so the physics is the same in both domains. Therefore, one has to maintain
the condition of an unstable mode and one must replace Z, with the complemen-
tary plasma dispersion function Z,,, defined by Z, (¢,) = —Z, (—(,). This function
is analytic with respect to w as well, but it incorporates the property to describe
instabilities when $ ((s) < 0. This gives the correct description of the tearing mode

(5.10)
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5 Linear simulations of the tearing mode

when k‘” < 0.

The complete linear dispersion relation, Eqs. (5.4), has to be solved for w (k,), us-
ing the coefficients defined by Egs. (5.5-5.8). The eigenvalue problem defined by
Eqgs. (5.4) is the most general expression for an eigenvalue problem in a slab with
constant density and temperature profiles, since neither a special current profile is
fixed nor a scale ordering is implied. For instance, it is common in analytical work
on slab tearing modes to employ a > d. which matches experimental reconnection
setups. From the mathematical point of view this is a restriction to the applicabil-
ity of the resulting dispersion relation. The dispersion relation derived here can be
applied to every physical situation.

The solution of the eigenvalue problem Eqs. (5.4) is referred to as full tearing mode
or just tearing mode in this thesis. Note that this case includes both fields A, ¢ and
both kinetic species.

The full tearing mode model can be simplified by neglecting the ion response as well
as the fluctuations of the electrostatic field. The resulting solution of the dispersion
relation is referred to as electron tearing mode. This model is motivated by the
observation that electrons play always the dominant role in the dynamics due to the
large natural mass ratio pu. The eigenvalue problem of the electron tearing mode
thus reduces to

2

d“A
A2 = (ﬁu‘i‘/{?s)A—F(gje,AA

= (Bu+ky) A 5AZ—E [t (ko KC + ek (Vi) (5.11)
-+ 2U0,e (/{ZyKel + qek”(Vf)) + k‘st -+ qek||<ve3>] .
This model also permits reconnection and serves as a minimal electromagnetic
model !. The eigenvalue problem Eq. (5.11) is still difficult to solve. Moreover, no
reconnection-typical scale ordering nor a specific current profile is imposed. Thus,
a simple analytical derivation of the growth rate of the electron tearing mode will
be given following Ref. [20].
The ideal MHD domain was described by Eq. (1.16). For the sake of simplicity it
is assumed that gradients of temperature and density vanish. Close to the resonant
layer x ~ L, /2, the variation of the current can be neglected setting dug./dx = 0
and so K" = 0, too. It is a common approximation to treat the limit u, . < v, and

! The dispersion relation Eq. (5.11) simplifies further when the shifted Maxwellian is being removed
using up. = 0 and the gradients are set to zero. The singular layer vanishes and it follows
K™ = 0. Since the equations do not depend on x anymore, a harmonic spatial exponential e?*+*
is an eigenfunction. Including the substitution kj +— k. one gets

—kI = (Bu+k))—BVE),
*ki = fu (1*2Z376)7

which is the electron Alfvén wave, Eq. (4.11) (Sec. 4.1).
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5.2 Benchmark of the tearing mode without gradients

so all terms in Eq. (5.11) proportional to ug . are small, resulting in

d%A

da?

= (Bu+k2) A—BAVD). (5.12)

At x &~ L,/2 the spatial structure in the z-direction varies much stronger than in
the y-direction (0, > k,), therefore,
d*A 2 5.13
T2 N (B —28uZs.0) A= (2 Zo oA, (5.13)
The moment (V3) has been expressed in terms of Z3((.) with the argument (, =
w/ (V2vek)). The relation Zs, = 1/2 + (?Zy, reduces the order of the plasma
dispersion function [62].
The inner layer scale ¢;,, related to the perturbed current is defined by the condition
|Ce| = 1, or equivalently ky (d;,,) ve &~ . This estimation of the width of the electron
current channel is often used in kinetic calculations [18], since the plasma dispersion
function has a peaked profile which is extended up to a scale 9;,.
Eq. (5.13) can be manipulated similar to the procedure described in Sec. 1.4 giving
the growth rate [18, 20]

2
) kyved;

LN

This is the simplest kinetic analytical dispersion relation for slab tearing modes valid
in the limit A'd, < 1. Tt reproduces the same scaling with k, and d. as the result
of the fluid model in Sec. 1.4.2.

An extended calculation of the growth rate within a hybrid approach including ¢ can
be found in Ref. [16] which also uses a detailed matched asymptotic expansion for
both fields. The linear equations in this reference can be mapped to the eigenvalue
problem derived here.

(5.14)

5.2 Benchmark of the tearing mode without
gradients

The full tearing mode as well as the electron tearing mode are simulated with EU-
TERPE. The results are benchmarked solving the associated eigenvalue problems
Eq. (5.4,5.11) by means of a shooting method. The shooting method relies on a
reformulation of the eigenvalue problem into a Riccati differential equation. The
algorithm originates from Ref. [73].

The algorithm will be explained shortly by inspecting a general set of complex
coupled first order differential equations defined on the domain [0, L,] [74]. The
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5 Linear simulations of the tearing mode

vectors di/dx and similarly dv'//dz may fulfil the equations

dit
d_u = Az, w)u+ B(x, w) U,
d%{ (5.15)
P C(z, w)id+ D(z, w) .

The matrices A, ..., D may specify the problem with the unknown eigenvalue w

whereas boundary conditions for @, v at + = 0 and x = L, are set. One introduces
the unknown Riccati matrix R(z, w) by the definition @ = R . Inserting this ansatz
into Eq. (5.15) the nonlinear Riccati equation becomes

d_R
dx

For the solution of Eq. (5.16) the boundary conditions R(0,w) = R(L,,w) =
0 are employed. The shooting code integrates R(z, w) according to Eq. (5.16)
from the left starting at point x = 0 and from the right starting at point x =
L, to a certain inner point zy € (0, L;). The corresponding solutions are de-
noted Rj(xs, w) and R, (xf, w). It can be shown that the continuity of the solutions
@, ¥ and du/dz, dv/dz at © = x; is guaranteed if the necessary and sufficient con-
dition det [R;(zf, w) — R.(zy, w)] = 0 is fulfilled. Thus, for a fixed matching point
xy the search for the eigenvalue w is reformulated into finding the complex root w
of the complex determinant depending on the matrices R, (zy, w), Ri(zs, w). The
eigenfunctions are obtained in a separate step by integrating dv/dz = (CR+ D) v
and @ = R backwards from z; with the already obtained R(z, w).

The algorithm also includes an adaptive step size method for the spatial integration
and gives high precision results even when strong spatial variations are present.
Eqgs. (5.4,5.11) were implemented into the shooting code. For the eigenvalue prob-
lem of the full tearing mode, Eq. 5.15 reduces to a set of four first-order differential
equations with w; = ¢, us = A, vy = d¢/dz, and vy = dA/dz. It is an unique
advantage to solve the exact eigenvalue problem containing all the physics within.
Numerically exact benchmarks of the full tearing mode are very rarely found in lit-
erature [25] in contrast to the electron tearing mode [20, 26]. Principally, it is quite
possible to extend this low-3 description including the parallel magnetic perturba-
tions 0 B)|, solving a set of three complex differential equations L

The plasma is assumed here to be homogeneous employing a constant temperature
and density. Magnetic field configuration I was chosen which is motivated by a direct
comparison of the dispersion relation of Ref. [26]. The shear length of the magnetic
equilibrium is given by I, = 1/ (CB/t) =~ 23.3 using 3 = 10~3. The constant C
is always set to unity if not stated otherwise. The size of the simulation box is

= —RCR-RD+ AR+ B. (5.16)

!'This task has never been solved with a shooting code. Although simulations results are available
in this case [38], it is common to use much less exact dispersion relations obtained by analytic
approaches, often in asymptotic limits.

Despite the fact that exact asymptotic limits required by analytic derivations can not be achieved
by numerical simulations, simulations results often still deviate from the analytic dispersion rela-
tion up to 50% [29]. This might enlight the power of the Riccati method presented here.
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5.2 Benchmark of the tearing mode without gradients
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Figure 5.1: Spatial eigenmode structure of A and ¢ both for EUTERPE and the
shooting method (a = 0.9). The maximum amplitude of both fields is
normalised to unity. EUTERPE is able to perform linear reconnection
simulations to high accuracy.

L, x L, =10 x 10. In EUTERPE the long wave length approximation of the quasi-
neutrality condition was used to match the required assumptions of the eigenvalue
problem. The cold ion limit was enforced by setting 7 = 1073. For the simulations
here the resolution of the domain accounts for ny; = 256 and n, = 16 points. An
amount of N, = 10" markers for each species was used with a time step At = 0.05.
The clear numerical verification of the mode needs about 64 CPUh which is rela-
tively cheap. The filter in EUTERPE was adjusted to pass only the m = 1 mode.
In case of the electron tearing mode, the weights of the ions have been set to zero
suppressing the ion response. When simulating the electron tearing mode the elec-
trostatic potential was switched off as sketched in Sec. 4.4.
For numerical reasons it is necessary to use a sufficiently high resolution of all rel-
evant scales. The electron current layer of width . ~ vk, /v, ~ 0.17, with k, =
27/10 ~ 0.62, has been resolved with at least four points. The reconnection pro-
cess is mainly induced by inertia effects with the relevant collisionless electron skin
depth d. = 1/y/Bu = 0.7 which is somewhat smaller than the ion sound radius
ps. = 1. This corresponds to a spatial resolution of the skin depth with 17 points.
The collisionless ion skin depth d; = 1/4/3 = 31.6 is much larger than the simulation
box size and plays no role. The ion current channel of width 6; ~ ~l,/k, ~ 7.3 is
also not of importance due to the large mass ratio. In the cold ion limit the Larmor
radius becomes much smaller than any other scale in the system, p; ~ 0.03 < 4.
At first a fixed equilibrium scale a = 0.9 is chosen to benchmark a single eigen-
value and the corresponding eigenfunctions in the full tearing mode case. From
EUTERPE simulations a growth rate v = 0.37 is obtained, while the result of the
shooting method is v = 0.3694. A comparison between the mode structures calcu-
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5 Linear simulations of the tearing mode

lated with EUTERPE and the shooting code is shown in Figure 5.1. The vector
potential A and the electrostatic potential ¢ calculated with EUTERPE fit very well
with the eigenmodes obtained with the shooting code. The mode structure of ¢ in
the vicinity of the resonant layer is somewhat wider than for A and typically varies
on scales pg. [10], reflected by the estimate d. < ps.

The benchmark was extended to a broad range of values of @ measuring the growth
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Figure 5.2: Benchmark of the growth rate over kya for fixed k, = 27/10 and both
tearing mode cases. EUTERPE is able to simulate reconnection to very
high precision.

rate. Starting in the range of marginal stability with a ~ 1.4 (k,a ~ 0.9), the equi-
librium current width was decreased approaching a ~ 0.08 (k,a ~ 0.05). Although
the variation of a, especially if a < d,, allows formally tearing mode solutions, this
kind of scale variation is rather unusual, as will be discussed below. For small val-
ues a ~ (.08, tearing modes with poloidal mode number m = 2, 3, ... exist being
more unstable than the m = 1 mode, but are filtered out. The dispersion rela-
tion y(kya) obtained with EUTERPE compared with the results of the shooting
method are shown in Figure 5.2. The red curve and points refer to the growth
rate of the reduced (electron) tearing mode model, whereas the blue values repre-
sent the dispersion relation of the full tearing mode. The mode becomes stable at
a~ 14 (kya =~ 1.1). Reducing the equilibrium current width a maximum growth
rate v = 0.52 was found at a = 0.42 (k,a ~ 0.25) for the tearing mode case which is
somewhat larger than for the electron tearing mode (v &~ 0.47). In the case of small
values of a =~ 0.08 the modes require a very high spatial resolution, but are bench-
marked to high precision. Thus, the adaptive step size integration of the shooting
code is able to face this ambitious task and covers the simulation results perfectly.
The depicted growth rates of both models (with and without ¢) differ only slightly
over the whole range of a. The comparison makes evident that the electrostatic
potential gives a small correction compared to the electron tearing case. The ap-
proximation becomes better for a > 1.1 (kya > 0.7). For the parameter chosen
here (d. < ps,.) it has been shown analytically that the electrostatic response can
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5.2 Benchmark of the tearing mode without gradients
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Figure 5.3: Comparison between the analytical result of Drake with the result of the
shooting method (electron tearing mode case). The blue curves match
the physical ordering d. < a much better then the red curves (d. > a).

be neglected in the regime A’d, < 1 [18]. In the medium range 0.1 < a < 1.3 the
electrostatic potential destabilises the electron tearing mode more dominantly.

To make a closer contact to literature the analytic dispersion relation of the elec-

tron tearing mode Eq. (5.14), the result of Drake [18] and the numerically exact
dispersion relation are compared.
In contrast to the strict derivation of Eq. (5.14), Drake obtained a similar dispersion
relation by using heuristic scaling arguments allowing the estimate of the perturbed
current width and structure of the vector potential. These both results differ by a
prefactor 1/y/m which can be summarised to

Eo.d® [ 1\
_ A/ yPelle 1
y— e () (517)

setting [ = 0 (Drake) and | = 1 (Eq. 5.14,[20]). The constant prefactors are less
interesting, rather the correct dependence of v on the essential values k,, A" and [,
matters. The case [ = 0 is compared with the dispersion relation of the electron
tearing mode obtained with the shooting code.

Mainly two setups of parameters are of interest, either a variation of a with a con-
stant wave vector or vice versa. The resulting dispersion relations are depicted in
Figure 5.3. The growth rate depending on a with fixed k, = 27/10 was discussed in
the previous benchmark. Drake’s result is only valid in the small-A’ range which is
achieved when kya 2 0.7 and the constant-U approximation becomes valid. The red
curves show the contrast of Eq. (5.17) to the shooting method. When a is varied as
in the previous benchmark one reaches values k, a =~ 0.4, consequently a < d. ~ 0.7.
Due to this unusual reversion of reconnection relevant scales, Drake’s result can not
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5 Linear simulations of the tearing mode

cover this parameter range. The analytical dispersion relation Eq. (5.17) even does
not match the qualitative behaviour of the curve obtained by the shooting method
if kya < 0.7.

The condition d. < a fulfils better the assumptions of the derivation of Eq. (5.17).
This result is shown in Figure 5.3 indicated by the blue curves. Here d. ~ 0.7 < a =
1.3 is commonly used and £, is varied. The typical z-variation of A is in the order
of d. (V2 A ~ A/d?) at the resonant layer and is much larger than the variation
in y-direction. As in the derivation of Eq. (5.14) adopted, k, < 0, is well satisfied
for k, a =~ 1. Thus, the qualitative shape of the both the dispersion relation obtained
with the shooting method and Drake’s result is the same.

5.3 Benchmark of the tearing mode with gradients

The exact MHD equilibrium condition in a slab requires the magnetic pressure pg to
be balanced by kinetic pressure according to p(x)+pg(z) = const. Inspecting a sim-
ple equation of state of the plasma, p(z) = n(x) T'(z), the density and temperature
profiles n(x) and T'(x) must satisfy the ideal MHD pressure balance self-consistently.
The derived pressure gradient V p arises due to variations of temperature and den-
sity according to V ip =V n-T +n -V, T. Instead of calculating the pressure
gradient derived from the exact functions n, T', the variations of the background are
set to constants according to Vn ~ ng/L, and VT ~ Ty/Lt independent from
each other [18]. This approach simplifies analytic work, because the globally varying
pressure profile is essentially replaced by the scales of pressure variation.

The tearing mode is strongly localised at the resonant surface and therefore it is
expected that in this region equilibrium gradients will play the major role. This
non-consistent, local approach in the global slab domain is adopted for all subse-
quent simulations including diamagnetic effects.

The aim of the investigations here is to observe and benchmark the electron tearing
mode in the presence of diamagnetic effects. Similar to the parameter variation in
Sec. 5.2, the length scale a was changed and the linear growth rate and real fre-
quency was measured. The extensions of the simulation box are L, = L, = 10
while employing magnetic configuration T and 8 = 1073. A Fourier filter selects the
m = 1 mode, therefore, the wave vector k, = 27/10 of the perturbation is fixed. The
temperature ratio 7 = 1 has been used while including the exact gyroaveraged ion
response (n;) and long wavelength approximation is enforced during the simulations.
A spatial resolution of n; = 256 points in radial direction, a time step At = 0.1 and
up to N, = 4-107 electron markers suffice for the numerical convergence of the
growth rates and give relatively short simulation times. A temperature gradient
of k. =1 for the electrons has been chosen without a density variation (k. = 0).
The temperature gradient is rather large compared with a realistic physical setup,
since it changes significantly over one ion sound radius pg .

The dispersion relation 7 (k, a) obtained with EUTERPE is depicted in Figure 5.4
(red points). The magnetic equilibrium scale ranges from a = 0.5,...,1.3 (kya =
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Figure 5.4: Growth rate of the drift tearing mode depending on a (k. = 1,
k, = 27/10) obtained with EUTERPE (points) and the shooting method
(solid lines). The dispersion relation for the case rkr . = 0 is solved with
the shooting method (blue line). The benchmark of the growth rates
succeeded.

0.3,...,0.81). These results were compared with the results of the shooting code
(red solid line). The blue curve shows the case when no electron temperature gradi-
ent is present indicating the stabilising influence of diamagnetic effects on the mode.
Although a rather high temperature gradient is apparent the mode gets stabilised
only slightly.

The real frequency w depending on a obtained with both EUTERPE and the shoot-
ing method are shown in Figure 5.5. The simulations results are measured via time
series of a field value at a fixed point in the simulation domain. Using several periods
the mean value of the periods was used to calculate the frequency. The simulations
in this range of parameter require a high computational effort, since the frequencies
do not differ very much when changing a = 0.3,...,1.3 (k,a =0.18,...,0.81). The
comparison visualises small differences between the results of EUTERPE and the
shooting method. The error of measurement results from the standard deviation of
the repeated simulations for fixed a and is depicted, too. It turned out that the
size of the momentum sphere matters. Even though k,. = 8,...,9.5 exceeds the
thermal speed widely, it seems that the high thermal speed affects the frequencies
much more than the growth rates due to the relatively large value C' = 1. The
accuracy of the simulation results could be improved by increasing the number of
markers, but the results shown in Figure 5.5 might suffice to prove that EUTERPE
can describe even drift tearing modes to high accuracy.

The kinetic theory of Drake [18| predicts that the frequency of the drift tearing
mode is characterised roughly by the diamagnetic frequency wi only, @ ~ wi/2 =
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Figure 5.5: Frequency of the drift tearing mode depending on a (kr. = 1, k, =
27/10) obtained with EUTERPE (red points) and the shooting method
(red line). At first this high precision benchmark visualises small differ-
ences between the results of both methods.

kykr /2 ~ 0.3. This estimation is valid in the range A’d, < 1 which corresponds
here to 0.8 < kya. The theory shows that the drift frequency is a constant in this
range, consistent with the drift frequencies obtained with EUTERPE. For kya < 0.8
(A'd. ~ 1) it has been proven with EUTERPE that @ is also nearly constant for
various a. Although the prediction is roughly twice the frequency with k,a = 0.81,
wh/2 ~ 2-0.16 and thus does not match the values of the simulation, it gives the
correct order of magnitude. The confirmation of this analytical result requires fur-
ther extended parameter studies in the corresponding low-A’ regime.

5.4 Critical behaviour caused by diamagnetic
effects

As indicated in the previous section, the electron tearing mode gets stabilised in the
presence of a temperature gradient across the layer. In the first part of this chapter
the full tearing mode is studied by applying finite temperature and density gradients.
It has been shown analytically that the stabilisation of the full tearing mode must
occur for a certain value L, [19]. This analytical result has never been verified in
an broad parameter space. Recent simulations obtained with gyrofluid models [14]
were restricted to a few results in the high-A’ regime missing an extended numerical
proof of the analytical prediction [19].

For the present scope the medium- to high-A’ regime is of interest employing mag-
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Figure 5.6: Growth rates depending on 7. The critical behaviour of the growth rate
has been measured for different C' (full tearing mode case, a = 0.5, k, =
27/10). Results obtained with EUTERPE (points) are covered well by
the analytic estimate Eq. (5.18) (lines).

netic configuration I setting 5 = 1072 and a = 0.5. Each species is exposed to the
same temperature and density gradients, kt. = kr; = Kt and kKp. = Kn; = Kp.
Furthermore, it is defined n, = n = L,/Lt. For a good performance of the sim-
ulations N, = 4-10%...,12 - 10° markers are sufficient, while resolving the sim-
ulation domain needs nz; = 128 radial points. The quasi-neutrality equation in
the long wavelength approximation is employed with a fixed temperature ratio
7 = 1, whereas the exact density response of the gyrocenters was taken into ac-
count. The first simulations are carried out measuring the growth rates by varying
the density gradient k, with a fixed temperature gradient kt = —0.005. Addition-
ally, the simulations cover various strengths of the perpendicular magnetic field,
C = 0.2,0.02,0.002. In Figure 5.6 (points) the growth rates obtained with EU-
TERPE are depicted.

Fixing any value of the shear strength C', and large values of n (n > 1), a decrease of
n does not influence the growth rate very much. Inspecting 7(n) related to C' = 0.2
(red points), the growth rate remains almost constant with respect to n when re-
ducing n =~ 103 by five orders of magnitude to n ~ 1071, In the vicinity of n ~ 1072,
referred here to as the critical threshold 7., the growth rate drops suddenly. Below
this threshold the tearing mode gets stabilised completely.

A complete stabilisation in cases of much smaller shear strengths C' = 0.02, 0.002
has been verified as well, shown in Figure 5.6 (blue and green points). In a low
shear equilibrium, C' < 1, or equivalently ug./v. < 1, the critical ) reaches values
close to unity. In this case the gradient scales vary on scales much larger than pg .
getting more relevant for fusion applications.

For the set of parameters considered here analytical dispersion relations have been
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Figure 5.7: Critical n) for various [ for the electron tearing mode case (a = 0.5, K =
—0.05). For realistic 3-values O(1%) the threshold n., = O(107%) is very
small, thus the tearing mode is practically always unstable for realistic
equilibrium gradients.

obtained in the presence of diamagnetic effects [11, 19]. They rely on a fluid descrip-
tion of the electrons combined with a gyrokinetic ion response including full FLR
effects. In contrast to the quasi-neutrality equation used in EUTERPE the analytic
prediction uses a Padé-response of the ions. By experience and due to the results
of Sec. 7.2 this difference matters because the growth rates obtained with both field
equations can deviate from each other in the range O(10%). To apply the prediction
properly respecting the dependency on 7 its limit of vanishing temperature ratio of
the ions is employed. Thus, the analytical prediction fitting for the parameters here
reads (see Table 1.3, Sec. 1.4.2) !

2 1/3
7= — (Bee ) o= B () (5.18)
2n IsvV/B \ 7B

The case 7 — oo corresponds to a vanishing density gradient (y = 7). The
comparison of the simulated growth rates with Eq. (5.18) is shown in Figure 5.6
(solid lines). Both results agree well over the whole range of 1 and for the values
C = 0.2,0.02. In the case C' = 2-1072 the prediction deviates up to 50% from
the simulation results in the range n = O(10%). Note that the validity of Eq. (5.18)
reaches its limit for the parameters chosen here. Though this equation is valid for
de < ps. it requires ps . < a, which matches here not completely (a = O(ps.)).
Small deviations of the growth rates occur when comparing the analytical result
and the results obtained with EUTERPE, especially close to the critical n. This
can be traced back to the high computational efforts which are necessary to resolve

!'Note that the prediction here is subject to EUTERPE units.
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5.4 Critical behaviour caused by diamagnetic effects

small v. If the growth rate becomes very small, the inaccuracy becomes larger in
contrast to the values v ~ ~y. The computations become challenging for very low
shear strengths C' = 2 - 1072 and require relatively long simulation times even in a
slab. For the runs with a shear strength of C' = 2 - 1073, the computations needed
approximately 3 - 10* CPUh for each point.

The threshold 7., is of special interest, because it marks the value at which recon-
nection is prevented. Subsequently, this threshold is exposed to investigations using
the electron tearing mode model. Maintaining the previous simulation conditions,
but for k7 = —0.05, the dependency of 7., on the plasma-£ is examined within the
electron tearing mode case. In Figure 5.7 the relation 7..(f3) is depicted for a single
value C' = 1. The critical threshold 7., decreases strongly with higher 5. For realistic
B-values of the order O(1%) the tearing mode is always unstable for the parameters
under consideration here. Indeed, if a small temperature gradient xp . = O(107?)
is present, only a relatively large density gradient r, . = O(10") or higher prevents
the reconnection process. The absolute error bars of 7., increase with higher values.
However, the ratio of error to measured value remains the same for all points.

A scaling of the critical 7., () can be derived from Ref. |11, 19], evaluating Eq. (5.18)
at the critical threshold v = 0,

2 ky/iT 2
0="% - ( 2Mex )

b (o) - (5
VB \7VBu 2Mer
From Eq. (5.19) the proportionality 7. ~ 1/8Y3 (I, ~ 1/3) follows and supports
qualitatively the decreasing of 7. with higher g-values obtained with EUTERPE
(Figure 5.7). Note that the increase of 5 according to Figure 5.7 changes the ratio
de/pse = 1/+/upB in the range 1.0,...,0.3. Therefore, the scaling derived from the
dispersion relation Eq. (5.18) applies correctly only in the higher S-regime (5 =
O(1%)) when d. < ps. and requires more simulation results for this case. The
scaling 7e.(C), indirectly shown in Figure 5.6, can be estimated using Eq. (5.19).
Recalling that [, ~ 1/C, the scaling 7, ~ 1/C can be deduced which covers well
the decrease of 7., with larger shear strength.

The kinetic approach of Ref. [541] predicts the stabilisation of the tearing mode in
the presence of diamagnetic effects as well. The gyrokinetic equation used in this
work can be mapped to the gyrokinetic model here as well as the similar magnetic
equilibrium. The prediction states n.. ~ 1/3'2, if Ala is of order unity covering
qualitatively the findings of the simulations (Figure 5.7).

The kinetic approach proposed by Drake [18] in the presence of equilibrium gradients

primarily does not predict a critical threshold. A reason might be the medium-A’
value that allows the mode to get stabilised for sufficient large gradients.

(5.19)
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6 Nonlinear simulations of tearing
modes

Nonlinear simulations of tearing modes are a challenging numerical task in every
geometry, thus even in a slab. From the numerical point of view nonlinear sim-
ulations are important for at least two reasons: the numerical simulation of the
nonlinear saturation over large periods will finally demonstrate that EUTERPE can
handle the subject of reconnection. Secondly, a good numerical performance of the
single-mode simulations serves as a good starting point for investigations regarding
mode-coupling, three-dimensional reconnection and further nonlinear electromag-
netic modes in toroidal geometries.

The saturation of the collisionless tearing mode in the range A’d, < 1 is known as
Rutherford-like or “sub-exponential” behaviour. This type of nonlinear stabilisation
is accompanied by the observation that the actual growth rate v(¢) does not exceed
the linear growth rate ~y; for all times (vy(¢) < ) [34].

The nonlinear acceleration of the field amplitude is known as “super-exponential”
reconnection ', mainly investigated in high-A’ scenarios 2. This type of nonlin-
ear destabilisation is characterised by an instantaneous growth rate v(t) > v, when
entering the nonlinear phase. The simulations presented here are the first results ob-
tained with PIC methods at all. The numerical effort describing this non-saturation
is dramatically higher compared to the Rutherford-like type, since an extremely
small current channel evolves and collapses during a very short time interval. Both
types of nonlinear behaviour are still far apart from a comprehensive physical un-
derstanding which motivates further simulations.

I The terms super-exponential, quasi-explosive, impulsive and faster-than-exponential arise often
in this context describing the same strong increase of the reconnected flux in time. Further
similar notations occur in similarity solutions of extended MHD models [13]. Although not com-
parable directly to the reconnection process here, the amplitudes A also grow “explosive” when
approaching a certain time ¢;: an algebraic term becomes significant in the early nonlinear regime,
A ~exp(yt)/(tr — 1)

2 The roughly given threshold A’d. =~ 1 which divides both nonlinear phases is obtained by
experience with numerical simulations. It has never been proven strictly that it is a general
sufficient condition for observing the super-exponential phase.
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Figure 6.1: Left: The nonlinear evolution of the field energy while saturation (a =
0.6). A clear saturation phase is reproduced. Right: Isocontours of the
full vector potential Ag(r) + A (r, z, t = 113) showing the structure of
the magnetic island close to the singular layer x = L, /2 = 2.5.

6.1 Simulations of nonlinear saturated
reconnection

For the subsequent outline magnetic configuration I has been chosen and a do-
main size L, x L, = 2.5 x 2r. The domain extension is resolved with up to
ng X n, = 768 x 16 in the z, y-direction. To compare with the simulation re-
sults of Ref. [26], the plasma-3 is chosen to be 3 = 1073, not at least because the
width of the perturbed current channel increases when reducing g and can be easier
resolved numerically. The electron tearing mode model is used, but additionally the
ions contribute to the dynamics, although they are not expected to play a domi-
nant role. About 5,...,20-10°% markers for each species have been used to obtain a
good computational performance. The nonlinear mode-coupling between the m = 1
mode, higher harmonics (m = 2,..., M) and the (m, n) = (0, 0) mode might
essentially influence the simulations. For the parameters under investigation, vari-
ous filter sizes Mmyax = 2,...,7 with n = 0 have been employed to check effects of
mode-coupling including possibly damped tearing modes with A’ < 0. In all cases
it has been verified that the m = 1 mode dominates completely. This is important,
because later on the results will be compared with analytical estimations relying on
a single-mode model.

A typical nonlinear saturation of the tearing mode is depicted in Figure 6.1 (left)
showing epote(t) for a = 0.6. After the initial linear phase ¢t < 20, the amplitude of
the mode is large enough to alter the particle orbits and allowing the electrons to
follow the island structure. In the clearly saturated period (¢ > 40) a typical oscil-
lation frequency of the electron field energy is observed accompanied by a periodic
oscillation of the field amplitude at each spatial location. It has been proven clearly
with EUTERPE that the saturation persists for all times ¢ = O(10?-,'). The nu-
merical proof of the saturation and standing oscillations is important to validate the
code. Moreover, EUTERPE provides a credible energy conservation of Ae(t) < 5%
for all nonlinear simulations discussed in this chapter.
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6.1 Simulations of nonlinear saturated reconnection

The spatial structure of the magnetic island at a fixed time ¢ = 113 is shown in
Figure 6.1 (right). The full parallel vector potential consisting of the equilibrium
background Ay and the perturbation A has been plotted in the vicinity of the layer
x &~ L, /2. The structure of the magnetic island can be clearly resolved.

The estimation of the island half width w(¢) in the constant-¥ regime was discussed
in Eq. (1.25) (Sec. 1.4.3). If the constant-¥ approximation can not be applied, the
shape and width of the separatrix can be obtained only numerically. Setting the
X-point at (z = 27 /k,, r = 0) without constraints of generality, the separatrix is
the set of points (r, z) at each time ¢ which obeys the condition

A(z: R, t) :Ao(r:w(t))+A(z: T r=uw(t), t) . (6.1)
ky k:y

The island half width can be obtained by starting at the X-point and following the
isocontour of the full vector potential. The maximum elongation with respect to r
is reached at (z = 7/k,, r = w(t)).

Eq. (6.1) presumes that the X-point is fixed at each time step which is not nec-
essarily the case in the simulations. In the beginning of the simulations the mode
can drift in the poloidal direction because of computational reasons, although no
equilibrium gradients are applied. After the mode has prospered well in the linear
phase the mode structure remains fixed during simulations. To solve Eq. (6.1) for
w(t) a MATLAB routine has been written using the field structure A(r, t) extracted
from EUTERPE. Since the vector potential is given on a discrete spatial grid and no
additional interpolation routine is used, the solution of Eq. (6.1) will result in a step-
like function w(t). Additionally, the island half width obtained with the constant-¥
approximation is also computed measuring the vector potential at the O-point.

To compare the simulated island half width with analytical predictions the time
dependency of w(t) is removed by defining the temporal mean value w = (w(t))r
over a large time period T 2> 7, *.

The temporal evolution of w(¢) with the simulation parameter a = 0.5 is depicted
in Figure 6.2. The solution of Eq. (6.1) in this case, w & 0.6, the scaled field energy
€pot.c(t) and a simulation result of Wan (w = 0.59) [26] is compared. Wan estimated
w =~ 0.6 using the model of Drake [19] which will be discussed later. All values of
w agree very well with each other, but are not very meaningful to proof Drake’s
prediction. Only an extended parameter study could reveal the reliability of this
model.

Filling this gap of nonlinear gyrokinetic simulation studies in low-3 scenarios, the
island half width w depending on a has been investigated. The equilibrium cur-
rent width was varied ¢ = 0.1,...,0.75. This variation of a is rather unusual in
the sense of the discussion in Sec. 5.2, because is leads to a possible configuration
with 0.1 = a < d. = 0.7.

In Figure 6.3 the island half width w depending on the linear growth rate v (red
points) is depicted. Here w was obtained by solving Eq. (6.1). The constant-¥
approximation was checked as well by solving Eq. (1.25) for w(v). The results from
both methods agree with each other better than 5%. The analytical finding by
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Figure 6.2: The temporal evolution w(t) and €yote(t) for a = 0.5, L, = 2.5. The is-
land half width w = (w(t))r obtained with EUTERPE is compared with
the prediction of Drake [19] and the one simulation result of Wan [26].

Drake gives a relation w ~ A’. When A’d, < 1, the dispersion relation Eq. (5.17)
can be applied stating essentially A’ ~ ~. Therefore, it has been chosen to represent
the saturated island half width w depending on the growth rate which emphasises
the dependence of w on the most important linear quantity . The linear dispersion
relation obtained with the shooting method ~(k,a) is shown in Figure 6.4 to relate
w with the exact solution of the linear eigenvalue problem. In the small-A’ range,
which corresponds to kya 2 0.75 in Figure 6.4, the island half widths w < 0.1 are
small compared to the collisionless skin depth. The term small (or skin-size) islands
refers to the relation w < d, [75] and is covered well, since w < d, ~ 0.7 ~ a = 0.75.
Decreasing the equilibrium width to approximately a ~ 0.5 (k,a =~ 0.5), the growth
rate becomes larger (7 ~ 0.4). In this range the island half width increases linearly
with the growth rate up to values of w ~ 0.5.

The single simulation result of Wan (w = 0.59) is shown as well (blue point) and
fits well with the result of EUTERPE. At this point the magnetic island becomes as
large as the equilibrium current width a. The islands are called large-sized if they ex-
tend as far as the “macroscopic” region a. This term does not fit very well here, since
additionally it is a < d.. In most of reconnection simulations d. < a holds, and if
w ~ a the term could be applied adequately. When a ~ 0.3 (kya ~ 0.3) the growth
rate reaches the maximum value v = 0.57 and the island width as well, w ~ 0.7
(Figure 6.3). The island widths becomes smaller when decreasing a further and a
“curl” appears. This range is not supposed to be a reasonable reconnection scenario
compared with the assumptions of Drake’s theory and the prediction must fail. If a
reaches the lowest value a < 0.1 (kya < 0.1), the island half width exceeds clearly
this equilibrium scale, 0.1 ~ a < w =~ 0.4. Here also finite size effects play a role,
since w ~ 0.7~ L, /2 = 1.25.

The simulation results of w are discussed in terms of Drake’s prediction: in this
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Figure 6.3: Comparison between the saturated island w(y) obtained with EU-
TERPE, analytical theory (Drake) and Wan [26] (The red solid line
connects simulations results). In the low-A" regime (v < 0.4) Drake’s
prediction is proved.

model electrons dominate the reconnection process while the electrostatic potential
has been neglected. Under these conditions the saturated island half width is given
by

d2
w = A% 6.2

2G7 ( )
with an estimated constant G = 0.41.
As pointed out in Sec. 5.2, there are two similar kinetic dispersion relations derived in
the small-A’ regime, Eqgs. (5.17). Using simple scaling arguments one can estimate
a heuristic dispersion relation, which deviates from the exact derived dispersion
relation by prefactors. The Eqs. (5.17) can be combined with Eq. (6.2) obtaining

VT
N ’Yk;yveG'

(6.3)

w

Inspecting Figure 6.3 (dashed lines), the case [ = 0 corresponds to the heuristic
derivation (heur) and [ = 1 to the analytic results (exact).

Drake’s theory is strictly valid only in the small-A’ regime which refers here to values
kya 2 0.75 (w < 0.1, Figure 6.3). Decreasing the equilibrium current width to val-
ues a ~ 0.5, the island width increases linearly, as predicted by Drake. This marks
the threshold validity of the theory. A further decrease of the equilibrium scale a
gives the estimation 0.1 ~ a < w =~ 0.4, in which the island width is comparable
to the simulation size L,. The island width saturates with respect to v and drops
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Figure 6.4: Linear dispersion relation v(k,a) depending on a (k, = 1) obtained with
EUTERPE (points) and the shooting method (solid line). The relation
v(a) is used to support the discussion of Figure 6.3.

when reducing a.

Wan compared his result w = 0.59 (Figure 6.2) with the analytic prediction, Eq. (6.3)
(I = 0), but properly speaking, Drake’s model is not suited for this parameter con-
figuration. Despite that, Eq. (6.3) confines the simulation results for both values
[ =0, 1 and gives a reasonable prediction if the growth rates are sufficiently small.
The physical mechanism of the saturation in the nonlinear regime is still under dis-
cussion. Drake suggests that electrons interact with the mode via resonance effects
in phase space. This can not be the final answer, because it will be shown later that
fluid simulations reproduce similar island half widths compared with the gyrokinetic
model in the low-A’ regime.

6.2 Simulations of nonlinear super-exponential
reconnection

In the following the essential difference of both nonlinear phases as well as the phe-
nomenology will be discussed. A parameter study is performed which connects both
phases. Additionally, there are a couple of results in literature which are badly com-
pared to each other. Therefore, in the last section an extended parameter study is
presented relating several simulation results presented in literature.

The full tearing model is used throughout this chapter excluding FLR effects by
using the drift kinetic limit (7 < 1). In the quasi-neutrality equation the gyroaver-
aging operator acting on the ions is included while the polarisation density is sub-
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Figure 6.5: Electron field energy over time. Phenomenological difference between
a mode with super-exponential growth (k? = 1.44) and a saturated
mode (k' = 1.46). In the case k' = 1.44 the short saturation period at
t ~ 175 is not physical, but plotted for completeness.

ject to the long wavelength approximation. The results obtained with EUTERPE
are compared with simulation results from (reduced) gyrofluid models subject to
magnetic equilibrium IT [21, 22|. For simplifying a direct comparison to those in-
vestigations and parameter values the quantities are expressed in Alfvén units if
necessary. The superscript A’ refers to Alfvén normalisation while quantities in the
EUTERPE normalisation stay unmarked.

6.2.1 Phenomenology and first numerical simulations

The phenomenology of nonlinear destabilisation is outlined employing magnetic con-
figuration II. A Fourier filter extracted the m = 1 mode after proving numerically
that this does not lead to an essential restriction regarding mode-coupling. In most
of the simulations discussed in this chapter the particles are pushed using a newly
implemented Fehlberg time integrator. It will be outlined later that this method is
a helpful numerical tool for the simulations presented here.

A summary of the selected parameters are listed in Table 6.1 for both unit systems.
The resolution of the spatial scales is very important and numerically demanding.
In the first simulations presented here, a resolution of n; x n, = 18470 x 40 points
has been used with one bin in the ¢-direction to simulate a real two-dimensional
mode. Otherwise at least eight points in the toroidal direction must be taken into
account increasing the extension of the solver matrix unnecessarily. The subsequent
super-exponential reconnection studies needed 512, ...,4096 cores per run.

In Figure 6.5 simulation results are depicted showing the electron field energy over
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EUTERPE units Alfvén units

domain size in x L, =20.94 LA =27
magnetic equilibrium scale a=3.33 a® =1
ion sound Larmor radius ps.e =1 ps.=0.3
electron skin depth de = 0.33 d} =0.1
wave vector varied k, kpy = ky/ps.

Table 6.1: Selected parameter values for the simulations represented in both unit
systems. The values are equivalent to a constant plasma-/3 of 4.91 - 1073.

time for two values of the wave vector k:ﬁ = 1.44, 1.46. In the case k:ﬁ = 1.46 the
nonlinear phase starts at ¢ 2 100. The field energy (red curve) as well as the mode
amplitude saturated showing the oscillating behaviour. The energy conservation
proved clearly, since Ae < 1% during simulation.

For the wave number kﬁ = 1.44 the mode also tries to enter the saturated state
shortly until ¢ ~ 125 (black curve). However, a subsequent saturation phase can
not be observed by inspecting the field energy which increases rapidly as well as the
mode amplitude. At ¢t &~ 175 the field energy seems to saturate but this can not be
clearly proven numerically as will be discussed below. It is this super-exponential
behaviour «y(t) > 7, which characterises the phenomenon and the non-saturation.
The calculations break down indicated by, for instance, the violation of energy con-
servation for ¢t 2 170 (Ae = O(1)).

The high spatial resolution in z-direction is necessary, since for example in the case
of a spatial grid with fewer points (ns x n, = 610 x 40) the electron field energy
would not reach the “numerically saturated” curve shown in Figure 6.5 (black). The
explosive phase would appear earlier motivating an increase of the grid resolution
and number of markers. Also, if the conservation of energy can no longer be im-
proved, the “final” set of numerical parameters is reached.

It is important to note that these simulations are always linked with a loss of
particles in the momentum space. After the initial accelerate phase the electrons
exceed the k,-sphere independent of its size. The simulation breaks down for ¢ 2 170
because Ae gets large and the electrons get lost. The loss of particles through the
momentum sphere per time step, the actual growth rate and energy diagnostic are
depicted in Figure 6.6. The particle loss was always observed in super-exponential
simulations and was investigated for several runs. The radius of the momentum
space k, s was tuned using values k, = 4,...,17 with a corresponding increase of
the numbers of markers, N, = 20 -10°...,120 - 10°. These manipulations do not
affect the simulations at all hinting a physical drive which accelerates the particles to
super thermal energies. For k) < 1.44 (A'd. > 1) the summarised loss of electrons
becomes of the order O(N,) which is a serious problem for the simulations as well
as the comparison with analytic models.
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Figure 6.6: Diagnostics to characterise the nonlinear stage for k‘j = 1.44. Actual
growth rate vy(t), numbers of electrons exceeding the momentum sphere
and violation of the energy conservation Ae(t).

It has been observed in previous related works that a thin current channel of width
O(d,) evolves. During the evolution its width shrinks rapidly which is thought
thought to be responsible for the extreme numerical effort of the simulations [23].
Figure 6.7 shows the spatial profile of the physical current jync(5) = Jo,(5) +
0jph,|(3) at various time steps for the case k;* = 1.44, referring to the run discussed
in Figure 6.5. The physical current j,5 | .(5) was obtained by applying the transfor-
mation p/ms — gs/ms A — v during marker binning. The current was binned via
marker summation on discrete s-values repeated for various poloidal positions y and
is representative for all y-values. The noise on the current was smoothed for better
visualisation: at a specific discrete lattice point s; of the current profile obtained
by EUTERPE the mean value of the current including ten points, [$; 5. .. 5;.4] has
been calculated. Inspecting Figure 6.7, up to the time ¢ = 132.1 the evolving cur-
rent structure 0y |(5) (blue) is similar to the initial profile (green). Within the
next short period At. ~ 20 (collapse time), the current profile at the resonant
layer s = 0.5 peaks very fast while the width of the current channel further de-
creases. The extend of the current channel is roughly given by the electron skin depth
or As ~ 0.02. Although the largest growth rate ~(¢) is not reached (Figure 6.5),
the current starts already to collapse. For t = 158.8 a reasonable current profile can
be resolved just in time, although the diagnostic quantities depicted in Figure 6.6
do not hint a crash of the simulations for the following period ¢t = 160,...,167.
Previous simulations of fluid models have found similar current spikes as depicted in
Figure 6.7 of both the unphysical [23| and physical current density [36]. Although
the adaptive Fehlberg integrator reduced the time step At = 0.05,...,1.5-1073
a saturation after the collapse of the current profile could not be achieved. The
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Figure 6.7: Temporal evolution of the physical current profile j,,.(5) (blue)
for k;} = 1.44. The perturbed current djp .. is multiplied by a fac-
tor of five. The initial current profile is shown for comparison (green).

tremendously short collapse period makes it hard to obtain reasonable simulation
results.

For comparison the evolution of the smoothed current profile related to k;yA = 1.46is
shown in Figure 6.8. In the saturated mode case the evolving current profile (blue)
does not show peaked current profiles from ¢ = 101.3,...,154.7 compared with the
initial profile (green).

In the analytical work of Refs. [23, 76| a differential equation was derived describ-
ing the temporal evolution of the island width normalised to the electron skin
depth @ = w/d,. In this reference a minimal fluid model was investigated in the cold
electron limit (p§, = 0, corresponding to 1/a — 0 if Ty, = const.), thereby using a
heuristic ansatz for a fixed flow pattern related to ¢. The authors of Ref. [30] ex-
tended the analysis to the case of hot electrons (péﬁ6 > () which is more relevant for

the cases considered here. Similar to [23], the evolution of w = w/ [(dﬁ) e (pge)z/g]
is governed by the differential equation d*@/d#? = /4 + c;/4 - w*. The time is nor-
malised to the growth rate, = ki [(d?)l/g (pge)z/g] t. The constant c¢; = O(1)

must be chosen after the simulations to match the time series w(¢), thus an extended
discussion of the solution w(¢) in comparison to simulations is fairly hard.

Recently, a generalisation of the MHD energy principle with a nonlinear displace-
ment map was applied to the two-fluid model of Ref. [23] describing the evolution
of the mode amplitude in a more rigorous fashion [35]. However, this prediction
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Figure 6.8: Temporal evolution of the current profile jy; o(5) (blue) (k; = 1.46).
The perturbed current §jpp . is multiplied by a factor of five. The
initial current profile is shown for comparison (green) The current does
not evolve a peaked profile since the mode saturates.

is also only valid in the cold electron limit and in the asymptotic limit k;yA — 0,
thus kyA < 1.44. Tt is important to note that this analytic approach predicts also a
substantial different island evolution compared to Ref. [23], namely d?w/d*t ~ w2
Presently, in none of the time-series of for instance the electron field energy or am-
plitude evolution a typical physical time scale T' < At.o could be identified in the
super-exponential phase similar to, for instance, the oscillation period in the satu-
rated phase which would allow a much more compact characterisation of the process.
Moreover, with the gyrokinetic simulations performed so far a physical saturation
after the explosive growth has never been achieved in contrast to results of recent
works which employ gyrofluid models [10, 34|, although the same parameters have
been adopted. Obviously, there is a substantial difference between the nonlinear
gyrokinetic and nonlinear gyrofluid calculations which is an important point when
comparing both models.

6.2.2 The transition between both nonlinear phases

As indicated in the previous section, a small variation of the wave vector kyA can
change the character of the nonlinear phase completely. There certainly is a critical
wave number kﬁcr between k; =1l44<...< k;yA = 1.46, where a transition occurs.
This transition is very interesting, since a small change of the wave vector changes
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6 Nonlinear simulations of tearing modes

the nonlinear character of the system completely. This has never been discussed
before in the literature where only the extreme limits of A’ have been examined.

For the subsequent investigations both kinds of magnetic equilibria are used. The
high computational effort is evident by using up to 2048 cores for each run for
roughly 5-10° CPUh. A detailed listing of the setup scenarios is shown in Table 6.2.

magnetic equilibrium EUTERPE units  Alfvén units

L, =20.94 LA =2r7
a=3.33 a =1
I pse =1 ps. = 0.3
d. =0.33 d* =0.1
wave vector varied
L, = 157.08 LA =4rx
a varied a =1
I ps.e =1 pge varied
d, =1 dd =1
ky, = 0.04 k;} =0.5

Table 6.2: Different setups for the simulations in both unit systems. The two differ-
ent values of d, result in two different values for the plasma-/3: 4.91-1073
(IT) and 5.47- 10~ (I).

It turned out that the oscillation frequency wg of the field energy in the deeply
nonlinear phase is supposed to be a good quantity to indicate the transition as long
as the physical saturation can be proven clearly. The frequency wg was obtained
by calculating the mean value over several periods n, of the field energy, wg =
2w/[n, (Ty — T;)], T;, T being the initial and final time point of measurement. It
is also possible to measure the island width, but one has to solve additionally the
nonlinear Eq. (6.1).

First, magnetic equilibrium IT is considered to extend the results of the previous
chapter. The strategy is to characterise the transition by starting with a value kyA ~ 2
in the well-behaved Rutherford-regime and reduce it slowly to kﬁcr, until the oscil-
lation frequency changes strongly when crossing both regimes. Figure 6.9 shows the
oscillation frequency versus the wave vector l{;yA. In the vicinity of marginal instabil-
ity l{;z} ~ 2, a clear saturated and oscillating phase can be observed. Reducing the
wave vector to values k:ﬁ ~ 1.5, the oscillation frequency increases (A’d, = 1). Close
to k:ﬁ ~ 1.45 the frequency falls with smaller k:ﬁ approaching a critical wave vector
kﬁcr. In Figure 6.9 this threshold is indicated by setting the oscillation frequency
manually to zero (wp = 0). Due to the high sensitivity of the threshold a closer
approach according to kﬁ = k2, + € (0 < ¢, < 1) could not be achieved.

y,Ccr
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Figure 6.9: Oscillation frequency wg depending on the wave vector k;}. The tran-
sition between saturated and super-exponential reconnection occurs
at k2 ~ 1.45 (Equilibrium IT).
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The strongly reduced oscillation frequency indicates that the saturated phase be-
comes quasi-static compared to the linear growth rate in this range (wp < W% =
O(0.1)). A further decrease of k;' leads again to the super-exponential phase and
no oscillation frequency can be assigned to the mode.

Simulations with a wave vector very close, but below the threshold kﬁ = kyAﬂ, — €
(ki = 1.4425,1.445,... < k) require a very high resolution of the grid (n; =
1.85 - 10%). For the value kﬁ = 1.4425 the Fehlberg integrator allowed to achieve
at least an energy conservation of Ae < 5% which was not possible before with
the Runge-Kutta scheme and marks a clear numerical improvement. The step size
reduced to At = 0.05,...,1073 when the mode approaches the largest slope of the
field energy. When using the adaptive time step integrator, the evaluation of the
marker statistics similar to Figure 6.6 showed that the loss of electron markers could
be reduced by three orders of magnitude. Despite that the current profile still under-
goes a crash for k, < k, ., the numerical enhancements may serve as a starting point
for a closer inspection of the super-exponential behaviour at the critical threshold.

Similar simulations of the transition were performed using magnetic equilibrium I.
The question arises whether this equilibrium might allow for the super-exponential
growth, too. The parameter used here refer to similar simulation conditions of
Ref. [21]. Instead of k) the width of the equilibrium current a was varied.

Figure 6.10 shows the nonlinear oscillation frequency wg(a) and the linear growth
rate y(a). For relatively large a 2 16 nonlinear saturation is observed. The growth
rate v is of the same order of magnitude as the oscillation frequency, v ~ wg,
moreover, the shape of both curves suggests a linear relation wg ~ 7. When reduc-
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Figure 6.10: wp and 7 depending on a (configuration I). The transition of the nonlin-
ear phase is proven to occur with configuration I at a. &~ 12.5. Below
this value the oscillation frequency is set to zero.

ing a < 16, the oscillation frequency achieves a maximum at a ~ 13 (wp ~ 4-1073).
A further decrease of a causes the oscillation frequency to fall and subsequently,
a sharp transition occurs at a., =~ 12.5. The results show that slightly above the
threshold a 2 a., the saturated mode is quasi-static (wg < ). For smaller values
a < ae the oscillation frequency was set to zero manually, since during super-
exponential growth an oscillation could not be assigned to the mode. These inves-
tigations prove that simulations with configuration I also reveal a critical threshold
for nonhnear tearing modes. Recall that a = l/pS . is changed, thus the threshold
occurs at ,OSe 0.08 < d* = 1. Tt is an open issue how the ratio of these both
quantities characterise the threshold.

Further simulations are necessary to quantify the saturated island width at criti-
cal a. and k... Additionally, a detailed quantification of the plasma inflow pattern
at the resonant layer might give further insight into the critical threshold. In Ref.[10]
the nonlinear acceleration is investigated by means of a gyrofluid model. The ac-
celerated phase is accompanied with larger E x B flow velocities at the X- point
than in the saturated phase. However, the simulation results obtained with the gy-
rofluid model could not be reproduced with EUTERPE, thus hinting a substantial
difference in the models. The transition between both nonlinear phases shown for
the oscillation frequencies here is very sharp. It would be helpful if equilibria and
selected parameters were investigated allowing a “smoother” transition to improve
the numerical control of the mode.
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6.2 Simulations of nonlinear super-exponential reconnection

6.2.3 Extended parameter studies

An extensive parameter study is presented giving an overview of the critical thresh-
old depending on the parameters L,, L, and a. The simulation results of the previ-
ous chapter will be classified within this set of results obtained with configuration I
as well.
Furthermore, the results in a broad parameter space are compared with available
results in literature. In contrast to results obtained with EUTERPE concerning
the super-exponential phase, it has been shown that a saturation mechanism and
a well-defined conservation of the energy occur after the super-exponential phase
for 7 =~ 1 and 7 < 1 [34, 51]. The fast-reconnection is known to be necessary
for super-exponential growth, but counterexamples were found [34]. Recently, it
was shown that a second acceleration can occur after the first explosive phase for
A'd, > 1 [10]. It is still unclear whether the physical model is significant in order
to observe super-exponential growth or if there are universal parameter regions in-
dependent from the models.
To relate simulation results of the gyrokinetic model with previous investigations
two parameter scans were performed in which either (a, L,) is varied (scan (i)), or
(a, L) (scan (ii)). Table 6.3 summarises the selected parameter regions. Due to
the definition of the Alfvén units in the first scan (i) L2 is varied when p§, changes,
and similarly in (i7) L2, although L, = 15 remains a constant.

The fields were spatially resolved with up to ng x n, = 2-10% x 20 points in

parameter scan parameter values
L., a varied (— d2, pg,)
(1) de =1
L, =157.08 (k) = 0.5)

Lx = ]_5, a Varied ('_> d?) pSA@)
(i) de =1
k, =2m/L, varied

Table 6.3: Parameter values of the two scans (i), (7). The plasma-/3 is kept constant
at 5.47 - 107%. Due to the different normalisations the values in brackets
change as well.

x, y-direction. This ensures a resolution of a, d. with at least ten points. The time
consuming computations are performed with up to 1024 cores and at most 8 - 107
markers for each species needing roughly 5 - 10° CPUh.

The parameter scans describe a binary decision whether a nonlinear saturation takes
place or not. Figure 6.11 shows the results of parameter scan (7). The green
area represents the complete domain of simulated pairs (a, L,) with a resolution
of about (Aa, AL,) = (0.1, 5). This area is bounded from above by the linear
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Figure 6.11: Parameter scan (i). The green shaded area covers the range of the pa-
rameters (a, L;). The inner of the polygon marks the super-exponential
regime. The dotted line does not denote necessarily a transition from
left to right, but closes only the polygon from (B) to the point with
smallest a, (0.3, 78.54).

stability threshold above which the mode is linearly stable. The linear stability pa-
rameter was computed by solving A'(L,, L,, a) = 0 numerically at various points
and interpolated (black solid line). Note that the m = 1 mode is always selected.
The green shaded area is bounded from below by the minimum value a = 2 - 1072.
The region can be just resolved using the computational means available (memory
consumption of the solver matrix and number of markers).

Within the blue polygon the mode shows super-exponential growth. Point (A) marks
the parameter values studied in the previous chapter, (a, L,) = (12.5, 78.54) (It
also refers to Ref. [21] at which pg, = d). Starting at this point, a lowering of a
with constant L, maintains the super-exponential character of the mode. However,
for small enough values a < 0.3, the study reveals a second critical threshold below
which the mode becomes again nonlinearly stable. These values of a are equivalent
to the relation pge > d2. Thus, in the large-A’ range the saturation of the mode
sets in again.

When L, = 10,...,80, the upper boundary of the polygon refers to the low- to
medium-A’ regime (A’d, =~ 1, if a 2 3). In this range the nonlinear destabilisation
of the mode has been verified when A’ is of order unity. If L, is small enough in the
regime L, = O(10), both critical thresholds vanish and a Rutherford-like stabilisa-
tion was observed: a variation of the magnetic equilibrium scale can not excite the
super-exponential growth in the range O(107%) < ...a... < O(1).

A special point (B) marks (a, L,) ~ (45, 117). It was shown that as the mode
crosses the linear stability threshold its growth immediately experiences a super-
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6.2 Simulations of nonlinear super-exponential reconnection

exponential acceleration. This is remarkable since at this point A’'d, ~ 0 is valid
which contradicts the general regime of super-exponential acceleration. The point
(B) can be compared with results of Ref. [31], where a was fixed but, enlarging
the difficulty of a direct comparison, a deuterium plasma with an unnatural proton
to electron ratio was considered. Additionally, the plasma-3 was varied within the
range 107°,...,1073, resulting in different ratios d./ps . and maintaining the condi-
tion d. = O(1) < a = O(10). This reference, however, found a physical saturation
after an explosive phase which could not be confirmed. In the simulations here,
following point (B) to lower values of a (L, = 117), a second nonlinear stability
threshold could not be verified within the green shaded area. Therefore, the poly-
gon in Fig. 6.11 was closed with the dashed line.
A short overview of the parameter regime under investigation compared with signif-
icant references is provided by Table 6.4.

The parameter space is extended by varying L, when L, = 15 is fixed (scan (it)).

Ad, <1 Ad, > 1
pé. > d?  [31], Figure 6.11 [21], Figure 6.5
pa. ~dd [34],Figure 6.11 [36], Figure 6.11

)

pd. < d [34],Figure 6.11 [23, 36], Figure 6.9-6.11

e

Table 6.4: Summary of references investigating super-exponential reconnection and
results obtained with EUTERPE.

This variation of parameters is motivated by the fact that in previous nonlinear
simulations with the magnetic equilibrium I [26] it has never been observed with
EUTERPE that the super-exponential behaviour occurs. The exploration provided
by scan (ii) relates both the domain of parameters used in Sec. 5.1 and in scan (7).
In Figure 6.12 the green shaded area marks the parameter regime which has been
investigated to observe whether the nonlinear acceleration is excited or not. The
blue area refers to the set of parameters (a, L,) that allow for a nonlinear accelera-
tion phase. Additionally, the threshold A’d, =1 (red solid line) is depicted as well
as the linear stability threshold provided by solving the equation A’'(L,, L,, a) =0
(black solid line).

In Figure 6.12 the threshold defined by the condition A’d, = 1 is valid in the domain
L, = 30,...,100 and a ~ 2. If the equilibrium current width ¢ and L, are small
enough, (a, L,) = (O(1), O(10)), the equilibrium values of the linear benchmark
in Sec. 5.1 are covered approximately by (a, L,) = (O(1), 10) and g = 1073, A
similar range of parameters is used in Ref. [26]. This parameter range does not
support super-exponential behaviour of the nonlinear mode: the blue area contracts
for small enough (a, L,) showing that the nonlinear acceleration is inhibited. Even
smaller values of a do not change this result, although A’d, ~ 1.

The simulations in the range L, = 50,...,200 (or small enough k,) show that the
critical threshold of nonlinear acceleration appears for two different values of a,
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Figure 6.12: An extended parameter study showing the threshold of super-
exponential reconnection. L, = 15 is fixed and L,, a varied (Equi-
librium T).

marking an upper and a lower critical threshold. The upper threshold remains con-
stant, while the estimated condition A’'d, = 1 is clearly not valid.

The parameter scans (i), (i¢) demonstrate clearly that the threshold A'd, ~ 1,
widely used in nonlinear simulations using fluid models, does not necessarily mark
the transition between both nonlinear phases. Due to substantial differences of the
nonlinear simulations performed with the gyrokinetic model here and the fluid mod-
els of discussed references, the result of the parameter scans (i), (i) probably do not
hold universally independent of the model. An important finding is the second criti-
cal threshold of the equilibrium current width a, below which the super-exponential
phase is inhibited and saturation sets in again.
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7 Comparison of a compressible
gyrofluid and gyrokinetic model

7.1 Introduction

Although much of the progress in the understanding of magnetic reconnection has
been possible thanks to the use of fluid-based models, the results achieved with
these models require independent confirmation when kinetic effects are expected
to be important. Here, a compressible gyrofluid code that has been employed in
Refs. [10, 51| to investigate ion gyro-orbit averaging effects on collisionless magnetic
reconnection, is compared with the gyrokinetic equation .

After a linear benchmark of the codes with a numerical eigenmode and eigenvalue
analysis, the results of the two models in the linear regime are compared over the
whole spectrum of linearly unstable wave numbers, both in the drift kinetic limit
and for finite ion temperature. Nonlinearly, focusing on the small-A’ regime, rele-
vant observables as the evolution and saturation of the island half width and the
oscillation frequency at saturation are compared 2.

7.1.1 The compressible gyrofluid model

The gyrofluid model considered here has been adopted in Refs. [10, 51] to investigate
magnetic reconnection in collisionless high-temperature plasmas with a strong guide
field.

This model originates from a comprehensive gyrofluid model for both ions and elec-
trons derived from the gyrokinetic equation by Snyder and Hammett [61]. The
moments are obtained by applying velocity space integrals to the gyrokinetic equa-
tion with an unshifted Maxwellian. This model includes magnetic curvature effects,
mirror terms, FLR and diamagnetic effects. The highest moments of the velocity
integrals are subject to closure schemes related to three categories. It considers
the inclusion of Landau damping, the closure of toroidal terms and mirror terms
(trapped particles).

A simplified version of this model has been derived in Ref. [10] neglecting magnetic
curvature effects and restricting it to two-dimensional dynamics. Furthermore, the

I The results of the comparison of both models developed from a collaboration with Luca Comisso
and Daniela Grasso, members of “The Burning Plasma Research Group” at the Politecnico di
Torino, Dipartimento di Energia. The simulation results of the gyrofluid model are provided by
Luca Comisso.

2In this section all quantities have been normalised to Alfvén units.
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7 Comparison of a compressible gyrofluid and gyrokinetic model

reduced model truncates the moment hierarchy by taking only the first two velocity
moments of the gyrokinetic equation for both the electrons and the ions (four-field
model). The species temperature are taken to be constant while the electron Larmor
radius has been neglected. Electron inertia terms were retained in order to break
the frozen-in condition and allow for magnetic reconnection. Ion compressibility is
adopted to investigate the influence of ion sound waves on reconnection [10].
Therefore, the evolution equations of the compressible gyrofluid model consist of
the continuity equation and the z-component of the equation of motion for the ion
gyrocenters,

0ni .
oD
T [(¢), D] = 708 [(A), nal, (7.2)
and similar equations for the electrons,
on. B
ot + [¢7 ne] - _[uev A]v (73)
oF
E + [¢7 F] = _pg,e[Aa TLe]. (74)

Here D = (A) + d?u; is proportional to the ion gyrocenter parallel canonical mo-
mentum, whereas F' = A — d?u, is proportional to the electron parallel canonical
momentum. Furthermore, (¢) = F(l)/ %% is the gyro-averaged electrostatic potential
and (A) = F(l]/ ? A is the gyro-averaged parallel magnetic potential, where the symbol
F(l)/ % refers to the gyro-averaging operator that is adopted in its lowest-order Padé
approximant form [37]

1
ry? = ———. (7.5)

Pi
-2
The system of equations is completed by the parallel component of Ampére’s law,
VA = u, Ty, (7.6)
and by the quasi-neutrality condition

e (7.7)

i

Ne = I‘éﬂni +

The resulting model is dissipationless and suitable for the study of reconnection
mediated by electron inertia. In particular, it possesses a noncanonical Hamiltonian
structure [10] that reveals the presence of four Lagrangian invariants, which have
proved to be helpful to understand how the reconnection evolution is affected by the
plasma-( and by the ratio of species temperatures [51].

This model has been subject to various simplifications in literature. By neglecting
ion compressibility in Eq. (7.1) ([(¢),n;] = 0), the equations cover the three-field
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model of Ref. [11].

The electrons are mainly responsible for parallel and perpendicular dynamics so one
can simplify the equations by neglecting the ion response. Then, Eq. (7.1) is not
needed and the density and current of the ions do not contribute to the condition of
quasi-neutrality, Eq. (7.7) and Ampére’s law, Eq. (7.6). Employing additionally the
constraint k; p; < 1 on this reduced two-field model the quasi-neutrality Eq. (7.7)
can be simplified to (1 — p? V3 )n. = V3 ¢ [12, 77].

As shown in Sec. 5.1, the electrostatic fluctuation ¢ can be interpreted as a small
correcting quantity completing the electromagnetic description of the tearing mode.
By neglecting ¢ the quasi-neutrality can be discarded and the model includes only
the evolution of the parallel current u, and the density response n. of the electrons.
This minimal model has been used in Sec. 1.4 to derived the linear dispersion relation
of the tearing mode.

7.1.2 Equilibrium configuration and numerical setup

To investigate spontaneous reconnection the model equations are solved numeri-
cally by employing magnetic configuration IT in a two-dimensional slab geometry
(0/0z = 0). The parameter was chosen to be C' = 0.1 if not stated otherwise. This
results in a maximal relative shear strength of By,/By . ~ 0.08 in the domain and
a shear length [, = By ./(dBy,/dz) = 5 at the resonant surface x = 0.

The equilibrium magnetic field ﬁo results from an equilibrium current v, from
electrons only as described in Sec. 4.2. Furthermore, the plasma is considered ho-
mogeneous with flat density ny(z) = ng and temperature profiles Ty(z) = T for each
species. The simulation domain is characterised by {(z,y) : —7 < x < 7, —ar <
y < ar}. The parameter a fixes the domain length L, in y-direction which is linked
to the wave number k, = 2mm/L, of the longest wave length mode m = 1 of the
system. The tearing mode stability quantity A’ is then characterised by the wave
vector k, according to Eq. (4.6) (Sec. 4.2).

The gyrofluid code decomposes the fields into a time-independent background equi-
librium and an evolving perturbation within a pseudospectral method [51, 78]. Pe-
riodic boundary conditions are employed in both the z- and y-directions, and a grid
of 1024 x 128 points has been used. Since periodic boundary conditions are imposed
also along the x-direction, a Fourier series truncated to eleven modes is used to ap-
proximate the equilibrium magnetic field. Finally, an Adams-Bashforth algorithm
is applied to push the fields in time and an initial disturbance on the out-of-plane
current density of width O(d.) around the resonant surface is set to accelerate the
onset of the tearing instability.

It is important to note that the boundary conditions for the fields with respect to
the z-direction are different in both codes. Due to the numerical method underlying
the gyrofluid code periodic boundary conditions arise naturally. The choice of the
domain size in the z-direction is sufficient to avoid finite domain size effects on the
value of the tearing stability parameter. However, in the following the effects on the
boundary conditions will be checked by performing a detailed linear benchmark with
the eigenvalue approach. If simulations in the drift kinetic limit were performed, this
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was achieved by setting the temperature ratio to 7 = 1/900, giving p; = 1/30 < d_,
which makes the effect of the gyroaveraging operators negligible. Additionally, in-
stead of the Padé approximation the long wavelength approximation was then used
for the quasi-neutrality equation in EUTERPE.

7.2 Linear comparison of the models

As a first step the accuracy of the codes is checked in the linear regime with a
benchmark. For this purpose a numerical eigenmode and eigenvalue analysis is
applied to each of the two models in the drift kinetic limit. After the accuracy of
the codes has been proven to a high degree, a comparison of the models in both the
drift kinetic limit and the case of finite Larmor radii follows.

7.2.1 Eigenvalue equations

In this section the procedure of performing a numerical benchmark is described
using the shooting method explained in Sec. (5.2) to get the linear dispersion re-
lations in the drift kinetic limit. An analysis of the eigenvalues and the eigen-
mode structure is given here for both the linearised gyrofluid and the gyrokinetic
equations. The gyrofluid equations (7.1-7.4), and the gyrokinetic equation (2.5-
2.9), are linearised using the ansatz J; — —iw and 0, — ik, for the perturbed
quantities, additionally assuming a long wavelength approximation for the quasi-
neutrality equation, Eq. (2.13). The field equations are cast into a general form with
the coefficients ¢}, with (i, ) = (4, ¢),

d2

d—;f = —qf; (x,w) ¢ — qfl (x,w) A, (7.8)
d’A " "

12 = —qp (,w) 0 — q4 (v,w) A. (7.9)

The linearisation of the gyrofluid system gives the following coefficients

o) Fés

@ (r,w) = —ki+ Z

= (7.10)

. ks
¢4 (z,w) = —Zq (s—i- —= N, + spge ” ), (7.11)

ol
g (r,w) = —Z
ds kyks
¢ (r,w) = _Zﬁs(s+ Spge ” )a (7.13)

FI
05 —y (7.12)
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Figure 7.1: Benchmark of the gyrofluid eigenfunctions. Left: The real part of the
parallel vector potential A. Right: The imaginary part of the electro-
static potential ¢.

where the prime denotes the derivative with respect to z. Also the quantities
Fyo=—Byo+asdiuy,, kj=—Apk,,
2
o2,k (7.14)
d? w2 |’

S

ks = —ug Ky, Ny = d? <1 — T,

have been introduced to make the notation more compact.

The coefficients resulting from the linearisation of the gyrokinetic model were de-
rived in Sec. (5.1),Eqgs. (5.4) and normalised to Alfvén units. Both these sets of
eigenvalue equations are solved numerically using the shooting method described
Sec. 5.1 with Dirichlet boundary conditions in the z-direction.

7.2.2 Linear benchmark with eigenvalue approach

The first benchmark is carried out for the parameter values d, = 0.1, d; = 4.285,

pse = 0.6 and k, = 0.6. This corresponds to 8 = 1.96 - 102 and a realistic proton
to electron mass ratio p = 1836.

The comparison of the eigenfunction resulting from the shooting method with re-
sults from the gyrofluid simulation is shown in Figure 7.1. Due to symmetries of
the equations and the pure imaginary eigenvalue, v = 0.0248, only the real part
of A remains, as well as only an imaginary part of ¢. The field structures agree
very well with results from the shooting code, although the boundary conditions
with respect to x differ. The same procedure has been performed with EUTERPE
which gives in this case v = 0.0273. Both potentials are in good agreement with
the shooting method as well, as shown in Figure 7.2. In this case both methods use
the same boundary conditions regarding the z-direction. The comparison with the
solution of the gyrofluid problem shows that the instability is mainly influenced by
the dynamics at the resonant layer. The solutions drop very fast to zero approaching
the boundaries and therefore the influence of the boundary conditions is suppressed.
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Figure 7.2: Benchmark of the gyrokinetic eigenfunctions. Left: The real part of the
parallel vector potential A. Right: The imaginary part of the electro-
static potential ¢.

This will be important for further nonlinear comparisons.

To check the eigenvalues over an extended k,-spectrum of unstable modes, simula-
tions have been performed with the previous setup varying the simulation domain
size L,. The comparison of both fluid and kinetic results and the relevant results of
the shooting method are shown in Figure 7.3 '. These benchmarks show that the
two codes give exact results in the linear regime over a wide range of k,.

0.06 Shooting method (Gyrofl. Eq.)
’ Gyrofluid-Code
Shooting method (Gyrokin. Eq.) =
0.05 EUTERPE - 1

0.04

0.03

0.02

0.01

Figure 7.3: A benchmark of the linear growth rates of both models for various wave
vectors k,. Both the gyrofluid and the gyrokinetic code work linearly
exact.

! The solid lines in this Figure connect simulation results as well as for all following Figures.

78



7.2 Linear comparison of the models

7.2.3 Model comparison in the drift kinetic limit

In the following two sets of parameters are used which are relevant for reconnection
physics. The parameter associated with Setup I and IT are listed in Table (7.1).
Case I refers to a realistic mass ratio p and “kinetic” regime, 3 > m./m;, or equiv-
alently ps. > d., whereas case II defines a “medium” range between kinetic and
inertial regime, 5 ~ m./m;.

Simulations for cases I and II have been performed for various k,. Over the full

range of wave numbers, from the large-A’ to the small-A’ cases, close to the stability
threshold at %, ~ 2.23, both models describe the reconnection process very well, as
shown in Figure 7.4. A relative maximum deviation of about 20% is found around
k, ~ 1 for both setups. However, in the small-A’ limit the differences of the growth
rates become smaller.
The kinetic description allows one to estimate the width of the region of particle ac-
celeration, d., due to the resonance condition k| psc/de = ky dc/ls- ps,e/de ~ 7 in the
small-A’ limit and J. < L [18]|. Together with the kinetic dispersion relation in this
limit, v = k, d. ps A'/ls, one gets the estimate 6, ~ A’d?. Two-Fluid-description
yields the same scaling of the growth rate and current layer in the limit of marginal
instability [16, 19].

Another point which might be important concerns the assumptions of the adopted
gyrofluid model: The derivation uses the restriction that the bulk velocity of the
species 1 s is much smaller than the thermal velocity vs. Moreover, this model uses
an unshifted Maxwellian when performing the integration over the velocity space
to get the equations of moments. Therefore, the gyrofluid equations hold exactly
only for C' < 1. For the linear simulations done here the amplitude of the sheared
perpendicular field was chosen as C' = 0.1, which approximates this limit very well
and allows relatively short simulation times. However, this point has been checked
simulating a mode with k, = 1.0,d. = 0.1,d; = 4.285, ps . = 0.3 and decreasing C'
from 10~! to 10~%. These runs required very long simulation times for small C, due
to the dependence of v from [;. The relative deviation of the growth rates of the
models fell from approximately 20% to 12%.

Setup I IT
i 1836 100
B 491-1073 4.10°2
PS.e 0.3 0.2
de 0.1 0.1
d; 4.285 1.0

Table 7.1: Set of parameters defining setup I and II used for the simulations.
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Figure 7.4: The comparison of the linear dispersion relations shows a good agreement
between the two approaches over the full &, range (Left: setup I, right:
setup II).

7.2.4 Influence of gyro-effects

It is desirable to go beyond the drift kinetic limit and simulate the tearing mode
for finite ion temperatures when the gyroradius can become much larger than the
thickness of the electron diffusion region which is O(d,) [54]. Here only the linear

0.036 ——— ‘
Gyrofluid-Code  «
EUTERPE =
=
0.024 | |
>
0.012 r ,
0.0001 0.001 0.01 0.1 1 10 100

Figure 7.5: In the medium-A’ range (A’d, ~ 1) the codes show a good agreement
of v over whole range of .

simulations of the codes are compared using the setup scenario II for £, = 1 and
k, = 2, while varying 7. The gyrokinetic effects now enter according to Eq. (2.12,7.7)
using the Padé approximation.

Figures 7.5 and 7.6 show that the growth rates obtained with the two different codes
behave qualitatively very similar when 7 is varied. While for small 7 the growth rate
remains nearly constant, for larger ion-gyroradii, p; > ps. (7 2 1), the growth rate
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Figure 7.6: Small-A’ range: Both codes show a good agreement of the growth rates
for relatively small 7. The analytical prediction, Eq. (7.15), fits well for
both the gyrokinetic and gyrofluid model.

begins to increase strongly. For the medium range k, ~ 1 both models cover the
physics very well, see Figure 7.5. This result is important since it shows clearly that
the gyro-effects are being covered correctly by both gyro-approaches, which provides
a good starting point for the following comparisons in the nonlinear regime.

Figure 7.6 displays the simulation results of the kinetic and fluid simulations in the
small-A’ limit. In this range of parameters an analytical prediction for a gyrokinetic
ion response together with an electron fluid derived by Porcelli gives [19]

de e
v o= kAVIFrEe (7.15)

S

which reproduces the simulation results to high accuracy.

7.3 Comparison of the nonlinear models

Continuing with the parameters of both cases I and II the nonlinear phase is dis-
cussed, concentrating on the small-A’ regime. The saturated island half width w
and oscillation frequency wg in the deeply nonlinear phase are the two most relevant
observables. Up to now, in the literature there are only a few extended simulation
results of these quantities in homogeneous plasmas [25, 26].

It is important to note that the equilibrium considered in this section is unstable
with respect to modes with m = 1, which can in general interact in the nonlinear
phase with the m = 0 mode. Pseudospectral codes simulate a complete rectangu-
lar domain [—Mumax, - - - Mmax] X [—Mmaxs - - -, Pmax] in Fourier space [78], n being the
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7 Comparison of a compressible gyrofluid and gyrokinetic model

mode number in z-direction (1n,,,, = 0 here), so the m = 0 mode is being simulated
as well. In the gyrofluid simulations all relevant scales were well resolved by choosing
the extent of the Fourier spectrum to 1/kp. < de. In EUTERPE it is not nec-
essary to choose a corresponding domain setup. Nevertheless, to match the initial
computational conditions of the two methods, EUTERPE was adjusted to adopt the
filter [—1...1] x [0]. Because higher modes numbers m = 2, 3,... are expected to
play no role in the dynamics the chosen filter does not restrict the essential physics.
The gyrokinetic simulations were performed with up to N, = 3- 107 markers with a
minimum time step At = 0.125. The skin depth d. = 0.1 is resolved with at least 16
points, whereas the width of the perturbed current produced by the parallel electric
field, d., was resolved with about ten points. The numerical resolution of the vector
potential in the x-direction amounts to nz = 1024 points, which separates scales up
to Az = 5-1073. This introduces an upper error range, which can be removed with
finer grid resolutions but demands a much higher computational effort.

Two different methods are applied to obtain the island half widths w of the collision-
less tearing mode. Assuming the constant-A approximation, Eq. (1.25) (Sec. 1.4.3)
is used. Otherwise, without any approximation, one can obtain the exact island half
width using the geometric definition of the island separatrix by solving numerically
Eq. (6.1) (Sec. 6.1) on the discrete spatial grid used in the codes.

7.3.1 Drift kinetic limit

The evolution of the island half width into the deeply nonlinear regime is shown in
Figure 7.7 for the parameter case I and k, = 1.8 obtained with both codes. The
Figure depicts the solution of Eq. (6.1) (geometric island half width) at each time
step. Both gyrofluid and gyrokinetic models behave well in the nonlinear phase
and show a clear saturated phase beginning at ¢t ~ 1500. The energy conservation
proved to be more accurate than 2.5%. Moreover, it turned out for all simulations
presented here that the coupling between the modes m = 0 and m = 1 is very weak
and can be neglected. Figure 7.8 shows a comparison of the evolution of the exact
island half width and the island half width obtained according to Eq. (1.25) for the
gyrofluid simulation shown in Figure 7.7 for k, = 1.8. For wave vectors k, > 1.8,
which corresponds to the small-A’ limit, the island half width calculated with the
constant-A approximation is valid within the precision of the measurement. Never-
theless, in the following Eq. (6.1) (geometric definition of w) is used.

When the island width becomes comparable to the linear current sheet thickness d,,
the mode saturates [19]. After the transition into the saturation phase the width of
the island begins to oscillate with the characteristic frequency wg, which is clearly
visible in Figure 7.7 and 7.8. From the time series w(t) the saturated island width
w is measured by taking the mean value w = (w(t))r after saturation starts.

In the following both quantities w and wg are measured for an extended parameter
range to compare the gyrokinetic and gyrofluid models, and to check the validity of
analytical predictions in this regime of parameters.

Figure 7.9 shows w as a function of the longest wavelength in the system for both
parameter cases. For low values of k, ~ 1.6 the relative difference of the island
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Figure 7.7: Island half width as a function of time for k, = 1.8 (case I, small-A’).
Both gyrofluid and gyrokinetic models show clear saturated behaviour
of the mode. The steps are due to the spatial discrete grid points.

half widths obtained with the two adopted models is found to about 30% for both
parameter cases I and II. Increasing k, to the range k, = 1.9,...,2.23 (close to
the stability threshold) the agreement between the results of the two codes is much
better. The relative deviation of the island half widths is approximately 10% for
k, = 1.9 in both setups and vanishes practically for higher wave numbers. This
shows that for A’ < 1 both models agree very well. Therefore, there are no signif-
icant differences between the gyrofluid and the gyrokinetic model for small island
widths, i.e. when w < d.. So, for the cases investigated here in which the island half
width and the extend of the electron current layer thickness J. are much smaller
than the equilibrium scales, the fluid description produces practically the same is-
land half widths as the more complete kinetic model. The comparison between the
models also shows that the island width is slightly higher in the fluid description
than in the kinetic model. These are the first extended comparisons of the saturated
island width in slab geometry over a broad range of parameters.

Since for both parameter cases the ion skin depth is much larger than the elec-
tron skin depth, d. < d;, electron inertia dominates completely. It was shown
by Drake and Lee that the tearing mode saturates approximately when w =~ 4.,
which in this regime means w ~ A’d? [19]. The detailed estimation yields w =
A'd?/ (2G) (Sec. 6.1). Therefore, in the small island limit, d. < L = I, the satu-
rated island half width is described only by the skin depth d. and the tearing mode
stability parameter A’, which for the equilibrium here is known analytically from
Eq. (4.6) (Sec. 4.2).

The analytical prediction in comparison with our simulation results depending on &,
is shown in Figure 7.10. Drake and Lee’s estimate of w reflects well the qualitative
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Figure 7.8: Comparison between the exact island width obtained by solving Eq. (6.1)
on a discrete spatial grid and the island half width calculated according
to Eq. (1.25) (Setup I'and k, = 1.8). In the small-A’ limit the constant-A
approximation is numerically confirmed.

behaviour of the saturated island half widths over the shown k,-range and agrees
more closely with the gyrokinetic than the gyrofluid results. The deviations of the
prediction of w can be caused by assumptions which are not completely valid in
the simulations. For instance, in the analytical estimations the shifted background
Maxwellian was not used rigorously, and in addition the density response was ne-
glected.

For both parameter cases investigated here, the island width does not seem to depend
on the values of ps. = 0.2, 0.3, as can be seen by comparing the left and right panel
of 7.9. This suggests that there is no influence of finite electron temperature effects
on the island width. This is consistent with the fact that the analytical prediction
of Drake and Lee does not contain finite electron temperature effects related to ps.,
which are linked to finite pressure effects and the width of the ion inflow region [10].
Since pg . is comparable to the electron skin depth and the analytical model does not
contain this quantity, it is unclear whether it plays an important role in nonlinear
simulations with both kinetic species. To investigate this dependence the parameters
k, = 1.8, A'd. =~ 0.25, u = 1836 are fixed and ps. = 0.3, 0.1, 0.05, 0.025 is varied.
The simulations have shown that the island half width remains the same (w ~ 0.04)
to high accuracy in both gyrokinetic and gyrofluid simulations. It follows that in
the small-A’ regime the pressure scale has no influence on the saturation level of the
tearing mode.

A further important nonlinear quantity which has been compared within the adopted
gyrokinetic and gyrofluid models is the oscillation frequency wg that characterises
the saturation phase, as shown in Figure 7.7 and 7.8. The parameter cases I and
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Figure 7.9: Saturated island half width w as a function of k, (Left: setup I, right:
setup IT). The gyrokinetic and gyrofluid models show a very good agree-
ment in determining the saturated island half width in the small-A’
limit.

IT are considered again measuring the oscillation frequency in the deeply nonlinear
saturation phase as described in Sec. 6.1. In the gyrofluid simulations the oscilla-
tion frequency can always be clearly observed. While for parameters of case I the
frequency can be measured clearly for the gyrokinetic model, it is more difficult in
case I1. Therefore, the number of markers was doubled to N, = 3 - 107 and the
previous time step was halfed to At = 0.125.

The results are displayed in Figure 7.11, where the left panel refers to setup I and
the right panel to setup II. Both models agree very well for all wave numbers £k,
shown here, also for moderate values of A’d, ~ 1. These results clearly show that
also in this regime the oscillatory behaviour of the saturated reconnection process
can be described completely by a fluid description.

From a rough kinetic estimation one gets wg ~ kyv.w/ (2l5) [19, 26], so the fre-
quency is roughly proportional to the island width and the stability parameter A’.
The results in Figure 7.11 confirm this linear scaling in the limit of low-A’ values. As
stated in Sec. (6.1), the explanation by Drake referring to a resonant interaction of
trapped electron with the mode causing saturation and oscillation is not completely
convincing. Both models show practically the same nonlinear behaviour when A’d,
is small enough.

7.3.2 Finite ion temperature effects

This section deals with the extension of previous nonlinear results by including finite
ion temperature effects using the full finite Larmor radius response. Here the focus
lies on the parameter case I and the behaviour of the saturated island half width
with increasing ion temperature.

In Figure 7.12 the saturated island half width is shown when the ion temperature is
varied using the values 7 = 1/900, 0.25, 1, 4 and fixing k, = 1.8. The island width
only changes by about 5% over approximately three orders of magnitude of 7. This
shows that finite Larmor radius effects on w are weakly relevant for A’d, < 1.
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Figure 7.10: The saturated island half width w depending on k, is compared with
the prediction by Drake and Lee (case I). The analytical model shows
a good qualitative agreement with simulation results for A’d, < 1.

As stated earlier, Ref. [19] predicts the general saturation condition w = §.. Here,
due to the influence of finite ion temperature, the electron current channel width
changes according to [38]

5, ~ s (7.16)

kyve/1 + T

On the other hand the growth rate increases according to v ~ v/1 4+ 7, as has been
shown in Sec. 7.2. Using Eq. (7.15) for the growth rate and Eq. (7.16) for the
modified current width, the generalised scaling of the saturated island half width
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Figure 7.11: Oscillation frequency as a function of the wave number &, for the two
models (Left: case I, right: case IT). Both models agree very well in the
low- and medium-A' range.
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Figure 7.12: Comparison of the island half widths w as a function of the temperature
ratio 7 (setup I and k, = 1.8).

for finite 7 becomes
w o~ Ad

as stated for the drift kinetic case. This estimation makes evident that the saturated
island width does not change significantly with ion temperature.

The gyrofluid model has been benchmarked for the first time. The comparison of
both models shows a good agreement for linear and nonlinear simulations. For the
drift kinetic limit the saturated island widths differ only slightly from each other
while the bounce frequencies are practically the same. Effects of FLR affect both
models with the same amount in the linear as well as in the nonlinear regime for
the parameters chosen here.
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8 Conclusions and outlook

Electromagnetic simulations of the linear tearing mode without equilibrium gra-
dients have been performed with EUTERPE. The dispersion relation has been
compared with a shooting method showing an excellent agreement between both
methods. Linear simulations in the presence of finite temperature gradients were
benchmarked as well to high precision. Employing finite density and temperature
gradients a critical threshold of the linear growth rate over the temperature to den-
sity ratio has been observed. Comparing the simulations with an analytic hybrid
approach it’s predictions could be confirmed to good agreement as well as the occur-
rence of the critical threshold in this parameter regime. The kinetic theory of Drake
and Lee is not able to predict the linear critical threshold what hints that their
estimates are too rough. A detailed kinetic linear stability analysis in the presence
of diamagnetic effects is presently not available.

Nonlinear single-mode simulations of the saturated tearing mode have been carried
out. The simulation results are compared to the predicted saturated island half
width predicted by Drake and Lee. For small enough growth rates the analytic
result can be recovered but deviates from the simulation results in the medium-A’
range. Therefore, the analytic prediction is confirmed. An comprehensive theory of
nonlinear collisionless magnetic reconnection which includes more realistic scenar-
ios, e. g. including the coupling of higher harmonics modes and parameter ranges
which allow finite-A’ values of order unity is currently not available. Also, it is im-
portant to note that a capacious theory of nonlinear tearing including diamagnetic
effects could be highly desirable.

The super-exponential behaviour of the tearing mode has been demonstrated for
two magnetic equilibria and numerical difficulties has been discussed.

For the first time the threshold between sub- and super-exponential behaviour has
been verified measuring the oscillation frequency of the field energy depending on
the wave number and equilibrium current width. This threshold is an important
quantity and could be the starting point for numerical investigations getting deeper
insight into the question of possible non-saturation of tearing modes.

A detailed parameter study of the threshold for different equilibrium parameters was
presented. The scan of the equilibrium width @ and box size L, shows clearly that
the assumption of the high-A’ regime does not necessarily leads to super-exponential
behaviour. Moreover, there exists a region in the parameter space allowing a super-
exponential phase of mode right at linear stability threshold.

A comparison of the gyrokinetic model and a compressible gyrofluid model has been
performed. The results of both approaches have been compared to each other lin-
early and nonlinearly for an extended set of parameters. As a first step, the shooting
method has been used to benchmark the linear simulations of both codes in the drift
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kinetic limit. The linear eigenmodes of the two models have been benchmarked for a
single wave number and a fixed set of plasma parameters, whereas the linear growth
rates of both codes have been compared for a range of wave numbers. It has been
shown that in the linear regime both codes give results with high degree of accuracy.
Then the results of the two models have been compared over the whole spectrum of
linearly unstable wave numbers for two sets of plasma parameters showing a good
agreement between the growth rates obtained with the gyrokinetic model and the
gyrofluid one.

The linear simulations have been extended to the case of finite ion temperature,
where it has been shown that ion gyro-orbit averaging effects can be properly de-
scribed by both approaches. Furthermore, numerical simulations in the small-A’
range compare favourably with the asymptotic theory of Porcelli.

Nonlinear simulations of both models have been carried out in the small-A’ regime.
A detailed comparison of observables such as the evolution and saturation of the
island width, as well as it’s oscillation frequency in the saturated phase has been
carried out. The gyrokinetic and gyrofluid simulations have shown that close to
marginal stability the evolution and saturation of the island width for both models
is practically the same. Moreover, an important and new observation is that the os-
cillation frequency of the island width shows no difference between the two models.
Therefore, the main result is that the nonlinear evolution of the collisionless tear-
ing mode in the drift kinetic limit can essentially be well described by fluid theory.
Also finite ion temperature effects in the saturated island phase have been consid-
ered. Here again both models differ only slightly when measuring the island width.
Therefore, in the regimes investigated here, the nonlinear reconnection physics can
be completely described with a gyrofluid approach.

Slightly stronger deviations between the simulation results occur for A’d, of order
unity, suggesting that further investigations will be of interest in this regime, as
well as in cases where A’d, is much larger than unity for which a detailed nonlinear
comparison between the gyrokinetic and gyrofluid models is still missing.
Numerical simulations of magnetic reconnection using fluid models including resis-
tivity can be performed in a straight manner. However, it is still an open issue how
to perform numerically exact benchmarks of the collisional tearing mode using the
PIC framework. Closely related to this topic are simulations of micro-tearing modes
with PIC methods which are left for further work.
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