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Abstra
t

The 
ollisionless tearing mode is investigated by means of the δf -PIC 
ode EU-

TERPE solving the gyrokineti
 equation. In this thesis the �rst simulations of

ele
tromagneti
 non-ideal MHD modes in a slab geometry with EUTERPE are pre-

sented.

Linear simulations are 
arried out in the 
ases of vanishing and �nite temperature

gradients. Both 
ases are ben
hmarked using a shooting method showing that EU-

TERPE simulates the linearly unstable tearing mode to a very high a

ura
y. In the


ase of �nite diamagneti
 e�e
ts and values of the linear stability parameter ∆′
of

order unity analyti
 predi
tions of the linear dispersion relation are 
ompared with

simulation results. The 
omparison validates the analyti
 results in this parameter

range.

Nonlinear single-mode simulations are performed in the small- to medium-∆′
range

measuring the dependen
y of the saturated island half width on the equilibrium


urrent width. The results are 
ompared with an analyti
 predi
tion obtained with

a kineti
 ele
tromagneti
 model.

In this thesis the �rst simulation results in the regime of fast nonlinear re
onne
-

tion (medium- to high-∆′
range) are presented using the standard gyrokineti
 equa-

tion. In this regime a nonlinear 
riti
al threshold has been found dividing the

saturated mode from the super-exponential phase for medium-∆′
values. This 
rit-

i
al threshold has been proven to o

ur in two slab equilibria frequently used for

re
onne
tion s
enarios. Either 
hanging the width of the equilibrium 
urrent or the

wave number of the most unstable mode makes the threshold apparent. Extensive

parameter studies in
luding the variation of the domain extensions as well as the

equilibrium 
urrent width are dedi
ated to a 
omprehensive overview of the 
riti
al

threshold in a wide range of parameters. Additionally, a se
ond 
riti
al threshold

for high-∆′
equilibria has been observed.

A detailed 
omparison between a 
ompressible gyro�uid 
ode and EUTERPE is


arried out. The two models are 
ompared with ea
h other in the linear regime

by measuring growth rates over wave numbers of the most unstable mode for two

setups of parameters. Analyti
al s
aling predi
tions of the dispersion relation rele-

vant to the low-∆′
regime are dis
ussed. Employing nonlinear simulations of both


odes the saturated island half width and os
illation frequen
y of the magneti
 is-

lands are 
ompared in the small-∆′
range. Both models agree very well in the limit

of marginal instability and di�er slightly with de
reasing wave ve
tor. Re
ently,

the full polarisation response in the quasi-neutrality equation was implemented in

EUTERPE using the Padé approximation of the full gyrokineti
 polarisation term.

Linear simulation results in
luding �nite ratios of ion to ele
tron temperature are

ben
hmarked with the dispersion relation obtained from a hybrid model. Finite
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temperature e�e
ts in�uen
e the saturated island width slightly with in
reasing ion

to ele
tron temperature ratio whi
h has been veri�ed by both models.
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1 Introdu
tion

1.1 Magneti
 re
onne
tion

Magneti
 re
onne
tion is a fundamental pro
ess in plasma physi
s whi
h des
ribes

the topologi
al restru
turing of magneti
 �eld lines. Following a more general term,

it is a 
hange in magneti
 
onne
tivity of plasma elements due to the violation of

the frozen-in magneti
 �ux 
onstraint of ideal MHD theory [1, 2℄.

During re
onne
tion the magneti
 energy as a sour
e of free energy is 
onverted

into kineti
 energy of the plasma, thermal energy and a

eleration of parti
les. It is

believed to play a 
ru
ial role in astrophysi
s as a way for explaining solar eruptions,


oronal mass eje
tions, stellar �ares, 
oronal heating and the generation of energeti


parti
les. It also a�e
ts high velo
ity 
louds in the gala
ti
 halo [3℄. Re
onne
tion

events were proven to o

ur in the magnetotail of the earth and mer
ury and theo-

reti
ally investigated in these domains [1, 4�6℄.

A very important additional resear
h part of re
onne
tion physi
s 
on
ern the as-

pe
ts relevant for fusion by magneti
 
on�nement. Negle
ting the ideal MHD ap-

proximation of fusion plasmas, resistive tearing mode instabilities 
an evolve rel-

atively fast and 
an lead to a strongly redu
ed plasma 
on�nement. Moreover,

nonlinear aspe
ts of these re
onne
tion events 
an lead to a high a

eleration of the

tearing instability whi
h has to be 
ontrolled in experimental devi
es [7℄.

A very re
ommendable overview of the �eld of magneti
 re
onne
tion and detailed

dis
ussions are given in Ref. [1℄. For advan
ed studies Ref. [2℄ 
ontains a 
olle
tion

of rather spe
ialised reports. It gives also a short and valuable introdu
tion to re-


onne
tion and related topologi
al 
on
epts.

The 
on
ept of magneti
 re
onne
tion was founded by Giovanelli (1946) trying to

explain the heating of the solar 
orona. Also Dungey (1953) re
ognised that the

large amount of magneti
 energy on the surfa
e of the sun 
an be a sour
e of a

sudden a

eleration of 
harged parti
les. Solar �ares and 
oronal mass eje
tions ex-

hibit the 
learest visual examples of magneti
 re
onne
tion. Soft X-ray images gave

more experimental insight into the magneti
 stru
tures and a

eleration of 
harged

parti
les [5℄. Re
ently the RHESSI satellite was laun
hed (2002) to provide high

resolution γ-spe
tros
opy images of the sun used to explain impulsive re
onne
tion

events on the sun's surfa
e.

A more detailed physi
al pi
ture of re
onne
tion 
an be given by inspe
ting Ohm's

law of the �uid model under 
onsideration. In Se
. 1.2 the relevan
e of Ohm's law

is des
ribed 
omprehensively in terms of a hydrodynami
 analogon of magneti
 re-


onne
tion.

1



1 Introdu
tion

Within the non-ideal MHD plasma des
ription one 
an assume [8℄

~E + ~v × ~B = η~j −∇p + d2e
∂~j

∂t
+
~j × ~B

n e
. (1.1)

This equation 
an be tra
ed ba
k to the momentum balan
e of the ele
tron �uid

in the derivation of the MHD model. It des
ribes the response of the 
urrent

~j
under the in�uen
e of an ele
tri
 �eld

~E. Here, n, ~v and p are the plasma density,

velo
ity and s
alar pressure, respe
tively. There are several strong restri
tions when

applying this law in the MHD 
ontext [1℄.

Negle
ting the right hand side of Eq. (1.1) the plasma is ideal and the magneti
 �eld

lines are just guided with the plasma motion. The resistivity η and the inertia term

proportional to d2e lead to a violation of the 
onstraint of the frozen-in magneti


�ux allowing the magneti
 �eld to de
ouple from the plasma �ow. The resistivity

introdu
es dissipation in the system 
ausing a 
onversion of magneti
 energy into

Joule heating. Without resistivity the system is dissipation-free and an e�e
tive

impedan
e remains due to the �nite ele
tron inertia proportional to d2e. The pres-
sure term does not support non-ideal e�e
ts sin
e it is a gradient �eld. The pressure

gradient here 
auses a pro
ess so-
alled slippage and has similar features of re
on-

ne
tion [2℄. However, o�-diagonal 
omponents of a pressure tensor 
an indeed break

the frozen-in magneti
 �ux 
onstraint [9℄. The last part on the right hand site is

known as Hall term. This term for itself does also not 
ause magneti
 re
onne
tion

but makes Alfvéni
 waves dispersive (whistlers).

One of the earliest models, referred to as the Sweet-Parker (SP) model, des
ribes

a steady re
onne
tion pro
ess within the resistive MHD 
ontext [1℄. On the right

hand side of Eq. (1.1) only the term proportional to η remains. A �eld line geometry

whi
h is antiparallel near the so-
alled singular layer underlies this model, motivated

by modelling the 
omplex magneti
 dipole stru
tures on the surfa
e of the sun. It

des
ribes magneti
 re
onne
tion as a 
ombination of a large s
ale ideal MHD-regime

whi
h a

ounts for the equilibrium length s
ales far away from the singular layer,

and a thin non-ideal domain of width δSP around the singular layer. Within this

non-ideal di�usion domain the magneti
 �eld lines are able to re
onne
t be
ause

the frozen-�ux 
onstraint is broken due to resistivity. The magneti
 �eld di�uses

into the layer, re
onne
ts and a

elerates the plasma along the singular layer in the

elongated dire
tion with an upstream-velo
ity vA,up. However, the elongated di�u-

sion region of length ∆ limits the rate of re
onne
tion due to the Alfvén limit on

the ion out�ow velo
ity. Assuming a steady-state re
onne
tion in an in
ompressible

plasma, the 
ontinuity equation yields for the in�ow velo
ity [10, 11℄

vin ∼ δSP
∆

vA,up ≪ vA,up. (1.2)

It relates the length δSP of the di�usion region to the ma
ros
opi
 elongated s
ale ∆
whi
h 
auses the re
onne
tion rate, vin/vA,up to be relatively small. However, the


omparison with experimental observations of the re
onne
tion rate 
learly failed

sin
e the approximations used in this theory are quite 
rude.

2



1.1 Magneti
 re
onne
tion

In the early 60ies this model has been improved by Pets
hek. He assumed that slow

mode sho
ks in the Sweet-Parker out�ow region greatly speed up the mass �ow. As

the external plasma 
rosses the sho
ks it is a

elerated in the downstream dire
tion.

The stru
ture of the sho
ks along the out�ow dire
tion is 
hara
terised by a new

mi
ros
opi
 s
ale ∆∗
, and the ma
ros
opi
 s
ale ∆ of the Sweet-Parker model. An

analysis shows that the re
onne
tion rate is in
reased by a fa
tor of

√

∆/∆∗
,

vin ∼ δSP
∆

√

∆

∆∗ vA,up ∼ vA,up. (1.3)

Although the model of Pets
hek was impressive it is very 
ontroversial. Biskamp

(1986) reported the results of numeri
al simulations whi
h appeared to disprove the

Pets
hek model. In parti
ular, assuming 
onstant resistivity over the whole sim-

ulation domain, the sho
ks emerged at distan
es mu
h larger than predi
ted by

Pets
hek [5℄.

The plasma in the solar 
orona 
an not always be 
onsidered as 
ondu
tive. Colli-

sionless me
hanisms have been investigated leading to fast re
onne
tion resulting in

mu
h higher re
onne
tion rates 
ompared to the resistive 
ase whi
h suites better

the explanation of astrophysi
al observations. These me
hanisms base, for instan
e,

on inertia e�e
ts of the ele
trons breaking the frozen-in 
onstraint [5℄. This 
ase 
or-

responds to taking only the term proportional d2e of the right hand side of Eq. (1.1)

into a

ount. The in�uen
e of the Hall-term was investigated as well leading to an

in
rease of the re
onne
tion rate [2℄.

Experiments with fusion devi
es have also shown strong hints of re
onne
tion phe-

nomena, as was �rst observed by Goehler (1974) in tokamaks. So-
alled sawtooth


rashes may o

ur, whi
h have been observed by soft X-ray emissions. The ele
-

tron temperature pro�le peaks and suddenly �attens. This has been explained

by Kadomtsev (1975), assuming that the MHD heli
al mode with mode number

m = 1, n = 1 displa
es the equilibrium magneti
 axis of the tokamak. After that

the magneti
 �elds are allowed to re
onne
t at the q = 1 surfa
e with q the safety

fa
tor.

Sin
e the 70ies the most intensively studied instability for the formation of X-points

and re
onne
tion is the tearing mode. It has attra
tive properties sin
e there are


ollisionless and 
ollisional variations. To des
ribe re
onne
tion in the magnetotail

of the earth the 
ollisionless tearing mode without a guiding �eld, often modelled by

a so-
alled Harris 
on�guration [12℄, has been established as a standard 
on
ept in

magneti
 re
onne
tion physi
s. The tearing mode o�ers also the possibility to 
reate

spontaneous re
onne
tion in 
ontrast to for
ed re
onne
tion driven by an external

equilibrium �ow.

In parti
ular, it is important to extend the understanding of tearing modes in hot

plasmas en
ountered in fusion devi
es whi
h maintain a strong magneti
 guiding

�eld. Due to the high 
ore temperature binary 
oulomb 
ollisions 
an be negle
ted

whi
h makes the plasma highly 
ondu
tive. Considering the 
on�nement of fusion

plasmas on large times s
ales the approximation of ideal MHD is not valid anymore.

Waiting long enough, the magneti
 �eld 
an di�use perpendi
ular to the guiding

3



1 Introdu
tion

�eld whi
h makes the des
ription of �nite resistivity of the plasma ne
essary.

One 
ould suppose that the perpendi
ular magneti
 di�usion 
ausing destabilisation

of the plasma is quite slow. Sin
e the involved spatial s
ales are very small and a

large amount of magneti
 energy 
ontained in the equilibrium 
an be released, the

growth rate of the resistive tearing mode 
an be very high [13, 14℄. The resistive

tearing mode typi
ally grows on a hybrid time s
ale γ−1
k ∼ t

2/5
A t

3/5
R between the short

MHD time s
ale tA and the very long resistive time s
ale tR
1

[13℄.

Tearing modes are well known for the formation of magneti
 islands whi
h alter

the magneti
 topology and thus the 
on�nement properties of fusion devi
es. The

des
ription of tearing modes 
an be extended by in
luding ele
tron temperature

gradients. If additionally a su�
iently large resistivity is present so-
alled mi
ro-

tearing modes 
an be ex
ited whi
h form small s
ale islands [15, 16℄. These modes

trigger the sto
hastisation of magneti
 islands 
ausing a rapid de
on�nement of the

plasma.

From the 60ies until nowadays, the analyti
al work on tearing modes multiplied.

The milestone work of Furth, Killeen and Rosenbluth (1963) within the resistive

MHD 
ontext founded the linear boundary layer analysis of tearing modes [14℄.

They 
al
ulated the dispersion relation for the �rst time in terms of the stability

parameter ∆′
des
ribing the ideal solution on large s
ales outside the tearing layer.

The famous analyti
al result of Rutherford (1973) stated the algebrai
 growth of the

nonlinear resistive tearing mode [17℄. During these de
ades the 
omputational work


on
entrated mainly on �uid 
al
ulations. Sonnerup (1970) and Vasyliunas (1975)

began to verify numeri
ally that other solutions than Pets
hek's predi
tion exist in

the regime of fast re
onne
tion.

Drake and Lee (1977) used a drift kineti
 model for both ele
trons and ions to pre-

di
t 
ollisionless and 
ollisional linear dispersion relations in the low-∆′
limit [18℄.

Although quite early, this work is still a standard referen
e of present reports.

Drake and Lee also proposed a nonlinear saturation me
hanism of the tearing mode

both without and with 
ollisions [19℄. The latter result 
on�rmed the predi
tion of

Rutherford.

During this period numeri
al work on simulations of kineti
 models started whi
h

were dis
retised by parti
le-in-
ell (PIC) methods. Katanuma (1980) investigated

the nonlinear evolution of tearing modes in a slab [20℄. However, this work fo
used

on presenting a few single time series to enlight the physi
al saturation me
hanism

rather than a 
omprehensive numeri
al veri�
ation of available nonlinear predi
tions.

Birdsal and Langdon (1985) se
onded, but their approa
h in
luded large spatial and

temporal dis
repan
ies of the s
ales involved (Debye length and system size, plasma

frequen
y of the ele
trons and small growth rates) and thus made it intra
table to

obtain kineti
 simulation results in a reasonable period of time. This numeri
al �eld

gained mu
h drive when the gyrokineti
 equation derived by Hahm (1988) had been

established. This kineti
 des
ription allows for tearing solutions 
ir
umventing the

previously mentioned numeri
al disadvantages for simulations.

1

The Alfvén time tA = Leq,B/vA as well as the time of resistive di�usion, tR = µ0 L
2
eq,B/η are

related to the equilibrium magneti
 �eld s
ale Leq,B.
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1.2 Preparation for re
onne
tion: A hydrodynami
 analogon

Por
elli (1991) su

eeded in 
al
ulating a dispersion relation of the tearing mode

with a �uid approa
h of the ele
trons and a gyrokineti
 des
ription of the ions. This

dispersion relation in
ludes diamagneti
 e�e
ts, 
ollisionality and �nite ion temper-

ature e�e
ts and still serves as a standard formula in ben
hmarking results of linear

�uid simulations [21, 22℄. Sin
e the 90ies MHD modelling, minimal two-�eld and

four-�eld models have seen explosive growth and usage due to the te
hnologi
al

progress in 
omputing power and numeri
al te
hniques [5, 23℄. MHD 
odes 
ould

fa
e demands of realisti
 3D global domains like 3D simulations of earth's magne-

tosphere in the presen
e of the solar wind. The 
ollaboration entitled Geospa
e

Enviromental Modeling (GEM) proje
t enfolded several important results on nu-

meri
al studies of two-�uid re
onne
tion des
ribing Earth's magnetosphere (Shay

and Drake (1998), Daughton (2006)) [5℄.

Nonlinear studies by Aydemir (1992) dis
overed the so-
alled �explosive� re
onne
-

tion when simulating the m = 1 mode in a tokamak [7℄. Using a four-�eld model

in the high-∆′
regime and low 
ollisionality he showed that in the early nonlinear

phase the a
tual growth rate γ(t) of the tearing mode in
reases by one order of

magnitude with respe
t to the linear growth rate γk. The strong in
rease of the

re
onne
tion rate in the early nonlinear phase was 
on�rmed by Ottaviani (1993)

and Kleva (1994) in the high-∆′
regime within a slab model [23℄. A physi
al me
h-

anism explaining this a

eleration 
ould not worked out but a heuristi
 di�erential

equation des
ribing the island evolution was derived. An 
omprehensive nonlinear

theory explaining this subje
t is still under dis
ussion [35℄.

Grasso (1999) extended the model of Ottaviani by taking �nite Larmor radius (FLR)

e�e
ts into a

ount [21℄. The numeri
al investigation in
luded the dependen
y of

the �eld stru
ture of the tearing mode on �nite ion temperature as well as the a
-


eleration of the amplitude in the early nonlinear phase.

Progress has also been made investigating se
ondary island formation (plasmoids)

using a resistive MHD model employing a turbulent ba
kground [45℄. For su�
iently

small resistivity the re
onne
tion rate be
omes independent from 
ollisionality. Re-


ently, a kineti
 hybrid model was used to �gure out numeri
ally that Landau-

damping 
an be mainly responsible for ele
tron heating during two-dimensional

re
onne
tion [46, 47℄. In parti
ular, the width of the saturated island half width is

found to be the same as predi
ted in MHD theory for su�
ient large system sizes.

1.2 Preparation for re
onne
tion: A hydrodynami


analogon

This 
hapter prepares for magneti
 re
onne
tion within a pure hydrodynami
 
on-

text des
ribing the deta
hment of a liquid drop. This 
hapter here follows mainly the

work of [2, 48℄.

The term re
onne
tion is not restri
ted to pro
esses whi
h involve ele
tromagneti


�elds. It 
an appear in a very general fashion, for instan
e, des
ribing non-ideal

pro
esses within hydrodynami
s. In the following example, the dynami
al magneti


ve
tor �eld

~B is translated into a generi
 smooth s
alar quantity P as shown in

5
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Figure 1.1 whi
h 
an be thought of as a 
olour or density of a �uid. The Figure

might show a �uid, where the white, lighter phase is asso
iated to P = 0 and the

bla
k, heavier phase to P = 1, whereas in between the quantity undergoes a smooth

transition. The temporal evolution of this unstable 
on�guration is depi
ted from

left to right. The �ow ~v is a solution of the Navier-Stokes equations, while P is

assumed to be just adve
ted with the lo
al �ow, i. e. being des
ribed by a transport

equation

∂P (~x, t)

∂t
+ ~v · ∇P (~x, t) = 0. (1.4)

However, the deta
hment 
an never a
hieved using Eq. (1.4). To des
ribe deta
h-

ment, the boundary of the P = 1 domain must be adve
ted to the stagnation point

in a �nite time. This is not possible for any smooth velo
ity �eld. The �ow at the

Figure 1.1: Temporal evolution of the deta
hment of a drop as an example of s
alar

re
onne
tion. The Figure is taken from Ref. [48℄.

stagnation point x = 0, y = 0 
an be well approximated by ~v = (−x, y, 0). The

time for transporting a �uid element over the last distan
e ǫ to the stagnation point

is

∆t =

∫ 0

ǫ

1

vx
dx =

∫ ǫ

0

1

x
dx = ln(x)|ǫ0 = ∞. (1.5)

This situation is again shown in Figure 1.2, but in 
ontrast to Figure 1.1 the 
oor-

dinate system is rotated by π/2.
In reality the deta
hment is of 
ourse quite possible. The physi
al reason for the


ontradi
tion is that the des
ription by Eq. (1.4) fails during the deta
hment. In

nature the de
reasing thi
kness of the P = 1 domain rea
hes mole
ular distan
es

in �nite time and at least then it is not 
lear whether a �uid des
ription 
an be

maintained. To stay within the ma
ros
opi
 �uid des
ription and to a

ount tenta-

tively for the deta
hment, one 
an introdu
e a 
orre
tion term in Eq. (1.4). It is not

assured that this 
on
ept will be su

essful, sin
e on those small s
ales involved the


omplex parti
le dynami
s should be better des
ribed by a kineti
 model. Adding

a generi
 non-ideal term r to Eq. (1.4) one obtains

∂P (~x, t)

∂t
+ ~v · ∇P (~x, t) = r (~x, t) . (1.6)

The only 
ondition is that r must be small 
ompared to the adve
tion term, ex-


luding the points, where the adve
tion term vanishes. This equation will be the

analogon of Ohm's law Eq. (1.1) and r 
an be translated to the term proportional

6



1.2 Preparation for re
onne
tion: A hydrodynami
 analogon

Figure 1.2: The re
onne
tion pro
ess is not possible in �nite time with an ideal

transport equation for P . The Figure is taken from Ref. [48℄.

Figure 1.3: The re
onne
tion pro
ess is now possible in �nite time with non-ideal ef-

fe
ts r in the transport equation of P . The Figure is taken from Ref. [48℄

to the resistivity η~j. The exa
t form of r almost plays no role.

Eq. (1.6) 
an be rewritten as

∂P (~x, t)

∂t
+ ~w · ∇P (~x, t) = 0, (1.7)

assuming r = −δ~v · ∇P and de�ning ~w = ~v+ δ~v. The new velo
ity ~w is not smooth

sin
e ∇P vanishes at the point of deta
hment where r 6= 0. It requires a singularity
in δ~v and 
onsequently in ~w of the type |δ~v| ∼ 1/ |∇P |.
Indeed, for a generi
 saddle point of the form P ∼ a−b x2+c y2 deta
hment be
omes

possible as shown Figure 1.3. Sin
e the singularity of the �ow s
ales like wx ∼ −1/x
with respe
t to the x-dire
tion this leads to the estimation of the travel time

∆t =

∫ 0

ǫ

1

wx
dx =

ǫ2

2
, (1.8)

whi
h is now �nite.
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1.3 Current resear
h and motivation for this work

At the very �rst magneti
 re
onne
tion is a numeri
al and analyti
al 
hallenge. Even

global simulations in a slab geometry are still attra
tive and frequently used for in-

vestigations [25, 26℄. The relative simple slab geometry admits the investigation of

fundamental physi
al me
hanisms of re
onne
tion 
aused by the highly nontrivial

aspe
ts of boundary layer dynami
s.

In this work the standard gyrokineti
 equation are solved to model re
onne
tion with

a modern kineti
 approa
h [27℄. The gyrokineti
 equation is solved by means of a

δf -PIC method implemented in the EUTERPE 
ode. This high performan
e and

fully parallised 
ode is an advan
ed tool for full gyrokineti
 plasma simulations [28℄.

EUTERPE 
an provide a detailed view on the phase spa
e dynami
s whi
h is a

unique bene�t in 
ontrast to �uid models that are often for
ed to use a de�ned

physi
s spe
i�ed by the applied 
losures s
hemes. Sin
e re
onne
tion simulations

are a

ompanied with a high 
omputational e�ort the PIC s
heme itself has to be


ompared by frequently used kineti
 
ontinuum 
odes, whi
h tend to be rather slow

due to high resolution of the multi-dimensional phase spa
e [29, 31�33℄.

The numeri
al investigation of linear tearing modes is still a 
urrent topi
 of mag-

neti
 re
onne
tion in the low-β regime. However, numeri
ally exa
t ben
hmarks of

simulation results are a 
hallenging task, rather it is 
ommon to 
ompare with less

exa
t analyti
 dispersion relations [29, 30℄. This work shows that EUTERPE is able

to simulate linear re
onne
tion pro
esses to very high a

ura
y by 
omparing with

an adopted shooting method. Moreover, the performan
e of linear simulations verify

that the 
omputationally �
heap� PIC s
heme is suitable for re
onne
tion simula-

tions.

There is a tremendous la
k of simulation results of physi
ally important parameter

regimes 
on
erning tearing modes. This 
an be tra
ed ba
k to the high number

of relevant spatial s
ales whi
h are able to modify the re
onne
tion pro
ess sensi-

tively. For instan
e, in the range of fast re
onne
tion employing ele
tron temperature

gradients, the linear tearing mode has not been mu
h investigated so far. In the

presen
e of equilibrium gradients of length s
ales LT,e, Ln,e a 
riti
al threshold of

η = Ln,e/LT,e o

urs and is not quite well understood. Closely 
onne
ted to �nite

equilibrium gradients in the presen
e of re
onne
ting events is the investigation of

mi
ro-tearing modes, whi
h are important for understanding ele
tron transport dur-

ing island formation. The numeri
al des
ription of mi
ro-tearing modes with PIC

methods is not well developed.

An important point marks the nonlinear saturation of the tearing mode whi
h is

also a key feature of the present work. Sin
e a 
oupling of the most unstable mode

to modes with higher poloidal mode numbers is not expe
ted, it is a very well ar-

ranged situation to observe the single-mode evolution. In 
ontrast to, for instan
e,

ITG-modes whi
h 
an drive turbulent plasmas ex
iting a whole spe
trum of inter-

a
ting modes, analyti
al predi
tions of the saturated island half width of nonlinear

single tearing modes are easier to validate, but not proved numeri
ally so far for

a broad range of parameters. Only rare systemati
 numeri
al investigations of the

saturated island half width are available in the literature [26℄. Either the weak 
ol-

8



1.3 Current resear
h and motivation for this work

lisional regime has been investigated [47℄ or high-β 
ases [30℄ whi
h do not mat
h

the present purposes. The 
omparison of predi
tions of the saturated island half

width [19℄ with numeri
al simulations is a further important 
ontribution of this

thesis.

Nonlinear tearing in terms of Hamiltonian �uid models has been dis
ussed at length

both in the high- and low-∆′
regime [42�44℄. Despite of the wealth of numeri
al

results obtained so far reasonable predi
tions like saturated island width depend-

ing on important plasma parameters are missing. The Hamiltonian �uid equations


an be formulated in terms of topologi
al invariants whi
h might enhan
e analyti
al

work. However, even this 
lass of more intuitive models 
ompared to pure kineti


approa
hes are still investigated rather numeri
ally and show a la
k of analyti
al

work on nonlinear re
onne
tion.

The need for simulation results and physi
al understanding be
omes even more ne
-

essary in the high-∆′
regime. Early attempts of the theoreti
al des
ription of non-

linear destabilisation in the high-∆′
regime started with �uid simulations and semi-

analyti
al statements based on the evaluation of the ve
tor potential and plasma

�ow pattern [23℄. Important progress has been a
hieved in understanding nonlinear

destabilisation me
hanism by applying the energy prin
iple on a two-�uid model

in the high-∆′
[35℄. However, in general this range of fast re
onne
tion is harder

to treat numeri
ally the higher ∆′
. In this thesis the fo
us lies on the transition

between the saturated phase and nonlinear destabilisation to get deeper insight into

the di�eren
e of both regimes 
ir
umventing the range of large values of the stability

parameter. Although a �nal answer to the physi
al me
hanism of a

eleration 
an

not be given this transition will be one of the most interesting �elds in nonlinear

tearing physi
s. Atta
king these simulations in real three-dimensional geometries

would be a deli
ious task and is left for further work.

Sin
e the last two de
ades re
onne
tion was mainly investigated by �uid simulations

[21, 23, 36℄. Due to the in�uen
e of kineti
 e�e
ts like �nite Larmor radius e�e
ts

or dominating phase spa
e dynami
s like superthermal parti
le a

eleration on lin-

ear re
onne
tion, a 
omparison between kineti
 and �uid simulations is ne
essary.

Beside kineti
 e�e
ts, it is still not 
lear whether �uid models 
ontain nonphysi
al

e�e
ts like arti�
ial saturation with respe
t to kineti
 approa
hes when entering the

nonlinear phase of re
onne
tion [34℄. During the last de
ade mainly two bran
hes of

gyro-�avoured models dominated magneti
 re
onne
tion physi
s: in the late 80ies

the gyrokineti
 approa
h 
ame up as a standard tool in plasma physi
s [27℄. In

the early 90ies gyro�uid models were derived from the gyrokineti
 equation and

simpli�ed versions of these models were used intensively in strongly magnetised

plasmas [34, 37, 40℄. These �uid models were also 
ollated with arbitrary guide-�eld

models in low-β limits [41℄. After proposing and deriving these models a 
ompre-

hensive 
omparison of these di�erent models is needed, espe
ially with the original

gyrokineti
 equation. Linear 
omparisons of �uid and gyrokineti
 approa
hes have

been performed both in a low- and high-β slab 
on�guration [32, 38, 39℄. However, an

exa
t ben
hmark has not been presented as well as a systemati
 
omparison of both

models in the nonlinear regime. This thesis is also dedi
ated to a systemati
 
om-

parison of the standard gyrokineti
 model and a 
ompressible gyro�uid model [51℄
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both in the linear and nonlinear regime. When fo
ussing on linear simulations both

approa
hes are a

ompanied with numeri
ally exa
t ben
hmarks.

1.4 Collisionless tearing mode instability

The tearing mode is a non-steady spontaneous ele
tromagneti
 instability 
ausing

magneti
 re
onne
tion. Even if a plasma is stable with respe
t to ideal MHD, non-

ideal e�e
ts 
an make the plasma unstable. The dynami
s of this instability is

mainly in�uen
ed by a very thin di�usion region of the order of the 
ollisionless

ele
tron skin depth de where non-ideal e�e
ts be
ome important. In the following a


al
ulation of the linear growth rate γ, in a similar fashion as Ref. [13℄, but within

the 
ontext of a simpli�ed ele
tron �uid model in a magnetised plasma is given to

get in tou
h with boundary layer and tearing mode physi
s.

1.4.1 The linear tearing mode

The simplest 
on�guration of a magneti
 �eld

~B0 = (0, B0,y, B0,z) in a slab whi
h is

tearing unstable, is provided by an equilibrium 
urrent of amplitude j0,z and width a,
�owing in the dire
tion of the guiding �eld B0,z êz. The only non-zero perpendi
ular

omponent of the magneti
 �eld is then given by

B0,y(x) =







B′
0,y x −a < x < a

−B′
0,y x < −a

B′
0,y x > a.

(1.9)

Usually the derivative of the magneti
 �eld B′
0,y(0) is expressed in terms of the shear

length de�ned by ls = B0,z/B
′
0,y(0).

This equilibrium is MHD stable, but introdu
ing non-ideal e�e
ts like ele
tron inertia

makes it unstable. The resulting di�usion of the magneti
 �eld lines leads to a new

magneti
 
on�guration and is expe
ted to be of high in�uen
e at a resonant surfa
e

de�ned by the 
ondition k‖(x) = ~k · ~B0(x) = 0.
A simple model whi
h supports magneti
 re
onne
tion is an ele
tron �uid model

given by the equations of motion [51℄

1

0 =
∂ne

∂t
+ [ue, Ψ] , (1.10)

0 =
∂ (Ψ− d2e ue)

∂t
− ρ2S,e [ne, Ψ] , (1.11)

ue = ∆Ψ, (1.12)

1

The equations are normalised to Alfvén units. This normalisation pro
edure is des
ribed in

Se
. (4.1). The model originates from a more general gyro�uid model. Here only ele
trons are

taken into a

ount.

10



1.4 Collisionless tearing mode instability

where ne denotes the density, ue the 
urrent density of the ele
trons and Ψ the

magneti
 �ux. Eq. (1.12) is parallel Ampère's law. The ele
tron skin depth de
in Ohm's law, Eq. (1.11), is retained in order to provide a physi
al me
hanism

for breaking the frozen-in 
onstraint. The ele
tron 
ontinuity equation, Eq. (1.10),


loses the system. The Poisson bra
ket for two arbitrary �elds f, g is de�ned by

[f, g] = ~b · ∇f ×∇g.
To investigate the linear tearing mode, Eqs. (1.10�1.12) are linearised keeping only

terms proportional to the �u
tuating �elds. The Fourier ansatz Ψ1 ∼ ei(kyy−ωt)
for

the perturbed magneti
 �ux and analogously for ue and ne relates the eigenvalue ω
to the wave number ky. The following 
al
ulation deals only with two-dimensional

re
onne
tion setting ∂z = 0 for the perturbations, so the resonant surfa
e is lo
ated
at x = 0. The linearised equations are

0 = ωn1 + ky

(

−∂3
xΨ0

∂xΨ0
Ψ1 + ∂2

xΨ1 − k2
yΨ1

)

∂xΨ0,

0 = ω
(

Ψ1 − d2e
[

∂2
xΨ1 − k2

yΨ1

])

+ ρ2S,en1 k‖.

(1.13)

A possible equilibrium ve
tor potential Ψ0 representing setup Eq. (1.9) is given by

Ψ0(x) =







−x2/(2 ls) −a < x < a
x/ls + 1/(2 ls) x < −a
−x/ls + 1/(2 ls) x > a.

(1.14)

After eliminating the density response n1, the �nal di�erential equation be
omes

0 = ω2
(

Ψ1 − d2e
[

∂2
xΨ1 − k2

yΨ1

])

+ ρ2S,e k
2
‖

(

−∂2
xB0,y

B0,y
Ψ1 +

[

∂2
xΨ1 − k2

yΨ1

]

)

(1.15)

It is quite possible to solve this eigenvalue equation straightforward numeri
ally to

get the 
omplex eigenvalue ω and the eigenfun
tion Ψ1. However, this does not

illuminate the physi
al pi
ture behind re
onne
tion.

The problem of 
al
ulating the growth rate 
an be solved approximately by a

ount-

ing dire
tly for the domains whi
h di�er strongly regarding the relevant physi
s. The

approximative solution of the eigenvalue problem rests upon a distin
tion between

the outer ideal (redu
ed) MHD region and the inner di�usion region. The motiva-

tion for this strategy 
an be explained by inspe
ting the typi
al eigenmode stru
ture,

shown in Figure 1.4. The equilibrium magneti
 length a, obeying typi
ally a ≪ Lx,

is the largest s
ale in the system and is related to the outer solution. Although

Eq. (1.15) is always valid, the non-ideal term proportional to de 
an be negle
ted on

the s
ale a. The di�erential equation simpli�es and its solution des
ribes the outer

part. In 
ontrast to the outer domain the spatial stru
ture of the mode mostly

varies 
lose to the resonant surfa
e due to the 
reation of a perturbed 
urrent sheet

of width δe deforming the eigenmode on the small s
ale de. At this distan
e the

non-ideal e�e
ts 
an not be negle
ted anymore whi
h motivates the derivation of an

inner layer di�erential equation 
oming from Eq. (1.15). The resulting di�erential
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 0  0.2  0.4  0.6  0.8  1

Ψ
1
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a

ρS,e
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δe

Figure 1.4: Di�erent s
ales involved in boundary layer analysis of the tearing mode.

The outer ideal MHD solution varies slowly on a. The strongly varying

stru
ture around s̄ = 0.5 is 
aused by the perturbed ele
tron 
urrent


hannel of width δe and typi
ally s
ales with de. ρS,e represents the dis-
tan
e at whi
h the pressure pro�le 
hanges.

equation a

ounts for magneti
 �eld line di�usion.

Sin
e the outer region is governed by the ideal MHD des
ription and this solution

varies on the length s
ale of the magneti
 equilibrium x ∼ a ∼ k−1
y it is assumed

that it is mu
h larger than all remaining s
ales, thus de, ρS,e ≪ a. The ideal MHD

equation follows then from Eqs. (1.15) by negle
ting the term proportional to ω 1

resulting in

∂2
xΨ1 =

(

k2
y +

∂2
x B0,y

B0,y

)

Ψ1. (1.16)

This di�erential equation is qualitatively di�erent from Eq. (1.15). The magneti


equilibrium is divided into three domains a

ording to Eq. (1.9), for whi
h one

has to solve Eq. (1.16) together with the proper boundary 
onditions in between.

Here the di�erential equation is trivial to solve and gives an exponentially de
aying

solution for x > a and x < −a. This re�e
ts the spatially lo
alised 
hara
ter of the

eigenmode also on the equilibrium s
ale a. If a ≪ Lx
2

, the boundary 
onditions of

the eigenmode play a minor role. The solution Ψ1 is 
hara
terised by a jump in the

1

In the ideal MHD domain the Alfvén time is mu
h shorter than the time s
ale of the tearing

mode, thus |ω| ≪ 1.
2

This is the usual ordering of the magneti
 equilibrium s
ale and extent of the system size.

12



1.4 Collisionless tearing mode instability

slope at the resonant surfa
e

3

[13℄,

∆′ =
1

Ψ1

(

∂Ψ1

∂x

∣

∣

∣

∣

x=+0

− ∂Ψ1

∂x

∣

∣

∣

∣

x=−0

)

. (1.17)

The linear stability parameter ∆′
is an important quantity in the 
ontext of tearing

mode analysis. It allows to 
ompare roughly di�erent equilibria using only one value.

∆′
is a fun
tion of ky, a and the extension of the domain Lx. It 
ontains the whole

equilibrium geometry and s
ale of the perturbations ky under 
onsideration, even

for more 
omplex global domains like a tokamak.

The value ∆′

an be 
al
ulated analyti
ally for the spe
i�
 slab equilibrium used

here, Eq. (1.9), giving [13℄

∆′ (kya) =
2kya

(

e−2kya − 2kya + 1
)

e−2kya + 2kya− 1
. (1.18)

The system size Lx does not appear in this expression, sin
e it is assumed that

Lx ≫ a and so Ψ1 de
ays fast enough to suppress the in�uen
e of the boundary


onditions. The dependen
y ∆′(kya) is shown in Figure 1.5 for a = 1. The mode

be
omes unstable, if this quantity is positive, otherwise it is stable. For wave ve
tors

ky > 0.64 the re
onne
tion pro
ess is inhibited.

It is important to note that many 
urrently used equilibria in the literature follow

the same qualitative stru
ture as des
ribed in Eq. (1.9) and so ∆′
di�ers not mu
h.

-2

 0

 2

 4

 6

 8

 0.3  0.4  0.5  0.6  0.7  0.8  0.9

∆’

ky

Figure 1.5: The tearing mode stability parameter depending on ky. For ky > 0.64
the mode be
omes stable.

The instability is mainly in�uen
ed by the thin 
urrent 
hannel of width δe at the

3

One 
an show that also outer solutions of Eq. (1.16) exist whi
h do not have a jump at x = 0.
However, these modes are physi
ally not relevant [13℄.

13
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resonant surfa
e whi
h is driven by a parallel ele
tri
 �eld E‖. Ideal MHD does not


ontain this quantity and so the ideal solution has to break down when approa
hing

the layer |x| → 0. The 
urrent layer serves as a kind of surfa
e 
urrent jz,1 �seen�
by the outer s
ale a whi
h produ
es the jump in ∂xΨ1.

Sin
e Ψ1 must be di�erentiable, it 
annot have a jump in the slope at all. The inner

layer solution s
ales with δin whi
h will be de�ned later. This length resolves the


urrent 
hannel 
orre
tly. Far away from the 
urrent 
hannel with respe
t to the

small s
ale, i. e. |x| ≫ δin but nevertheless δin ≪ a, the inner solution will mat
h

asymptoti
ally the outer solution to produ
e a smooth Ψ1 in the whole domain.

Close to the resonant layer x ≈ de the skin term in Eq. (1.15) and the strong variation

of Ψ1 (∂x ≫ ky) be
omes dominant. This modi�es the di�erential equation (1.15)

qualitatively des
ribing now the small s
ale dynami
s with

−∂2
x Ψ1

(

γ2 d2e + ρ2S,e k
2
‖
)

+ γ2 Ψ̄1 = 0. (1.19)

Usually it is assumed that the equilibrium magneti
 �eld is a linear fun
tion 
lose

to the resonant surfa
e, B0,y ∼ x/ls. The se
ond term on the left hand side of

Eq. (1.19) 
ontains the assumption of a 
onstant value of the perturbed magneti


�ux, Ψ̄1, re�e
ting the 
onstant-Ψ approximation a
ross the layer. This assumption

is only valid in the limit of marginal instability and 
learly not appli
able in the 
ase

∆′ ≫ 1. The 
hara
teristi
 length s
ale δin 
an be estimated by balan
ing the �rst

two terms of Eq. (1.19) giving δin = (lsγde)/(ρS,eky). Also one 
an show that the

tearing mode is purely growing (ω̂ = 0), sin
e there are no equilibrium gradients of

temperature or density [13, 26℄.

Finally, both the solutions of the singular layer di�erential equation, Eq. (1.19)

and the ideal solution from Eq. (1.16), will be 
ombined to des
ribe the mode stru
-

ture over the whole domain Lx in order to get the �nal dispersion relation. In the

following the method of asymptoti
 mat
hing will be applied. First one res
ales

the inner solution a

ording to X = x/δin, assuming that δin is arbitrary small with

respe
t to a. In terms of the variable X , the stability parameter, Eq. (1.17) be
omes

∆′ =
1

Ψ̄1,x

∫ ∞

−∞
dX

d2Ψ1,x

dX2
. (1.20)

This expression 
an also be formulated by integrating the di�erential equation of

the layer, Eq. (1.19), respe
ting the rede�ned 
oordinate X ,

1

Ψ̄1,x

∫ ∞

−∞
dX

d2Ψ1,x

dX2
=

δin
d2e

∫ ∞

−∞
dX

1

1 +X2

=
δin
d2e

π.

(1.21)

This expression makes 
onta
t with ∆′
of the ideal solution, Eq. (1.20), in the

asymptoti
 limit. Knowing this value for a parti
ular magneti
 geometry, the growth

14



1.4 Collisionless tearing mode instability

rate 
an be 
al
ulated as

γ = ∆′ ρS,e ky de
π ls

, (1.22)

whi
h agrees with Por
elli [49℄ in the limit ∆′ → 0. It makes also 
lear that the

distan
e δin s
ales as δin ∼ ∆′ d2e whi
h is also known from kineti
 theory of 
olli-

sionless re
onne
tion [18℄. If de, and thus the non-ideal term of Eq. (1.11) vanishes,

the mode be
omes stable (γ = 0). Also, if the strength of the sheared magneti


�eld be
omes arbitrary small, ls → ∞, re
onne
tion 
an not a
t, sin
e only the

homogeneous guiding �eld remains.

This analyti
al eigenvalue analysis shows that the tearing mode is a non-steady

re
onne
tion pro
ess whi
h involves boundary layer dynami
s. Many strongly dif-

fering, but physi
ally important s
ales are involved. This insight would 
learly not

be possible when simply integrating Eq. (1.15) numeri
ally.

The model equations (1.10�1.12), serve as a starting point for more 
ompli
ated

analyses. The in
lusion of the ele
trostati
 potential φ into the dynami
s leads to

a 
oupled system of di�erential equations of fourth order [41, 50℄. Additionally, the

ions 
an be in
luded as well, but due to the large natural mass ratio µ, they play

a minor role in the dynami
s. The 
omplete model from whi
h Eq. (1.10�1.12) 
an

be dedu
ed [51℄, states that the plasma is adve
ted with the �ow ~vE = −∇φ × ~B.
Therefore, a se
ond di�erential equation for the ele
trostati
 potential has to be in-


luded, thus φ is now also subje
t to a boundary layer problem that s
ales typi
ally

with ρS,e [43℄.
Consequently, the 
omplete analyti
 
al
ulation of the growth rate has to handle

a double boundary layer analysis dis
riminating additionally the 
ases de > ρS,e
and de < ρS,e assuming ρS,e ≪ a as well. Usually the analyti
al work 
onsists of

applying a generalised Fourier transformation to the initial di�erential equations

for A and φ as well as a subsequent identi�
ation of the layer regions and several

mat
hing pro
edures of the �elds [41, 49℄. In this analysis it is 
ustomary to deal

not only with the limit ∆′ de → 0 when mat
hing both inner and outer solutions,

but also with the opposite 
ase ∆′ de ≫ 1. This results in the appli
ation of a gen-

eralised asymptoti
 boundary 
ondition for both �elds Ψ1 and φ when approa
hing

the resonant layer [49, 52℄.

1.4.2 Overview of analyti
al dispersion relations

There is a large amount of analyti
al 
al
ulations of the dispersion relation of 
ol-

lisionless tearing modes be
ause of subtle relations between parameters and the

underlying type of models. This se
tion gives an overview of available dispersion

relations for 
ollisionless tearing modes in low-β 
on�gurations.

As a general remark the tearing mode stability parameter ∆′
plays a key role when


lassifying dispersion relations and 
omparing magneti
 equilibria. In general the
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large-∆′
range is de�ned by the inequality [10℄

∆′ de >

(

de

ρS,e
√
1 + τ

)1/3

. (1.23)

The opposite 
ase is referred to as small-∆′
range. Parameter values frequently used

in this work 
orrespond to the estimate de . ρS,e and therefore the small-∆′
region is

then 
hara
terised by ∆′ de ≪ (de/ρS,e)
1/3 ≈ 1 for vanishing ratio of ion to ele
tron

temperature.

In Table (1.1) re
ent and for this work important referen
es are shown that investi-

LT,n = 0, τ = 0 [21, 38, 41℄, Eq. (1.22)

LT,n = 0, τ ≈ 1 [38℄

LT,n ≈ 1, τ = 0 [18, 56℄

LT,n ≈ 1, τ ≈ 1 [49, 54, 57℄

Table 1.1: Referen
es of analyti
 dispersion relations for the 
ollisionless tearing

mode.

gate 
ollisionless re
onne
tion with either a kineti
, �uid or hybrid approa
h. In this

thesis the in�uen
e of �nite ion temperature e�e
ts, τ ≈ 1 on the tearing mode will

be subje
t to simulations. For �nite equilibrium s
ales of density and temperature

in the simulation domain, Ln,s ≈ 1 and LT,s ≈ 1, the tearing mode gets a �nite

os
illation frequen
y ω̂ [18, 44, 56℄.

The ratio de/ρS,e = 1/
√
βµ and related 
ases d2e ≫ ρ2S,e (β ≪ me/mi, �iner-

tia regime�) and d2e ≪ ρ2S,e (β ≫ me/mi, �kineti
 regime�) de�ne 
ertain limits

of validity of dispersion relations [51℄. The analyti
 work of referen
e [50℄ using

a two-�uid model in
ludes linear dispersion relations valid for arbitrary guiding

�eld strengths and may serve as a demonstrating explanation. The authors ap-

ply mat
hed asymptoti
 expansion te
hniques whi
h in
lude the identi�
ation of

di�erent physi
al stru
tures around the resonant layer depending on β. At very

small plasma-β values obeying β ≪ me/mi, ion and ele
tron �ow are 
oupled in

the tearing layer width yielding a single MHD �uid des
ription. For �nite plasma-β
(β . (me/mi)

1/4
), ele
trons and ions are de
oupled on s
ales smaller than ρS,e. The

mode is then referred to as kineti
 Alfvén-driven tearing instability. Two sublayers

are present: a narrow layer of width de where ele
tron di�usivity is important and a

two-�uid spe
i�
 layer on s
ales ρS,e. If β ≫ (me/mi)
1/4

re
onne
tion is in�uen
ed

by whistler waves and not of interest here. In Table (1.2) dispersion relations are

shown valid for τ = 0 and LT,n = 0 in various limits

1

.

For the 
ase ρS,e > de Table (1.3) lists the growth rates and real frequen
ies of the

tearing mode in a slab 
on�guration. In the 
ase ∆′de < 1 an algebrai
 equation

1

In Ref. [10℄ a short overview of linear dispersions is given in this regime. The original results

were developed in Refs. [55, 56℄
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1.4 Collisionless tearing mode instability

LT,n = 0, τ = 0 ρS,e < de [10℄ ρS,e > de [38℄

∆′ de < 1 γ = 0.22 · kyd3e∆′2/ls γ = kydeρS,e∆
′/ (πls)

∆′ de > 1 γ = kyde/ls γ = ky (2de/π)
1/3 ρ

2/3
S,e /ls

Table 1.2: Analyti
al dispersion relations in the drift kineti
 limit τ = 0 without

equilibrium gradients.

is presented whi
h must be solved for ω [54℄. The algebrai
 equation 
ontains the

poloidal plasma beta βp at a, the diamagneti
 frequen
y ω∗
and a 
omplex fun
-

tion R(ω0) depending on ω0 ≈ ω∗ (1 + ηe/2)
1

. The linear ele
tron 
urrent layer

width is given by δ∗e = ω∗ls/ (kyve). In the 
ase ∆′de > 1 and vanishing equilibrium

gradients as well as τ → 0, the 
orresponding result of Table (1.2) 
an be restored

2

.

1.4.3 The nonlinear tearing mode

The island formation of resistive and 
ollisionless tearing modes is well known, but

di�ers 
learly in both 
ases.

The magneti
 islands in the resistive 
ase do not saturate after the linear phase,

rather the island width in the low-∆′
regime grows algebrai
ally in time [17℄. In

the 
ollisionless 
ase the tearing mode stabilises nonlinearly in the small-∆′
range.

The magneti
 island width os
illates with a 
hara
teristi
 frequen
y for all times

later than the initial nonlinear phase. If Ψ does not vary too mu
h over the tearing

1

The diamagneti
 frequen
y of the ele
trons is given by ω∗ = kykBTe/(qe B0,z) (dn0,e/dx)/n0,e in

SI units and ω∗ = ky(dn0,e/dx)/n0,e in EUTERPE units.

2

Referen
e [44℄ generalises the dispersion relation γ(ky) to the 
ase with diamagneti
 e�e
ts.

However, the term for γ0(ky) in this referen
e is not 
onsistent with Refs. [10, 38℄. In this thesis

the term γ0(ky) of Ref. [38℄ is adopted.

LT,n ≈ 1, τ ≈ 1 γ ω̂

∆′ de < 1, [54℄ 1+ηe/2+1/τ
1+1/τ

γ
1+ηe/2

(ω∗/ω) = (ω∗/ω) ∆′aδ∗e
aβp

+ (1 + 1/τ)R(ω0)

∆′ de > 1, [44℄ γ2 = γ2
0 −

[

kyκT,e

2η
(1 + τ)

]2

ω̂ =
kyκT,e

2η
(1− τ)

γ0 = ky/ls
(

2deρ
2
S,e (1 + τ) /π

)1/3

Table 1.3: Analyti
al dispersion relations, valid only for ρS,e > de, in
luding �nite

ion temperature and diamagneti
 e�e
ts.
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Figure 1.6: Qualitative stru
ture of a magneti
 island. The X-point is lo
ated at

z = 2π/ky, r = 0 and the O-point at z = π/ky, r = 0. The half width w
is the half of the maximum extension of the separatrix regarding r.

layer, the 
onstant-Ψ (
onstant-A) approximation 
an be applied. Let Ā(t) be the
value of the perturbed ve
tor potential a
ross the layer at the O-point and assuming

B0,y(x) ∼ x, the �eld lines 
lose to the resonant surfa
e 
an be represented by

F (r, z) =
r2

2ls
+ Ā (t) · cos (kyz) = const. (1.24)

The 
ontour lines of F (r, z) are sket
hed in Figure 1.6. During island formation the

open �eld lines move to the X-point, tear and re
onne
t. The newly re
onne
ted

�eld lines are a

elerated towards the O-point. As shown in this Figure, the set of

open and 
losed magneti
 �eld lines is divided by the magneti
 separatrix. The half

of the maximum elongation with respe
t to r de�nes the island half width w(t). In
the 
onstant-Ψ approximation the island width is given by [13℄

w (t) = 2
√

Ā(t) ls. (1.25)

In this approximation the island half width is obtained by measuring the ve
tor

potential over time at the O-point.
The magneti
 island grows and alters the magneti
 
on�nement properties of the

plasma. If the amplitude of the mode is su�
ient large the 
harged spe
ies be
ome

trapped in this newly formed island stru
ture. When the width of the magneti


islands rea
hes the width of the perturbed linear 
urrent 
hannel δe, the plasma

in�ow towards the layer is strongly redu
ed and the mode saturates [18℄.

The nonlinear evolution of tearing modes in the high-∆′
limit di�ers 
ompletely

from their evolution in the opposite limit. The mode shows �explosive� re
onne
tion

indi
ated by an a

elerated growth when entering the nonlinear phase [23℄ and the

island width 
an rea
h ma
ros
opi
 level of order w(t) = O(a, Lx).
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2 Gyrokineti
s

2.1 Gyrokineti
 des
ription

In this 
hapter a 
omprehensive des
ription of gyrokineti
s will be given to get in

tou
h with this formalism, followed by the formal des
ription of the theory in the

next 
hapter.

The 
ollisionless kineti
 approa
h studying plasma physi
s 
onsists of using the

Vlasov equation for ea
h spe
ies s [58℄

dFs

dt
=

∂Fs

∂t
+ ~v · ∂Fs

∂~r
+

qs
ms

(

~E + ~v × ~B
)

· ∂Fs

∂~v
= 0. (2.1)

The one-parti
le phase spa
e distribution fun
tions Fs (~r, ~v) are de�ned on the six-

dimensional phase spa
e.

Maxwell's equations des
ribing the ele
tromagneti
 �elds

~E and

~B, together with
the sour
es ρ and

~j obtained from Fs, 
lose this system of equations.

The appli
ability of Eq. (2.1) is limited be
ause it rests on the assumption that pair


orrelations between the parti
les 
an be negle
ted. Therefore, the Vlasov equation

is valid as long as a typi
al 
orrelation or 
ollisional time s
ale tC , is mu
h larger than
the 
hara
teristi
 time s
ale of the 
orrelation-free system, t ≪ tC . This situation


an be found in the hot 
ore region of fusion plasmas sin
e the 
ollisional time s
ale

in
reases with the temperature T roughly as tC ∼ T 3/2
. The 
ollisionless approa
h

is also valid in astrophysi
s when the mean free path of the spe
ies is mu
h larger

than the 
hara
teristi
 spatial s
ales of the mode of interest. If the 
orrelation-

free des
ription fails, the 
ollisional kineti
 approa
h known as Boltzmann equation

would apply.

It is a 
omputationally expensive task to solve Eq. (2.1). Conventional fusion devi
es

are 
hara
terised by a strong magneti
 guiding �eld along a spe
i�
 dire
tion and

relatively weak magneti
 �elds perpendi
ular to it. Therefore, the physi
s be
omes

strongly anisotropi
 and the theoreti
al models are designed to a

ount for this

property, a

ompanied by a simpli�
ation of the resulting equations.

In a strongly magnetised plasma ea
h 
harged parti
le performs a gyromotion around

the guiding �eld shown in Figure 2.1 (left). The gyration 
an be des
ribed by

~r = ~R + ~ρs

~ρs =
v⊥
Ωs

(cosα ê1 + sinα ê2) .
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(r, v)

ρ

R

p

Figure 2.1: Left: Mi
ros
opi
 dynami
s of gyrating spe
ies (red) around a magneti


�eld line (blue). Right: Averaging over the fast gyromotion to pass to

gyrokineti
s. The gyro
enter is des
ribed by its position

~R, the parallel

anoni
al momentum p‖ along the magneti
 �eld line and µB (giving ρ).

~R is the gyro
enter position, ρs the gyroradius, α the gyrophase and v⊥ the perpen-

di
ular velo
ity.

The appli
ability of the gyrokineti
 model assumes that the gyrofrequen
y Ωs is the

smallest times
ale in the system. All other pro
esses with a typi
al frequen
y ω
evolve on a mu
h longer times
ale.

Thus the �rst step in introdu
ing gyrokineti
s 
onsists of removing the fast frequen-


ies Ωs from the system with an appropriate formalism without loosing essential

information about larger times
ales. In a sense, one averages over the fast gyromo-

tion of the kineti
 equation (2.1) to get the gyrokineti
 equation [59, 60℄

dfs
dt

=
∂fs
∂t

+ ~̇R · ∇fs + ṗ‖ ·
∂fs
∂p‖

= 0. (2.2)

It des
ribes the evolution of a �ve-dimensional phase spa
e distribution fun
-

tion fs(~R, p‖, µB) of the gyro
enters. The physi
al parti
le is repla
ed by a quasi-

parti
le that 
onsists of a 
harged ring and 
arries a 
onserved magneti
 moment µB

by de�nition, i. e. dµB/dt
.
= 0. The new mi
ros
opi
 des
ription of the parti
les is

shown in Figure 2.1. In 
ontrast to the des
ription of the full gyration of the parti
les

(left), the quasi-parti
le is just guided along the magneti
 �eld (right). In general

the gyrating parti
les experien
e also ∇B-, 
urvature- and ~E × ~B-drifts 
aused by

the ele
tromagneti
 equilibrium ba
kground �elds. For the sake of simpli�
ation

they are not dis
ussed here, but are of 
ourse in
luded in the gyrokineti
 theory as

well.

Additionally, in the gyrokineti
 approa
h one assumes that the variations of the

equilibrium quantities varies on s
ales L, whi
h are mu
h larger than the gyrora-

dius. However, it is still possible that the spatial s
ales of the perturbation k−1
⊥ 
an

be of the order of the Larmor radius. This situation is displayed in Figure 2.2, left.

In 
ase of two spe
ies s = (i, e), typi
ally only for the ions an expli
it gyrokineti


des
ription is ne
essary due to the large natural mass ratio µ the ele
tron Larmor

radius ρe 
an be negle
ted.

If the essential spatial s
ales related to magneti
 re
onne
tion, i. e. L, k⊥, de and ρi,
are mu
h larger than the Debye length, the plasma appears quasi-neutral. Charge

separation 
an be negle
ted and thus the 
ondition of quasi-neutrality holds, i. e.
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2.1 Gyrokineti
 des
ription

Figure 2.2: Left: The gyrokineti
 model allows for small s
ale perturbations that

are of the order of the gyroradius. Right: s
hemati
 explanation of

the gyroaveraged density 〈ns〉. At lo
ation ~x (blue point) one wishes

to 
ompute the density 〈ns〉 (~x) to whi
h all gyro-parti
les (bla
k rings)


ontribute, whose gyrorings pass through ~x.

equating the number densities of the physi
al parti
les, ne (~x) = ni (~x). This ex-

pression serves as an additional �eld equation, sin
e the densities are obtained by

integrals of the distribution fun
tions over the phase spa
e whi
h depend on the

�u
tuating ele
tromagneti
 �elds.

In the gyrokineti
 framework one has to express the number densities ns(~x) of the

physi
al parti
les in terms of the density of gyro
enters ns(~R). To get the physi
al

density one �rst de�nes the gyroaveraged density 〈ns〉 (~x) a

ording to 1

〈ns〉 (~x) =
∫

B∗
d

~R dp‖ dµB dα δ
(

~R + ~ρs(~R)− ~x
)

δfs

(

~R, p‖, µB

)

. (2.3)

This expression relates the gyro
enter position

~R with the variable ~x, where to eval-
uate the gyroaveraged density. In Figure 2.2 (right) the s
hemati
 evaluation of

the gyroaveraged density 〈ns〉 at ~x (blue point) is sket
hed for three quasi-parti
les.

The expression (2.3) for
es only those quasi-parti
les (bla
k 
ir
les) to 
ontribute

to 〈ns〉 (~x) that have any point on their gyroring in 
ommon with ~x. In the deriva-

tion of the gyrokineti
 quasi-neutrality 
ondition an additional polarisation density

npol,s (~x) whi
h depends on the ele
trostati
 �eld 
orre
ts the gyroaveraged density

to give �nally the physi
al number density ns (~x) = 〈ns〉 (~x) + npol,s (~x).
The se
ond �eld equation is provided by parallel Ampère's law whi
h des
ribes the

perpendi
ular magneti
 �u
tuations δB⊥. Eq. (2.2) and both quasi-neutrality and

parallel Amperère's law form the standard ele
tromagneti
 gyrokineti
 model [59℄.

It is 
ustomary to treat only the perpendi
ular magneti
 �u
tuations in a low-

β plasma, de�ned by the 
ondition β ≪ 1 [61℄. If β is allowed to rea
h values of

order unity, β = O(1), the parallel magneti
 �eld �u
tuations δB‖ be
ome as impor-

tant as the perpendi
ular magneti
 perturbations. Consequently, the perpendi
ular

Amperère's law must be introdu
ed.

1

The quantity B∗
will be de�ned in Se
. (2.2).
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2 Gyrokineti
s

2.2 Ele
tromagneti
 gyrokineti
 equations in a slab

The standard gyrokineti
 equations result from an ordering pro
edure [60℄ with

respe
t to the ratios ρi/L, k‖/k⊥ and ω/Ωs mu
h smaller than unity. Nevertheless,

this ordering allows the perturbation to be 
omparable to the Larmor radius, k⊥ ρi =
O(1). The gyrokineti
 equation

dfs
dt

=
∂fs
∂t

+ ~̇R · ∇fs + ṗ‖ ·
∂fs
∂p‖

= 0, (2.4)

des
ribes the evolution of the distribution fun
tions of the gyro
enters in phase

spa
e. This equation will be solved by EUTERPE using the method of 
hara
-

teristi
s. The 
hara
teristi
s of Eq. (2.4) in a slab read in terms of the variable

p‖/ms = v‖ + qsA/ms
1 2

[59℄

~̇Rs =
p‖
ms

~b− qs
ms

~b 〈A〉+ 1

B∗
~b×∇〈φ− p‖

ms
A〉

=
p‖
ms

~b+ ~̇R1,

ṗ‖
ms

= − qs
ms

~b · ∇ 〈φ− p‖
ms

A〉,

µ̇B
.
= 0.

(2.5)

The averaging pro
edure of the �eld �u
tuations,

〈A, φ〉(~R) =
1

2π

∫ 2π

0

dα (A, φ) (~x, t)|~x=~R+~ρs(α)
(2.6)

introdu
es a mean �eld at

~R, where the quasi-parti
le is a�e
ted by the for
es.

When performing PIC simulations it is advantageous to split the full phase spa
e

distribution fun
tion fs using the δf -ansatz [26, 62℄

fs = f0,s

(

~R,
p‖
ms

, µB

)

+ δfs

(

~R,
p‖
ms

, µB, t

)

. (2.7)

The time-independent ba
kground Maxwellian is assumed to be given analyti
ally,

f0,s =
n0,s (~x)

√

2πvs(x)2
3 e

−

( p‖
ms

−u0,s(x)

)2
+v2⊥

2vs(x)2 . (2.8)

The δf -ansatz redu
es the parti
le-indu
ed noise. The bulk velo
ity u0,s allows for

a parallel equilibrium 
urrent whi
h depends only on the spatial slab 
oordinate x.

1

If not stated otherwise the equations are always normalised to the unit system used in EUTERPE.

The normalisation pro
edure is explained in Se
. (4.1).

2

The Eqs. 
ontain the quantity B∗ = B +ms/qs
(

p‖/ms

)

~b ·
(

~∇×~b
)

. For the outlines dis
ussed

here it is 
ustomary to use the approximation B∗ ≈ B [26℄.

22



2.2 Ele
tromagneti
 gyrokineti
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Inserting Eq. (2.7) into Eq. (2.2) gives

dδfs
dt

= −df0,s
dt

= −f0,sSs,

Ss = κs
~̇R1 · ∇x+

qs
msvs(x)2

[

−
(

p‖
ms

− u0,s

)

~b · ∇〈φ− p‖
ms

A〉
]

.
(2.9)

Furthermore, one de�nes

κs = κn,s − κT,s







3

2
−

(

p‖
ms

− u0,s(x)
)2

+ v2⊥

2vs(x)2






− κu0,s ,

κu0,s =

(

p‖
ms

− u0,s(x)
)

vs(x)2
du0,s

dx
,

κT,s = − 1

T0,s

dT0,s

dx
,

κn,s = − 1

n0,s

dn0,s

dx
.

(2.10)

The quasi-neutrality 
ondition demands for the physi
al 
harge densities

∑

s

qs ns (~x) = 0, (2.11)

for drift kineti
 ele
trons, and gyrokineti
 ions [59, 62℄

ni (~x) = 〈ni〉 (~x) +
Γ0 − 1

ρ2i
φ (~x) . (2.12)

The �rst term on the right hand side of Eq. (2.12) has been de�ned in Eq. (2.3),

while the se
ond term represents the polarisation density npol,s(~x).
The exa
t expression for Γ0 in Eq. (2.12) is a 
ompli
ated nonlo
al operator in real

spa
e and di�
ult to treat numeri
ally. It is usually formulated in Fourier spa
e

where it reads Γ0 (k
2
⊥ρ

2
i ), de�ned in terms of the modi�ed Bessel fun
tion I0(x) of

the �rst kind a

ording to Γ0 (x) = e−xI0 (x) [62℄.
The simplest approximation of the polarisation density in the ion response 
onsists

of using the long wavelength approximation, k⊥ρi ≪ 1. Expanding Γ0 in a Taylor

series in this limit the ion density response be
omes Γ0 ≈ 1 + k2
⊥ρ

2
i whi
h in real

spa
e reads

ni (~x) = 〈ni〉 (~x) +∇2
⊥φ (~x) . (2.13)

Only in the range of small gyroradii, k⊥ρi < 0.5, the long wavelength approximation

is useful to des
ribe �nite Larmor radius e�e
ts 
orre
tly [63℄.

A further 
ommon approximation of the polarisation density is provided by the
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s

Padé approximation [62℄. The advantage of the Padé approximation is that it gives

reasonable results for arbitrary values of k2
⊥ρ

2
i 
ompared with the exa
t gyroaveraged

result and 
an be 
al
ulated easily. The Padé approximation repla
es Γ0 in Fourier

spa
e by Γ0 (k
2
⊥ρ

2
i ) 7→ 1/(1− k2

⊥ρ
2
i ). One 
an show that the resulting density of the

ions in real spa
e is given by

ni (~x) = 〈ni〉 (~x) +∇2
⊥φ (~x) +∇ρ2i∇⊥ [〈ni〉 (~x)− ne (~x)] . (2.14)

Therefore, the �eld equation for φ is given by ne (~x) = ni (~x) with either the ion

response a

ording to Eq. (2.13) or Eq. (2.14).

The Vlasov-Maxwell system is 
losed by Ampère's law. The physi
al parallel 
ur-

rents jph,‖,s are the sour
es for the parallel ve
tor potential A a

ording to

− 1

β
∇2

⊥A (~x) =
∑

s

〈jph,‖,s〉 (~x) . (2.15)

However, the 
urrent response in the p‖-des
ription as it is used here, is derived

from the �rst moment of the perturbed distribution fun
tion with respe
t to the

momentum 
anoni
al p‖/ms. In this formalism Ampère's law reads

− 1

β
∇2

⊥A (~x) +
∑

s

n0,s (~x)
q2s
ms

A (~x) =
∑

s

〈j‖,s〉 (~x) . (2.16)

The so-
alled skin terms proportional to the �eld amplitude appear on the left hand

side. Formally, the skin term 
an
els 
ompletely the adiabati
 response of the right

hand side of Eq. (2.16) whi
h would result again in Eq. (2.15) [62℄.

The gyrooperation for the 
urrent in Eq. (2.16) is de�ned equivalently to Eq. (2.3),

〈j‖,s〉 (~x) =

∫

B∗
d

~R d~v dα δ
(

~R + ~ρs(~R)− ~x
)

δfs
p‖
ms

. (2.17)

In the standard gyrokineti
 equations shear Alfvén waves are admissible solutions

while 
ompressional Alfvén waves do not appear, sin
e the perpendi
ular Amperère's

law is not taken into a

ount.

In the des
ription of tearing modes an usual ordering of the re
onne
tion relevant

s
ales is imposed originating from experimental observations. The ele
tron skin

depth de and the perpendi
ular s
ale of the perturbation k−1
⊥ is assumed to be mu
h

smaller than the gyroradius, k−1
⊥ ≈ de ≪ ρi. The gyroradius, whi
h is approxi-

mately the Larmor sound radius ρS,e for τ = O(1), is smaller than the variation of

all equilibrium gradients, either magneti
 �eld or density and temperature variation,

ρi ≈ ρS,e ≪ Leq,x.

The observed growth rate of the tearing mode in experimental devi
es is typi
ally

mu
h smaller than the gyrofrequen
y of the ions and ele
trons, γ ≪ Ωs. Therefore,

the assumptions of the standard gyrokineti
 equations are ful�lled.
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3 The PIC method

3.1 Implementation of the PIC method

The kineti
 simulations were performed with the PIC 
ode EUTEPRE. It solves

the Vlasov-Maxwell system in global and toroidal three-dimensional geometry using

the method of 
hara
teristi
s. The PIC 
ode shows a good parallel s
aling with a

large number of pro
essors. The magneti
 ba
kground equilibrium is provided by a

VMEC �le, from whi
h all relevant magneti
 equilibrium quantities are derived.

This numeri
al method 
ontains prin
ipally the same 
omputational 
y
le as every

parti
le-in-
ell method [64℄. EUTERPE uses the δf -approa
h to redu
e parti
le

noise in 
ontrast to a full-f method. The perturbed part of the distribution fun
-

tion is dis
retised by using numeri
al parti
les, 
alled markers. The statisti
s in-

du
ed by the marker representation improves with in
reasing number of markers Np

as 1/
√

Np [63℄.

The temporal integration of the 
hara
teristi
s of the gyrokineti
 equation and

weight evolution is performed by a Runge-Kutta s
heme of fourth order. A re-


ently implemented Fehlberg integrator allows also the use of an adaptive time step

method [70℄. The parti
le traje
tories are pushed in a 
ylindri
al 
oordinate sys-

tem, ~x =
(

r, z, φ̄
)

.

The 
harge and the 
urrent densities as the sour
es of the �eld equations are pro-

vided by a 
orresponding Monte-Carlo integration over the phase spa
e using mark-

ers. The �eld equations are dis
retised in real spa
e by a B-spline �nite element

method [68℄ and solved by sparse matrix tools [65℄. The solver works in a straight

�eld line 
oordinate system,

~ξ =
(

s̄, χ, φ̄
)

[66℄. Both 
oordinate systems 
an be


onverted into ea
h other using the VMEC �le

1

.

To further redu
e the statisti
al noise indu
ed by the markers, it is possible to use

a Fourier �lter to extra
t a spe
i�
 poloidal mode number m and a toroidal mode

number n of the �elds. Furthermore, it is possible to �lter the �eld in a limited re
t-

angular domain in Fourier spa
e (−mmax, . . . , mmax) × (−nmax, . . . , nmax), if mmax

and nmax are the maximum poloidal and toroidal mode numbers.

3.1.1 Dis
retisation of the distribution fun
tion

In EUTERPE the perturbed distribution fun
tion δfs is sampled by Np markers

with the 
oordinates

~Rn, p‖,n/ms and µB,n in the redu
ed phase spa
e. Ea
h marker


arries a weight wn (t) that is tra
ed along the 
hara
teristi
s of the gyrokineti


1

The 
oordinate transformation between both systems is explained in Se
. (4.3)
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3 The PIC method

equation. The perturbed distribution fun
tion is assumed to have the form [68℄

δfs =

Np
∑

n=1

wn(t)

B∗ · δ
(

~R− ~Rn

)

δ

(

p‖
ms

− p‖,n
ms

)

δ (µB − µB,n) . (3.1)

Around ea
h marker position ~zn =
(

~Rn, p‖,n/ms, µB,n

)

a small phase spa
e volume

Ωn,s is lo
ated representing the phase spa
e volume 
arried by the marker at this

position. The values of Ωn,s are prede�ned with the only 
onstraint that the sum

of all small phase spa
e volumes has to �ll out the phase spa
e 
ompletely without

overlap or holes.

The markers are distributed in phase spa
e using a numeri
al probability fun
tion

g (~z) that is 
onstant along the marker traje
tory (dg/dt = 0). It is assumed here

that g 
an be split into a pure spatial part gR and a part gv that des
ribes the dis-
tribution in momentum spa
e, thus g = gR · gv. The pure spatial part gR 
an be set


onstant over the real volume V , gR = 1/V . A uniform marker loading in momen-

tum spa
e as it is employed here is de�ned by setting gv dv‖ dµB dα = const. One


an show from the 
ondition

∫

d~z g = 1 that in this 
ase g = 1/
(

V · (π κv,s vs)
2 v⊥

)

,

being κv,s the radius of the momentum sphere in terms of vs.
The sour
e terms of the �eld equations are provided by phase spa
e integrals of

the perturbed distribution fun
tion. From the numeri
al point of view the high-

dimensional phase spa
e integrals 
an be 
arried out e�
iently using a Monte-Carlo

integration. This approa
h repla
es the integration by an evaluation of an expe
ta-

tion value E, using the numeri
al distribution fun
tion g (~z). The expe
tation value

is then approximated by the usual estimator for an arbitrary fun
tion h (~z)

E [h] =

∫

d

6Z h (~z, t) · δf (~z, t)

=

∫

d

6Z h (~z, t) · δf (~z, t)

g (~z)
· g (~z)

=
1

Np

Np
∑

n=1

h (~zn, t) wn (t) + ǫstat.

(3.2)

The weights are de�ned by w (~zn, t) = δf (~zn, t) /g (~zn)
.
= Ωn δf (~zn, t). The statis-

ti
al error ǫstat redu
es with in
reasing marker number, ǫstat ∼ 1/
√

Np.

The temporal evolution of the weight follows from inserting Eq. (3.1) into Eq. (2.2)

and integrating over Ωn,s,

dwn,s

dt
= −Ωn,s f0,sSs. (3.3)

The term Ss is given by Eq. (2.9) (Se
. 2.2). A

ording to Eq. (3.2) the sour
e terms

of the �eld equations 
an be 
omputed by sele
ting h = 1 or h = p‖/ms for density

or 
urrent, respe
tively.
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3.1.2 Dis
retisation of the �eld equations

The �eld equations for the ele
trostati
 potential φ and the parallel ve
tor potential

A, Eqs. (2.12, 2.16) are dis
retised with a �nite element method using the represen-

tation

φ(~ξ) =
∑

l

φl Λl(~ξ), A(~ξ) =
∑

l

Al Λl(~ξ). (3.4)

Λl(~ξ) represents a B-spline �nite element with multi-index l = (i1, i2, i3). It is as-

sumed to fa
torise a

ording to Λ(~ξ)l = Λi1 (s̄) Λi2 (χ) Λi3

(

φ̄
)

. In this thesis ea
h

B-spline was 
hosen to be of order two. This 
orresponds to quadrati
 splines, whose
spatial derivatives and so the for
es on the parti
les still depend 
ontinuously dif-

ferentiable on the 
oordinates

~ξ.
The quasi-neutrality equation in the long wavelength approximation and Amperère's

law 
an be proje
ted into the B-spline basis, Eq. (3.4) [62℄

−
∫

d

~ξ Λk(~ξ)∇2
⊥φ =

∫

d

~ξ Λk(~ξ)
(

〈ni〉(~ξ)− ne

)

(3.5)

∫

d

~ξ Λk(~ξ)

(

∑

s

βs

ρ2s
A−∇2

⊥A

)

=

∫

d

~ξ Λk(~ξ)〈j‖,s〉(~ξ). (3.6)

Using Eq. (3.4) and performing an integration by parts one obtains the set of linear

equations

∑

l

M
(Q)
kl φl = N

(Q)
k ,

∑

l

M
(A)
kl Al = N

(A)
k . (3.7)

The elements of the matri
es M
(Q)
kl and M

(A)
kl are 
al
ulated and stored at the begin-

ning of every simulation. Eqs. (3.7) are solved during every 
omputational 
y
le by

parallel pre
onditioned iterative methods using of the tools the PETS
 library [65℄.

3.1.3 Requirements in ele
tromagneti
 simulations

In EUTERPE the gyrokineti
 equation is dis
retised within the p‖-formalism orig-

inating from the histori
al development of PIC methods. Early attempts failed in

dis
retising the ele
tromagneti
 slab equations using the v‖-formalism due to the

partial time derivative of the ve
tor potential [67℄.

Although the p‖-approa
h is su

essful for the des
ription of many ele
tromagneti


instabilities, simulations of e. g. damped modes are more sophisti
ated due to the

so-
alled 
an
ellation problem, magni�ed for high-β s
enarios (�high-β problem�) or,

for instan
e, MHD modes with medium β-values (β = O(1%)) in the limit k⊥ → 0.
It is 
aused by the di�erent dis
retisation of the left hand side of Ampère's law,

Eq. (3.6) and the �
urrent� density on the right hand side. The left hand side is dis-


retised by B-splines, whereas the 
urrent density is represented by parti
les. From

the mathemati
al point of view the skin term perfe
tly 
an
els the adiabati
 part

of the 
urrent. These two di�erent kinds of dis
retisations do not ne
essarily lead
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3 The PIC method

to a numeri
al 
an
ellation.

In this thesis an enhan
ed 
ontrol variates method has been used for simulations

with EUTERPE to safely perform ele
tromagneti
 
al
ulations. This algorithm rests

upon an iterative method whi
h gradually removes the adiabati
 part of the 
urrent

response within ea
h 
omputational 
y
le [62, 68℄. The s
heme has been proven to

a
hieve simulations of Alfvén modes in a slab to very high a

ura
y [62, 69℄.

During this work it has been observed that the tearing mode is rather robust with

respe
t to the 
an
ellation of the adiabati
 
urrent response. Simulations of the

tearing mode in a slab 
an be performed with a su�
ient high number of parti
les

without using the iterative pro
edure. For the ben
hmark of the Alfvén wave the

iteration s
heme was applied, but it was not used in general.

3.2 Diagnosti
 tools
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Figure 3.1: Temporal evolution of the perturbed �eld energy. The slope is propor-

tional to the growth rate γ.

EUTERPE provides a lot of tools to extra
t information about the simulations

both in time and spa
e. The energy of the system over the volume V of the simula-

tion domain is given by the sum of kineti
 energy Ekin,s and �eld energy Efield,s over

V a

ording to E(t)/V = 1/V
∑

s [Ekin,s(t) + Epot,s(t)] = const. The 
orresponding

ontributions are de�ned by

Epot,s/V =
1

2 V

∫

V

d

~ξ
(

qs〈ns〉 φ− 〈js〉A‖
)

,

Ekin,s/V =
1

V

∫

ΩPS

d

6Z
ms

2

(

v2⊥ + v2‖
)

(f0,s + δfs(t)) .
(3.8)
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In the last term the part related to f0,s des
ribes the initial kineti
 energy Ekin,0,s

while the 
ontribution of δfs des
ribes the perturbed part of the kineti
 energy,

ǫkin,e. For the simulations presented in this work the ele
trons mainly in�uen
e the

dynami
s of re
onne
tion, thus the �eld energy of the ele
trons ǫpot,e(t) is used to

obtain �rst quantitative statements for instan
e measuring the growth rate of the

ex
ited modes.

Figure 3.1 shows the evolution of the ele
tron �eld energy ǫpot,e(t) of a tearing mode.

After the initial transient phase, t . 50, the exponential behaviour dominates. In

this phase the growth rate 
an be 
omputed by the res
aled temporal derivative of

the �eld energy a

ording to (dǫpot,e/dt) /ǫpot,e = 2γ.
When investigating nonlinear tearing modes the quality of the simulations is indi-


ated by the 
onservation of energy. The quantity ∆ǫ is introdu
ed for ele
trons and
de�ned by ∆ǫ = | (Ekin,0,e + ǫkin,e + ǫpot,e) /Ekin,0,e − 1|. An order of ∆ǫ = O(1%)
re�e
ts a reasonable 
onservation of energy during the simulations.

A further important diagnosti
s is the spatio-temporal �eld stru
ture that 
an be

extra
ted dire
tly from EUTERPE. From these data important values like, for in-

stan
e, the island half width 
an be obtained by evaluating the mode stru
ture.
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4 Ele
tromagneti
 simulations in

a slab

4.1 Normalisation pro
edures

The equations and relations used in EUTERPE are normalised to a proper unit

system a

ording to

t = Ωi t̂, x =
x̂

ρS,e
, A =

Â

B0,z ρS,e
, φ =

φ̂

B0,z ρ2S,e Ωi
, (4.1)

where 
arets denote dimensional quantities. The density n̂s and temperature T̂s is

normalised to the 
onstant ba
kground density n0 and the �at temperature pro�le

of the ele
trons Te, respe
tively. If not stated otherwise this will be the standard

normalisation for all relations presented in this work.

In 
hapter 7.1 a �uid model is 
ompared with the gyrokineti
 model implemented

in EUTERPE. This �uid model adopts Alfvén units

t =
t̂

tA
, x =

x̂

Leq,B

, A =
Â

B0,z Leq,B

, φ =
φ̂

B0,z Leq,B vA
. (4.2)

The gyro�uid model des
ribes the evolution of the gyro
enter densities n̂s and


urrent �elds ûs
1

that are normalised a

ording to

ns =
Leq,B n̂s

d̂i n0

, us =
Leq,B ûs

d̂i vA
. (4.3)

4.2 MHD slab equilibria for re
onne
tion

simulations

In this thesis two kinds of ideal MHD equilibria are used for simulations whi
h is

motivated by di�erent equilibria presently used in literature.

For both equilibria a strong guiding �eld in the toroidal dire
tion ẑ of strength B0,z

1

Although this notation is misleading, it is 
ustomary in literature to write us for the 
urrent

�eld [10℄.
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is present. The �rst equilibrium (magneti
 
on�guration I) is given by

B0,y (x) = −β

2
C
√
µ π a erf

(

x− Lx

2

a

)

. (4.4)

The error fun
tion erf(x) varies signi�
antly over a distan
e a = Leq,B. The strength

of the perpendi
ular magneti
 �eld is 
ontrolled by the dimensionless parameter

C > 0. The dire
tion of guiding and perpendi
ular magneti
 �eld is shown in

Figure 4.1. This equilibrium for
es the resonant surfa
e to be at x = Lx/2 in two-

dimensional simulations.

The equilibrium 
on�guration II is frequently used in �uid simulations [44, 51℄ and

0
Lx

B0,z

B0,y

x

Figure 4.1: S
hemati
 representation of magneti
 equilibrium I.

given by

B0,y (x) = −2C

a
·
sinh

(

x−Lx
2

a

)


osh

3
(

x−Lx
2

a

) . (4.5)

The stability parameter 
an be obtained analyti
ally for Lx ≫ a [71℄,

∆′a = 2

[

3 + (kya)
2] ·
[

5− (kya)
2]

(kya)
2
√

4 + (kya)
2

. (4.6)

Thus, the mode be
omes stable if kya >
√
5.

The stability parameters ∆′(kya) of the equilibria are summarised in Figure 4.2.

The fun
tion ∆′
related to setup Eq. (1.9) (Se
. (1.4))

1

is plotted for a = 1 and

1

This equilibrium refers to Ref. [13℄ and is denoted as �GR� (Goldston Rutherford)
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4.2 MHD slab equilibria for re
onne
tion simulations

10-1

100

101

102

103

104

 0  0.5  1  1.5  2  2.5

∆’
a

ky a

GR: a=1 fixed (Lx=∞)
GR: a=1 fixed (Lx=10)

Conf.  I: ky=2π/10 fixed
Conf. II: a=1 fixed

Figure 4.2: Comparison of stability parameters ∆′
of magneti
 
on�guration

I (bla
k), magneti
 equilibrium II (blue), the analyti
 expression

Eq. (1.18) for an in�nite extend of the domain in the x-dire
tion (GR,

red solid) and a �nite extend (GR, red dashed). The stability threshold

of the linear mode is given by the 
ondition ∆′ = 0. In this Figure the

EUTERPE normalisation is used.

various ky. If the domain extension Lx be
omes arbitrary large, Eq. (1.18) 
an be

applied (red solid line) as was shown in Figure 1.5. For a �nite x-domain Lx = 10
the fun
tion slightly di�ers from this formula if ky is small enough (red dotted

line). The mode be
omes stable if ky > 0.64, while for very small wave ve
tors

ky < 0.2 the large-∆′
regime is 
overed. The stability parameter for 
on�guration

I was obtained numeri
ally by solving Eq. (1.17) (bla
k dashed line). Here, the

domain Lx = 10 is �xed and additionally ky = 2πm/10 = 2π/10 representing

the m = 1 mode. Making the magneti
 equilibrium s
ale a small enough, the

stability parameter rea
hes arbitrary large values as well (high-∆′
regime). The

stability parameter of 
on�guration II is also depi
ted in Figure 4.2 (blue solid line)

using Eq. (4.6) and setting a = 1. Although the shape of ∆′(kya) is similar to the

previous 
ases an o�set is present.

In general the perpendi
ular equilibrium magneti
 �eld B0,y is 
onne
ted with a

parallel equilibrium 
urrent of both spe
ies, j0,s(x) = qs n0,s u0,s(x). Sin
e ele
trons
are mu
h faster than ions it is assumed here that only the ele
trons with bulk

pro�le u0,e(x) 
ause the perpendi
ular magneti
 �eld while for ions u0,i(x) = 0. For

a given magneti
 �eld the 
urrent

~j0,e and the 
orresponding bulk velo
ity u0,e(x) 
an
be 
al
ulated via Ampère's law as implemented in EUTERPE. Thus, the Maxwellian

for the ele
trons is of the form

f0,e(x, p‖, v⊥) =
n0,e (x)√
2πµ

3 e
−

( p‖
me

−u0,e(x)

)2
+v2⊥

2µ . (4.7)
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4 Ele
tromagneti
 simulations in a slab

This is an admissible solution of the Vlasov equation to zero-th order (df0,e/dt = 0).
A natural mass ratio µ = 1836 is 
hosen in this thesis if not stated otherwise. Due

to the ideal MHD pressure balan
e a 
onsistent Maxwellian must lead to a spatially

varying density n0,s (x) [20℄. In a low-β equilibrium the density pro�le 
an be

approximated very well by 
onstants n0,s [13℄.

4.3 Implementation of the slab geometry

The 
ode EUTERPE is designed to solve for the gyrokineti
 equation in three-

dimensional toroidal geometries. To a

ount for a one-dimensional slab it has to be

modi�ed. As the 
ode is three-dimensional in its stru
ture the slab implementation

must �t into this framework and is thus somewhat 
ounterintuitive.

EUTERPE uses two intrinsi
 
oordinate systems for 
omputations. The traje
to-

ries of the parti
les are pushed in 
ylinder 
oordinates ~x =
(

r, z, φ̄
)

. The se
ond


oordinate system is a straight �eld line system and used for solving the �eld equa-

tions,

~ξ =
(

s̄, χ, φ̄
)

= {ξi} (i = 1, 2, 3). It 
an be dedu
ed dire
tly from the

three-dimensional magneti
 equilibrium. These both 
oordinate systems are 
har-

a
terised by the toroidal 
oordinate φ̄, while the in-plane 
oordinates are (r, z) re-
spe
tively (s̄, χ).
In analyti
 
al
ulations, however, usually the 
oordinate system (x, y, ẑ) is used as

depi
ted in Figure 4.1. Here, the toroidal 
oordinate is ẑ and the in-plane 
oordi-

nates are x, y. Thus, the three 
oordinate systems are linked qualitatively by the

mappings

(

r, z, φ̄
)

↔
(

s̄, χ, φ̄
)

↔ (x, y, ẑ). In this 
hapter the mapping of ~x to

~ξ
is dis
ussed.

In general three-dimensional geometry the equilibrium is assumed to have nested

�ux surfa
es. These two-dimensional surfa
es themselves are 
urved manifolds and

their interior geometry is dire
tly 
onne
ted to the three-dimensional magneti
 equi-

librium. However, a slab geometry is a one-dimensional equilibrium, whose �ux

surfa
es are planes.

The task of implementing a slab geometry in EUTERPE is twofold: on the one

hand it is ne
essary to 
hoose proper geometri
 quantities, i. e. a suitable metri
 for

a slab whi
h des
ribes the 
oe�
ients of the �eld equations. On the other hand the

slab domain is subje
t to boundary 
onditions of the �u
tuating �elds whi
h have

to be spe
i�ed at s̄ = 0 and s̄ = 1, in 
ontrast to the toroidal 
ase where the �elds

have only to be spe
i�ed at s̄ = 1.
In the following the geometri
 
onstru
tion of the slab is outlined. To illustrate

the a
tion of the geometri
 quantities on the mathemati
al stru
ture of the �eld

equations, the quasi-neutrality equation is used. Without loss of generality the

quasi-neutrality is written in the long wavelength approximation

ne = 〈ni〉+∆φ = 〈ni〉+
3
∑

i,j=1

1√
g

∂

∂ξi

(√
g gij

∂

∂ξj
φ

)

.
(4.8)

34



4.3 Implementation of the slab geometry

An analogue to Eq. (4.8) 
an be formulated for Ampère's law in 
urvilinear 
o-

ordinates. In this form the magneti
 topology is �xed by 
hoosing values for the

metri
 
oe�
ients gij, de�ned in terms of the lo
al gradients gij = ∇ξi · ∇ξj, and
its determinant g. On this stage the only 
onstraint with respe
t to the magneti



oordinates used in EUTERPE is that s̄ ∈ [0, 1] , χ ∈ [0, 2π] and φ̄ ∈ [0, 2π]. The
inhomogeneous 
oordinate is by de�nition s̄.
The 
on
rete extensions of the slab and the relations between parti
le- and solver-


oordinates will be des
ribed by the following spe
i�
ations of the simulation domain

whi
h is shown in Figure 4.3. The spe
i�
ation of the geometry as explained above

must be only managed in the (s̄, χ) plane, sin
e EUTERPE has already a so-
alled


ylinder mode. It represents a straight, non-toroidal, geometry periodi
 in the φ̄-
dire
tion.

As sket
hed in Figure 4.3 the magneti
 axis is lo
ated at (r, z) = (r0, 0) (blue

z

r

∆z

-∆z

z=0

∆zeq

-∆zeq

r0-∆req r0 r0+∆req

-s=const -s=1-s=0

r1 r2

Figure 4.3: The Figure shows the dimensions of the slab used for all simulations with

EUTERPE. The blue point represents the lo
ation of the magneti
 axis.

The 
onne
tion between the parti
le 
oordinate system r, z, (φ̄ = const.)
and the solver 
oordinates s̄, χ is explained in the text.

point). The larger of both boxes represents the 
oordinate ba
kground whi
h ranges

in the interval r1, . . . , r2 horizontally and −∆ z, . . . ,∆z verti
ally.

The smaller box is the equilibrium box and en
loses the whole plasma. Its extension

is spe
i�ed by [r0 −∆req, . . . , r0 +∆req] × [−∆zeq, . . . ,∆zeq]. The parameters are


hosen to be ∆req = Lx/2 and ∆zeq = Ly/2 here.

The radial 
oordinate s̄ is proportional to r, in
luding additionally the 
ondition s̄ ∈
[0, 1]. As depi
ted in Figure 4.3 the s̄ = 0 surfa
e 
oin
ides with r = r0 − Lx/2,
while s̄ = 1 is set at r = r0 + Lx/2.
The χ-values range from 0, . . . , 2π, when z ranges in the interval −Ly/2, . . . , Ly/2.
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4 Ele
tromagneti
 simulations in a slab

Finally, the transformation of the 
oordinate systems 
an be summarised as

r (s̄) = s̄ Lx + r0 −
Lx

2
, z(χ) =

χ

2π
Ly −

Ly

2
. (4.9)

The 
orresponding gradients are ∇s̄ = êr/Lx, ∇χ = êz 2π/Ly and ∇φ̄ = êφ̄/r1. The
parameter r1 
an be 
hosen freely, but was �xed here as r1 = r0 − Lx. The only

non-zero 
omponents of the metri
 are

gs̄s̄ =
1

L2
x

, gχχ =
(2π)2

L2
y

, gφ̄φ̄ =
1

r21
. (4.10)

Due to the 
hoi
e of the metri
 gij the slab gets a physi
al length 2π · r1 in the

φ̄-dire
tion and Ly in the χ-dire
tion.

The se
ond step of implementing the slab in EUTERPE is to spe
ify the boundary


onditions of the �elds with respe
t to the solver 
oordinates. The perturbed �elds

respe
t Diri
hlet boundary 
onditions at s̄ = 0, 1 and are treated periodi
ally in

the φ̄- and χ-dire
tion.
The parti
le traje
tories are also subje
t to boundary 
onditions with respe
t to s̄, χ.
At the boundaries of the simulation domain the parti
les are re�e
ted at s̄ = 0, 1
and periodi
ally inje
ted at χ = 0, 2π. The points on the gyroring obey periodi


boundary 
onditions in both dire
tions. It turns out that this spe
i�
 
hoi
e of

the parti
le boundary 
onditions in the s̄-dire
tion has no essential impa
t on the

simulations results sin
e the dynami
s of the tearing mode is mainly 
on
entrated

around the resonant layer.

4.4 Linear ben
hmark in slab geometry

At the very beginning of the simulations it has to be proven that the slab modi�
a-

tion works 
orre
tly. One possibility is to measure the frequen
y ω̂ of shear Alfvén

waves. In this ben
hmark the magneti
 equilibrium has only a toroidal guiding �eld


omponent,

~B = (0, 0, 1) whi
h is subje
t to perpendi
ular magneti
 perturbations


hara
terised by the wave ve
tor

~k⊥ = (kx, ky). The mode number (m, n) = (10, 1)
was extra
ted during the simulations. The equilibrium domain has an extension

of Lx = Ly = 150. In this ben
hmark Np = 107 ele
tron markers were used, a

om-

panied by one iteration 
y
le of the enhan
ed 
ontrol variate method per time step.

In this test the ele
trons are the only kineti
 spe
ies and ions are �xed serving as a

neutralising ba
kground. Thus, the weights of the ions are set to zero.

Only Ampère's law is taken into a

ount to simplify the physi
al setup. The quasi-

neutrality 
ondition is swit
hed o� by setting the B-spline 
oe�
ients of the ele
-
trostati
 potential φ to zero.

From a generalised dispersion relation of a sheared slab the dispersion of Alfvén
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4.4 Linear ben
hmark in slab geometry

 0
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EUTERPE
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Figure 4.4: The frequen
y of the shear Alfvén wave over β. The ben
hmark is su
-


essful, thus the slab geometry has been implemented 
orre
tly.

modes 
an be derived as

1

k2
⊥d

2
e + 1 = 2Z3 (ζe) . (4.11)

Here, ζe = ω/
(√

2µk‖
)

is the 
omplex argument of the plasma dispersion fun
tion

of third order, Z3. The n-th order plasma dispersion fun
tion Zn (ζe) is de�ned

by [62℄

Zn (ζ) =
1√
π

∫ ∞

−∞
dt

tn e−t2

t− ζ
. (4.12)

The 
omplex algebrai
 equation (4.11) was solved for ω (β) numeri
ally with a root

�nder.

In Figure 4.4 the frequen
y depending on β is shown. The length s
ale of the

perturbation in x-dire
tion is Lx/25. The frequen
y obtained with EUTERPE and

the results of the eigenvalue (EV) solver agree to high a

ura
y. Therefore, the

ben
hmark is su

essful and the slab geometry has been implemented 
orre
tly.

1

The most general dispersion relation of a sheared slab with 
onstant equilibrium gradients will

be derived in Se
. 5.1.
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5 Linear simulations of the tearing

mode

5.1 Linear dispersion relation

In this 
hapter the dispersion relation of linear tearing modes is dis
ussed. The most

general linear eigenvalue problem of the gyrokineti
 equation in a slab is derived by

means of Eqs. (2.5�2.10) without any restri
tion of the s
ales involved.

Both kineti
 ions and ele
trons 
ontribute to the sour
e terms of the �eld equa-

tions. The plasma is assumed to be inhomogeneous in general by employing a lo
al

approa
h of temperature and density gradients in 
ontrast to the global 
urrent pro-

�le, i. e. the gradients have 
onstant values n′
0,s and T ′

0,s respe
ting the x-dire
tion.
The linear mode is assumed to be two-dimensional, thus setting ∂z = 0. This re-

stri
tion does not narrow the essential physi
s, sin
e otherwise only the resonant

surfa
e is shifted in spa
e. However, three-dimensional nonlinear tearing 
an indeed

di�er substantially from two-dimensional tearing [2, 72℄.

Using the δf -ansatz, the linearised Eq. (2.10) for the perturbed part of the distri-

bution fun
tion reads

~̇R1
s

∂f0,s

∂ ~R
+ ṗ1‖

∂f0,s
∂p‖

= −∂δfs
∂t

− ~̇R0
s

∂δfs

∂ ~R
− ṗ0‖

∂δfs
∂p‖

.

The unperturbed and perturbed 
ontributions of the parti
les traje
tories are given

by Eqs. (2.5) (Se
. 2.2).

Applying the usual Fourier ansatz for the spatio-temporal stru
ture, ∂t 7→ −i ω,
∂y 7→ i ky, one obtains

δfs = f0,s

(

φ− p‖
ms

A
)

k‖(x)
(

ω
k‖(x)

− p‖
ms

)

[

ky κs +
qs
τs

k‖(x)

(

p‖
ms

− u0,s(x)

)]

. (5.1)

Two-dimensional re
onne
tion leads to a parallel wave ve
tor k‖(x) = ky B0,y(x).
The generalised gradient term κs has been de�ned in Eq. (2.10) (Se
. 2.2).The

x-dependen
y of the problem is kept, sin
e it is ne
essary to resolve the spatial

stru
ture of the layer.

The �eld equations 
lose the Vlasov-Maxwell system. For vanishing ion to ele
tron

temperature ratio τ ≪ 1, the approximation 〈ni〉 ≈ ni is employed and analogously
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5 Linear simulations of the tearing mode

for the 
urrent 〈j‖,i〉 1

. This is an important modi�
ation for all subsequent ben
h-

marks 
arried out, sin
e otherwise the exa
t gyroaveraging operator leads to an

eigenvalue problem for a relatively 
ompli
ated set of integro-di�erential equations.

The e�ort to solve this problem is quite beyond the s
ope of this work.

In the subsequent ben
hmarks the long wavelength approximation is used. With

these assumptions the quasi-neutrality equation reads

δni +∆φ = δne
∫

2π v⊥ dv⊥ d(p‖/mi) δfi +∆φ =

∫

2π v⊥ dv⊥ d(p‖/me) δfe.
(5.2)

The density responses δns 
ontain terms δns,φ related to the ele
trostati
 potential,

and terms δns,A related to the ve
tor potential resulting from the 
orresponding

terms related to φ, A in Eq. (5.1).

The �
urrent� in Ampère's law is given by the �rst moment of δfs with respe
t to

the momentum 
oordinate p‖/ms
2

− 1

β
∆A+

∑

s

µs q
2
s A =

∑

s

〈j‖,s〉

=
∑

s

qs

∫

2π v⊥ dv⊥ d(p‖/ms) (p‖/ms) δfs

=
∑

s

δjs.

(5.3)

The 
ontribution of ea
h spe
ies to the 
urrent 
ontains parts δjs,A related to A, and
terms δjs,φ related to φ. The 
omplete set of di�erential equations, Eqs. (5.2, 5.3),


an be 
ast into the �nal eigenvalue problem

d

2φ

dx2
= k2

yφ−
∑

s

qs (δns,φ φ+ δns,AA) ,

d

2A

dx2
=

(

β
∑

s

µsq
2
s + k2

y

)

A−
∑

s

β (δjs,φφ+ δjs,AA) .

(5.4)

1

By experien
e with EUTERPE the approximation 〈ni〉 ≈ ni is valid to a high degree for the

ben
hmarks of the tearing mode 
onsidered here. The simulation results pra
ti
ally do not 
hange

when varying τ = O(10−3), . . . ,O(1).
2

Note that normalised quantities are used so qe = −1, qi = 1 and vi =
√
τ , ve =

√
µ.
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5.1 Linear dispersion relation

The 
oe�
ients are obtained by inserting Eq. (5.1) into Eqs. (5.2, 5.3)

δns,φ = − 1

k‖

(

kyK
0
s +

qs
τs

k‖ 〈V 1
s 〉
)

, (5.5)

δns,A =
u0,s

k‖

(

kyK
0
s +

qs
τs
k‖〈V 1

s 〉
)

+
1

k‖

(

kyK
1
s +

qs
τs

k‖〈V 2
s 〉
)

, (5.6)

δjs,φ = − qs
k‖

(

ky K
1
s +

qs
τs
k‖〈V 2

s 〉
)

− qsu0,s

k‖

(

ky K
0
s +

qs
τs

k‖〈V 1
s 〉
)

, (5.7)

δjs,A =
qsu

2
0,s

k‖

(

ky K
0
s +

qs
τs
k‖〈V 1

s 〉
)

+
2qsu0,s

k‖

(

ky K
1
s +

qs
τs
k‖〈V 2

s 〉
)

(5.8)

+
qs
k‖

(

kyK
2
s +

qs
τs
k‖〈V 3

s 〉
)

.

The fun
tions Km
s (x, ω) with m integer 
ontain all gradient terms a

ording to

Km
s (x, ω) = κn,s〈V m

s 〉 − 1

2
κT,s〈V m

s 〉+ κT,s〈V m+2
s 〉 − du0,s

dx

〈V m+1
s 〉
v2s

. (5.9)

The moments 〈V n
s 〉 are de�ned in terms of Zn (ζs) with ζs =

(

ω
k‖

− u0,s

)

/
(√

2vs
)

,

〈V n
s 〉 (x, ω) =

(√
2vs

)n−1 1√
π

∫ ∞

−∞
dt

tn e−t2

t−
[

1√
2vs

(

ω
k‖(x)

− u0,s(x)
)]

=
(√

2vs

)n−1

Zn (ζs) .

(5.10)

It is important to note that k‖(x) and u0,s(x) depend on x. These fun
tions also

appear within the plasma dispersion fun
tion, so the solution of this kineti
 eigen-

value problem is quite ambitious.

It is important to take 
are of the 
orre
t use of Zn(ζs) in the 
omplex plane when


rossing the layer from x > 0 to x < 0, where k‖ 
rosses zero. Sin
e the solution of

the dispersion relation Eq. (5.4) should always give an instability, it must hold γ > 0
everywhere. Let k‖(x) > 0 if x > 0, and vi
e versa. If k‖ > 0, then ℑ (ζs) > 0 and

one 
an use the plasma dispersion fun
tion Zn(ζs) de�ned in Eq. (5.10). If one


rosses the layer, the sign of k‖ swit
hes be
ause the dire
tion of the equilibrium

magneti
 �eld lines swit
hes as well. Then ℑ (ζs) < 0, although γ > 0 is still de-

manded. The appli
ation of Eq. (5.10) des
ribes now a stable mode. However, the

domain x > 0 has no spe
ial features 
ompared with x < 0. This 
an be understand

by inspe
ting the mode stru
ture of A, whi
h is known to be symmetri
 with respe
t

to x and so the physi
s is the same in both domains. Therefore, one has to maintain

the 
ondition of an unstable mode and one must repla
e Zn with the 
omplemen-

tary plasma dispersion fun
tion Z̄n, de�ned by Z̄n (ζs) = −Zn (−ζs). This fun
tion
is analyti
 with respe
t to ω as well, but it in
orporates the property to des
ribe

instabilities when ℑ (ζs) < 0. This gives the 
orre
t des
ription of the tearing mode
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5 Linear simulations of the tearing mode

when k‖ < 0.
The 
omplete linear dispersion relation, Eqs. (5.4), has to be solved for ω (ky), us-
ing the 
oe�
ients de�ned by Eqs. (5.5�5.8). The eigenvalue problem de�ned by

Eqs. (5.4) is the most general expression for an eigenvalue problem in a slab with


onstant density and temperature pro�les, sin
e neither a spe
ial 
urrent pro�le is

�xed nor a s
ale ordering is implied. For instan
e, it is 
ommon in analyti
al work

on slab tearing modes to employ a > de whi
h mat
hes experimental re
onne
tion

setups. From the mathemati
al point of view this is a restri
tion to the appli
abil-

ity of the resulting dispersion relation. The dispersion relation derived here 
an be

applied to every physi
al situation.

The solution of the eigenvalue problem Eqs. (5.4) is referred to as full tearing mode

or just tearing mode in this thesis. Note that this 
ase in
ludes both �elds A, φ and

both kineti
 spe
ies.

The full tearing mode model 
an be simpli�ed by negle
ting the ion response as well

as the �u
tuations of the ele
trostati
 �eld. The resulting solution of the dispersion

relation is referred to as ele
tron tearing mode. This model is motivated by the

observation that ele
trons play always the dominant role in the dynami
s due to the

large natural mass ratio µ. The eigenvalue problem of the ele
tron tearing mode

thus redu
es to

d

2A

dx2
=
(

βµ+ k2
y

)

A + δje,AA

=
(

βµ+ k2
y

)

A− βA
qe
k‖

[

u2
0,e

(

kyK
0
e + qek‖〈V 1

e 〉
)

+ 2u0,e

(

kyK
1
e + qek‖〈V 2

e 〉
)

+ kyK
2
e + qek‖〈V 3

e 〉
]

.

(5.11)

This model also permits re
onne
tion and serves as a minimal ele
tromagneti


model

1

. The eigenvalue problem Eq. (5.11) is still di�
ult to solve. Moreover, no

re
onne
tion-typi
al s
ale ordering nor a spe
i�
 
urrent pro�le is imposed. Thus,

a simple analyti
al derivation of the growth rate of the ele
tron tearing mode will

be given following Ref. [20℄.

The ideal MHD domain was des
ribed by Eq. (1.16). For the sake of simpli
ity it

is assumed that gradients of temperature and density vanish. Close to the resonant

layer x ≈ Lx/2, the variation of the 
urrent 
an be negle
ted setting du0,e/dx = 0
and so Km

e = 0, too. It is a 
ommon approximation to treat the limit u0,e ≪ ve and

1

The dispersion relation Eq. (5.11) simpli�es further when the shifted Maxwellian is being removed

using u0,e = 0 and the gradients are set to zero. The singular layer vanishes and it follows

Km
e = 0. Sin
e the equations do not depend on x anymore, a harmoni
 spatial exponential eikxx

is an eigenfun
tion. In
luding the substitution k‖ 7→ kz one gets

−k2x =
(

βµ+ k2y
)

− β〈V 3
e 〉,

−k2⊥ = βµ (1− 2Z3,e) ,

whi
h is the ele
tron Alfvén wave, Eq. (4.11) (Se
. 4.1).
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so all terms in Eq. (5.11) proportional to u0,e are small, resulting in

d

2A

dx2
=
(

βµ+ k2
y

)

A− β A 〈V 3
e 〉. (5.12)

At x ≈ Lx/2 the spatial stru
ture in the x-dire
tion varies mu
h stronger than in

the y-dire
tion (∂x ≫ ky), therefore,

d

2A

dx2
≈ (βµ− 2βµZ3,e)A = ζ2eZ0,eA. (5.13)

The moment 〈V 3
e 〉 has been expressed in terms of Z3(ζe) with the argument ζe =

ω/
(√

2vek‖
)

. The relation Z3,e = 1/2 + ζ2eZ0,e redu
es the order of the plasma

dispersion fun
tion [62℄.

The inner layer s
ale δin related to the perturbed 
urrent is de�ned by the 
ondition

|ζe| ≈ 1, or equivalently k‖ (δin) ve ≈ γ. This estimation of the width of the ele
tron


urrent 
hannel is often used in kineti
 
al
ulations [18℄, sin
e the plasma dispersion

fun
tion has a peaked pro�le whi
h is extended up to a s
ale δin.
Eq. (5.13) 
an be manipulated similar to the pro
edure des
ribed in Se
. 1.4 giving

the growth rate [18, 20℄

γ = ∆′ kyved
2
e

2
√
πls

. (5.14)

This is the simplest kineti
 analyti
al dispersion relation for slab tearing modes valid

in the limit ∆′de ≪ 1. It reprodu
es the same s
aling with ky and de as the result
of the �uid model in Se
. 1.4.2.

An extended 
al
ulation of the growth rate within a hybrid approa
h in
luding φ 
an

be found in Ref. [46℄ whi
h also uses a detailed mat
hed asymptoti
 expansion for

both �elds. The linear equations in this referen
e 
an be mapped to the eigenvalue

problem derived here.

5.2 Ben
hmark of the tearing mode without

gradients

The full tearing mode as well as the ele
tron tearing mode are simulated with EU-

TERPE. The results are ben
hmarked solving the asso
iated eigenvalue problems

Eq. (5.4, 5.11) by means of a shooting method. The shooting method relies on a

reformulation of the eigenvalue problem into a Ri

ati di�erential equation. The

algorithm originates from Ref. [73℄.

The algorithm will be explained shortly by inspe
ting a general set of 
omplex


oupled �rst order di�erential equations de�ned on the domain [0, Lx] [74℄. The
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5 Linear simulations of the tearing mode

ve
tors d~u/dx and similarly d~v/dx may ful�l the equations

d~u

dx
= A(x, ω) ~u+B(x, ω)~v,

d~v

dx
= C(x, ω) ~u+D(x, ω)~v.

(5.15)

The matri
es A, . . . , D may spe
ify the problem with the unknown eigenvalue ω
whereas boundary 
onditions for ~u, ~v at x = 0 and x = Lx are set. One introdu
es

the unknown Ri

ati matrix R(x, ω) by the de�nition ~u = R~v. Inserting this ansatz
into Eq. (5.15) the nonlinear Ri

ati equation be
omes

dR

dx
= −RCR− RD + AR +B. (5.16)

For the solution of Eq. (5.16) the boundary 
onditions R(0, ω) = R(Lx, ω) =
0 are employed. The shooting 
ode integrates R(x, ω) a

ording to Eq. (5.16)

from the left starting at point x = 0 and from the right starting at point x =
Lx to a 
ertain inner point xf ∈ (0, Lx). The 
orresponding solutions are de-

noted Rl(xf , ω) and Rr(xf , ω). It 
an be shown that the 
ontinuity of the solutions

~u, ~v and d~u/dx, d~v/dx at x = xf is guaranteed if the ne
essary and su�
ient 
on-

dition det [Rl(xf , ω)− Rr(xf , ω)] = 0 is ful�lled. Thus, for a �xed mat
hing point

xf the sear
h for the eigenvalue ω is reformulated into �nding the 
omplex root ω
of the 
omplex determinant depending on the matri
es Rr(xf , ω), Rl(xf , ω). The

eigenfun
tions are obtained in a separate step by integrating d~v/dx = (CR +D)~v
and ~u = R~v ba
kwards from xf with the already obtained R(x, ω).
The algorithm also in
ludes an adaptive step size method for the spatial integration

and gives high pre
ision results even when strong spatial variations are present.

Eqs. (5.4, 5.11) were implemented into the shooting 
ode. For the eigenvalue prob-

lem of the full tearing mode, Eq. 5.15 redu
es to a set of four �rst-order di�erential

equations with u1 = φ, u2 = A, v1 = dφ/dx, and v2 = dA/dx. It is an unique

advantage to solve the exa
t eigenvalue problem 
ontaining all the physi
s within.

Numeri
ally exa
t ben
hmarks of the full tearing mode are very rarely found in lit-

erature [25℄ in 
ontrast to the ele
tron tearing mode [20, 26℄. Prin
ipally, it is quite

possible to extend this low-β des
ription in
luding the parallel magneti
 perturba-

tions δB‖, solving a set of three 
omplex di�erential equations

1

.

The plasma is assumed here to be homogeneous employing a 
onstant temperature

and density. Magneti
 �eld 
on�guration I was 
hosen whi
h is motivated by a dire
t


omparison of the dispersion relation of Ref. [26℄. The shear length of the magneti


equilibrium is given by ls = 1/
(

Cβ
√
µ
)

≈ 23.3 using β = 10−3
. The 
onstant C

is always set to unity if not stated otherwise. The size of the simulation box is

1

This task has never been solved with a shooting 
ode. Although simulations results are available

in this 
ase [38℄, it is 
ommon to use mu
h less exa
t dispersion relations obtained by analyti


approa
hes, often in asymptoti
 limits.

Despite the fa
t that exa
t asymptoti
 limits required by analyti
 derivations 
an not be a
hieved

by numeri
al simulations, simulations results often still deviate from the analyti
 dispersion rela-

tion up to 50% [29℄. This might enlight the power of the Ri

ati method presented here.
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Figure 5.1: Spatial eigenmode stru
ture of A and φ both for EUTERPE and the

shooting method (a = 0.9). The maximum amplitude of both �elds is

normalised to unity. EUTERPE is able to perform linear re
onne
tion

simulations to high a

ura
y.

Lx ×Ly = 10× 10. In EUTERPE the long wave length approximation of the quasi-

neutrality 
ondition was used to mat
h the required assumptions of the eigenvalue

problem. The 
old ion limit was enfor
ed by setting τ = 10−3
. For the simulations

here the resolution of the domain a

ounts for ns̄ = 256 and nχ = 16 points. An

amount of Np = 107 markers for ea
h spe
ies was used with a time step ∆t = 0.05.
The 
lear numeri
al veri�
ation of the mode needs about 64 CPUhwhi
h is rela-

tively 
heap. The �lter in EUTERPE was adjusted to pass only the m = 1 mode.

In 
ase of the ele
tron tearing mode, the weights of the ions have been set to zero

suppressing the ion response. When simulating the ele
tron tearing mode the ele
-

trostati
 potential was swit
hed o� as sket
hed in Se
. 4.4.

For numeri
al reasons it is ne
essary to use a su�
iently high resolution of all rel-

evant s
ales. The ele
tron 
urrent layer of width δe ≈ γlsky/ve ≈ 0.17, with ky =
2π/10 ≈ 0.62, has been resolved with at least four points. The re
onne
tion pro-


ess is mainly indu
ed by inertia e�e
ts with the relevant 
ollisionless ele
tron skin

depth de = 1/
√
βµ ≈ 0.7 whi
h is somewhat smaller than the ion sound radius

ρS,e = 1. This 
orresponds to a spatial resolution of the skin depth with 17 points.

The 
ollisionless ion skin depth di = 1/
√
β ≈ 31.6 is mu
h larger than the simulation

box size and plays no role. The ion 
urrent 
hannel of width δi ≈ γls/ky ≈ 7.3 is

also not of importan
e due to the large mass ratio. In the 
old ion limit the Larmor

radius be
omes mu
h smaller than any other s
ale in the system, ρi ≈ 0.03 ≪ δe.
At �rst a �xed equilibrium s
ale a = 0.9 is 
hosen to ben
hmark a single eigen-

value and the 
orresponding eigenfun
tions in the full tearing mode 
ase. From

EUTERPE simulations a growth rate γ = 0.37 is obtained, while the result of the

shooting method is γ = 0.3694. A 
omparison between the mode stru
tures 
al
u-
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5 Linear simulations of the tearing mode

lated with EUTERPE and the shooting 
ode is shown in Figure 5.1. The ve
tor

potential A and the ele
trostati
 potential φ 
al
ulated with EUTERPE �t very well

with the eigenmodes obtained with the shooting 
ode. The mode stru
ture of φ in

the vi
inity of the resonant layer is somewhat wider than for A and typi
ally varies

on s
ales ρS,e [46℄, re�e
ted by the estimate de < ρS,e.
The ben
hmark was extended to a broad range of values of a measuring the growth
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Shooting method, φ=0
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Figure 5.2: Ben
hmark of the growth rate over kya for �xed ky = 2π/10 and both

tearing mode 
ases. EUTERPE is able to simulate re
onne
tion to very

high pre
ision.

rate. Starting in the range of marginal stability with a ≈ 1.4 (kya ≈ 0.9), the equi-
librium 
urrent width was de
reased approa
hing a ≈ 0.08 (kya ≈ 0.05). Although
the variation of a, espe
ially if a ≪ de, allows formally tearing mode solutions, this

kind of s
ale variation is rather unusual, as will be dis
ussed below. For small val-

ues a ≈ 0.08, tearing modes with poloidal mode number m = 2, 3, . . . exist being
more unstable than the m = 1 mode, but are �ltered out. The dispersion rela-

tion γ(kya) obtained with EUTERPE 
ompared with the results of the shooting

method are shown in Figure 5.2. The red 
urve and points refer to the growth

rate of the redu
ed (ele
tron) tearing mode model, whereas the blue values repre-

sent the dispersion relation of the full tearing mode. The mode be
omes stable at

a ≈ 1.4 (kya ≈ 1.1). Redu
ing the equilibrium 
urrent width a maximum growth

rate γ = 0.52 was found at a = 0.42 (kya ≈ 0.25) for the tearing mode 
ase whi
h is

somewhat larger than for the ele
tron tearing mode (γ ≈ 0.47). In the 
ase of small

values of a ≈ 0.08 the modes require a very high spatial resolution, but are ben
h-

marked to high pre
ision. Thus, the adaptive step size integration of the shooting


ode is able to fa
e this ambitious task and 
overs the simulation results perfe
tly.

The depi
ted growth rates of both models (with and without φ) di�er only slightly

over the whole range of a. The 
omparison makes evident that the ele
trostati


potential gives a small 
orre
tion 
ompared to the ele
tron tearing 
ase. The ap-

proximation be
omes better for a > 1.1 (kya > 0.7). For the parameter 
hosen

here (de < ρS,e) it has been shown analyti
ally that the ele
trostati
 response 
an
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Figure 5.3: Comparison between the analyti
al result of Drake with the result of the

shooting method (ele
tron tearing mode 
ase). The blue 
urves mat
h

the physi
al ordering de ≪ a mu
h better then the red 
urves (de > a).

be negle
ted in the regime ∆′de ≪ 1 [18℄. In the medium range 0.1 < a < 1.3 the

ele
trostati
 potential destabilises the ele
tron tearing mode more dominantly.

To make a 
loser 
onta
t to literature the analyti
 dispersion relation of the ele
-

tron tearing mode Eq. (5.14), the result of Drake [18℄ and the numeri
ally exa
t

dispersion relation are 
ompared.

In 
ontrast to the stri
t derivation of Eq. (5.14), Drake obtained a similar dispersion

relation by using heuristi
 s
aling arguments allowing the estimate of the perturbed


urrent width and stru
ture of the ve
tor potential. These both results di�er by a

prefa
tor 1/
√
π whi
h 
an be summarised to

γ = ∆′ kyved
2
e

2ls

(

1√
π

)l

, (5.17)

setting l = 0 (Drake) and l = 1 (Eq. 5.14, [20℄). The 
onstant prefa
tors are less

interesting, rather the 
orre
t dependen
e of γ on the essential values ky,∆
′
and ls

matters. The 
ase l = 0 is 
ompared with the dispersion relation of the ele
tron

tearing mode obtained with the shooting 
ode.

Mainly two setups of parameters are of interest, either a variation of a with a 
on-

stant wave ve
tor or vi
e versa. The resulting dispersion relations are depi
ted in

Figure 5.3. The growth rate depending on a with �xed ky = 2π/10 was dis
ussed in

the previous ben
hmark. Drake's result is only valid in the small-∆′
range whi
h is

a
hieved when kya & 0.7 and the 
onstant-Ψ approximation be
omes valid. The red


urves show the 
ontrast of Eq. (5.17) to the shooting method. When a is varied as

in the previous ben
hmark one rea
hes values ky a ≈ 0.4, 
onsequently a . de ∼ 0.7.
Due to this unusual reversion of re
onne
tion relevant s
ales, Drake's result 
an not
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5 Linear simulations of the tearing mode


over this parameter range. The analyti
al dispersion relation Eq. (5.17) even does

not mat
h the qualitative behaviour of the 
urve obtained by the shooting method

if kya . 0.7.
The 
ondition de ≪ a ful�ls better the assumptions of the derivation of Eq. (5.17).

This result is shown in Figure 5.3 indi
ated by the blue 
urves. Here de ≈ 0.7 . a =
1.3 is 
ommonly used and ky is varied. The typi
al x-variation of A is in the order

of de (∇2
⊥A ≈ A/d2e) at the resonant layer and is mu
h larger than the variation

in y-dire
tion. As in the derivation of Eq. (5.14) adopted, ky ≪ ∂x is well satis�ed

for ky a ≈ 1. Thus, the qualitative shape of the both the dispersion relation obtained
with the shooting method and Drake's result is the same.

5.3 Ben
hmark of the tearing mode with gradients

The exa
t MHD equilibrium 
ondition in a slab requires the magneti
 pressure pB to

be balan
ed by kineti
 pressure a

ording to p(x)+pB(x) = const. Inspe
ting a sim-

ple equation of state of the plasma, p(x) = n(x) T (x), the density and temperature

pro�les n(x) and T (x) must satisfy the ideal MHD pressure balan
e self-
onsistently.

The derived pressure gradient ∇⊥p arises due to variations of temperature and den-

sity a

ording to ∇⊥p = ∇⊥n · T + n · ∇⊥T . Instead of 
al
ulating the pressure

gradient derived from the exa
t fun
tions n, T , the variations of the ba
kground are

set to 
onstants a

ording to ∇⊥n ≈ n0/Ln and ∇⊥T ≈ T0/LT independent from

ea
h other [18℄. This approa
h simpli�es analyti
 work, be
ause the globally varying

pressure pro�le is essentially repla
ed by the s
ales of pressure variation.

The tearing mode is strongly lo
alised at the resonant surfa
e and therefore it is

expe
ted that in this region equilibrium gradients will play the major role. This

non-
onsistent, lo
al approa
h in the global slab domain is adopted for all subse-

quent simulations in
luding diamagneti
 e�e
ts.

The aim of the investigations here is to observe and ben
hmark the ele
tron tearing

mode in the presen
e of diamagneti
 e�e
ts. Similar to the parameter variation in

Se
. 5.2, the length s
ale a was 
hanged and the linear growth rate and real fre-

quen
y was measured. The extensions of the simulation box are Lx = Ly = 10
while employing magneti
 
on�guration I and β = 10−3

. A Fourier �lter sele
ts the

m = 1 mode, therefore, the wave ve
tor ky = 2π/10 of the perturbation is �xed. The
temperature ratio τ = 1 has been used while in
luding the exa
t gyroaveraged ion

response 〈ni〉 and long wavelength approximation is enfor
ed during the simulations.

A spatial resolution of ns̄ = 256 points in radial dire
tion, a time step ∆t = 0.1 and
up to Np = 4 · 107 ele
tron markers su�
e for the numeri
al 
onvergen
e of the

growth rates and give relatively short simulation times. A temperature gradient

of κT,e = 1 for the ele
trons has been 
hosen without a density variation (κn,e = 0).
The temperature gradient is rather large 
ompared with a realisti
 physi
al setup,

sin
e it 
hanges signi�
antly over one ion sound radius ρS,e.
The dispersion relation γ (ky a) obtained with EUTERPE is depi
ted in Figure 5.4

(red points). The magneti
 equilibrium s
ale ranges from a = 0.5, . . . , 1.3 (kya =
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Figure 5.4: Growth rate of the drift tearing mode depending on a (κT,e = 1,
ky = 2π/10) obtained with EUTERPE (points) and the shooting method

(solid lines). The dispersion relation for the 
ase κT,e = 0 is solved with

the shooting method (blue line). The ben
hmark of the growth rates

su

eeded.

0.3, . . . , 0.81). These results were 
ompared with the results of the shooting 
ode

(red solid line). The blue 
urve shows the 
ase when no ele
tron temperature gradi-

ent is present indi
ating the stabilising in�uen
e of diamagneti
 e�e
ts on the mode.

Although a rather high temperature gradient is apparent the mode gets stabilised

only slightly.

The real frequen
y ω̂ depending on a obtained with both EUTERPE and the shoot-

ing method are shown in Figure 5.5. The simulations results are measured via time

series of a �eld value at a �xed point in the simulation domain. Using several periods

the mean value of the periods was used to 
al
ulate the frequen
y. The simulations

in this range of parameter require a high 
omputational e�ort, sin
e the frequen
ies

do not di�er very mu
h when 
hanging a = 0.3, . . . , 1.3 (kya = 0.18, . . . , 0.81). The

omparison visualises small di�eren
es between the results of EUTERPE and the

shooting method. The error of measurement results from the standard deviation of

the repeated simulations for �xed a and is depi
ted, too. It turned out that the

size of the momentum sphere matters. Even though κv,e = 8, . . . , 9.5 ex
eeds the

thermal speed widely, it seems that the high thermal speed a�e
ts the frequen
ies

mu
h more than the growth rates due to the relatively large value C = 1. The

a

ura
y of the simulation results 
ould be improved by in
reasing the number of

markers, but the results shown in Figure 5.5 might su�
e to prove that EUTERPE


an des
ribe even drift tearing modes to high a

ura
y.

The kineti
 theory of Drake [18℄ predi
ts that the frequen
y of the drift tearing

mode is 
hara
terised roughly by the diamagneti
 frequen
y ω∗
T only, ω̂ ≈ ω∗

T/2 =

49



5 Linear simulations of the tearing mode

 0.135

 0.14

 0.145

 0.15

 0.155

 0.16

 0.165

 0.17

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

∧ ω

ky a

EUTERPE, κT,e=1
Shooting method

Figure 5.5: Frequen
y of the drift tearing mode depending on a (κT,e = 1, ky =
2π/10) obtained with EUTERPE (red points) and the shooting method

(red line). At �rst this high pre
ision ben
hmark visualises small di�er-

en
es between the results of both methods.

kyκT,e/2 ≈ 0.3. This estimation is valid in the range ∆′de ≪ 1 whi
h 
orresponds

here to 0.8 . ky a. The theory shows that the drift frequen
y is a 
onstant in this

range, 
onsistent with the drift frequen
ies obtained with EUTERPE. For kya < 0.8
(∆′de ≈ 1) it has been proven with EUTERPE that ω̂ is also nearly 
onstant for

various a. Although the predi
tion is roughly twi
e the frequen
y with kya = 0.81,
ω∗
T/2 ≈ 2 · 0.16 and thus does not mat
h the values of the simulation, it gives the


orre
t order of magnitude. The 
on�rmation of this analyti
al result requires fur-

ther extended parameter studies in the 
orresponding low-∆′
regime.

5.4 Criti
al behaviour 
aused by diamagneti


e�e
ts

As indi
ated in the previous se
tion, the ele
tron tearing mode gets stabilised in the

presen
e of a temperature gradient a
ross the layer. In the �rst part of this 
hapter

the full tearing mode is studied by applying �nite temperature and density gradients.

It has been shown analyti
ally that the stabilisation of the full tearing mode must

o

ur for a 
ertain value Ln [49℄. This analyti
al result has never been veri�ed in

an broad parameter spa
e. Re
ent simulations obtained with gyro�uid models [44℄

were restri
ted to a few results in the high-∆′
regime missing an extended numeri
al

proof of the analyti
al predi
tion [49℄.

For the present s
ope the medium- to high-∆′
regime is of interest employing mag-

50



5.4 Criti
al behaviour 
aused by diamagneti
 e�e
ts
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Figure 5.6: Growth rates depending on η. The 
riti
al behaviour of the growth rate

has been measured for di�erent C (full tearing mode 
ase, a = 0.5, ky =
2π/10). Results obtained with EUTERPE (points) are 
overed well by

the analyti
 estimate Eq. (5.18) (lines).

neti
 
on�guration I setting β = 10−3
and a = 0.5. Ea
h spe
ies is exposed to the

same temperature and density gradients, κT,e = κT,i = κT and κn,e = κn,i = κn.

Furthermore, it is de�ned ηs = η = Ln/LT. For a good performan
e of the sim-

ulations Np = 4 · 106, . . . , 12 · 106 markers are su�
ient, while resolving the sim-

ulation domain needs ns̄ = 128 radial points. The quasi-neutrality equation in

the long wavelength approximation is employed with a �xed temperature ratio

τ = 1, whereas the exa
t density response of the gyro
enters was taken into a
-


ount. The �rst simulations are 
arried out measuring the growth rates by varying

the density gradient κn with a �xed temperature gradient κT = −0.005. Addition-
ally, the simulations 
over various strengths of the perpendi
ular magneti
 �eld,

C = 0.2, 0.02, 0.002. In Figure 5.6 (points) the growth rates obtained with EU-

TERPE are depi
ted.

Fixing any value of the shear strength C, and large values of η (η ≫ 1), a de
rease of
η does not in�uen
e the growth rate very mu
h. Inspe
ting γ(η) related to C = 0.2
(red points), the growth rate remains almost 
onstant with respe
t to η when re-

du
ing η ≈ 103 by �ve orders of magnitude to η ≈ 10−1
. In the vi
inity of η ≈ 10−2

,

referred here to as the 
riti
al threshold ηcr, the growth rate drops suddenly. Below

this threshold the tearing mode gets stabilised 
ompletely.

A 
omplete stabilisation in 
ases of mu
h smaller shear strengths C = 0.02, 0.002
has been veri�ed as well, shown in Figure 5.6 (blue and green points). In a low

shear equilibrium, C ≪ 1, or equivalently u0,e/ve ≪ 1, the 
riti
al η rea
hes values


lose to unity. In this 
ase the gradient s
ales vary on s
ales mu
h larger than ρS,e
getting more relevant for fusion appli
ations.

For the set of parameters 
onsidered here analyti
al dispersion relations have been
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5 Linear simulations of the tearing mode
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Figure 5.7: Criti
al η for various β for the ele
tron tearing mode 
ase (a = 0.5, κT =
−0.05). For realisti
 β-values O(1%) the threshold ηcr = O(10−4) is very
small, thus the tearing mode is pra
ti
ally always unstable for realisti


equilibrium gradients.

obtained in the presen
e of diamagneti
 e�e
ts [44, 49℄. They rely on a �uid des
rip-

tion of the ele
trons 
ombined with a gyrokineti
 ion response in
luding full FLR

e�e
ts. In 
ontrast to the quasi-neutrality equation used in EUTERPE the analyti


predi
tion uses a Padé-response of the ions. By experien
e and due to the results

of Se
. 7.2 this di�eren
e matters be
ause the growth rates obtained with both �eld

equations 
an deviate from ea
h other in the range O(10%). To apply the predi
tion
properly respe
ting the dependen
y on τ its limit of vanishing temperature ratio of

the ions is employed. Thus, the analyti
al predi
tion �tting for the parameters here

reads (see Table 1.3, Se
. 1.4.2)

1

γ2 = γ2
0 −

(

kyκT,e

2η

)2

, γ0 =
ky

ls
√
β

(

2

π
√
µβ

)1/3

. (5.18)

The 
ase η → ∞ 
orresponds to a vanishing density gradient (γ = γ0). The


omparison of the simulated growth rates with Eq. (5.18) is shown in Figure 5.6

(solid lines). Both results agree well over the whole range of η and for the values

C = 0.2, 0.02. In the 
ase C = 2 · 10−3
the predi
tion deviates up to 50% from

the simulation results in the range η = O(102). Note that the validity of Eq. (5.18)
rea
hes its limit for the parameters 
hosen here. Though this equation is valid for

de < ρS,e it requires ρS,e < a, whi
h mat
hes here not 
ompletely (a = O(ρS,e)).
Small deviations of the growth rates o

ur when 
omparing the analyti
al result

and the results obtained with EUTERPE, espe
ially 
lose to the 
riti
al η. This


an be tra
ed ba
k to the high 
omputational e�orts whi
h are ne
essary to resolve

1

Note that the predi
tion here is subje
t to EUTERPE units.
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5.4 Criti
al behaviour 
aused by diamagneti
 e�e
ts

small γ. If the growth rate be
omes very small, the ina

ura
y be
omes larger in


ontrast to the values γ ≈ γ0. The 
omputations be
ome 
hallenging for very low

shear strengths C = 2 · 10−3
and require relatively long simulation times even in a

slab. For the runs with a shear strength of C = 2 · 10−3
, the 
omputations needed

approximately 3 · 104 CPUh for ea
h point.

The threshold ηcr is of spe
ial interest, be
ause it marks the value at whi
h re
on-

ne
tion is prevented. Subsequently, this threshold is exposed to investigations using

the ele
tron tearing mode model. Maintaining the previous simulation 
onditions,

but for κT = −0.05, the dependen
y of ηcr on the plasma-β is examined within the

ele
tron tearing mode 
ase. In Figure 5.7 the relation ηcr(β) is depi
ted for a single

value C = 1. The 
riti
al threshold ηcr de
reases strongly with higher β. For realisti

β-values of the order O(1%) the tearing mode is always unstable for the parameters

under 
onsideration here. Indeed, if a small temperature gradient κT,e = O(10−2)
is present, only a relatively large density gradient κn,e = O(101) or higher prevents
the re
onne
tion pro
ess. The absolute error bars of ηcr in
rease with higher values.

However, the ratio of error to measured value remains the same for all points.

A s
aling of the 
riti
al ηcr(β) 
an be derived from Ref. [44, 49℄, evaluating Eq. (5.18)

at the 
riti
al threshold γ = 0,

0 = γ2
0 −

(

kyκT

2ηcr

)2

=
ky

ls
√
β

(

2

π
√
βµ

)1/3

−
(

kyκT

2ηcr

)2
(5.19)

From Eq. (5.19) the proportionality ηcr ∼ 1/β1/3
(ls ∼ 1/β) follows and supports

qualitatively the de
reasing of ηcr with higher β-values obtained with EUTERPE

(Figure 5.7). Note that the in
rease of β a

ording to Figure 5.7 
hanges the ratio

de/ρS,e = 1/
√
µβ in the range 1.0, . . . , 0.3. Therefore, the s
aling derived from the

dispersion relation Eq. (5.18) applies 
orre
tly only in the higher β-regime (β =
O(1%)) when de < ρS,e and requires more simulation results for this 
ase. The

s
aling ηcr(C), indire
tly shown in Figure 5.6, 
an be estimated using Eq. (5.19).

Re
alling that ls ∼ 1/C, the s
aling ηcr ∼ 1/C 
an be dedu
ed whi
h 
overs well

the de
rease of ηcr with larger shear strength.

The kineti
 approa
h of Ref. [54℄ predi
ts the stabilisation of the tearing mode in

the presen
e of diamagneti
 e�e
ts as well. The gyrokineti
 equation used in this

work 
an be mapped to the gyrokineti
 model here as well as the similar magneti


equilibrium. The predi
tion states ηcr ∼ 1/β1/2
, if ∆′a is of order unity 
overing

qualitatively the �ndings of the simulations (Figure 5.7).

The kineti
 approa
h proposed by Drake [18℄ in the presen
e of equilibrium gradients

primarily does not predi
t a 
riti
al threshold. A reason might be the medium-∆′

value that allows the mode to get stabilised for su�
ient large gradients.
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5 Linear simulations of the tearing mode
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6 Nonlinear simulations of tearing

modes

Nonlinear simulations of tearing modes are a 
hallenging numeri
al task in every

geometry, thus even in a slab. From the numeri
al point of view nonlinear sim-

ulations are important for at least two reasons: the numeri
al simulation of the

nonlinear saturation over large periods will �nally demonstrate that EUTERPE 
an

handle the subje
t of re
onne
tion. Se
ondly, a good numeri
al performan
e of the

single-mode simulations serves as a good starting point for investigations regarding

mode-
oupling, three-dimensional re
onne
tion and further nonlinear ele
tromag-

neti
 modes in toroidal geometries.

The saturation of the 
ollisionless tearing mode in the range ∆′de < 1 is known as

Rutherford-like or �sub-exponential� behaviour. This type of nonlinear stabilisation

is a

ompanied by the observation that the a
tual growth rate γ(t) does not ex
eed
the linear growth rate γk for all times (γ(t) ≤ γk) [34℄.
The nonlinear a

eleration of the �eld amplitude is known as �super-exponential�

re
onne
tion

1

, mainly investigated in high-∆′
s
enarios

2

. This type of nonlin-

ear destabilisation is 
hara
terised by an instantaneous growth rate γ(t) > γk when
entering the nonlinear phase. The simulations presented here are the �rst results ob-

tained with PIC methods at all. The numeri
al e�ort des
ribing this non-saturation

is dramati
ally higher 
ompared to the Rutherford-like type, sin
e an extremely

small 
urrent 
hannel evolves and 
ollapses during a very short time interval. Both

types of nonlinear behaviour are still far apart from a 
omprehensive physi
al un-

derstanding whi
h motivates further simulations.

1

The terms super-exponential, quasi-explosive, impulsive and faster-than-exponential arise often

in this 
ontext des
ribing the same strong in
rease of the re
onne
ted �ux in time. Further

similar notations o

ur in similarity solutions of extended MHD models [13℄. Although not 
om-

parable dire
tly to the re
onne
tion pro
ess here, the amplitudes A also grow �explosive� when

approa
hing a 
ertain time t1: an algebrai
 term be
omes signi�
ant in the early nonlinear regime,

A ∼ exp(γkt)/(t1 − t).
2

The roughly given threshold ∆′de ≈ 1 whi
h divides both nonlinear phases is obtained by

experien
e with numeri
al simulations. It has never been proven stri
tly that it is a general

su�
ient 
ondition for observing the super-exponential phase.
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6 Nonlinear simulations of tearing modes
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Figure 6.1: Left: The nonlinear evolution of the �eld energy while saturation (a =
0.6). A 
lear saturation phase is reprodu
ed. Right: Iso
ontours of the

full ve
tor potential A0(r) + A (r, z, t = 113) showing the stru
ture of

the magneti
 island 
lose to the singular layer x = Lx/2 = 2.5.

6.1 Simulations of nonlinear saturated

re
onne
tion

For the subsequent outline magneti
 
on�guration I has been 
hosen and a do-

main size Lx × Ly = 2.5 × 2π. The domain extension is resolved with up to

ns̄ × nχ = 768 × 16 in the x, y-dire
tion. To 
ompare with the simulation re-

sults of Ref. [26℄, the plasma-β is 
hosen to be β = 10−3
, not at least be
ause the

width of the perturbed 
urrent 
hannel in
reases when redu
ing β and 
an be easier

resolved numeri
ally. The ele
tron tearing mode model is used, but additionally the

ions 
ontribute to the dynami
s, although they are not expe
ted to play a domi-

nant role. About 5, . . . , 20 · 106 markers for ea
h spe
ies have been used to obtain a

good 
omputational performan
e. The nonlinear mode-
oupling between the m = 1
mode, higher harmoni
s (m = 2, . . . , mmax) and the (m, n) = (0, 0) mode might

essentially in�uen
e the simulations. For the parameters under investigation, vari-

ous �lter sizes mmax = 2, . . . , 7 with n = 0 have been employed to 
he
k e�e
ts of

mode-
oupling in
luding possibly damped tearing modes with ∆′ < 0. In all 
ases

it has been veri�ed that the m = 1 mode dominates 
ompletely. This is important,

be
ause later on the results will be 
ompared with analyti
al estimations relying on

a single-mode model.

A typi
al nonlinear saturation of the tearing mode is depi
ted in Figure 6.1 (left)

showing ǫpot,e(t) for a = 0.6. After the initial linear phase t . 20, the amplitude of

the mode is large enough to alter the parti
le orbits and allowing the ele
trons to

follow the island stru
ture. In the 
learly saturated period (t > 40) a typi
al os
il-

lation frequen
y of the ele
tron �eld energy is observed a

ompanied by a periodi


os
illation of the �eld amplitude at ea
h spatial lo
ation. It has been proven 
learly

with EUTERPE that the saturation persists for all times t = O(102 ·γ−1
k ). The nu-

meri
al proof of the saturation and standing os
illations is important to validate the


ode. Moreover, EUTERPE provides a 
redible energy 
onservation of ∆ǫ(t) . 5%
for all nonlinear simulations dis
ussed in this 
hapter.
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6.1 Simulations of nonlinear saturated re
onne
tion

The spatial stru
ture of the magneti
 island at a �xed time t = 113 is shown in

Figure 6.1 (right). The full parallel ve
tor potential 
onsisting of the equilibrium

ba
kground A0 and the perturbation A has been plotted in the vi
inity of the layer

x ≈ Lx/2. The stru
ture of the magneti
 island 
an be 
learly resolved.

The estimation of the island half width w(t) in the 
onstant-Ψ regime was dis
ussed

in Eq. (1.25) (Se
. 1.4.3). If the 
onstant-Ψ approximation 
an not be applied, the

shape and width of the separatrix 
an be obtained only numeri
ally. Setting the

X-point at (z = 2π/ky, r = 0) without 
onstraints of generality, the separatrix is

the set of points (r, z) at ea
h time t whi
h obeys the 
ondition

A

(

z =
2π

ky
, r = 0, t

)

= A0 (r = w(t)) + A

(

z =
π

ky
, r = w(t), t

)

.
(6.1)

The island half width 
an be obtained by starting at the X-point and following the

iso
ontour of the full ve
tor potential. The maximum elongation with respe
t to r
is rea
hed at (z = π/ky, r = w(t)).
Eq. (6.1) presumes that the X-point is �xed at ea
h time step whi
h is not ne
-

essarily the 
ase in the simulations. In the beginning of the simulations the mode


an drift in the poloidal dire
tion be
ause of 
omputational reasons, although no

equilibrium gradients are applied. After the mode has prospered well in the linear

phase the mode stru
ture remains �xed during simulations. To solve Eq. (6.1) for

w(t) a MATLAB routine has been written using the �eld stru
ture A(r, t) extra
ted
from EUTERPE. Sin
e the ve
tor potential is given on a dis
rete spatial grid and no

additional interpolation routine is used, the solution of Eq. (6.1) will result in a step-

like fun
tion w(t). Additionally, the island half width obtained with the 
onstant-Ψ
approximation is also 
omputed measuring the ve
tor potential at the O-point.
To 
ompare the simulated island half width with analyti
al predi
tions the time

dependen
y of w(t) is removed by de�ning the temporal mean value w = 〈w(t)〉T
over a large time period T & γ−1

k .

The temporal evolution of w(t) with the simulation parameter a = 0.5 is depi
ted

in Figure 6.2. The solution of Eq. (6.1) in this 
ase, w ≈ 0.6, the s
aled �eld energy

ǫpot,e(t) and a simulation result of Wan (w = 0.59) [26℄ is 
ompared. Wan estimated

w ≈ 0.6 using the model of Drake [19℄ whi
h will be dis
ussed later. All values of

w agree very well with ea
h other, but are not very meaningful to proof Drake's

predi
tion. Only an extended parameter study 
ould reveal the reliability of this

model.

Filling this gap of nonlinear gyrokineti
 simulation studies in low-β s
enarios, the

island half width w depending on a has been investigated. The equilibrium 
ur-

rent width was varied a = 0.1, . . . , 0.75. This variation of a is rather unusual in

the sense of the dis
ussion in Se
. 5.2, be
ause is leads to a possible 
on�guration

with 0.1 ≈ a < de ≈ 0.7.
In Figure 6.3 the island half width w depending on the linear growth rate γ (red

points) is depi
ted. Here w was obtained by solving Eq. (6.1). The 
onstant-Ψ
approximation was 
he
ked as well by solving Eq. (1.25) for w(γ). The results from
both methods agree with ea
h other better than 5%. The analyti
al �nding by
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6 Nonlinear simulations of tearing modes
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Figure 6.2: The temporal evolution w(t) and ǫpot,e(t) for a = 0.5, Lx = 2.5. The is-
land half width w = 〈w(t)〉T obtained with EUTERPE is 
ompared with

the predi
tion of Drake [19℄ and the one simulation result of Wan [26℄.

Drake gives a relation w ∼ ∆′
. When ∆′de < 1, the dispersion relation Eq. (5.17)


an be applied stating essentially ∆′ ∼ γ. Therefore, it has been 
hosen to represent

the saturated island half width w depending on the growth rate whi
h emphasises

the dependen
e of w on the most important linear quantity γ. The linear dispersion
relation obtained with the shooting method γ(kya) is shown in Figure 6.4 to relate

w with the exa
t solution of the linear eigenvalue problem. In the small-∆′
range,

whi
h 
orresponds to kya & 0.75 in Figure 6.4, the island half widths w . 0.1 are

small 
ompared to the 
ollisionless skin depth. The term small (or skin-size) islands

refers to the relation w ≪ de [75℄ and is 
overed well, sin
e w ≪ de ≈ 0.7 ≈ a = 0.75.
De
reasing the equilibrium width to approximately a ≈ 0.5 (kya ≈ 0.5), the growth
rate be
omes larger (γ ≈ 0.4). In this range the island half width in
reases linearly

with the growth rate up to values of w ≈ 0.5.
The single simulation result of Wan (w = 0.59) is shown as well (blue point) and

�ts well with the result of EUTERPE. At this point the magneti
 island be
omes as

large as the equilibrium 
urrent width a. The islands are 
alled large-sized if they ex-
tend as far as the �ma
ros
opi
� region a. This term does not �t very well here, sin
e

additionally it is a ≪ de. In most of re
onne
tion simulations de ≪ a holds, and if

w ≈ a the term 
ould be applied adequately. When a ≈ 0.3 (kya ≈ 0.3) the growth
rate rea
hes the maximum value γ = 0.57 and the island width as well, w ≈ 0.7
(Figure 6.3). The island widths be
omes smaller when de
reasing a further and a

�
url� appears. This range is not supposed to be a reasonable re
onne
tion s
enario


ompared with the assumptions of Drake's theory and the predi
tion must fail. If a
rea
hes the lowest value a < 0.1 (kya < 0.1), the island half width ex
eeds 
learly

this equilibrium s
ale, 0.1 ≈ a < w ≈ 0.4. Here also �nite size e�e
ts play a role,

sin
e w ≈ 0.7 ≈ Lx/2 = 1.25.

The simulation results of w are dis
ussed in terms of Drake's predi
tion: in this
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6.1 Simulations of nonlinear saturated re
onne
tion
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Figure 6.3: Comparison between the saturated island w(γ) obtained with EU-

TERPE, analyti
al theory (Drake) and Wan [26℄ (The red solid line


onne
ts simulations results). In the low-∆′
regime (γ . 0.4) Drake's

predi
tion is proved.

model ele
trons dominate the re
onne
tion pro
ess while the ele
trostati
 potential

has been negle
ted. Under these 
onditions the saturated island half width is given

by

w = ∆′ d
2
e

2G
, (6.2)

with an estimated 
onstant G = 0.41.
As pointed out in Se
. 5.2, there are two similar kineti
 dispersion relations derived in

the small-∆′
regime, Eqs. (5.17). Using simple s
aling arguments one 
an estimate

a heuristi
 dispersion relation, whi
h deviates from the exa
t derived dispersion

relation by prefa
tors. The Eqs. (5.17) 
an be 
ombined with Eq. (6.2) obtaining

w = γ

√
π
l
ls

kyveG
. (6.3)

Inspe
ting Figure 6.3 (dashed lines), the 
ase l = 0 
orresponds to the heuristi


derivation (heur) and l = 1 to the analyti
 results (exa
t).

Drake's theory is stri
tly valid only in the small-∆′
regime whi
h refers here to values

kya & 0.75 (w . 0.1, Figure 6.3). De
reasing the equilibrium 
urrent width to val-

ues a ≈ 0.5, the island width in
reases linearly, as predi
ted by Drake. This marks

the threshold validity of the theory. A further de
rease of the equilibrium s
ale a
gives the estimation 0.1 ≈ a < w ≈ 0.4, in whi
h the island width is 
omparable

to the simulation size Lx. The island width saturates with respe
t to γ and drops
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Figure 6.4: Linear dispersion relation γ(kya) depending on a (ky = 1) obtained with

EUTERPE (points) and the shooting method (solid line). The relation

γ(a) is used to support the dis
ussion of Figure 6.3.

when redu
ing a.
Wan 
ompared his result w = 0.59 (Figure 6.2) with the analyti
 predi
tion, Eq. (6.3)
(l = 0), but properly speaking, Drake's model is not suited for this parameter 
on-

�guration. Despite that, Eq. (6.3) 
on�nes the simulation results for both values

l = 0, 1 and gives a reasonable predi
tion if the growth rates are su�
iently small.

The physi
al me
hanism of the saturation in the nonlinear regime is still under dis-


ussion. Drake suggests that ele
trons intera
t with the mode via resonan
e e�e
ts

in phase spa
e. This 
an not be the �nal answer, be
ause it will be shown later that

�uid simulations reprodu
e similar island half widths 
ompared with the gyrokineti


model in the low-∆′
regime.

6.2 Simulations of nonlinear super-exponential

re
onne
tion

In the following the essential di�eren
e of both nonlinear phases as well as the phe-

nomenology will be dis
ussed. A parameter study is performed whi
h 
onne
ts both

phases. Additionally, there are a 
ouple of results in literature whi
h are badly 
om-

pared to ea
h other. Therefore, in the last se
tion an extended parameter study is

presented relating several simulation results presented in literature.

The full tearing model is used throughout this 
hapter ex
luding FLR e�e
ts by

using the drift kineti
 limit (τ ≪ 1). In the quasi-neutrality equation the gyroaver-

aging operator a
ting on the ions is in
luded while the polarisation density is sub-
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6.2 Simulations of nonlinear super-exponential re
onne
tion
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Figure 6.5: Ele
tron �eld energy over time. Phenomenologi
al di�eren
e between

a mode with super-exponential growth (kA
y = 1.44) and a saturated

mode (kA
y = 1.46). In the 
ase kA

y = 1.44 the short saturation period at

t ≈ 175 is not physi
al, but plotted for 
ompleteness.

je
t to the long wavelength approximation. The results obtained with EUTERPE

are 
ompared with simulation results from (redu
ed) gyro�uid models subje
t to

magneti
 equilibrium II [21, 22℄. For simplifying a dire
t 
omparison to those in-

vestigations and parameter values the quantities are expressed in Alfvén units if

ne
essary. The supers
ript 'A' refers to Alfvén normalisation while quantities in the

EUTERPE normalisation stay unmarked.

6.2.1 Phenomenology and �rst numeri
al simulations

The phenomenology of nonlinear destabilisation is outlined employing magneti
 
on-

�guration II. A Fourier �lter extra
ted the m = 1 mode after proving numeri
ally

that this does not lead to an essential restri
tion regarding mode-
oupling. In most

of the simulations dis
ussed in this 
hapter the parti
les are pushed using a newly

implemented Fehlberg time integrator. It will be outlined later that this method is

a helpful numeri
al tool for the simulations presented here.

A summary of the sele
ted parameters are listed in Table 6.1 for both unit systems.

The resolution of the spatial s
ales is very important and numeri
ally demanding.

In the �rst simulations presented here, a resolution of ns̄ × nχ = 18470× 40 points

has been used with one bin in the φ̄-dire
tion to simulate a real two-dimensional

mode. Otherwise at least eight points in the toroidal dire
tion must be taken into

a

ount in
reasing the extension of the solver matrix unne
essarily. The subsequent

super-exponential re
onne
tion studies needed 512, . . . , 4096 
ores per run.

In Figure 6.5 simulation results are depi
ted showing the ele
tron �eld energy over
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6 Nonlinear simulations of tearing modes

EUTERPE units Alfvén units

domain size in x Lx = 20.94 LA
x = 2π

magneti
 equilibrium s
ale a = 3.33 aA = 1

ion sound Larmor radius ρS,e = 1 ρAS,e = 0.3

ele
tron skin depth de = 0.33 dAe = 0.1

wave ve
tor varied ky kA
y = ky/ρ

A
S,e

Table 6.1: Sele
ted parameter values for the simulations represented in both unit

systems. The values are equivalent to a 
onstant plasma-β of 4.91 · 10−3
.

time for two values of the wave ve
tor kA
y = 1.44, 1.46. In the 
ase kA

y = 1.46 the

nonlinear phase starts at t & 100. The �eld energy (red 
urve) as well as the mode

amplitude saturated showing the os
illating behaviour. The energy 
onservation

proved 
learly, sin
e ∆ǫ . 1% during simulation.

For the wave number kA
y = 1.44 the mode also tries to enter the saturated state

shortly until t ≈ 125 (bla
k 
urve). However, a subsequent saturation phase 
an

not be observed by inspe
ting the �eld energy whi
h in
reases rapidly as well as the

mode amplitude. At t ≈ 175 the �eld energy seems to saturate but this 
an not be


learly proven numeri
ally as will be dis
ussed below. It is this super-exponential

behaviour γ(t) ≫ γk whi
h 
hara
terises the phenomenon and the non-saturation.

The 
al
ulations break down indi
ated by, for instan
e, the violation of energy 
on-

servation for t & 170 (∆ǫ = O(1)).
The high spatial resolution in x-dire
tion is ne
essary, sin
e for example in the 
ase

of a spatial grid with fewer points (ns̄ × nχ = 6 · 103 × 40) the ele
tron �eld energy

would not rea
h the �numeri
ally saturated� 
urve shown in Figure 6.5 (bla
k). The

explosive phase would appear earlier motivating an in
rease of the grid resolution

and number of markers. Also, if the 
onservation of energy 
an no longer be im-

proved, the ��nal� set of numeri
al parameters is rea
hed.

It is important to note that these simulations are always linked with a loss of

parti
les in the momentum spa
e. After the initial a

elerate phase the ele
trons

ex
eed the κv-sphere independent of its size. The simulation breaks down for t & 170
be
ause ∆ǫ gets large and the ele
trons get lost. The loss of parti
les through the

momentum sphere per time step, the a
tual growth rate and energy diagnosti
 are

depi
ted in Figure 6.6. The parti
le loss was always observed in super-exponential

simulations and was investigated for several runs. The radius of the momentum

spa
e κv,s was tuned using values κv = 4, . . . , 17 with a 
orresponding in
rease of

the numbers of markers, Np = 20 · 106, . . . , 120 · 106. These manipulations do not

a�e
t the simulations at all hinting a physi
al drive whi
h a

elerates the parti
les to

super thermal energies. For kA
y ≪ 1.44 (∆′de ≫ 1) the summarised loss of ele
trons

be
omes of the order O(Np) whi
h is a serious problem for the simulations as well

as the 
omparison with analyti
 models.
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Figure 6.6: Diagnosti
s to 
hara
terise the nonlinear stage for kA
y = 1.44. A
tual

growth rate γ(t), numbers of ele
trons ex
eeding the momentum sphere

and violation of the energy 
onservation ∆ǫ(t).

It has been observed in previous related works that a thin 
urrent 
hannel of width

O(de) evolves. During the evolution its width shrinks rapidly whi
h is thought

thought to be responsible for the extreme numeri
al e�ort of the simulations [23℄.

Figure 6.7 shows the spatial pro�le of the physi
al 
urrent jph,‖,e(s̄) = j0,‖(s̄) +
δjph,‖,e(s̄) at various time steps for the 
ase kA

y = 1.44, referring to the run dis
ussed

in Figure 6.5. The physi
al 
urrent jph,‖,e(s̄) was obtained by applying the transfor-

mation p‖/ms − qs/msA 7→ v‖ during marker binning. The 
urrent was binned via

marker summation on dis
rete s̄-values repeated for various poloidal positions χ and

is representative for all χ-values. The noise on the 
urrent was smoothed for better

visualisation: at a spe
i�
 dis
rete latti
e point s̄i of the 
urrent pro�le obtained

by EUTERPE the mean value of the 
urrent in
luding ten points, [s̄i−5 . . . s̄i+4] has
been 
al
ulated. Inspe
ting Figure 6.7, up to the time t = 132.1 the evolving 
ur-

rent stru
ture δjph,‖,e(s̄) (blue) is similar to the initial pro�le (green). Within the

next short period ∆tcoll ≈ 20 (
ollapse time), the 
urrent pro�le at the resonant

layer s̄ = 0.5 peaks very fast while the width of the 
urrent 
hannel further de-


reases. The extend of the 
urrent 
hannel is roughly given by the ele
tron skin depth

or ∆s̄ ≈ 0.02. Although the largest growth rate γ(t) is not rea
hed (Figure 6.5),

the 
urrent starts already to 
ollapse. For t = 158.8 a reasonable 
urrent pro�le 
an
be resolved just in time, although the diagnosti
 quantities depi
ted in Figure 6.6

do not hint a 
rash of the simulations for the following period t = 160, . . . , 167.
Previous simulations of �uid models have found similar 
urrent spikes as depi
ted in

Figure 6.7 of both the unphysi
al [23℄ and physi
al 
urrent density [36℄. Although

the adaptive Fehlberg integrator redu
ed the time step ∆t = 0.05, . . . , 1.5 · 10−3

a saturation after the 
ollapse of the 
urrent pro�le 
ould not be a
hieved. The
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Figure 6.7: Temporal evolution of the physi
al 
urrent pro�le jph,‖,e(s̄) (blue)

for kA
y = 1.44. The perturbed 
urrent δjph,‖,e is multiplied by a fa
-

tor of �ve. The initial 
urrent pro�le is shown for 
omparison (green).

tremendously short 
ollapse period makes it hard to obtain reasonable simulation

results.

For 
omparison the evolution of the smoothed 
urrent pro�le related to kA
y = 1.46 is

shown in Figure 6.8. In the saturated mode 
ase the evolving 
urrent pro�le (blue)

does not show peaked 
urrent pro�les from t = 101.3, . . . , 154.7 
ompared with the

initial pro�le (green).

In the analyti
al work of Refs. [23, 76℄ a di�erential equation was derived des
rib-

ing the temporal evolution of the island width normalised to the ele
tron skin

depth ŵ = w/de. In this referen
e a minimal �uid model was investigated in the 
old

ele
tron limit (ρAS,e = 0, 
orresponding to 1/a → 0 if T0,e = const.), thereby using a

heuristi
 ansatz for a �xed �ow pattern related to φ. The authors of Ref. [36℄ ex-

tended the analysis to the 
ase of hot ele
trons (ρAS,e > 0) whi
h is more relevant for

the 
ases 
onsidered here. Similar to [23℄, the evolution of ŵ = w/
[

(

dAe
)1/3 (

ρAS,e
)2/3
]

is governed by the di�erential equation d

2ŵ/dt̂2 = ŵ/4 + cJ/4 · ŵ4
. The time is nor-

malised to the growth rate, t̂ = kA
y

[

(

dAe
)1/3 (

ρAS,e
)2/3
]

t. The 
onstant cJ = O(1)

must be 
hosen after the simulations to mat
h the time series ŵ(t), thus an extended
dis
ussion of the solution ŵ(t) in 
omparison to simulations is fairly hard.

Re
ently, a generalisation of the MHD energy prin
iple with a nonlinear displa
e-

ment map was applied to the two-�uid model of Ref. [23℄ des
ribing the evolution

of the mode amplitude in a more rigorous fashion [35℄. However, this predi
tion
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Figure 6.8: Temporal evolution of the 
urrent pro�le jph,‖,e(s̄) (blue) (k
A
y = 1.46).

The perturbed 
urrent δjph,‖,e is multiplied by a fa
tor of �ve. The

initial 
urrent pro�le is shown for 
omparison (green) The 
urrent does

not evolve a peaked pro�le sin
e the mode saturates.

is also only valid in the 
old ele
tron limit and in the asymptoti
 limit kA
y → 0,

thus kA
y ≪ 1.44. It is important to note that this analyti
 approa
h predi
ts also a

substantial di�erent island evolution 
ompared to Ref. [23℄, namely d2ŵ/d2t ∼ ŵ2
.

Presently, in none of the time-series of for instan
e the ele
tron �eld energy or am-

plitude evolution a typi
al physi
al time s
ale T ≪ ∆tcoll 
ould be identi�ed in the

super-exponential phase similar to, for instan
e, the os
illation period in the satu-

rated phase whi
h would allow a mu
h more 
ompa
t 
hara
terisation of the pro
ess.

Moreover, with the gyrokineti
 simulations performed so far a physi
al saturation

after the explosive growth has never been a
hieved in 
ontrast to results of re
ent

works whi
h employ gyro�uid models [10, 34℄, although the same parameters have

been adopted. Obviously, there is a substantial di�eren
e between the nonlinear

gyrokineti
 and nonlinear gyro�uid 
al
ulations whi
h is an important point when


omparing both models.

6.2.2 The transition between both nonlinear phases

As indi
ated in the previous se
tion, a small variation of the wave ve
tor kA
y 
an


hange the 
hara
ter of the nonlinear phase 
ompletely. There 
ertainly is a 
riti
al

wave number kA
y,cr between kA

y = 1.44 < . . . < kA
y = 1.46, where a transition o

urs.

This transition is very interesting, sin
e a small 
hange of the wave ve
tor 
hanges
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6 Nonlinear simulations of tearing modes

the nonlinear 
hara
ter of the system 
ompletely. This has never been dis
ussed

before in the literature where only the extreme limits of ∆′
have been examined.

For the subsequent investigations both kinds of magneti
 equilibria are used. The

high 
omputational e�ort is evident by using up to 2048 
ores for ea
h run for

roughly 5 ·105CPUh . A detailed listing of the setup s
enarios is shown in Table 6.2.

magneti
 equilibrium EUTERPE units Alfvén units

Lx = 20.94 LA
x = 2π

a = 3.33 aA = 1

II ρS,e = 1 ρAS,e = 0.3

de = 0.33 dAe = 0.1

wave ve
tor varied

Lx = 157.08 LA
x = 4π

a varied aA = 1

I ρS,e = 1 ρAS,e varied

de = 1 dAe = 1

ky = 0.04 kA
y = 0.5

Table 6.2: Di�erent setups for the simulations in both unit systems. The two di�er-

ent values of de result in two di�erent values for the plasma-β: 4.91 · 10−3

(II) and 5.47 · 10−4
(I).

It turned out that the os
illation frequen
y ωB of the �eld energy in the deeply

nonlinear phase is supposed to be a good quantity to indi
ate the transition as long

as the physi
al saturation 
an be proven 
learly. The frequen
y ωB was obtained

by 
al
ulating the mean value over several periods np of the �eld energy, ωB =
2 π/[np (Tf − Ti)], Ti, Tf being the initial and �nal time point of measurement. It

is also possible to measure the island width, but one has to solve additionally the

nonlinear Eq. (6.1).

First, magneti
 equilibrium II is 
onsidered to extend the results of the previous


hapter. The strategy is to 
hara
terise the transition by starting with a value kA
y ≈ 2

in the well-behaved Rutherford-regime and redu
e it slowly to kA
y,cr, until the os
il-

lation frequen
y 
hanges strongly when 
rossing both regimes. Figure 6.9 shows the

os
illation frequen
y versus the wave ve
tor kA
y . In the vi
inity of marginal instabil-

ity kA
y ≈ 2, a 
lear saturated and os
illating phase 
an be observed. Redu
ing the

wave ve
tor to values kA
y ≈ 1.5, the os
illation frequen
y in
reases (∆′de ≈ 1). Close

to kA
y ≈ 1.45 the frequen
y falls with smaller kA

y approa
hing a 
riti
al wave ve
tor

kA
y,cr. In Figure 6.9 this threshold is indi
ated by setting the os
illation frequen
y

manually to zero (ωB = 0). Due to the high sensitivity of the threshold a 
loser

approa
h a

ording to kA
y = kA

y,cr + ǫk (0 < ǫk ≪ 1) 
ould not be a
hieved.
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Figure 6.9: Os
illation frequen
y ωB depending on the wave ve
tor kA
y . The tran-

sition between saturated and super-exponential re
onne
tion o

urs

at kA
y,cr ≈ 1.45 (Equilibrium II).

The strongly redu
ed os
illation frequen
y indi
ates that the saturated phase be-


omes quasi-stati
 
ompared to the linear growth rate in this range (ωB ≪ γk =
O(0.1)). A further de
rease of kA

y leads again to the super-exponential phase and

no os
illation frequen
y 
an be assigned to the mode.

Simulations with a wave ve
tor very 
lose, but below the threshold kA
y = kA

y,cr − ǫk
(kA

y = 1.4425, 1.445, . . . < kA
y,cr) require a very high resolution of the grid (ns̄ =

1.85 · 104). For the value kA
y = 1.4425 the Fehlberg integrator allowed to a
hieve

at least an energy 
onservation of ∆ǫ . 5% whi
h was not possible before with

the Runge-Kutta s
heme and marks a 
lear numeri
al improvement. The step size

redu
ed to ∆t = 0.05, . . . , 10−3
when the mode approa
hes the largest slope of the

�eld energy. When using the adaptive time step integrator, the evaluation of the

marker statisti
s similar to Figure 6.6 showed that the loss of ele
tron markers 
ould

be redu
ed by three orders of magnitude. Despite that the 
urrent pro�le still under-

goes a 
rash for ky . ky,cr the numeri
al enhan
ements may serve as a starting point

for a 
loser inspe
tion of the super-exponential behaviour at the 
riti
al threshold.

Similar simulations of the transition were performed using magneti
 equilibrium I.

The question arises whether this equilibrium might allow for the super-exponential

growth, too. The parameter used here refer to similar simulation 
onditions of

Ref. [21℄. Instead of kA
y the width of the equilibrium 
urrent a was varied.

Figure 6.10 shows the nonlinear os
illation frequen
y ωB(a) and the linear growth

rate γ(a). For relatively large a & 16 nonlinear saturation is observed. The growth

rate γ is of the same order of magnitude as the os
illation frequen
y, γ ≈ ωB,

moreover, the shape of both 
urves suggests a linear relation ωB ∼ γ. When redu
-
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Figure 6.10: ωB and γ depending on a (
on�guration I). The transition of the nonlin-
ear phase is proven to o

ur with 
on�guration I at acr ≈ 12.5. Below
this value the os
illation frequen
y is set to zero.

ing a . 16, the os
illation frequen
y a
hieves a maximum at a ≈ 13 (ωB ≈ 4 · 10−3
).

A further de
rease of a 
auses the os
illation frequen
y to fall and subsequently,

a sharp transition o

urs at acr ≈ 12.5. The results show that slightly above the

threshold a & acr the saturated mode is quasi-stati
 (ωB ≪ γ). For smaller values

a < acr the os
illation frequen
y was set to zero manually, sin
e during super-

exponential growth an os
illation 
ould not be assigned to the mode. These inves-

tigations prove that simulations with 
on�guration I also reveal a 
riti
al threshold

for nonlinear tearing modes. Re
all that a = 1/ρAS,e is 
hanged, thus the threshold
o

urs at ρAS,e ≈ 0.08 ≪ dAe = 1. It is an open issue how the ratio of these both

quantities 
hara
terise the threshold.

Further simulations are ne
essary to quantify the saturated island width at 
riti-


al acr and kcr. Additionally, a detailed quanti�
ation of the plasma in�ow pattern

at the resonant layer might give further insight into the 
riti
al threshold. In Ref.[10℄

the nonlinear a

eleration is investigated by means of a gyro�uid model. The a
-


elerated phase is a

ompanied with larger

~E × ~B �ow velo
ities at the X-point

than in the saturated phase. However, the simulation results obtained with the gy-

ro�uid model 
ould not be reprodu
ed with EUTERPE, thus hinting a substantial

di�eren
e in the models. The transition between both nonlinear phases shown for

the os
illation frequen
ies here is very sharp. It would be helpful if equilibria and

sele
ted parameters were investigated allowing a �smoother� transition to improve

the numeri
al 
ontrol of the mode.
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6.2.3 Extended parameter studies

An extensive parameter study is presented giving an overview of the 
riti
al thresh-

old depending on the parameters Lx, Ly and a. The simulation results of the previ-

ous 
hapter will be 
lassi�ed within this set of results obtained with 
on�guration I

as well.

Furthermore, the results in a broad parameter spa
e are 
ompared with available

results in literature. In 
ontrast to results obtained with EUTERPE 
on
erning

the super-exponential phase, it has been shown that a saturation me
hanism and

a well-de�ned 
onservation of the energy o

ur after the super-exponential phase

for τ ≈ 1 and τ ≪ 1 [34, 51℄. The fast-re
onne
tion is known to be ne
essary

for super-exponential growth, but 
ounterexamples were found [34℄. Re
ently, it

was shown that a se
ond a

eleration 
an o

ur after the �rst explosive phase for

∆′de > 1 [10℄. It is still un
lear whether the physi
al model is signi�
ant in order

to observe super-exponential growth or if there are universal parameter regions in-

dependent from the models.

To relate simulation results of the gyrokineti
 model with previous investigations

two parameter s
ans were performed in whi
h either (a, Lx) is varied (s
an (i)), or
(a, Ly) (s
an (ii)). Table 6.3 summarises the sele
ted parameter regions. Due to

the de�nition of the Alfvén units in the �rst s
an (i) LA
x is varied when ρAS,e 
hanges,

and similarly in (ii) LA
x , although Lx = 15 remains a 
onstant.

The �elds were spatially resolved with up to ns̄ × nχ = 2 · 104 × 20 points in

parameter s
an parameter values

Lx, a varied ( 7→ dAe , ρ
A
S,e)

(i) de = 1

Ly = 157.08 (kA
y = 0.5)

Lx = 15, a varied ( 7→ dAe , ρ
A
S,e)

(ii) de = 1

ky = 2 π/Ly varied

Table 6.3: Parameter values of the two s
ans (i), (ii). The plasma-β is kept 
onstant

at 5.47 · 10−4
. Due to the di�erent normalisations the values in bra
kets


hange as well.

x, y-dire
tion. This ensures a resolution of a, de with at least ten points. The time


onsuming 
omputations are performed with up to 1024 
ores and at most 8 · 107
markers for ea
h spe
ies needing roughly 5 · 105 CPUh .
The parameter s
ans des
ribe a binary de
ision whether a nonlinear saturation takes

pla
e or not. Figure 6.11 shows the results of parameter s
an (i). The green

area represents the 
omplete domain of simulated pairs (a, Lx) with a resolution

of about (∆a, ∆Lx) = (0.1, 5). This area is bounded from above by the linear
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Figure 6.11: Parameter s
an (i). The green shaded area 
overs the range of the pa-

rameters (a, Lx). The inner of the polygon marks the super-exponential

regime. The dotted line does not denote ne
essarily a transition from

left to right, but 
loses only the polygon from (B) to the point with

smallest a, (0.3, 78.54).

stability threshold above whi
h the mode is linearly stable. The linear stability pa-

rameter was 
omputed by solving ∆′(Lx, Ly, a) = 0 numeri
ally at various points

and interpolated (bla
k solid line). Note that the m = 1 mode is always sele
ted.

The green shaded area is bounded from below by the minimum value a = 2 · 10−2
.

The region 
an be just resolved using the 
omputational means available (memory


onsumption of the solver matrix and number of markers).

Within the blue polygon the mode shows super-exponential growth. Point (A) marks

the parameter values studied in the previous 
hapter, (a, Lx) = (12.5, 78.54) (It

also refers to Ref. [21℄ at whi
h ρAS,e = dAe ). Starting at this point, a lowering of a
with 
onstant Lx maintains the super-exponential 
hara
ter of the mode. However,

for small enough values a < 0.3, the study reveals a se
ond 
riti
al threshold below

whi
h the mode be
omes again nonlinearly stable. These values of a are equivalent

to the relation ρAS,e ≫ dAe . Thus, in the large-∆′
range the saturation of the mode

sets in again.

When Lx = 10, . . . , 80, the upper boundary of the polygon refers to the low- to

medium-∆′
regime (∆′de ≈ 1, if a & 3). In this range the nonlinear destabilisation

of the mode has been veri�ed when ∆′
is of order unity. If Lx is small enough in the

regime Lx = O(10), both 
riti
al thresholds vanish and a Rutherford-like stabilisa-

tion was observed: a variation of the magneti
 equilibrium s
ale 
an not ex
ite the

super-exponential growth in the range O(10−2) < . . . a . . . < O(1).
A spe
ial point (B) marks (a, Lx) ≈ (45, 117). It was shown that as the mode


rosses the linear stability threshold its growth immediately experien
es a super-
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exponential a

eleration. This is remarkable sin
e at this point ∆′de ≈ 0 is valid

whi
h 
ontradi
ts the general regime of super-exponential a

eleration. The point

(B) 
an be 
ompared with results of Ref. [34℄, where a was �xed but, enlarging

the di�
ulty of a dire
t 
omparison, a deuterium plasma with an unnatural proton

to ele
tron ratio was 
onsidered. Additionally, the plasma-β was varied within the

range 10−5, . . . , 10−3
, resulting in di�erent ratios de/ρS,e and maintaining the 
ondi-

tion de = O(1) ≪ a = O(10). This referen
e, however, found a physi
al saturation

after an explosive phase whi
h 
ould not be 
on�rmed. In the simulations here,

following point (B) to lower values of a (Lx = 117), a se
ond nonlinear stability

threshold 
ould not be veri�ed within the green shaded area. Therefore, the poly-

gon in Fig. 6.11 was 
losed with the dashed line.

A short overview of the parameter regime under investigation 
ompared with signif-

i
ant referen
es is provided by Table 6.4.

The parameter spa
e is extended by varying Ly, when Lx = 15 is �xed (s
an (ii)).

∆′de < 1 ∆′de > 1

ρAS,e > dAe [34℄, Figure 6.11 [21℄, Figure 6.5

ρAS,e ≈ dAe [34℄, Figure 6.11 [36℄, Figure 6.11

ρAS,e < dAe [34℄, Figure 6.11 [23, 36℄, Figure 6.9�6.11

Table 6.4: Summary of referen
es investigating super-exponential re
onne
tion and

results obtained with EUTERPE.

This variation of parameters is motivated by the fa
t that in previous nonlinear

simulations with the magneti
 equilibrium I [26℄ it has never been observed with

EUTERPE that the super-exponential behaviour o

urs. The exploration provided

by s
an (ii) relates both the domain of parameters used in Se
. 5.1 and in s
an (i).
In Figure 6.12 the green shaded area marks the parameter regime whi
h has been

investigated to observe whether the nonlinear a

eleration is ex
ited or not. The

blue area refers to the set of parameters (a, Ly) that allow for a nonlinear a

elera-

tion phase. Additionally, the threshold ∆′de = 1 (red solid line) is depi
ted as well

as the linear stability threshold provided by solving the equation ∆′(Lx, Ly, a) = 0
(bla
k solid line).

In Figure 6.12 the threshold de�ned by the 
ondition ∆′de = 1 is valid in the domain

Ly = 30, . . . , 100 and a ≈ 2. If the equilibrium 
urrent width a and Ly are small

enough, (a, Ly) = (O(1), O(10)), the equilibrium values of the linear ben
hmark

in Se
. 5.1 are 
overed approximately by (a, Ly) = (O(1), 10) and β = 10−3
. A

similar range of parameters is used in Ref. [26℄. This parameter range does not

support super-exponential behaviour of the nonlinear mode: the blue area 
ontra
ts

for small enough (a, Ly) showing that the nonlinear a

eleration is inhibited. Even

smaller values of a do not 
hange this result, although ∆′de ≈ 1.
The simulations in the range Ly = 50, . . . , 200 (or small enough ky) show that the


riti
al threshold of nonlinear a

eleration appears for two di�erent values of a,
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Figure 6.12: An extended parameter study showing the threshold of super-

exponential re
onne
tion. Lx = 15 is �xed and Ly, a varied (Equi-

librium I).

marking an upper and a lower 
riti
al threshold. The upper threshold remains 
on-

stant, while the estimated 
ondition ∆′de = 1 is 
learly not valid.

The parameter s
ans (i), (ii) demonstrate 
learly that the threshold ∆′de ≈ 1,
widely used in nonlinear simulations using �uid models, does not ne
essarily mark

the transition between both nonlinear phases. Due to substantial di�eren
es of the

nonlinear simulations performed with the gyrokineti
 model here and the �uid mod-

els of dis
ussed referen
es, the result of the parameter s
ans (i), (ii) probably do not
hold universally independent of the model. An important �nding is the se
ond 
riti-


al threshold of the equilibrium 
urrent width a, below whi
h the super-exponential

phase is inhibited and saturation sets in again.
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7 Comparison of a 
ompressible

gyro�uid and gyrokineti
 model

7.1 Introdu
tion

Although mu
h of the progress in the understanding of magneti
 re
onne
tion has

been possible thanks to the use of �uid-based models, the results a
hieved with

these models require independent 
on�rmation when kineti
 e�e
ts are expe
ted

to be important. Here, a 
ompressible gyro�uid 
ode that has been employed in

Refs. [10, 51℄ to investigate ion gyro-orbit averaging e�e
ts on 
ollisionless magneti


re
onne
tion, is 
ompared with the gyrokineti
 equation

1

.

After a linear ben
hmark of the 
odes with a numeri
al eigenmode and eigenvalue

analysis, the results of the two models in the linear regime are 
ompared over the

whole spe
trum of linearly unstable wave numbers, both in the drift kineti
 limit

and for �nite ion temperature. Nonlinearly, fo
using on the small-∆′
regime, rele-

vant observables as the evolution and saturation of the island half width and the

os
illation frequen
y at saturation are 
ompared

2

.

7.1.1 The 
ompressible gyro�uid model

The gyro�uid model 
onsidered here has been adopted in Refs. [10, 51℄ to investigate

magneti
 re
onne
tion in 
ollisionless high-temperature plasmas with a strong guide

�eld.

This model originates from a 
omprehensive gyro�uid model for both ions and ele
-

trons derived from the gyrokineti
 equation by Snyder and Hammett [61℄. The

moments are obtained by applying velo
ity spa
e integrals to the gyrokineti
 equa-

tion with an unshifted Maxwellian. This model in
ludes magneti
 
urvature e�e
ts,

mirror terms, FLR and diamagneti
 e�e
ts. The highest moments of the velo
ity

integrals are subje
t to 
losure s
hemes related to three 
ategories. It 
onsiders

the in
lusion of Landau damping, the 
losure of toroidal terms and mirror terms

(trapped parti
les).

A simpli�ed version of this model has been derived in Ref. [40℄ negle
ting magneti



urvature e�e
ts and restri
ting it to two-dimensional dynami
s. Furthermore, the

1

The results of the 
omparison of both models developed from a 
ollaboration with Lu
a Comisso

and Daniela Grasso, members of �The Burning Plasma Resear
h Group� at the Polite
ni
o di

Torino, Dipartimento di Energia. The simulation results of the gyro�uid model are provided by

Lu
a Comisso.

2

In this se
tion all quantities have been normalised to Alfvén units.
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redu
ed model trun
ates the moment hierar
hy by taking only the �rst two velo
ity

moments of the gyrokineti
 equation for both the ele
trons and the ions (four-�eld

model). The spe
ies temperature are taken to be 
onstant while the ele
tron Larmor

radius has been negle
ted. Ele
tron inertia terms were retained in order to break

the frozen-in 
ondition and allow for magneti
 re
onne
tion. Ion 
ompressibility is

adopted to investigate the in�uen
e of ion sound waves on re
onne
tion [10℄.

Therefore, the evolution equations of the 
ompressible gyro�uid model 
onsist of

the 
ontinuity equation and the z-
omponent of the equation of motion for the ion

gyro
enters,

∂ni

∂t
+ [〈φ〉, ni] = −[ui, 〈A〉], (7.1)

∂D

∂t
+ [〈φ〉, D] = τρ2S,e[〈A〉, ni], (7.2)

and similar equations for the ele
trons,

∂ne

∂t
+ [φ, ne] = −[ue, A], (7.3)

∂F

∂t
+ [φ, F ] = −ρ2S,e[A, ne]. (7.4)

Here D = 〈A〉 + d2iui is proportional to the ion gyro
enter parallel 
anoni
al mo-

mentum, whereas F = A − d2eue is proportional to the ele
tron parallel 
anoni
al

momentum. Furthermore, 〈φ〉 = Γ
1/2
0 φ is the gyro-averaged ele
trostati
 potential

and 〈A〉 = Γ
1/2
0 A is the gyro-averaged parallel magneti
 potential, where the symbol

Γ
1/2
0 refers to the gyro-averaging operator that is adopted in its lowest-order Padé

approximant form [37℄

Γ
1/2
0 =

1

1− ρ2i
2
∇2

⊥

. (7.5)

The system of equations is 
ompleted by the parallel 
omponent of Ampère's law,

∇2
⊥A = ue − Γ

1/2
0 ui, (7.6)

and by the quasi-neutrality 
ondition

ne = Γ
1/2
0 ni +

Γ0 − 1

ρ2i
φ. (7.7)

The resulting model is dissipationless and suitable for the study of re
onne
tion

mediated by ele
tron inertia. In parti
ular, it possesses a non
anoni
al Hamiltonian

stru
ture [40℄ that reveals the presen
e of four Lagrangian invariants, whi
h have

proved to be helpful to understand how the re
onne
tion evolution is a�e
ted by the

plasma-β and by the ratio of spe
ies temperatures [51℄.

This model has been subje
t to various simpli�
ations in literature. By negle
ting

ion 
ompressibility in Eq. (7.1) ([〈φ〉, ni] = 0), the equations 
over the three-�eld
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7.1 Introdu
tion

model of Ref. [44℄.

The ele
trons are mainly responsible for parallel and perpendi
ular dynami
s so one


an simplify the equations by negle
ting the ion response. Then, Eq. (7.1) is not

needed and the density and 
urrent of the ions do not 
ontribute to the 
ondition of

quasi-neutrality, Eq. (7.7) and Ampère's law, Eq. (7.6). Employing additionally the


onstraint k⊥ρi < 1 on this redu
ed two-�eld model the quasi-neutrality Eq. (7.7)


an be simpli�ed to (1− ρ2i ∇2
⊥)ne = ∇2

⊥ φ [42, 77℄.

As shown in Se
. 5.1, the ele
trostati
 �u
tuation φ 
an be interpreted as a small


orre
ting quantity 
ompleting the ele
tromagneti
 des
ription of the tearing mode.

By negle
ting φ the quasi-neutrality 
an be dis
arded and the model in
ludes only

the evolution of the parallel 
urrent ue and the density response ne of the ele
trons.

This minimal model has been used in Se
. 1.4 to derived the linear dispersion relation

of the tearing mode.

7.1.2 Equilibrium 
on�guration and numeri
al setup

To investigate spontaneous re
onne
tion the model equations are solved numeri-


ally by employing magneti
 
on�guration II in a two-dimensional slab geometry

(∂/∂z = 0). The parameter was 
hosen to be C = 0.1 if not stated otherwise. This

results in a maximal relative shear strength of B0,y/B0,z ≈ 0.08 in the domain and

a shear length ls = B0,z/(dB0,y/dx) = 5 at the resonant surfa
e x = 0.

The equilibrium magneti
 �eld

~B0 results from an equilibrium 
urrent u0,e from

ele
trons only as des
ribed in Se
. 4.2. Furthermore, the plasma is 
onsidered ho-

mogeneous with �at density ns(x) = n0 and temperature pro�les Ts(x) = Ts for ea
h

spe
ies. The simulation domain is 
hara
terised by {(x, y) : −π ≤ x ≤ π,−âπ ≤
y ≤ âπ}. The parameter â �xes the domain length Ly in y-dire
tion whi
h is linked

to the wave number ky = 2πm/Ly of the longest wave length mode m = 1 of the

system. The tearing mode stability quantity ∆′
is then 
hara
terised by the wave

ve
tor ky a

ording to Eq. (4.6) (Se
. 4.2).
The gyro�uid 
ode de
omposes the �elds into a time-independent ba
kground equi-

librium and an evolving perturbation within a pseudospe
tral method [51, 78℄. Pe-

riodi
 boundary 
onditions are employed in both the x- and y-dire
tions, and a grid

of 1024×128 points has been used. Sin
e periodi
 boundary 
onditions are imposed

also along the x-dire
tion, a Fourier series trun
ated to eleven modes is used to ap-

proximate the equilibrium magneti
 �eld. Finally, an Adams-Bashforth algorithm

is applied to push the �elds in time and an initial disturban
e on the out-of-plane


urrent density of width O(de) around the resonant surfa
e is set to a

elerate the

onset of the tearing instability.

It is important to note that the boundary 
onditions for the �elds with respe
t to

the x-dire
tion are di�erent in both 
odes. Due to the numeri
al method underlying

the gyro�uid 
ode periodi
 boundary 
onditions arise naturally. The 
hoi
e of the

domain size in the x-dire
tion is su�
ient to avoid �nite domain size e�e
ts on the

value of the tearing stability parameter. However, in the following the e�e
ts on the

boundary 
onditions will be 
he
ked by performing a detailed linear ben
hmark with

the eigenvalue approa
h. If simulations in the drift kineti
 limit were performed, this

75



7 Comparison of a 
ompressible gyro�uid and gyrokineti
 model

was a
hieved by setting the temperature ratio to τ = 1/900, giving ρi = 1/30 ≪ de,
whi
h makes the e�e
t of the gyroaveraging operators negligible. Additionally, in-

stead of the Padé approximation the long wavelength approximation was then used

for the quasi-neutrality equation in EUTERPE.

7.2 Linear 
omparison of the models

As a �rst step the a

ura
y of the 
odes is 
he
ked in the linear regime with a

ben
hmark. For this purpose a numeri
al eigenmode and eigenvalue analysis is

applied to ea
h of the two models in the drift kineti
 limit. After the a

ura
y of

the 
odes has been proven to a high degree, a 
omparison of the models in both the

drift kineti
 limit and the 
ase of �nite Larmor radii follows.

7.2.1 Eigenvalue equations

In this se
tion the pro
edure of performing a numeri
al ben
hmark is des
ribed

using the shooting method explained in Se
. (5.2) to get the linear dispersion re-

lations in the drift kineti
 limit. An analysis of the eigenvalues and the eigen-

mode stru
ture is given here for both the linearised gyro�uid and the gyrokineti


equations. The gyro�uid equations (7.1�7.4), and the gyrokineti
 equation (2.5-

2.9), are linearised using the ansatz ∂t 7→ −iω and ∂y 7→ iky for the perturbed

quantities, additionally assuming a long wavelength approximation for the quasi-

neutrality equation, Eq. (2.13). The �eld equations are 
ast into a general form with

the 
oe�
ients qij , with (i, j) = (A, φ),

d

2φ

dx2
= −qφφ (x, ω)φ− qφA (x, ω)A, (7.8)

d

2A

dx2
= −qAΦ (x, ω)φ− qAA (x, ω)A. (7.9)

The linearisation of the gyro�uid system gives the following 
oe�
ients

qφφ (x, ω) = −k2
y +

∑

s

qs
F ′
0,s

Ns

ky
ω
, (7.10)

qφA (x, ω) = −
∑

s

qs
Ns

(

qs +
ks
k‖

Ns + τsρ
2
S,e

k‖ks
ω2

)

, (7.11)

qAφ (x, ω) = −
∑

s

F ′
0,s

Ns

ky
ω
, (7.12)

qAA (x, ω) = −
∑

s

qs
Ns

(

qs + τsρ
2
S,e

k‖ks

ω2

)

, (7.13)
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Figure 7.1: Ben
hmark of the gyro�uid eigenfun
tions. Left: The real part of the

parallel ve
tor potential A. Right: The imaginary part of the ele
tro-

stati
 potential φ.

where the prime denotes the derivative with respe
t to x. Also the quantities

F ′
0,s = −By,0 + qs d

2
s u

′
0,s, k‖ = −A′

0ky,

ks = −u′
0,sky, Ns = d2s

(

1− τs
ρ2S,e
d2s

k2
‖

ω2

)

,
(7.14)

have been introdu
ed to make the notation more 
ompa
t.

The 
oe�
ients resulting from the linearisation of the gyrokineti
 model were de-

rived in Se
. (5.1), Eqs. (5.4) and normalised to Alfvén units. Both these sets of

eigenvalue equations are solved numeri
ally using the shooting method des
ribed

Se
. 5.1 with Diri
hlet boundary 
onditions in the x-dire
tion.

7.2.2 Linear ben
hmark with eigenvalue approa
h

The �rst ben
hmark is 
arried out for the parameter values de = 0.1, di = 4.285,
ρS,e = 0.6 and ky = 0.6. This 
orresponds to β = 1.96 · 10−2

and a realisti
 proton

to ele
tron mass ratio µ = 1836.
The 
omparison of the eigenfun
tion resulting from the shooting method with re-

sults from the gyro�uid simulation is shown in Figure 7.1. Due to symmetries of

the equations and the pure imaginary eigenvalue, γ = 0.0248, only the real part

of A remains, as well as only an imaginary part of φ. The �eld stru
tures agree

very well with results from the shooting 
ode, although the boundary 
onditions

with respe
t to x di�er. The same pro
edure has been performed with EUTERPE

whi
h gives in this 
ase γ = 0.0273. Both potentials are in good agreement with

the shooting method as well, as shown in Figure 7.2. In this 
ase both methods use

the same boundary 
onditions regarding the x-dire
tion. The 
omparison with the

solution of the gyro�uid problem shows that the instability is mainly in�uen
ed by

the dynami
s at the resonant layer. The solutions drop very fast to zero approa
hing

the boundaries and therefore the in�uen
e of the boundary 
onditions is suppressed.
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Figure 7.2: Ben
hmark of the gyrokineti
 eigenfun
tions. Left: The real part of the

parallel ve
tor potential A. Right: The imaginary part of the ele
tro-

stati
 potential φ.

This will be important for further nonlinear 
omparisons.

To 
he
k the eigenvalues over an extended ky-spe
trum of unstable modes, simula-

tions have been performed with the previous setup varying the simulation domain

size Ly. The 
omparison of both �uid and kineti
 results and the relevant results of

the shooting method are shown in Figure 7.3

1

. These ben
hmarks show that the

two 
odes give exa
t results in the linear regime over a wide range of ky.
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Figure 7.3: A ben
hmark of the linear growth rates of both models for various wave

ve
tors ky. Both the gyro�uid and the gyrokineti
 
ode work linearly

exa
t.

1

The solid lines in this Figure 
onne
t simulation results as well as for all following Figures.
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omparison of the models

7.2.3 Model 
omparison in the drift kineti
 limit

In the following two sets of parameters are used whi
h are relevant for re
onne
tion

physi
s. The parameter asso
iated with Setup I and II are listed in Table (7.1).

Case I refers to a realisti
 mass ratio µ and �kineti
� regime, β ≫ me/mi, or equiv-

alently ρS,e ≫ de, whereas 
ase II de�nes a �medium� range between kineti
 and

inertial regime, β ≈ me/mi.

Simulations for 
ases I and II have been performed for various ky. Over the full

range of wave numbers, from the large-∆′
to the small-∆′


ases, 
lose to the stability

threshold at ky ≈ 2.23, both models des
ribe the re
onne
tion pro
ess very well, as

shown in Figure 7.4. A relative maximum deviation of about 20% is found around

ky ≈ 1 for both setups. However, in the small-∆′
limit the di�eren
es of the growth

rates be
ome smaller.

The kineti
 des
ription allows one to estimate the width of the region of parti
le a
-


eleration, δe, due to the resonan
e 
ondition k‖ ρS,e/de = ky δe/ls ·ρS,e/de ∼ γ in the

small-∆′
limit and δe ≪ L [18℄. Together with the kineti
 dispersion relation in this

limit, γ = ky de ρS,e∆
′/ls, one gets the estimate δe ∼ ∆′ d2e. Two-Fluid-des
ription

yields the same s
aling of the growth rate and 
urrent layer in the limit of marginal

instability [46, 49℄.

Another point whi
h might be important 
on
erns the assumptions of the adopted

gyro�uid model: The derivation uses the restri
tion that the bulk velo
ity of the

spe
ies u0,s is mu
h smaller than the thermal velo
ity vs. Moreover, this model uses

an unshifted Maxwellian when performing the integration over the velo
ity spa
e

to get the equations of moments. Therefore, the gyro�uid equations hold exa
tly

only for C ≪ 1. For the linear simulations done here the amplitude of the sheared

perpendi
ular �eld was 
hosen as C = 0.1, whi
h approximates this limit very well

and allows relatively short simulation times. However, this point has been 
he
ked

simulating a mode with ky = 1.0, de = 0.1, di = 4.285, ρS,e = 0.3 and de
reasing C
from 10−1

to 10−4
. These runs required very long simulation times for small C, due

to the dependen
e of γ from ls. The relative deviation of the growth rates of the

models fell from approximately 20% to 12%.

Setup I II

µ 1836 100

β 4.91 · 10−3 4 · 10−2

ρS,e 0.3 0.2

de 0.1 0.1

di 4.285 1.0

Table 7.1: Set of parameters de�ning setup I and II used for the simulations.
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Figure 7.4: The 
omparison of the linear dispersion relations shows a good agreement

between the two approa
hes over the full ky range (Left: setup I, right:

setup II).

7.2.4 In�uen
e of gyro-e�e
ts

It is desirable to go beyond the drift kineti
 limit and simulate the tearing mode

for �nite ion temperatures when the gyroradius 
an be
ome mu
h larger than the

thi
kness of the ele
tron di�usion region whi
h is O(de) [54℄. Here only the linear

 0.012
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 0.0001  0.001  0.01  0.1  1  10  100

γ

τ

Gyrofluid-Code
EUTERPE

Figure 7.5: In the medium-∆′
range (∆′de ≈ 1) the 
odes show a good agreement

of γ over whole range of τ .

simulations of the 
odes are 
ompared using the setup s
enario II for ky = 1 and

ky = 2, while varying τ . The gyrokineti
 e�e
ts now enter a

ording to Eq. (2.12, 7.7)

using the Padé approximation.

Figures 7.5 and 7.6 show that the growth rates obtained with the two di�erent 
odes

behave qualitatively very similar when τ is varied. While for small τ the growth rate
remains nearly 
onstant, for larger ion-gyroradii, ρi ≫ ρS,e (τ & 1), the growth rate
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Figure 7.6: Small-∆′
range: Both 
odes show a good agreement of the growth rates

for relatively small τ . The analyti
al predi
tion, Eq. (7.15), �ts well for
both the gyrokineti
 and gyro�uid model.

begins to in
rease strongly. For the medium range ky ≈ 1 both models 
over the

physi
s very well, see Figure 7.5. This result is important sin
e it shows 
learly that

the gyro-e�e
ts are being 
overed 
orre
tly by both gyro-approa
hes, whi
h provides

a good starting point for the following 
omparisons in the nonlinear regime.

Figure 7.6 displays the simulation results of the kineti
 and �uid simulations in the

small-∆′
limit. In this range of parameters an analyti
al predi
tion for a gyrokineti


ion response together with an ele
tron �uid derived by Por
elli gives [49℄

γ = ky∆
′√1 + τ

deρS,e
lsπ

, (7.15)

whi
h reprodu
es the simulation results to high a

ura
y.

7.3 Comparison of the nonlinear models

Continuing with the parameters of both 
ases I and II the nonlinear phase is dis-


ussed, 
on
entrating on the small-∆′
regime. The saturated island half width w

and os
illation frequen
y ωB in the deeply nonlinear phase are the two most relevant

observables. Up to now, in the literature there are only a few extended simulation

results of these quantities in homogeneous plasmas [25, 26℄.

It is important to note that the equilibrium 
onsidered in this se
tion is unstable

with respe
t to modes with m = 1, whi
h 
an in general intera
t in the nonlinear

phase with the m = 0 mode. Pseudospe
tral 
odes simulate a 
omplete re
tangu-

lar domain [−mmax, . . .mmax]× [−nmax, . . . , nmax] in Fourier spa
e [78℄, n being the
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mode number in z-dire
tion (nmax = 0 here), so the m = 0 mode is being simulated

as well. In the gyro�uid simulations all relevant s
ales were well resolved by 
hoosing

the extent of the Fourier spe
trum to 1/kmax ≪ de. In EUTERPE it is not ne
-

essary to 
hoose a 
orresponding domain setup. Nevertheless, to mat
h the initial


omputational 
onditions of the two methods, EUTERPE was adjusted to adopt the

�lter [−1 . . . 1] × [0]. Be
ause higher modes numbers m = 2, 3, . . . are expe
ted to

play no role in the dynami
s the 
hosen �lter does not restri
t the essential physi
s.

The gyrokineti
 simulations were performed with up to Np = 3 · 107 markers with a

minimum time step ∆t = 0.125. The skin depth de = 0.1 is resolved with at least 16

points, whereas the width of the perturbed 
urrent produ
ed by the parallel ele
tri


�eld, δe, was resolved with about ten points. The numeri
al resolution of the ve
tor

potential in the x-dire
tion amounts to ns̄ = 1024 points, whi
h separates s
ales up

to ∆x = 5 · 10−3
. This introdu
es an upper error range, whi
h 
an be removed with

�ner grid resolutions but demands a mu
h higher 
omputational e�ort.

Two di�erent methods are applied to obtain the island half widths w of the 
ollision-

less tearing mode. Assuming the 
onstant-A approximation, Eq. (1.25) (Se
. 1.4.3)

is used. Otherwise, without any approximation, one 
an obtain the exa
t island half

width using the geometri
 de�nition of the island separatrix by solving numeri
ally

Eq. (6.1) (Se
. 6.1) on the dis
rete spatial grid used in the 
odes.

7.3.1 Drift kineti
 limit

The evolution of the island half width into the deeply nonlinear regime is shown in

Figure 7.7 for the parameter 
ase I and ky = 1.8 obtained with both 
odes. The

Figure depi
ts the solution of Eq. (6.1) (geometri
 island half width) at ea
h time

step. Both gyro�uid and gyrokineti
 models behave well in the nonlinear phase

and show a 
lear saturated phase beginning at t ≈ 1500. The energy 
onservation

proved to be more a

urate than 2.5%. Moreover, it turned out for all simulations

presented here that the 
oupling between the modes m = 0 and m = 1 is very weak

and 
an be negle
ted. Figure 7.8 shows a 
omparison of the evolution of the exa
t

island half width and the island half width obtained a

ording to Eq. (1.25) for the

gyro�uid simulation shown in Figure 7.7 for ky = 1.8. For wave ve
tors ky ≥ 1.8,
whi
h 
orresponds to the small-∆′

limit, the island half width 
al
ulated with the


onstant-A approximation is valid within the pre
ision of the measurement. Never-

theless, in the following Eq. (6.1) (geometri
 de�nition of w) is used.
When the island width be
omes 
omparable to the linear 
urrent sheet thi
kness δe,
the mode saturates [19℄. After the transition into the saturation phase the width of

the island begins to os
illate with the 
hara
teristi
 frequen
y ωB, whi
h is 
learly

visible in Figure 7.7 and 7.8. From the time series w(t) the saturated island width

w is measured by taking the mean value w = 〈w(t)〉T after saturation starts.

In the following both quantities w and ωB are measured for an extended parameter

range to 
ompare the gyrokineti
 and gyro�uid models, and to 
he
k the validity of

analyti
al predi
tions in this regime of parameters.

Figure 7.9 shows w as a fun
tion of the longest wavelength in the system for both

parameter 
ases. For low values of ky ≈ 1.6 the relative di�eren
e of the island
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Figure 7.7: Island half width as a fun
tion of time for ky = 1.8 (
ase I, small-∆′
).

Both gyro�uid and gyrokineti
 models show 
lear saturated behaviour

of the mode. The steps are due to the spatial dis
rete grid points.

half widths obtained with the two adopted models is found to about 30% for both

parameter 
ases I and II. In
reasing ky to the range ky = 1.9, . . . , 2.23 (
lose to

the stability threshold) the agreement between the results of the two 
odes is mu
h

better. The relative deviation of the island half widths is approximately 10% for

ky = 1.9 in both setups and vanishes pra
ti
ally for higher wave numbers. This

shows that for ∆′ . 1 both models agree very well. Therefore, there are no signif-

i
ant di�eren
es between the gyro�uid and the gyrokineti
 model for small island

widths, i. e. when w . de. So, for the 
ases investigated here in whi
h the island half

width and the extend of the ele
tron 
urrent layer thi
kness δe are mu
h smaller

than the equilibrium s
ales, the �uid des
ription produ
es pra
ti
ally the same is-

land half widths as the more 
omplete kineti
 model. The 
omparison between the

models also shows that the island width is slightly higher in the �uid des
ription

than in the kineti
 model. These are the �rst extended 
omparisons of the saturated

island width in slab geometry over a broad range of parameters.

Sin
e for both parameter 
ases the ion skin depth is mu
h larger than the ele
-

tron skin depth, de ≪ di, ele
tron inertia dominates 
ompletely. It was shown

by Drake and Lee that the tearing mode saturates approximately when w ≈ δe,
whi
h in this regime means w ∼ ∆′d2e [19℄. The detailed estimation yields w =
∆′d2e/ (2G) (Se
. 6.1). Therefore, in the small island limit, de ≪ L ≈ ls, the satu-
rated island half width is des
ribed only by the skin depth de and the tearing mode

stability parameter ∆′
, whi
h for the equilibrium here is known analyti
ally from

Eq. (4.6) (Se
. 4.2).

The analyti
al predi
tion in 
omparison with our simulation results depending on ky
is shown in Figure 7.10. Drake and Lee's estimate of w re�e
ts well the qualitative
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Figure 7.8: Comparison between the exa
t island width obtained by solving Eq. (6.1)

on a dis
rete spatial grid and the island half width 
al
ulated a

ording

to Eq. (1.25) (Setup I and ky = 1.8). In the small-∆′
limit the 
onstant-A

approximation is numeri
ally 
on�rmed.

behaviour of the saturated island half widths over the shown ky-range and agrees

more 
losely with the gyrokineti
 than the gyro�uid results. The deviations of the

predi
tion of w 
an be 
aused by assumptions whi
h are not 
ompletely valid in

the simulations. For instan
e, in the analyti
al estimations the shifted ba
kground

Maxwellian was not used rigorously, and in addition the density response was ne-

gle
ted.

For both parameter 
ases investigated here, the island width does not seem to depend

on the values of ρS,e = 0.2, 0.3, as 
an be seen by 
omparing the left and right panel

of 7.9. This suggests that there is no in�uen
e of �nite ele
tron temperature e�e
ts

on the island width. This is 
onsistent with the fa
t that the analyti
al predi
tion

of Drake and Lee does not 
ontain �nite ele
tron temperature e�e
ts related to ρS,e,
whi
h are linked to �nite pressure e�e
ts and the width of the ion in�ow region [46℄.

Sin
e ρS,e is 
omparable to the ele
tron skin depth and the analyti
al model does not


ontain this quantity, it is un
lear whether it plays an important role in nonlinear

simulations with both kineti
 spe
ies. To investigate this dependen
e the parameters

ky = 1.8, ∆′de ≈ 0.25, µ = 1836 are �xed and ρS,e = 0.3, 0.1, 0.05, 0.025 is varied.

The simulations have shown that the island half width remains the same (w ≈ 0.04)
to high a

ura
y in both gyrokineti
 and gyro�uid simulations. It follows that in

the small-∆′
regime the pressure s
ale has no in�uen
e on the saturation level of the

tearing mode.

A further important nonlinear quantity whi
h has been 
ompared within the adopted

gyrokineti
 and gyro�uid models is the os
illation frequen
y ωB that 
hara
terises

the saturation phase, as shown in Figure 7.7 and 7.8. The parameter 
ases I and
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Figure 7.9: Saturated island half width w as a fun
tion of ky (Left: setup I, right:

setup II). The gyrokineti
 and gyro�uid models show a very good agree-

ment in determining the saturated island half width in the small-∆′

limit.

II are 
onsidered again measuring the os
illation frequen
y in the deeply nonlinear

saturation phase as des
ribed in Se
. 6.1. In the gyro�uid simulations the os
illa-

tion frequen
y 
an always be 
learly observed. While for parameters of 
ase I the

frequen
y 
an be measured 
learly for the gyrokineti
 model, it is more di�
ult in


ase II. Therefore, the number of markers was doubled to Np = 3 · 107 and the

previous time step was halfed to ∆t = 0.125.
The results are displayed in Figure 7.11, where the left panel refers to setup I and

the right panel to setup II. Both models agree very well for all wave numbers ky
shown here, also for moderate values of ∆′de ≈ 1. These results 
learly show that

also in this regime the os
illatory behaviour of the saturated re
onne
tion pro
ess


an be des
ribed 
ompletely by a �uid des
ription.

From a rough kineti
 estimation one gets ωB ∼ kyvew/ (2ls) [19, 26℄, so the fre-

quen
y is roughly proportional to the island width and the stability parameter ∆′
.

The results in Figure 7.11 
on�rm this linear s
aling in the limit of low-∆′
values. As

stated in Se
. (6.1), the explanation by Drake referring to a resonant intera
tion of

trapped ele
tron with the mode 
ausing saturation and os
illation is not 
ompletely


onvin
ing. Both models show pra
ti
ally the same nonlinear behaviour when ∆′de
is small enough.

7.3.2 Finite ion temperature e�e
ts

This se
tion deals with the extension of previous nonlinear results by in
luding �nite

ion temperature e�e
ts using the full �nite Larmor radius response. Here the fo
us

lies on the parameter 
ase I and the behaviour of the saturated island half width

with in
reasing ion temperature.

In Figure 7.12 the saturated island half width is shown when the ion temperature is

varied using the values τ = 1/900, 0.25, 1, 4 and �xing ky = 1.8. The island width

only 
hanges by about 5% over approximately three orders of magnitude of τ . This
shows that �nite Larmor radius e�e
ts on w are weakly relevant for ∆′de . 1.
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Figure 7.10: The saturated island half width w depending on ky is 
ompared with

the predi
tion by Drake and Lee (
ase I). The analyti
al model shows

a good qualitative agreement with simulation results for ∆′de < 1.

As stated earlier, Ref. [19℄ predi
ts the general saturation 
ondition w ≈ δe. Here,
due to the in�uen
e of �nite ion temperature, the ele
tron 
urrent 
hannel width


hanges a

ording to [38℄

δe ∼ γls

kyve
√
1 + τ

. (7.16)

On the other hand the growth rate in
reases a

ording to γ ∼
√
1 + τ , as has been

shown in Se
. 7.2. Using Eq. (7.15) for the growth rate and Eq. (7.16) for the

modi�ed 
urrent width, the generalised s
aling of the saturated island half width
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Figure 7.11: Os
illation frequen
y as a fun
tion of the wave number ky for the two

models (Left: 
ase I, right: 
ase II). Both models agree very well in the

low- and medium-∆′
range.
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Figure 7.12: Comparison of the island half widths w as a fun
tion of the temperature

ratio τ (setup I and ky = 1.8).

for �nite τ be
omes

w ∼ ∆′ d2e,

as stated for the drift kineti
 
ase. This estimation makes evident that the saturated

island width does not 
hange signi�
antly with ion temperature.

The gyro�uid model has been ben
hmarked for the �rst time. The 
omparison of

both models shows a good agreement for linear and nonlinear simulations. For the

drift kineti
 limit the saturated island widths di�er only slightly from ea
h other

while the boun
e frequen
ies are pra
ti
ally the same. E�e
ts of FLR a�e
t both

models with the same amount in the linear as well as in the nonlinear regime for

the parameters 
hosen here.
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8 Con
lusions and outlook

Ele
tromagneti
 simulations of the linear tearing mode without equilibrium gra-

dients have been performed with EUTERPE. The dispersion relation has been


ompared with a shooting method showing an ex
ellent agreement between both

methods. Linear simulations in the presen
e of �nite temperature gradients were

ben
hmarked as well to high pre
ision. Employing �nite density and temperature

gradients a 
riti
al threshold of the linear growth rate over the temperature to den-

sity ratio has been observed. Comparing the simulations with an analyti
 hybrid

approa
h it's predi
tions 
ould be 
on�rmed to good agreement as well as the o

ur-

ren
e of the 
riti
al threshold in this parameter regime. The kineti
 theory of Drake

and Lee is not able to predi
t the linear 
riti
al threshold what hints that their

estimates are too rough. A detailed kineti
 linear stability analysis in the presen
e

of diamagneti
 e�e
ts is presently not available.

Nonlinear single-mode simulations of the saturated tearing mode have been 
arried

out. The simulation results are 
ompared to the predi
ted saturated island half

width predi
ted by Drake and Lee. For small enough growth rates the analyti


result 
an be re
overed but deviates from the simulation results in the medium-∆′

range. Therefore, the analyti
 predi
tion is 
on�rmed. An 
omprehensive theory of

nonlinear 
ollisionless magneti
 re
onne
tion whi
h in
ludes more realisti
 s
enar-

ios, e. g. in
luding the 
oupling of higher harmoni
s modes and parameter ranges

whi
h allow �nite-∆′
values of order unity is 
urrently not available. Also, it is im-

portant to note that a 
apa
ious theory of nonlinear tearing in
luding diamagneti


e�e
ts 
ould be highly desirable.

The super-exponential behaviour of the tearing mode has been demonstrated for

two magneti
 equilibria and numeri
al di�
ulties has been dis
ussed.

For the �rst time the threshold between sub- and super-exponential behaviour has

been veri�ed measuring the os
illation frequen
y of the �eld energy depending on

the wave number and equilibrium 
urrent width. This threshold is an important

quantity and 
ould be the starting point for numeri
al investigations getting deeper

insight into the question of possible non-saturation of tearing modes.

A detailed parameter study of the threshold for di�erent equilibrium parameters was

presented. The s
an of the equilibrium width a and box size Lx shows 
learly that

the assumption of the high-∆′
regime does not ne
essarily leads to super-exponential

behaviour. Moreover, there exists a region in the parameter spa
e allowing a super-

exponential phase of mode right at linear stability threshold.

A 
omparison of the gyrokineti
 model and a 
ompressible gyro�uid model has been

performed. The results of both approa
hes have been 
ompared to ea
h other lin-

early and nonlinearly for an extended set of parameters. As a �rst step, the shooting

method has been used to ben
hmark the linear simulations of both 
odes in the drift
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kineti
 limit. The linear eigenmodes of the two models have been ben
hmarked for a

single wave number and a �xed set of plasma parameters, whereas the linear growth

rates of both 
odes have been 
ompared for a range of wave numbers. It has been

shown that in the linear regime both 
odes give results with high degree of a

ura
y.

Then the results of the two models have been 
ompared over the whole spe
trum of

linearly unstable wave numbers for two sets of plasma parameters showing a good

agreement between the growth rates obtained with the gyrokineti
 model and the

gyro�uid one.

The linear simulations have been extended to the 
ase of �nite ion temperature,

where it has been shown that ion gyro-orbit averaging e�e
ts 
an be properly de-

s
ribed by both approa
hes. Furthermore, numeri
al simulations in the small-∆′

range 
ompare favourably with the asymptoti
 theory of Por
elli.

Nonlinear simulations of both models have been 
arried out in the small-∆′
regime.

A detailed 
omparison of observables su
h as the evolution and saturation of the

island width, as well as it's os
illation frequen
y in the saturated phase has been


arried out. The gyrokineti
 and gyro�uid simulations have shown that 
lose to

marginal stability the evolution and saturation of the island width for both models

is pra
ti
ally the same. Moreover, an important and new observation is that the os-


illation frequen
y of the island width shows no di�eren
e between the two models.

Therefore, the main result is that the nonlinear evolution of the 
ollisionless tear-

ing mode in the drift kineti
 limit 
an essentially be well des
ribed by �uid theory.

Also �nite ion temperature e�e
ts in the saturated island phase have been 
onsid-

ered. Here again both models di�er only slightly when measuring the island width.

Therefore, in the regimes investigated here, the nonlinear re
onne
tion physi
s 
an

be 
ompletely des
ribed with a gyro�uid approa
h.

Slightly stronger deviations between the simulation results o

ur for ∆′de of order
unity, suggesting that further investigations will be of interest in this regime, as

well as in 
ases where ∆′de is mu
h larger than unity for whi
h a detailed nonlinear


omparison between the gyrokineti
 and gyro�uid models is still missing.

Numeri
al simulations of magneti
 re
onne
tion using �uid models in
luding resis-

tivity 
an be performed in a straight manner. However, it is still an open issue how

to perform numeri
ally exa
t ben
hmarks of the 
ollisional tearing mode using the

PIC framework. Closely related to this topi
 are simulations of mi
ro-tearing modes

with PIC methods whi
h are left for further work.
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