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Abstrat

The ollisionless tearing mode is investigated by means of the δf -PIC ode EU-

TERPE solving the gyrokineti equation. In this thesis the �rst simulations of

eletromagneti non-ideal MHD modes in a slab geometry with EUTERPE are pre-

sented.

Linear simulations are arried out in the ases of vanishing and �nite temperature

gradients. Both ases are benhmarked using a shooting method showing that EU-

TERPE simulates the linearly unstable tearing mode to a very high auray. In the

ase of �nite diamagneti e�ets and values of the linear stability parameter ∆′
of

order unity analyti preditions of the linear dispersion relation are ompared with

simulation results. The omparison validates the analyti results in this parameter

range.

Nonlinear single-mode simulations are performed in the small- to medium-∆′
range

measuring the dependeny of the saturated island half width on the equilibrium

urrent width. The results are ompared with an analyti predition obtained with

a kineti eletromagneti model.

In this thesis the �rst simulation results in the regime of fast nonlinear reonne-

tion (medium- to high-∆′
range) are presented using the standard gyrokineti equa-

tion. In this regime a nonlinear ritial threshold has been found dividing the

saturated mode from the super-exponential phase for medium-∆′
values. This rit-

ial threshold has been proven to our in two slab equilibria frequently used for

reonnetion senarios. Either hanging the width of the equilibrium urrent or the

wave number of the most unstable mode makes the threshold apparent. Extensive

parameter studies inluding the variation of the domain extensions as well as the

equilibrium urrent width are dediated to a omprehensive overview of the ritial

threshold in a wide range of parameters. Additionally, a seond ritial threshold

for high-∆′
equilibria has been observed.

A detailed omparison between a ompressible gyro�uid ode and EUTERPE is

arried out. The two models are ompared with eah other in the linear regime

by measuring growth rates over wave numbers of the most unstable mode for two

setups of parameters. Analytial saling preditions of the dispersion relation rele-

vant to the low-∆′
regime are disussed. Employing nonlinear simulations of both

odes the saturated island half width and osillation frequeny of the magneti is-

lands are ompared in the small-∆′
range. Both models agree very well in the limit

of marginal instability and di�er slightly with dereasing wave vetor. Reently,

the full polarisation response in the quasi-neutrality equation was implemented in

EUTERPE using the Padé approximation of the full gyrokineti polarisation term.

Linear simulation results inluding �nite ratios of ion to eletron temperature are

benhmarked with the dispersion relation obtained from a hybrid model. Finite
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temperature e�ets in�uene the saturated island width slightly with inreasing ion

to eletron temperature ratio whih has been veri�ed by both models.
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Nomenlature

kB Boltzmann onstant

s speies label, s = (i, e)

ms mass of speies s

qs harge of speies s (qe = −e, qi = e)

T0,s onstant bakground temperature of speies s
(equal to T0 if T0,i = T0,e)

n0,s onstant bakground density of speies s (equal

to n0 if n0,i = n0,e)

µs = mi/ms ratio of ion mass to speies massms (µe = µ, µi =
1)

ρi =
√

mikBT0,i/(eB) ion gyroradius

ρS,e =
√

mikBT0,e/(eB) ion sound Larmor radius

Ωs = qsB/ms Larmor frequeny

vs =
√

kBT0,s/ms thermal speed

v⊥ perpendiular veloity

µB = v2⊥/(2B) magneti moment per unit mass

B absolute value of the equilibrium magneti �eld

~b = ~B/B magneti unit vetor in diretion of

~B

s̄ �ux label

A0, Ψ0 bakground parallel magneti vetor potential

p plasma pressure

βe = p/(B2/2µ0) eletron plasma beta as the ratio of eletron pres-

sure over magneti pressure (short notation β)

τs = T0,s/T0,e ratio of speies temperature T0,s to eletron tem-

perature T0,e (τi = τ, τe = 1)
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vA = B0,z/
√
µ0n0mi Alfvén speed based on the guiding �eld strength

B0,z

Leq,x = x/∇x sale length of the equilibrium gradients of quan-

tity x, being density n0,s, temperature T0,s or

magneti �eld B

tA = Leq,B/vA Alfvén time

ηs = Ln,s/LT,s ratio of temperature to density gradient sale

ωp,s =
√

nse2/(ǫ0ms) plasma frequeny

ds = c/ωp,s ollisionless skin depth of speies s

φ perturbed of the eletrostati potential

A, Ψ perturbed parallel magneti vetor potential

ω omplex eigenvalue of the mode

γ = γk = ℑ(ω) growth rate of the mode as the imaginary part

of ω

ω̂ = ℜ(ω) frequeny of the mode as the real part of ω

~k = (kx, ky, kz) wave vetor

k|| = ~k · ~B parallel wave vetor
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1 Introdution

1.1 Magneti reonnetion

Magneti reonnetion is a fundamental proess in plasma physis whih desribes

the topologial restruturing of magneti �eld lines. Following a more general term,

it is a hange in magneti onnetivity of plasma elements due to the violation of

the frozen-in magneti �ux onstraint of ideal MHD theory [1, 2℄.

During reonnetion the magneti energy as a soure of free energy is onverted

into kineti energy of the plasma, thermal energy and aeleration of partiles. It is

believed to play a ruial role in astrophysis as a way for explaining solar eruptions,

oronal mass ejetions, stellar �ares, oronal heating and the generation of energeti

partiles. It also a�ets high veloity louds in the galati halo [3℄. Reonnetion

events were proven to our in the magnetotail of the earth and merury and theo-

retially investigated in these domains [1, 4�6℄.

A very important additional researh part of reonnetion physis onern the as-

pets relevant for fusion by magneti on�nement. Negleting the ideal MHD ap-

proximation of fusion plasmas, resistive tearing mode instabilities an evolve rel-

atively fast and an lead to a strongly redued plasma on�nement. Moreover,

nonlinear aspets of these reonnetion events an lead to a high aeleration of the

tearing instability whih has to be ontrolled in experimental devies [7℄.

A very reommendable overview of the �eld of magneti reonnetion and detailed

disussions are given in Ref. [1℄. For advaned studies Ref. [2℄ ontains a olletion

of rather speialised reports. It gives also a short and valuable introdution to re-

onnetion and related topologial onepts.

The onept of magneti reonnetion was founded by Giovanelli (1946) trying to

explain the heating of the solar orona. Also Dungey (1953) reognised that the

large amount of magneti energy on the surfae of the sun an be a soure of a

sudden aeleration of harged partiles. Solar �ares and oronal mass ejetions ex-

hibit the learest visual examples of magneti reonnetion. Soft X-ray images gave

more experimental insight into the magneti strutures and aeleration of harged

partiles [5℄. Reently the RHESSI satellite was launhed (2002) to provide high

resolution γ-spetrosopy images of the sun used to explain impulsive reonnetion

events on the sun's surfae.

A more detailed physial piture of reonnetion an be given by inspeting Ohm's

law of the �uid model under onsideration. In Se. 1.2 the relevane of Ohm's law

is desribed omprehensively in terms of a hydrodynami analogon of magneti re-

onnetion.
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1 Introdution

Within the non-ideal MHD plasma desription one an assume [8℄

~E + ~v × ~B = η~j −∇p + d2e
∂~j

∂t
+
~j × ~B

n e
. (1.1)

This equation an be traed bak to the momentum balane of the eletron �uid

in the derivation of the MHD model. It desribes the response of the urrent

~j
under the in�uene of an eletri �eld

~E. Here, n, ~v and p are the plasma density,

veloity and salar pressure, respetively. There are several strong restritions when

applying this law in the MHD ontext [1℄.

Negleting the right hand side of Eq. (1.1) the plasma is ideal and the magneti �eld

lines are just guided with the plasma motion. The resistivity η and the inertia term

proportional to d2e lead to a violation of the onstraint of the frozen-in magneti

�ux allowing the magneti �eld to deouple from the plasma �ow. The resistivity

introdues dissipation in the system ausing a onversion of magneti energy into

Joule heating. Without resistivity the system is dissipation-free and an e�etive

impedane remains due to the �nite eletron inertia proportional to d2e. The pres-
sure term does not support non-ideal e�ets sine it is a gradient �eld. The pressure

gradient here auses a proess so-alled slippage and has similar features of reon-

netion [2℄. However, o�-diagonal omponents of a pressure tensor an indeed break

the frozen-in magneti �ux onstraint [9℄. The last part on the right hand site is

known as Hall term. This term for itself does also not ause magneti reonnetion

but makes Alfvéni waves dispersive (whistlers).

One of the earliest models, referred to as the Sweet-Parker (SP) model, desribes

a steady reonnetion proess within the resistive MHD ontext [1℄. On the right

hand side of Eq. (1.1) only the term proportional to η remains. A �eld line geometry

whih is antiparallel near the so-alled singular layer underlies this model, motivated

by modelling the omplex magneti dipole strutures on the surfae of the sun. It

desribes magneti reonnetion as a ombination of a large sale ideal MHD-regime

whih aounts for the equilibrium length sales far away from the singular layer,

and a thin non-ideal domain of width δSP around the singular layer. Within this

non-ideal di�usion domain the magneti �eld lines are able to reonnet beause

the frozen-�ux onstraint is broken due to resistivity. The magneti �eld di�uses

into the layer, reonnets and aelerates the plasma along the singular layer in the

elongated diretion with an upstream-veloity vA,up. However, the elongated di�u-

sion region of length ∆ limits the rate of reonnetion due to the Alfvén limit on

the ion out�ow veloity. Assuming a steady-state reonnetion in an inompressible

plasma, the ontinuity equation yields for the in�ow veloity [10, 11℄

vin ∼ δSP
∆

vA,up ≪ vA,up. (1.2)

It relates the length δSP of the di�usion region to the marosopi elongated sale ∆
whih auses the reonnetion rate, vin/vA,up to be relatively small. However, the

omparison with experimental observations of the reonnetion rate learly failed

sine the approximations used in this theory are quite rude.
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1.1 Magneti reonnetion

In the early 60ies this model has been improved by Petshek. He assumed that slow

mode shoks in the Sweet-Parker out�ow region greatly speed up the mass �ow. As

the external plasma rosses the shoks it is aelerated in the downstream diretion.

The struture of the shoks along the out�ow diretion is haraterised by a new

mirosopi sale ∆∗
, and the marosopi sale ∆ of the Sweet-Parker model. An

analysis shows that the reonnetion rate is inreased by a fator of

√

∆/∆∗
,

vin ∼ δSP
∆

√

∆

∆∗ vA,up ∼ vA,up. (1.3)

Although the model of Petshek was impressive it is very ontroversial. Biskamp

(1986) reported the results of numerial simulations whih appeared to disprove the

Petshek model. In partiular, assuming onstant resistivity over the whole sim-

ulation domain, the shoks emerged at distanes muh larger than predited by

Petshek [5℄.

The plasma in the solar orona an not always be onsidered as ondutive. Colli-

sionless mehanisms have been investigated leading to fast reonnetion resulting in

muh higher reonnetion rates ompared to the resistive ase whih suites better

the explanation of astrophysial observations. These mehanisms base, for instane,

on inertia e�ets of the eletrons breaking the frozen-in onstraint [5℄. This ase or-

responds to taking only the term proportional d2e of the right hand side of Eq. (1.1)

into aount. The in�uene of the Hall-term was investigated as well leading to an

inrease of the reonnetion rate [2℄.

Experiments with fusion devies have also shown strong hints of reonnetion phe-

nomena, as was �rst observed by Goehler (1974) in tokamaks. So-alled sawtooth

rashes may our, whih have been observed by soft X-ray emissions. The ele-

tron temperature pro�le peaks and suddenly �attens. This has been explained

by Kadomtsev (1975), assuming that the MHD helial mode with mode number

m = 1, n = 1 displaes the equilibrium magneti axis of the tokamak. After that

the magneti �elds are allowed to reonnet at the q = 1 surfae with q the safety

fator.

Sine the 70ies the most intensively studied instability for the formation of X-points

and reonnetion is the tearing mode. It has attrative properties sine there are

ollisionless and ollisional variations. To desribe reonnetion in the magnetotail

of the earth the ollisionless tearing mode without a guiding �eld, often modelled by

a so-alled Harris on�guration [12℄, has been established as a standard onept in

magneti reonnetion physis. The tearing mode o�ers also the possibility to reate

spontaneous reonnetion in ontrast to fored reonnetion driven by an external

equilibrium �ow.

In partiular, it is important to extend the understanding of tearing modes in hot

plasmas enountered in fusion devies whih maintain a strong magneti guiding

�eld. Due to the high ore temperature binary oulomb ollisions an be negleted

whih makes the plasma highly ondutive. Considering the on�nement of fusion

plasmas on large times sales the approximation of ideal MHD is not valid anymore.

Waiting long enough, the magneti �eld an di�use perpendiular to the guiding

3



1 Introdution

�eld whih makes the desription of �nite resistivity of the plasma neessary.

One ould suppose that the perpendiular magneti di�usion ausing destabilisation

of the plasma is quite slow. Sine the involved spatial sales are very small and a

large amount of magneti energy ontained in the equilibrium an be released, the

growth rate of the resistive tearing mode an be very high [13, 14℄. The resistive

tearing mode typially grows on a hybrid time sale γ−1
k ∼ t

2/5
A t

3/5
R between the short

MHD time sale tA and the very long resistive time sale tR
1

[13℄.

Tearing modes are well known for the formation of magneti islands whih alter

the magneti topology and thus the on�nement properties of fusion devies. The

desription of tearing modes an be extended by inluding eletron temperature

gradients. If additionally a su�iently large resistivity is present so-alled miro-

tearing modes an be exited whih form small sale islands [15, 16℄. These modes

trigger the stohastisation of magneti islands ausing a rapid deon�nement of the

plasma.

From the 60ies until nowadays, the analytial work on tearing modes multiplied.

The milestone work of Furth, Killeen and Rosenbluth (1963) within the resistive

MHD ontext founded the linear boundary layer analysis of tearing modes [14℄.

They alulated the dispersion relation for the �rst time in terms of the stability

parameter ∆′
desribing the ideal solution on large sales outside the tearing layer.

The famous analytial result of Rutherford (1973) stated the algebrai growth of the

nonlinear resistive tearing mode [17℄. During these deades the omputational work

onentrated mainly on �uid alulations. Sonnerup (1970) and Vasyliunas (1975)

began to verify numerially that other solutions than Petshek's predition exist in

the regime of fast reonnetion.

Drake and Lee (1977) used a drift kineti model for both eletrons and ions to pre-

dit ollisionless and ollisional linear dispersion relations in the low-∆′
limit [18℄.

Although quite early, this work is still a standard referene of present reports.

Drake and Lee also proposed a nonlinear saturation mehanism of the tearing mode

both without and with ollisions [19℄. The latter result on�rmed the predition of

Rutherford.

During this period numerial work on simulations of kineti models started whih

were disretised by partile-in-ell (PIC) methods. Katanuma (1980) investigated

the nonlinear evolution of tearing modes in a slab [20℄. However, this work foused

on presenting a few single time series to enlight the physial saturation mehanism

rather than a omprehensive numerial veri�ation of available nonlinear preditions.

Birdsal and Langdon (1985) seonded, but their approah inluded large spatial and

temporal disrepanies of the sales involved (Debye length and system size, plasma

frequeny of the eletrons and small growth rates) and thus made it intratable to

obtain kineti simulation results in a reasonable period of time. This numerial �eld

gained muh drive when the gyrokineti equation derived by Hahm (1988) had been

established. This kineti desription allows for tearing solutions irumventing the

previously mentioned numerial disadvantages for simulations.

1

The Alfvén time tA = Leq,B/vA as well as the time of resistive di�usion, tR = µ0 L
2
eq,B/η are

related to the equilibrium magneti �eld sale Leq,B.
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1.2 Preparation for reonnetion: A hydrodynami analogon

Porelli (1991) sueeded in alulating a dispersion relation of the tearing mode

with a �uid approah of the eletrons and a gyrokineti desription of the ions. This

dispersion relation inludes diamagneti e�ets, ollisionality and �nite ion temper-

ature e�ets and still serves as a standard formula in benhmarking results of linear

�uid simulations [21, 22℄. Sine the 90ies MHD modelling, minimal two-�eld and

four-�eld models have seen explosive growth and usage due to the tehnologial

progress in omputing power and numerial tehniques [5, 23℄. MHD odes ould

fae demands of realisti 3D global domains like 3D simulations of earth's magne-

tosphere in the presene of the solar wind. The ollaboration entitled Geospae

Enviromental Modeling (GEM) projet enfolded several important results on nu-

merial studies of two-�uid reonnetion desribing Earth's magnetosphere (Shay

and Drake (1998), Daughton (2006)) [5℄.

Nonlinear studies by Aydemir (1992) disovered the so-alled �explosive� reonne-

tion when simulating the m = 1 mode in a tokamak [7℄. Using a four-�eld model

in the high-∆′
regime and low ollisionality he showed that in the early nonlinear

phase the atual growth rate γ(t) of the tearing mode inreases by one order of

magnitude with respet to the linear growth rate γk. The strong inrease of the

reonnetion rate in the early nonlinear phase was on�rmed by Ottaviani (1993)

and Kleva (1994) in the high-∆′
regime within a slab model [23℄. A physial meh-

anism explaining this aeleration ould not worked out but a heuristi di�erential

equation desribing the island evolution was derived. An omprehensive nonlinear

theory explaining this subjet is still under disussion [35℄.

Grasso (1999) extended the model of Ottaviani by taking �nite Larmor radius (FLR)

e�ets into aount [21℄. The numerial investigation inluded the dependeny of

the �eld struture of the tearing mode on �nite ion temperature as well as the a-

eleration of the amplitude in the early nonlinear phase.

Progress has also been made investigating seondary island formation (plasmoids)

using a resistive MHD model employing a turbulent bakground [45℄. For su�iently

small resistivity the reonnetion rate beomes independent from ollisionality. Re-

ently, a kineti hybrid model was used to �gure out numerially that Landau-

damping an be mainly responsible for eletron heating during two-dimensional

reonnetion [46, 47℄. In partiular, the width of the saturated island half width is

found to be the same as predited in MHD theory for su�ient large system sizes.

1.2 Preparation for reonnetion: A hydrodynami

analogon

This hapter prepares for magneti reonnetion within a pure hydrodynami on-

text desribing the detahment of a liquid drop. This hapter here follows mainly the

work of [2, 48℄.

The term reonnetion is not restrited to proesses whih involve eletromagneti

�elds. It an appear in a very general fashion, for instane, desribing non-ideal

proesses within hydrodynamis. In the following example, the dynamial magneti

vetor �eld

~B is translated into a generi smooth salar quantity P as shown in

5



1 Introdution

Figure 1.1 whih an be thought of as a olour or density of a �uid. The Figure

might show a �uid, where the white, lighter phase is assoiated to P = 0 and the

blak, heavier phase to P = 1, whereas in between the quantity undergoes a smooth

transition. The temporal evolution of this unstable on�guration is depited from

left to right. The �ow ~v is a solution of the Navier-Stokes equations, while P is

assumed to be just adveted with the loal �ow, i. e. being desribed by a transport

equation

∂P (~x, t)

∂t
+ ~v · ∇P (~x, t) = 0. (1.4)

However, the detahment an never ahieved using Eq. (1.4). To desribe detah-

ment, the boundary of the P = 1 domain must be adveted to the stagnation point

in a �nite time. This is not possible for any smooth veloity �eld. The �ow at the

Figure 1.1: Temporal evolution of the detahment of a drop as an example of salar

reonnetion. The Figure is taken from Ref. [48℄.

stagnation point x = 0, y = 0 an be well approximated by ~v = (−x, y, 0). The

time for transporting a �uid element over the last distane ǫ to the stagnation point

is

∆t =

∫ 0

ǫ

1

vx
dx =

∫ ǫ

0

1

x
dx = ln(x)|ǫ0 = ∞. (1.5)

This situation is again shown in Figure 1.2, but in ontrast to Figure 1.1 the oor-

dinate system is rotated by π/2.
In reality the detahment is of ourse quite possible. The physial reason for the

ontradition is that the desription by Eq. (1.4) fails during the detahment. In

nature the dereasing thikness of the P = 1 domain reahes moleular distanes

in �nite time and at least then it is not lear whether a �uid desription an be

maintained. To stay within the marosopi �uid desription and to aount tenta-

tively for the detahment, one an introdue a orretion term in Eq. (1.4). It is not

assured that this onept will be suessful, sine on those small sales involved the

omplex partile dynamis should be better desribed by a kineti model. Adding

a generi non-ideal term r to Eq. (1.4) one obtains

∂P (~x, t)

∂t
+ ~v · ∇P (~x, t) = r (~x, t) . (1.6)

The only ondition is that r must be small ompared to the advetion term, ex-

luding the points, where the advetion term vanishes. This equation will be the

analogon of Ohm's law Eq. (1.1) and r an be translated to the term proportional

6



1.2 Preparation for reonnetion: A hydrodynami analogon

Figure 1.2: The reonnetion proess is not possible in �nite time with an ideal

transport equation for P . The Figure is taken from Ref. [48℄.

Figure 1.3: The reonnetion proess is now possible in �nite time with non-ideal ef-

fets r in the transport equation of P . The Figure is taken from Ref. [48℄

to the resistivity η~j. The exat form of r almost plays no role.

Eq. (1.6) an be rewritten as

∂P (~x, t)

∂t
+ ~w · ∇P (~x, t) = 0, (1.7)

assuming r = −δ~v · ∇P and de�ning ~w = ~v+ δ~v. The new veloity ~w is not smooth

sine ∇P vanishes at the point of detahment where r 6= 0. It requires a singularity
in δ~v and onsequently in ~w of the type |δ~v| ∼ 1/ |∇P |.
Indeed, for a generi saddle point of the form P ∼ a−b x2+c y2 detahment beomes

possible as shown Figure 1.3. Sine the singularity of the �ow sales like wx ∼ −1/x
with respet to the x-diretion this leads to the estimation of the travel time

∆t =

∫ 0

ǫ

1

wx
dx =

ǫ2

2
, (1.8)

whih is now �nite.
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1 Introdution

1.3 Current researh and motivation for this work

At the very �rst magneti reonnetion is a numerial and analytial hallenge. Even

global simulations in a slab geometry are still attrative and frequently used for in-

vestigations [25, 26℄. The relative simple slab geometry admits the investigation of

fundamental physial mehanisms of reonnetion aused by the highly nontrivial

aspets of boundary layer dynamis.

In this work the standard gyrokineti equation are solved to model reonnetion with

a modern kineti approah [27℄. The gyrokineti equation is solved by means of a

δf -PIC method implemented in the EUTERPE ode. This high performane and

fully parallised ode is an advaned tool for full gyrokineti plasma simulations [28℄.

EUTERPE an provide a detailed view on the phase spae dynamis whih is a

unique bene�t in ontrast to �uid models that are often fored to use a de�ned

physis spei�ed by the applied losures shemes. Sine reonnetion simulations

are aompanied with a high omputational e�ort the PIC sheme itself has to be

ompared by frequently used kineti ontinuum odes, whih tend to be rather slow

due to high resolution of the multi-dimensional phase spae [29, 31�33℄.

The numerial investigation of linear tearing modes is still a urrent topi of mag-

neti reonnetion in the low-β regime. However, numerially exat benhmarks of

simulation results are a hallenging task, rather it is ommon to ompare with less

exat analyti dispersion relations [29, 30℄. This work shows that EUTERPE is able

to simulate linear reonnetion proesses to very high auray by omparing with

an adopted shooting method. Moreover, the performane of linear simulations verify

that the omputationally �heap� PIC sheme is suitable for reonnetion simula-

tions.

There is a tremendous lak of simulation results of physially important parameter

regimes onerning tearing modes. This an be traed bak to the high number

of relevant spatial sales whih are able to modify the reonnetion proess sensi-

tively. For instane, in the range of fast reonnetion employing eletron temperature

gradients, the linear tearing mode has not been muh investigated so far. In the

presene of equilibrium gradients of length sales LT,e, Ln,e a ritial threshold of

η = Ln,e/LT,e ours and is not quite well understood. Closely onneted to �nite

equilibrium gradients in the presene of reonneting events is the investigation of

miro-tearing modes, whih are important for understanding eletron transport dur-

ing island formation. The numerial desription of miro-tearing modes with PIC

methods is not well developed.

An important point marks the nonlinear saturation of the tearing mode whih is

also a key feature of the present work. Sine a oupling of the most unstable mode

to modes with higher poloidal mode numbers is not expeted, it is a very well ar-

ranged situation to observe the single-mode evolution. In ontrast to, for instane,

ITG-modes whih an drive turbulent plasmas exiting a whole spetrum of inter-

ating modes, analytial preditions of the saturated island half width of nonlinear

single tearing modes are easier to validate, but not proved numerially so far for

a broad range of parameters. Only rare systemati numerial investigations of the

saturated island half width are available in the literature [26℄. Either the weak ol-
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1.3 Current researh and motivation for this work

lisional regime has been investigated [47℄ or high-β ases [30℄ whih do not math

the present purposes. The omparison of preditions of the saturated island half

width [19℄ with numerial simulations is a further important ontribution of this

thesis.

Nonlinear tearing in terms of Hamiltonian �uid models has been disussed at length

both in the high- and low-∆′
regime [42�44℄. Despite of the wealth of numerial

results obtained so far reasonable preditions like saturated island width depend-

ing on important plasma parameters are missing. The Hamiltonian �uid equations

an be formulated in terms of topologial invariants whih might enhane analytial

work. However, even this lass of more intuitive models ompared to pure kineti

approahes are still investigated rather numerially and show a lak of analytial

work on nonlinear reonnetion.

The need for simulation results and physial understanding beomes even more ne-

essary in the high-∆′
regime. Early attempts of the theoretial desription of non-

linear destabilisation in the high-∆′
regime started with �uid simulations and semi-

analytial statements based on the evaluation of the vetor potential and plasma

�ow pattern [23℄. Important progress has been ahieved in understanding nonlinear

destabilisation mehanism by applying the energy priniple on a two-�uid model

in the high-∆′
[35℄. However, in general this range of fast reonnetion is harder

to treat numerially the higher ∆′
. In this thesis the fous lies on the transition

between the saturated phase and nonlinear destabilisation to get deeper insight into

the di�erene of both regimes irumventing the range of large values of the stability

parameter. Although a �nal answer to the physial mehanism of aeleration an

not be given this transition will be one of the most interesting �elds in nonlinear

tearing physis. Attaking these simulations in real three-dimensional geometries

would be a deliious task and is left for further work.

Sine the last two deades reonnetion was mainly investigated by �uid simulations

[21, 23, 36℄. Due to the in�uene of kineti e�ets like �nite Larmor radius e�ets

or dominating phase spae dynamis like superthermal partile aeleration on lin-

ear reonnetion, a omparison between kineti and �uid simulations is neessary.

Beside kineti e�ets, it is still not lear whether �uid models ontain nonphysial

e�ets like arti�ial saturation with respet to kineti approahes when entering the

nonlinear phase of reonnetion [34℄. During the last deade mainly two branhes of

gyro-�avoured models dominated magneti reonnetion physis: in the late 80ies

the gyrokineti approah ame up as a standard tool in plasma physis [27℄. In

the early 90ies gyro�uid models were derived from the gyrokineti equation and

simpli�ed versions of these models were used intensively in strongly magnetised

plasmas [34, 37, 40℄. These �uid models were also ollated with arbitrary guide-�eld

models in low-β limits [41℄. After proposing and deriving these models a ompre-

hensive omparison of these di�erent models is needed, espeially with the original

gyrokineti equation. Linear omparisons of �uid and gyrokineti approahes have

been performed both in a low- and high-β slab on�guration [32, 38, 39℄. However, an

exat benhmark has not been presented as well as a systemati omparison of both

models in the nonlinear regime. This thesis is also dediated to a systemati om-

parison of the standard gyrokineti model and a ompressible gyro�uid model [51℄
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1 Introdution

both in the linear and nonlinear regime. When foussing on linear simulations both

approahes are aompanied with numerially exat benhmarks.

1.4 Collisionless tearing mode instability

The tearing mode is a non-steady spontaneous eletromagneti instability ausing

magneti reonnetion. Even if a plasma is stable with respet to ideal MHD, non-

ideal e�ets an make the plasma unstable. The dynamis of this instability is

mainly in�uened by a very thin di�usion region of the order of the ollisionless

eletron skin depth de where non-ideal e�ets beome important. In the following a

alulation of the linear growth rate γ, in a similar fashion as Ref. [13℄, but within

the ontext of a simpli�ed eletron �uid model in a magnetised plasma is given to

get in touh with boundary layer and tearing mode physis.

1.4.1 The linear tearing mode

The simplest on�guration of a magneti �eld

~B0 = (0, B0,y, B0,z) in a slab whih is

tearing unstable, is provided by an equilibrium urrent of amplitude j0,z and width a,
�owing in the diretion of the guiding �eld B0,z êz. The only non-zero perpendiular
omponent of the magneti �eld is then given by

B0,y(x) =







B′
0,y x −a < x < a

−B′
0,y x < −a

B′
0,y x > a.

(1.9)

Usually the derivative of the magneti �eld B′
0,y(0) is expressed in terms of the shear

length de�ned by ls = B0,z/B
′
0,y(0).

This equilibrium is MHD stable, but introduing non-ideal e�ets like eletron inertia

makes it unstable. The resulting di�usion of the magneti �eld lines leads to a new

magneti on�guration and is expeted to be of high in�uene at a resonant surfae

de�ned by the ondition k‖(x) = ~k · ~B0(x) = 0.
A simple model whih supports magneti reonnetion is an eletron �uid model

given by the equations of motion [51℄

1

0 =
∂ne

∂t
+ [ue, Ψ] , (1.10)

0 =
∂ (Ψ− d2e ue)

∂t
− ρ2S,e [ne, Ψ] , (1.11)

ue = ∆Ψ, (1.12)

1

The equations are normalised to Alfvén units. This normalisation proedure is desribed in

Se. (4.1). The model originates from a more general gyro�uid model. Here only eletrons are

taken into aount.
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1.4 Collisionless tearing mode instability

where ne denotes the density, ue the urrent density of the eletrons and Ψ the

magneti �ux. Eq. (1.12) is parallel Ampère's law. The eletron skin depth de
in Ohm's law, Eq. (1.11), is retained in order to provide a physial mehanism

for breaking the frozen-in onstraint. The eletron ontinuity equation, Eq. (1.10),

loses the system. The Poisson braket for two arbitrary �elds f, g is de�ned by

[f, g] = ~b · ∇f ×∇g.
To investigate the linear tearing mode, Eqs. (1.10�1.12) are linearised keeping only

terms proportional to the �utuating �elds. The Fourier ansatz Ψ1 ∼ ei(kyy−ωt)
for

the perturbed magneti �ux and analogously for ue and ne relates the eigenvalue ω
to the wave number ky. The following alulation deals only with two-dimensional

reonnetion setting ∂z = 0 for the perturbations, so the resonant surfae is loated
at x = 0. The linearised equations are

0 = ωn1 + ky

(

−∂3
xΨ0

∂xΨ0
Ψ1 + ∂2

xΨ1 − k2
yΨ1

)

∂xΨ0,

0 = ω
(

Ψ1 − d2e
[

∂2
xΨ1 − k2

yΨ1

])

+ ρ2S,en1 k‖.

(1.13)

A possible equilibrium vetor potential Ψ0 representing setup Eq. (1.9) is given by

Ψ0(x) =







−x2/(2 ls) −a < x < a
x/ls + 1/(2 ls) x < −a
−x/ls + 1/(2 ls) x > a.

(1.14)

After eliminating the density response n1, the �nal di�erential equation beomes

0 = ω2
(

Ψ1 − d2e
[

∂2
xΨ1 − k2

yΨ1

])

+ ρ2S,e k
2
‖

(

−∂2
xB0,y

B0,y
Ψ1 +

[

∂2
xΨ1 − k2

yΨ1

]

)

(1.15)

It is quite possible to solve this eigenvalue equation straightforward numerially to

get the omplex eigenvalue ω and the eigenfuntion Ψ1. However, this does not

illuminate the physial piture behind reonnetion.

The problem of alulating the growth rate an be solved approximately by aount-

ing diretly for the domains whih di�er strongly regarding the relevant physis. The

approximative solution of the eigenvalue problem rests upon a distintion between

the outer ideal (redued) MHD region and the inner di�usion region. The motiva-

tion for this strategy an be explained by inspeting the typial eigenmode struture,

shown in Figure 1.4. The equilibrium magneti length a, obeying typially a ≪ Lx,

is the largest sale in the system and is related to the outer solution. Although

Eq. (1.15) is always valid, the non-ideal term proportional to de an be negleted on

the sale a. The di�erential equation simpli�es and its solution desribes the outer

part. In ontrast to the outer domain the spatial struture of the mode mostly

varies lose to the resonant surfae due to the reation of a perturbed urrent sheet

of width δe deforming the eigenmode on the small sale de. At this distane the

non-ideal e�ets an not be negleted anymore whih motivates the derivation of an

inner layer di�erential equation oming from Eq. (1.15). The resulting di�erential
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 0  0.2  0.4  0.6  0.8  1

Ψ
1

-s

a

ρS,e

de

δe

Figure 1.4: Di�erent sales involved in boundary layer analysis of the tearing mode.

The outer ideal MHD solution varies slowly on a. The strongly varying

struture around s̄ = 0.5 is aused by the perturbed eletron urrent

hannel of width δe and typially sales with de. ρS,e represents the dis-
tane at whih the pressure pro�le hanges.

equation aounts for magneti �eld line di�usion.

Sine the outer region is governed by the ideal MHD desription and this solution

varies on the length sale of the magneti equilibrium x ∼ a ∼ k−1
y it is assumed

that it is muh larger than all remaining sales, thus de, ρS,e ≪ a. The ideal MHD

equation follows then from Eqs. (1.15) by negleting the term proportional to ω 1

resulting in

∂2
xΨ1 =

(

k2
y +

∂2
x B0,y

B0,y

)

Ψ1. (1.16)

This di�erential equation is qualitatively di�erent from Eq. (1.15). The magneti

equilibrium is divided into three domains aording to Eq. (1.9), for whih one

has to solve Eq. (1.16) together with the proper boundary onditions in between.

Here the di�erential equation is trivial to solve and gives an exponentially deaying

solution for x > a and x < −a. This re�ets the spatially loalised harater of the

eigenmode also on the equilibrium sale a. If a ≪ Lx
2

, the boundary onditions of

the eigenmode play a minor role. The solution Ψ1 is haraterised by a jump in the

1

In the ideal MHD domain the Alfvén time is muh shorter than the time sale of the tearing

mode, thus |ω| ≪ 1.
2

This is the usual ordering of the magneti equilibrium sale and extent of the system size.
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1.4 Collisionless tearing mode instability

slope at the resonant surfae

3

[13℄,

∆′ =
1

Ψ1

(

∂Ψ1

∂x

∣

∣

∣

∣

x=+0

− ∂Ψ1

∂x

∣

∣

∣

∣

x=−0

)

. (1.17)

The linear stability parameter ∆′
is an important quantity in the ontext of tearing

mode analysis. It allows to ompare roughly di�erent equilibria using only one value.

∆′
is a funtion of ky, a and the extension of the domain Lx. It ontains the whole

equilibrium geometry and sale of the perturbations ky under onsideration, even

for more omplex global domains like a tokamak.

The value ∆′
an be alulated analytially for the spei� slab equilibrium used

here, Eq. (1.9), giving [13℄

∆′ (kya) =
2kya

(

e−2kya − 2kya + 1
)

e−2kya + 2kya− 1
. (1.18)

The system size Lx does not appear in this expression, sine it is assumed that

Lx ≫ a and so Ψ1 deays fast enough to suppress the in�uene of the boundary

onditions. The dependeny ∆′(kya) is shown in Figure 1.5 for a = 1. The mode

beomes unstable, if this quantity is positive, otherwise it is stable. For wave vetors

ky > 0.64 the reonnetion proess is inhibited.

It is important to note that many urrently used equilibria in the literature follow

the same qualitative struture as desribed in Eq. (1.9) and so ∆′
di�ers not muh.

-2

 0

 2

 4

 6

 8

 0.3  0.4  0.5  0.6  0.7  0.8  0.9

∆’

ky

Figure 1.5: The tearing mode stability parameter depending on ky. For ky > 0.64
the mode beomes stable.

The instability is mainly in�uened by the thin urrent hannel of width δe at the

3

One an show that also outer solutions of Eq. (1.16) exist whih do not have a jump at x = 0.
However, these modes are physially not relevant [13℄.
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1 Introdution

resonant surfae whih is driven by a parallel eletri �eld E‖. Ideal MHD does not

ontain this quantity and so the ideal solution has to break down when approahing

the layer |x| → 0. The urrent layer serves as a kind of surfae urrent jz,1 �seen�
by the outer sale a whih produes the jump in ∂xΨ1.

Sine Ψ1 must be di�erentiable, it annot have a jump in the slope at all. The inner

layer solution sales with δin whih will be de�ned later. This length resolves the

urrent hannel orretly. Far away from the urrent hannel with respet to the

small sale, i. e. |x| ≫ δin but nevertheless δin ≪ a, the inner solution will math

asymptotially the outer solution to produe a smooth Ψ1 in the whole domain.

Close to the resonant layer x ≈ de the skin term in Eq. (1.15) and the strong variation

of Ψ1 (∂x ≫ ky) beomes dominant. This modi�es the di�erential equation (1.15)

qualitatively desribing now the small sale dynamis with

−∂2
x Ψ1

(

γ2 d2e + ρ2S,e k
2
‖
)

+ γ2 Ψ̄1 = 0. (1.19)

Usually it is assumed that the equilibrium magneti �eld is a linear funtion lose

to the resonant surfae, B0,y ∼ x/ls. The seond term on the left hand side of

Eq. (1.19) ontains the assumption of a onstant value of the perturbed magneti

�ux, Ψ̄1, re�eting the onstant-Ψ approximation aross the layer. This assumption

is only valid in the limit of marginal instability and learly not appliable in the ase

∆′ ≫ 1. The harateristi length sale δin an be estimated by balaning the �rst

two terms of Eq. (1.19) giving δin = (lsγde)/(ρS,eky). Also one an show that the

tearing mode is purely growing (ω̂ = 0), sine there are no equilibrium gradients of

temperature or density [13, 26℄.

Finally, both the solutions of the singular layer di�erential equation, Eq. (1.19)

and the ideal solution from Eq. (1.16), will be ombined to desribe the mode stru-

ture over the whole domain Lx in order to get the �nal dispersion relation. In the

following the method of asymptoti mathing will be applied. First one resales

the inner solution aording to X = x/δin, assuming that δin is arbitrary small with

respet to a. In terms of the variable X , the stability parameter, Eq. (1.17) beomes

∆′ =
1

Ψ̄1,x

∫ ∞

−∞
dX

d2Ψ1,x

dX2
. (1.20)

This expression an also be formulated by integrating the di�erential equation of

the layer, Eq. (1.19), respeting the rede�ned oordinate X ,

1

Ψ̄1,x

∫ ∞

−∞
dX

d2Ψ1,x

dX2
=

δin
d2e

∫ ∞

−∞
dX

1

1 +X2

=
δin
d2e

π.

(1.21)

This expression makes ontat with ∆′
of the ideal solution, Eq. (1.20), in the

asymptoti limit. Knowing this value for a partiular magneti geometry, the growth

14



1.4 Collisionless tearing mode instability

rate an be alulated as

γ = ∆′ ρS,e ky de
π ls

, (1.22)

whih agrees with Porelli [49℄ in the limit ∆′ → 0. It makes also lear that the

distane δin sales as δin ∼ ∆′ d2e whih is also known from kineti theory of olli-

sionless reonnetion [18℄. If de, and thus the non-ideal term of Eq. (1.11) vanishes,

the mode beomes stable (γ = 0). Also, if the strength of the sheared magneti

�eld beomes arbitrary small, ls → ∞, reonnetion an not at, sine only the

homogeneous guiding �eld remains.

This analytial eigenvalue analysis shows that the tearing mode is a non-steady

reonnetion proess whih involves boundary layer dynamis. Many strongly dif-

fering, but physially important sales are involved. This insight would learly not

be possible when simply integrating Eq. (1.15) numerially.

The model equations (1.10�1.12), serve as a starting point for more ompliated

analyses. The inlusion of the eletrostati potential φ into the dynamis leads to

a oupled system of di�erential equations of fourth order [41, 50℄. Additionally, the

ions an be inluded as well, but due to the large natural mass ratio µ, they play

a minor role in the dynamis. The omplete model from whih Eq. (1.10�1.12) an

be dedued [51℄, states that the plasma is adveted with the �ow ~vE = −∇φ × ~B.
Therefore, a seond di�erential equation for the eletrostati potential has to be in-

luded, thus φ is now also subjet to a boundary layer problem that sales typially

with ρS,e [43℄.
Consequently, the omplete analyti alulation of the growth rate has to handle

a double boundary layer analysis disriminating additionally the ases de > ρS,e
and de < ρS,e assuming ρS,e ≪ a as well. Usually the analytial work onsists of

applying a generalised Fourier transformation to the initial di�erential equations

for A and φ as well as a subsequent identi�ation of the layer regions and several

mathing proedures of the �elds [41, 49℄. In this analysis it is ustomary to deal

not only with the limit ∆′ de → 0 when mathing both inner and outer solutions,

but also with the opposite ase ∆′ de ≫ 1. This results in the appliation of a gen-

eralised asymptoti boundary ondition for both �elds Ψ1 and φ when approahing

the resonant layer [49, 52℄.

1.4.2 Overview of analytial dispersion relations

There is a large amount of analytial alulations of the dispersion relation of ol-

lisionless tearing modes beause of subtle relations between parameters and the

underlying type of models. This setion gives an overview of available dispersion

relations for ollisionless tearing modes in low-β on�gurations.

As a general remark the tearing mode stability parameter ∆′
plays a key role when

lassifying dispersion relations and omparing magneti equilibria. In general the
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1 Introdution

large-∆′
range is de�ned by the inequality [10℄

∆′ de >

(

de

ρS,e
√
1 + τ

)1/3

. (1.23)

The opposite ase is referred to as small-∆′
range. Parameter values frequently used

in this work orrespond to the estimate de . ρS,e and therefore the small-∆′
region is

then haraterised by ∆′ de ≪ (de/ρS,e)
1/3 ≈ 1 for vanishing ratio of ion to eletron

temperature.

In Table (1.1) reent and for this work important referenes are shown that investi-

LT,n = 0, τ = 0 [21, 38, 41℄, Eq. (1.22)

LT,n = 0, τ ≈ 1 [38℄

LT,n ≈ 1, τ = 0 [18, 56℄

LT,n ≈ 1, τ ≈ 1 [49, 54, 57℄

Table 1.1: Referenes of analyti dispersion relations for the ollisionless tearing

mode.

gate ollisionless reonnetion with either a kineti, �uid or hybrid approah. In this

thesis the in�uene of �nite ion temperature e�ets, τ ≈ 1 on the tearing mode will

be subjet to simulations. For �nite equilibrium sales of density and temperature

in the simulation domain, Ln,s ≈ 1 and LT,s ≈ 1, the tearing mode gets a �nite

osillation frequeny ω̂ [18, 44, 56℄.

The ratio de/ρS,e = 1/
√
βµ and related ases d2e ≫ ρ2S,e (β ≪ me/mi, �iner-

tia regime�) and d2e ≪ ρ2S,e (β ≫ me/mi, �kineti regime�) de�ne ertain limits

of validity of dispersion relations [51℄. The analyti work of referene [50℄ using

a two-�uid model inludes linear dispersion relations valid for arbitrary guiding

�eld strengths and may serve as a demonstrating explanation. The authors ap-

ply mathed asymptoti expansion tehniques whih inlude the identi�ation of

di�erent physial strutures around the resonant layer depending on β. At very

small plasma-β values obeying β ≪ me/mi, ion and eletron �ow are oupled in

the tearing layer width yielding a single MHD �uid desription. For �nite plasma-β
(β . (me/mi)

1/4
), eletrons and ions are deoupled on sales smaller than ρS,e. The

mode is then referred to as kineti Alfvén-driven tearing instability. Two sublayers

are present: a narrow layer of width de where eletron di�usivity is important and a

two-�uid spei� layer on sales ρS,e. If β ≫ (me/mi)
1/4

reonnetion is in�uened

by whistler waves and not of interest here. In Table (1.2) dispersion relations are

shown valid for τ = 0 and LT,n = 0 in various limits

1

.

For the ase ρS,e > de Table (1.3) lists the growth rates and real frequenies of the

tearing mode in a slab on�guration. In the ase ∆′de < 1 an algebrai equation

1

In Ref. [10℄ a short overview of linear dispersions is given in this regime. The original results

were developed in Refs. [55, 56℄
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1.4 Collisionless tearing mode instability

LT,n = 0, τ = 0 ρS,e < de [10℄ ρS,e > de [38℄

∆′ de < 1 γ = 0.22 · kyd3e∆′2/ls γ = kydeρS,e∆
′/ (πls)

∆′ de > 1 γ = kyde/ls γ = ky (2de/π)
1/3 ρ

2/3
S,e /ls

Table 1.2: Analytial dispersion relations in the drift kineti limit τ = 0 without

equilibrium gradients.

is presented whih must be solved for ω [54℄. The algebrai equation ontains the

poloidal plasma beta βp at a, the diamagneti frequeny ω∗
and a omplex fun-

tion R(ω0) depending on ω0 ≈ ω∗ (1 + ηe/2)
1

. The linear eletron urrent layer

width is given by δ∗e = ω∗ls/ (kyve). In the ase ∆′de > 1 and vanishing equilibrium

gradients as well as τ → 0, the orresponding result of Table (1.2) an be restored

2

.

1.4.3 The nonlinear tearing mode

The island formation of resistive and ollisionless tearing modes is well known, but

di�ers learly in both ases.

The magneti islands in the resistive ase do not saturate after the linear phase,

rather the island width in the low-∆′
regime grows algebraially in time [17℄. In

the ollisionless ase the tearing mode stabilises nonlinearly in the small-∆′
range.

The magneti island width osillates with a harateristi frequeny for all times

later than the initial nonlinear phase. If Ψ does not vary too muh over the tearing

1

The diamagneti frequeny of the eletrons is given by ω∗ = kykBTe/(qe B0,z) (dn0,e/dx)/n0,e in

SI units and ω∗ = ky(dn0,e/dx)/n0,e in EUTERPE units.

2

Referene [44℄ generalises the dispersion relation γ(ky) to the ase with diamagneti e�ets.

However, the term for γ0(ky) in this referene is not onsistent with Refs. [10, 38℄. In this thesis

the term γ0(ky) of Ref. [38℄ is adopted.

LT,n ≈ 1, τ ≈ 1 γ ω̂

∆′ de < 1, [54℄ 1+ηe/2+1/τ
1+1/τ

γ
1+ηe/2

(ω∗/ω) = (ω∗/ω) ∆′aδ∗e
aβp

+ (1 + 1/τ)R(ω0)

∆′ de > 1, [44℄ γ2 = γ2
0 −

[

kyκT,e

2η
(1 + τ)

]2

ω̂ =
kyκT,e

2η
(1− τ)

γ0 = ky/ls
(

2deρ
2
S,e (1 + τ) /π

)1/3

Table 1.3: Analytial dispersion relations, valid only for ρS,e > de, inluding �nite

ion temperature and diamagneti e�ets.
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1 Introdution

Figure 1.6: Qualitative struture of a magneti island. The X-point is loated at

z = 2π/ky, r = 0 and the O-point at z = π/ky, r = 0. The half width w
is the half of the maximum extension of the separatrix regarding r.

layer, the onstant-Ψ (onstant-A) approximation an be applied. Let Ā(t) be the
value of the perturbed vetor potential aross the layer at the O-point and assuming

B0,y(x) ∼ x, the �eld lines lose to the resonant surfae an be represented by

F (r, z) =
r2

2ls
+ Ā (t) · cos (kyz) = const. (1.24)

The ontour lines of F (r, z) are skethed in Figure 1.6. During island formation the

open �eld lines move to the X-point, tear and reonnet. The newly reonneted

�eld lines are aelerated towards the O-point. As shown in this Figure, the set of

open and losed magneti �eld lines is divided by the magneti separatrix. The half

of the maximum elongation with respet to r de�nes the island half width w(t). In
the onstant-Ψ approximation the island width is given by [13℄

w (t) = 2
√

Ā(t) ls. (1.25)

In this approximation the island half width is obtained by measuring the vetor

potential over time at the O-point.
The magneti island grows and alters the magneti on�nement properties of the

plasma. If the amplitude of the mode is su�ient large the harged speies beome

trapped in this newly formed island struture. When the width of the magneti

islands reahes the width of the perturbed linear urrent hannel δe, the plasma

in�ow towards the layer is strongly redued and the mode saturates [18℄.

The nonlinear evolution of tearing modes in the high-∆′
limit di�ers ompletely

from their evolution in the opposite limit. The mode shows �explosive� reonnetion

indiated by an aelerated growth when entering the nonlinear phase [23℄ and the

island width an reah marosopi level of order w(t) = O(a, Lx).
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2 Gyrokinetis

2.1 Gyrokineti desription

In this hapter a omprehensive desription of gyrokinetis will be given to get in

touh with this formalism, followed by the formal desription of the theory in the

next hapter.

The ollisionless kineti approah studying plasma physis onsists of using the

Vlasov equation for eah speies s [58℄

dFs

dt
=

∂Fs

∂t
+ ~v · ∂Fs

∂~r
+

qs
ms

(

~E + ~v × ~B
)

· ∂Fs

∂~v
= 0. (2.1)

The one-partile phase spae distribution funtions Fs (~r, ~v) are de�ned on the six-

dimensional phase spae.

Maxwell's equations desribing the eletromagneti �elds

~E and

~B, together with
the soures ρ and

~j obtained from Fs, lose this system of equations.

The appliability of Eq. (2.1) is limited beause it rests on the assumption that pair

orrelations between the partiles an be negleted. Therefore, the Vlasov equation

is valid as long as a typial orrelation or ollisional time sale tC , is muh larger than
the harateristi time sale of the orrelation-free system, t ≪ tC . This situation

an be found in the hot ore region of fusion plasmas sine the ollisional time sale

inreases with the temperature T roughly as tC ∼ T 3/2
. The ollisionless approah

is also valid in astrophysis when the mean free path of the speies is muh larger

than the harateristi spatial sales of the mode of interest. If the orrelation-

free desription fails, the ollisional kineti approah known as Boltzmann equation

would apply.

It is a omputationally expensive task to solve Eq. (2.1). Conventional fusion devies

are haraterised by a strong magneti guiding �eld along a spei� diretion and

relatively weak magneti �elds perpendiular to it. Therefore, the physis beomes

strongly anisotropi and the theoretial models are designed to aount for this

property, aompanied by a simpli�ation of the resulting equations.

In a strongly magnetised plasma eah harged partile performs a gyromotion around

the guiding �eld shown in Figure 2.1 (left). The gyration an be desribed by

~r = ~R + ~ρs

~ρs =
v⊥
Ωs

(cosα ê1 + sinα ê2) .

19



2 Gyrokinetis

(r, v)

ρ

R

p

Figure 2.1: Left: Mirosopi dynamis of gyrating speies (red) around a magneti

�eld line (blue). Right: Averaging over the fast gyromotion to pass to

gyrokinetis. The gyroenter is desribed by its position

~R, the parallel
anonial momentum p‖ along the magneti �eld line and µB (giving ρ).

~R is the gyroenter position, ρs the gyroradius, α the gyrophase and v⊥ the perpen-

diular veloity.

The appliability of the gyrokineti model assumes that the gyrofrequeny Ωs is the

smallest timesale in the system. All other proesses with a typial frequeny ω
evolve on a muh longer timesale.

Thus the �rst step in introduing gyrokinetis onsists of removing the fast frequen-

ies Ωs from the system with an appropriate formalism without loosing essential

information about larger timesales. In a sense, one averages over the fast gyromo-

tion of the kineti equation (2.1) to get the gyrokineti equation [59, 60℄

dfs
dt

=
∂fs
∂t

+ ~̇R · ∇fs + ṗ‖ ·
∂fs
∂p‖

= 0. (2.2)

It desribes the evolution of a �ve-dimensional phase spae distribution fun-

tion fs(~R, p‖, µB) of the gyroenters. The physial partile is replaed by a quasi-

partile that onsists of a harged ring and arries a onserved magneti moment µB

by de�nition, i. e. dµB/dt
.
= 0. The new mirosopi desription of the partiles is

shown in Figure 2.1. In ontrast to the desription of the full gyration of the partiles

(left), the quasi-partile is just guided along the magneti �eld (right). In general

the gyrating partiles experiene also ∇B-, urvature- and ~E × ~B-drifts aused by

the eletromagneti equilibrium bakground �elds. For the sake of simpli�ation

they are not disussed here, but are of ourse inluded in the gyrokineti theory as

well.

Additionally, in the gyrokineti approah one assumes that the variations of the

equilibrium quantities varies on sales L, whih are muh larger than the gyrora-

dius. However, it is still possible that the spatial sales of the perturbation k−1
⊥ an

be of the order of the Larmor radius. This situation is displayed in Figure 2.2, left.

In ase of two speies s = (i, e), typially only for the ions an expliit gyrokineti

desription is neessary due to the large natural mass ratio µ the eletron Larmor

radius ρe an be negleted.

If the essential spatial sales related to magneti reonnetion, i. e. L, k⊥, de and ρi,
are muh larger than the Debye length, the plasma appears quasi-neutral. Charge

separation an be negleted and thus the ondition of quasi-neutrality holds, i. e.
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2.1 Gyrokineti desription

Figure 2.2: Left: The gyrokineti model allows for small sale perturbations that

are of the order of the gyroradius. Right: shemati explanation of

the gyroaveraged density 〈ns〉. At loation ~x (blue point) one wishes

to ompute the density 〈ns〉 (~x) to whih all gyro-partiles (blak rings)

ontribute, whose gyrorings pass through ~x.

equating the number densities of the physial partiles, ne (~x) = ni (~x). This ex-

pression serves as an additional �eld equation, sine the densities are obtained by

integrals of the distribution funtions over the phase spae whih depend on the

�utuating eletromagneti �elds.

In the gyrokineti framework one has to express the number densities ns(~x) of the

physial partiles in terms of the density of gyroenters ns(~R). To get the physial

density one �rst de�nes the gyroaveraged density 〈ns〉 (~x) aording to 1

〈ns〉 (~x) =
∫

B∗
d

~R dp‖ dµB dα δ
(

~R + ~ρs(~R)− ~x
)

δfs

(

~R, p‖, µB

)

. (2.3)

This expression relates the gyroenter position

~R with the variable ~x, where to eval-
uate the gyroaveraged density. In Figure 2.2 (right) the shemati evaluation of

the gyroaveraged density 〈ns〉 at ~x (blue point) is skethed for three quasi-partiles.

The expression (2.3) fores only those quasi-partiles (blak irles) to ontribute

to 〈ns〉 (~x) that have any point on their gyroring in ommon with ~x. In the deriva-

tion of the gyrokineti quasi-neutrality ondition an additional polarisation density

npol,s (~x) whih depends on the eletrostati �eld orrets the gyroaveraged density

to give �nally the physial number density ns (~x) = 〈ns〉 (~x) + npol,s (~x).
The seond �eld equation is provided by parallel Ampère's law whih desribes the

perpendiular magneti �utuations δB⊥. Eq. (2.2) and both quasi-neutrality and

parallel Amperère's law form the standard eletromagneti gyrokineti model [59℄.

It is ustomary to treat only the perpendiular magneti �utuations in a low-

β plasma, de�ned by the ondition β ≪ 1 [61℄. If β is allowed to reah values of

order unity, β = O(1), the parallel magneti �eld �utuations δB‖ beome as impor-

tant as the perpendiular magneti perturbations. Consequently, the perpendiular

Amperère's law must be introdued.

1

The quantity B∗
will be de�ned in Se. (2.2).
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2 Gyrokinetis

2.2 Eletromagneti gyrokineti equations in a slab

The standard gyrokineti equations result from an ordering proedure [60℄ with

respet to the ratios ρi/L, k‖/k⊥ and ω/Ωs muh smaller than unity. Nevertheless,

this ordering allows the perturbation to be omparable to the Larmor radius, k⊥ ρi =
O(1). The gyrokineti equation

dfs
dt

=
∂fs
∂t

+ ~̇R · ∇fs + ṗ‖ ·
∂fs
∂p‖

= 0, (2.4)

desribes the evolution of the distribution funtions of the gyroenters in phase

spae. This equation will be solved by EUTERPE using the method of hara-

teristis. The harateristis of Eq. (2.4) in a slab read in terms of the variable

p‖/ms = v‖ + qsA/ms
1 2

[59℄

~̇Rs =
p‖
ms

~b− qs
ms

~b 〈A〉+ 1

B∗
~b×∇〈φ− p‖

ms
A〉

=
p‖
ms

~b+ ~̇R1,

ṗ‖
ms

= − qs
ms

~b · ∇ 〈φ− p‖
ms

A〉,

µ̇B
.
= 0.

(2.5)

The averaging proedure of the �eld �utuations,

〈A, φ〉(~R) =
1

2π

∫ 2π

0

dα (A, φ) (~x, t)|~x=~R+~ρs(α)
(2.6)

introdues a mean �eld at

~R, where the quasi-partile is a�eted by the fores.

When performing PIC simulations it is advantageous to split the full phase spae

distribution funtion fs using the δf -ansatz [26, 62℄

fs = f0,s

(

~R,
p‖
ms

, µB

)

+ δfs

(

~R,
p‖
ms

, µB, t

)

. (2.7)

The time-independent bakground Maxwellian is assumed to be given analytially,

f0,s =
n0,s (~x)

√

2πvs(x)2
3 e

−

( p‖
ms

−u0,s(x)

)2
+v2⊥

2vs(x)2 . (2.8)

The δf -ansatz redues the partile-indued noise. The bulk veloity u0,s allows for

a parallel equilibrium urrent whih depends only on the spatial slab oordinate x.

1

If not stated otherwise the equations are always normalised to the unit system used in EUTERPE.

The normalisation proedure is explained in Se. (4.1).

2

The Eqs. ontain the quantity B∗ = B +ms/qs
(

p‖/ms

)

~b ·
(

~∇×~b
)

. For the outlines disussed

here it is ustomary to use the approximation B∗ ≈ B [26℄.
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2.2 Eletromagneti gyrokineti equations in a slab

Inserting Eq. (2.7) into Eq. (2.2) gives

dδfs
dt

= −df0,s
dt

= −f0,sSs,

Ss = κs
~̇R1 · ∇x+

qs
msvs(x)2

[

−
(

p‖
ms

− u0,s

)

~b · ∇〈φ− p‖
ms

A〉
]

.
(2.9)

Furthermore, one de�nes

κs = κn,s − κT,s







3

2
−

(

p‖
ms

− u0,s(x)
)2

+ v2⊥

2vs(x)2






− κu0,s ,

κu0,s =

(

p‖
ms

− u0,s(x)
)

vs(x)2
du0,s

dx
,

κT,s = − 1

T0,s

dT0,s

dx
,

κn,s = − 1

n0,s

dn0,s

dx
.

(2.10)

The quasi-neutrality ondition demands for the physial harge densities

∑

s

qs ns (~x) = 0, (2.11)

for drift kineti eletrons, and gyrokineti ions [59, 62℄

ni (~x) = 〈ni〉 (~x) +
Γ0 − 1

ρ2i
φ (~x) . (2.12)

The �rst term on the right hand side of Eq. (2.12) has been de�ned in Eq. (2.3),

while the seond term represents the polarisation density npol,s(~x).
The exat expression for Γ0 in Eq. (2.12) is a ompliated nonloal operator in real

spae and di�ult to treat numerially. It is usually formulated in Fourier spae

where it reads Γ0 (k
2
⊥ρ

2
i ), de�ned in terms of the modi�ed Bessel funtion I0(x) of

the �rst kind aording to Γ0 (x) = e−xI0 (x) [62℄.
The simplest approximation of the polarisation density in the ion response onsists

of using the long wavelength approximation, k⊥ρi ≪ 1. Expanding Γ0 in a Taylor

series in this limit the ion density response beomes Γ0 ≈ 1 + k2
⊥ρ

2
i whih in real

spae reads

ni (~x) = 〈ni〉 (~x) +∇2
⊥φ (~x) . (2.13)

Only in the range of small gyroradii, k⊥ρi < 0.5, the long wavelength approximation

is useful to desribe �nite Larmor radius e�ets orretly [63℄.

A further ommon approximation of the polarisation density is provided by the

23



2 Gyrokinetis

Padé approximation [62℄. The advantage of the Padé approximation is that it gives

reasonable results for arbitrary values of k2
⊥ρ

2
i ompared with the exat gyroaveraged

result and an be alulated easily. The Padé approximation replaes Γ0 in Fourier

spae by Γ0 (k
2
⊥ρ

2
i ) 7→ 1/(1− k2

⊥ρ
2
i ). One an show that the resulting density of the

ions in real spae is given by

ni (~x) = 〈ni〉 (~x) +∇2
⊥φ (~x) +∇ρ2i∇⊥ [〈ni〉 (~x)− ne (~x)] . (2.14)

Therefore, the �eld equation for φ is given by ne (~x) = ni (~x) with either the ion

response aording to Eq. (2.13) or Eq. (2.14).

The Vlasov-Maxwell system is losed by Ampère's law. The physial parallel ur-

rents jph,‖,s are the soures for the parallel vetor potential A aording to

− 1

β
∇2

⊥A (~x) =
∑

s

〈jph,‖,s〉 (~x) . (2.15)

However, the urrent response in the p‖-desription as it is used here, is derived

from the �rst moment of the perturbed distribution funtion with respet to the

momentum anonial p‖/ms. In this formalism Ampère's law reads

− 1

β
∇2

⊥A (~x) +
∑

s

n0,s (~x)
q2s
ms

A (~x) =
∑

s

〈j‖,s〉 (~x) . (2.16)

The so-alled skin terms proportional to the �eld amplitude appear on the left hand

side. Formally, the skin term anels ompletely the adiabati response of the right

hand side of Eq. (2.16) whih would result again in Eq. (2.15) [62℄.

The gyrooperation for the urrent in Eq. (2.16) is de�ned equivalently to Eq. (2.3),

〈j‖,s〉 (~x) =

∫

B∗
d

~R d~v dα δ
(

~R + ~ρs(~R)− ~x
)

δfs
p‖
ms

. (2.17)

In the standard gyrokineti equations shear Alfvén waves are admissible solutions

while ompressional Alfvén waves do not appear, sine the perpendiular Amperère's

law is not taken into aount.

In the desription of tearing modes an usual ordering of the reonnetion relevant

sales is imposed originating from experimental observations. The eletron skin

depth de and the perpendiular sale of the perturbation k−1
⊥ is assumed to be muh

smaller than the gyroradius, k−1
⊥ ≈ de ≪ ρi. The gyroradius, whih is approxi-

mately the Larmor sound radius ρS,e for τ = O(1), is smaller than the variation of

all equilibrium gradients, either magneti �eld or density and temperature variation,

ρi ≈ ρS,e ≪ Leq,x.

The observed growth rate of the tearing mode in experimental devies is typially

muh smaller than the gyrofrequeny of the ions and eletrons, γ ≪ Ωs. Therefore,

the assumptions of the standard gyrokineti equations are ful�lled.
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3 The PIC method

3.1 Implementation of the PIC method

The kineti simulations were performed with the PIC ode EUTEPRE. It solves

the Vlasov-Maxwell system in global and toroidal three-dimensional geometry using

the method of harateristis. The PIC ode shows a good parallel saling with a

large number of proessors. The magneti bakground equilibrium is provided by a

VMEC �le, from whih all relevant magneti equilibrium quantities are derived.

This numerial method ontains prinipally the same omputational yle as every

partile-in-ell method [64℄. EUTERPE uses the δf -approah to redue partile

noise in ontrast to a full-f method. The perturbed part of the distribution fun-

tion is disretised by using numerial partiles, alled markers. The statistis in-

dued by the marker representation improves with inreasing number of markers Np

as 1/
√

Np [63℄.

The temporal integration of the harateristis of the gyrokineti equation and

weight evolution is performed by a Runge-Kutta sheme of fourth order. A re-

ently implemented Fehlberg integrator allows also the use of an adaptive time step

method [70℄. The partile trajetories are pushed in a ylindrial oordinate sys-

tem, ~x =
(

r, z, φ̄
)

.

The harge and the urrent densities as the soures of the �eld equations are pro-

vided by a orresponding Monte-Carlo integration over the phase spae using mark-

ers. The �eld equations are disretised in real spae by a B-spline �nite element

method [68℄ and solved by sparse matrix tools [65℄. The solver works in a straight

�eld line oordinate system,

~ξ =
(

s̄, χ, φ̄
)

[66℄. Both oordinate systems an be

onverted into eah other using the VMEC �le

1

.

To further redue the statistial noise indued by the markers, it is possible to use

a Fourier �lter to extrat a spei� poloidal mode number m and a toroidal mode

number n of the �elds. Furthermore, it is possible to �lter the �eld in a limited ret-

angular domain in Fourier spae (−mmax, . . . , mmax) × (−nmax, . . . , nmax), if mmax

and nmax are the maximum poloidal and toroidal mode numbers.

3.1.1 Disretisation of the distribution funtion

In EUTERPE the perturbed distribution funtion δfs is sampled by Np markers

with the oordinates

~Rn, p‖,n/ms and µB,n in the redued phase spae. Eah marker

arries a weight wn (t) that is traed along the harateristis of the gyrokineti

1

The oordinate transformation between both systems is explained in Se. (4.3)
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3 The PIC method

equation. The perturbed distribution funtion is assumed to have the form [68℄

δfs =

Np
∑

n=1

wn(t)

B∗ · δ
(

~R− ~Rn

)

δ

(

p‖
ms

− p‖,n
ms

)

δ (µB − µB,n) . (3.1)

Around eah marker position ~zn =
(

~Rn, p‖,n/ms, µB,n

)

a small phase spae volume

Ωn,s is loated representing the phase spae volume arried by the marker at this

position. The values of Ωn,s are prede�ned with the only onstraint that the sum

of all small phase spae volumes has to �ll out the phase spae ompletely without

overlap or holes.

The markers are distributed in phase spae using a numerial probability funtion

g (~z) that is onstant along the marker trajetory (dg/dt = 0). It is assumed here

that g an be split into a pure spatial part gR and a part gv that desribes the dis-
tribution in momentum spae, thus g = gR · gv. The pure spatial part gR an be set

onstant over the real volume V , gR = 1/V . A uniform marker loading in momen-

tum spae as it is employed here is de�ned by setting gv dv‖ dµB dα = const. One

an show from the ondition

∫

d~z g = 1 that in this ase g = 1/
(

V · (π κv,s vs)
2 v⊥

)

,

being κv,s the radius of the momentum sphere in terms of vs.
The soure terms of the �eld equations are provided by phase spae integrals of

the perturbed distribution funtion. From the numerial point of view the high-

dimensional phase spae integrals an be arried out e�iently using a Monte-Carlo

integration. This approah replaes the integration by an evaluation of an expeta-

tion value E, using the numerial distribution funtion g (~z). The expetation value

is then approximated by the usual estimator for an arbitrary funtion h (~z)

E [h] =

∫

d

6Z h (~z, t) · δf (~z, t)

=

∫

d

6Z h (~z, t) · δf (~z, t)

g (~z)
· g (~z)

=
1

Np

Np
∑

n=1

h (~zn, t) wn (t) + ǫstat.

(3.2)

The weights are de�ned by w (~zn, t) = δf (~zn, t) /g (~zn)
.
= Ωn δf (~zn, t). The statis-

tial error ǫstat redues with inreasing marker number, ǫstat ∼ 1/
√

Np.

The temporal evolution of the weight follows from inserting Eq. (3.1) into Eq. (2.2)

and integrating over Ωn,s,

dwn,s

dt
= −Ωn,s f0,sSs. (3.3)

The term Ss is given by Eq. (2.9) (Se. 2.2). Aording to Eq. (3.2) the soure terms

of the �eld equations an be omputed by seleting h = 1 or h = p‖/ms for density

or urrent, respetively.
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3.1 Implementation of the PIC method

3.1.2 Disretisation of the �eld equations

The �eld equations for the eletrostati potential φ and the parallel vetor potential

A, Eqs. (2.12, 2.16) are disretised with a �nite element method using the represen-

tation

φ(~ξ) =
∑

l

φl Λl(~ξ), A(~ξ) =
∑

l

Al Λl(~ξ). (3.4)

Λl(~ξ) represents a B-spline �nite element with multi-index l = (i1, i2, i3). It is as-

sumed to fatorise aording to Λ(~ξ)l = Λi1 (s̄) Λi2 (χ) Λi3

(

φ̄
)

. In this thesis eah

B-spline was hosen to be of order two. This orresponds to quadrati splines, whose
spatial derivatives and so the fores on the partiles still depend ontinuously dif-

ferentiable on the oordinates

~ξ.
The quasi-neutrality equation in the long wavelength approximation and Amperère's

law an be projeted into the B-spline basis, Eq. (3.4) [62℄

−
∫

d

~ξ Λk(~ξ)∇2
⊥φ =

∫

d

~ξ Λk(~ξ)
(

〈ni〉(~ξ)− ne

)

(3.5)

∫

d

~ξ Λk(~ξ)

(

∑

s

βs

ρ2s
A−∇2

⊥A

)

=

∫

d

~ξ Λk(~ξ)〈j‖,s〉(~ξ). (3.6)

Using Eq. (3.4) and performing an integration by parts one obtains the set of linear

equations

∑

l

M
(Q)
kl φl = N

(Q)
k ,

∑

l

M
(A)
kl Al = N

(A)
k . (3.7)

The elements of the matries M
(Q)
kl and M

(A)
kl are alulated and stored at the begin-

ning of every simulation. Eqs. (3.7) are solved during every omputational yle by

parallel preonditioned iterative methods using of the tools the PETS library [65℄.

3.1.3 Requirements in eletromagneti simulations

In EUTERPE the gyrokineti equation is disretised within the p‖-formalism orig-

inating from the historial development of PIC methods. Early attempts failed in

disretising the eletromagneti slab equations using the v‖-formalism due to the

partial time derivative of the vetor potential [67℄.

Although the p‖-approah is suessful for the desription of many eletromagneti

instabilities, simulations of e. g. damped modes are more sophistiated due to the

so-alled anellation problem, magni�ed for high-β senarios (�high-β problem�) or,

for instane, MHD modes with medium β-values (β = O(1%)) in the limit k⊥ → 0.
It is aused by the di�erent disretisation of the left hand side of Ampère's law,

Eq. (3.6) and the �urrent� density on the right hand side. The left hand side is dis-

retised by B-splines, whereas the urrent density is represented by partiles. From

the mathematial point of view the skin term perfetly anels the adiabati part

of the urrent. These two di�erent kinds of disretisations do not neessarily lead
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3 The PIC method

to a numerial anellation.

In this thesis an enhaned ontrol variates method has been used for simulations

with EUTERPE to safely perform eletromagneti alulations. This algorithm rests

upon an iterative method whih gradually removes the adiabati part of the urrent

response within eah omputational yle [62, 68℄. The sheme has been proven to

ahieve simulations of Alfvén modes in a slab to very high auray [62, 69℄.

During this work it has been observed that the tearing mode is rather robust with

respet to the anellation of the adiabati urrent response. Simulations of the

tearing mode in a slab an be performed with a su�ient high number of partiles

without using the iterative proedure. For the benhmark of the Alfvén wave the

iteration sheme was applied, but it was not used in general.

3.2 Diagnosti tools
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Figure 3.1: Temporal evolution of the perturbed �eld energy. The slope is propor-

tional to the growth rate γ.

EUTERPE provides a lot of tools to extrat information about the simulations

both in time and spae. The energy of the system over the volume V of the simula-

tion domain is given by the sum of kineti energy Ekin,s and �eld energy Efield,s over

V aording to E(t)/V = 1/V
∑

s [Ekin,s(t) + Epot,s(t)] = const. The orresponding
ontributions are de�ned by

Epot,s/V =
1

2 V

∫

V

d

~ξ
(

qs〈ns〉 φ− 〈js〉A‖
)

,

Ekin,s/V =
1

V

∫

ΩPS

d

6Z
ms

2

(

v2⊥ + v2‖
)

(f0,s + δfs(t)) .
(3.8)
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3.2 Diagnosti tools

In the last term the part related to f0,s desribes the initial kineti energy Ekin,0,s

while the ontribution of δfs desribes the perturbed part of the kineti energy,

ǫkin,e. For the simulations presented in this work the eletrons mainly in�uene the

dynamis of reonnetion, thus the �eld energy of the eletrons ǫpot,e(t) is used to

obtain �rst quantitative statements for instane measuring the growth rate of the

exited modes.

Figure 3.1 shows the evolution of the eletron �eld energy ǫpot,e(t) of a tearing mode.

After the initial transient phase, t . 50, the exponential behaviour dominates. In

this phase the growth rate an be omputed by the resaled temporal derivative of

the �eld energy aording to (dǫpot,e/dt) /ǫpot,e = 2γ.
When investigating nonlinear tearing modes the quality of the simulations is indi-

ated by the onservation of energy. The quantity ∆ǫ is introdued for eletrons and
de�ned by ∆ǫ = | (Ekin,0,e + ǫkin,e + ǫpot,e) /Ekin,0,e − 1|. An order of ∆ǫ = O(1%)
re�ets a reasonable onservation of energy during the simulations.

A further important diagnostis is the spatio-temporal �eld struture that an be

extrated diretly from EUTERPE. From these data important values like, for in-

stane, the island half width an be obtained by evaluating the mode struture.
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3 The PIC method

30



4 Eletromagneti simulations in

a slab

4.1 Normalisation proedures

The equations and relations used in EUTERPE are normalised to a proper unit

system aording to

t = Ωi t̂, x =
x̂

ρS,e
, A =

Â

B0,z ρS,e
, φ =

φ̂

B0,z ρ2S,e Ωi
, (4.1)

where arets denote dimensional quantities. The density n̂s and temperature T̂s is

normalised to the onstant bakground density n0 and the �at temperature pro�le

of the eletrons Te, respetively. If not stated otherwise this will be the standard

normalisation for all relations presented in this work.

In hapter 7.1 a �uid model is ompared with the gyrokineti model implemented

in EUTERPE. This �uid model adopts Alfvén units

t =
t̂

tA
, x =

x̂

Leq,B

, A =
Â

B0,z Leq,B

, φ =
φ̂

B0,z Leq,B vA
. (4.2)

The gyro�uid model desribes the evolution of the gyroenter densities n̂s and

urrent �elds ûs
1

that are normalised aording to

ns =
Leq,B n̂s

d̂i n0

, us =
Leq,B ûs

d̂i vA
. (4.3)

4.2 MHD slab equilibria for reonnetion

simulations

In this thesis two kinds of ideal MHD equilibria are used for simulations whih is

motivated by di�erent equilibria presently used in literature.

For both equilibria a strong guiding �eld in the toroidal diretion ẑ of strength B0,z

1

Although this notation is misleading, it is ustomary in literature to write us for the urrent

�eld [10℄.
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4 Eletromagneti simulations in a slab

is present. The �rst equilibrium (magneti on�guration I) is given by

B0,y (x) = −β

2
C
√
µ π a erf

(

x− Lx

2

a

)

. (4.4)

The error funtion erf(x) varies signi�antly over a distane a = Leq,B. The strength

of the perpendiular magneti �eld is ontrolled by the dimensionless parameter

C > 0. The diretion of guiding and perpendiular magneti �eld is shown in

Figure 4.1. This equilibrium fores the resonant surfae to be at x = Lx/2 in two-

dimensional simulations.

The equilibrium on�guration II is frequently used in �uid simulations [44, 51℄ and

0
Lx

B0,z

B0,y

x

Figure 4.1: Shemati representation of magneti equilibrium I.

given by

B0,y (x) = −2C

a
·
sinh

(

x−Lx
2

a

)

osh

3
(

x−Lx
2

a

) . (4.5)

The stability parameter an be obtained analytially for Lx ≫ a [71℄,

∆′a = 2

[

3 + (kya)
2] ·
[

5− (kya)
2]

(kya)
2
√

4 + (kya)
2

. (4.6)

Thus, the mode beomes stable if kya >
√
5.

The stability parameters ∆′(kya) of the equilibria are summarised in Figure 4.2.

The funtion ∆′
related to setup Eq. (1.9) (Se. (1.4))

1

is plotted for a = 1 and

1

This equilibrium refers to Ref. [13℄ and is denoted as �GR� (Goldston Rutherford)
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Figure 4.2: Comparison of stability parameters ∆′
of magneti on�guration

I (blak), magneti equilibrium II (blue), the analyti expression

Eq. (1.18) for an in�nite extend of the domain in the x-diretion (GR,

red solid) and a �nite extend (GR, red dashed). The stability threshold

of the linear mode is given by the ondition ∆′ = 0. In this Figure the

EUTERPE normalisation is used.

various ky. If the domain extension Lx beomes arbitrary large, Eq. (1.18) an be

applied (red solid line) as was shown in Figure 1.5. For a �nite x-domain Lx = 10
the funtion slightly di�ers from this formula if ky is small enough (red dotted

line). The mode beomes stable if ky > 0.64, while for very small wave vetors

ky < 0.2 the large-∆′
regime is overed. The stability parameter for on�guration

I was obtained numerially by solving Eq. (1.17) (blak dashed line). Here, the

domain Lx = 10 is �xed and additionally ky = 2πm/10 = 2π/10 representing

the m = 1 mode. Making the magneti equilibrium sale a small enough, the

stability parameter reahes arbitrary large values as well (high-∆′
regime). The

stability parameter of on�guration II is also depited in Figure 4.2 (blue solid line)

using Eq. (4.6) and setting a = 1. Although the shape of ∆′(kya) is similar to the

previous ases an o�set is present.

In general the perpendiular equilibrium magneti �eld B0,y is onneted with a

parallel equilibrium urrent of both speies, j0,s(x) = qs n0,s u0,s(x). Sine eletrons
are muh faster than ions it is assumed here that only the eletrons with bulk

pro�le u0,e(x) ause the perpendiular magneti �eld while for ions u0,i(x) = 0. For

a given magneti �eld the urrent

~j0,e and the orresponding bulk veloity u0,e(x) an
be alulated via Ampère's law as implemented in EUTERPE. Thus, the Maxwellian

for the eletrons is of the form

f0,e(x, p‖, v⊥) =
n0,e (x)√
2πµ

3 e
−

( p‖
me

−u0,e(x)

)2
+v2⊥

2µ . (4.7)

33



4 Eletromagneti simulations in a slab

This is an admissible solution of the Vlasov equation to zero-th order (df0,e/dt = 0).
A natural mass ratio µ = 1836 is hosen in this thesis if not stated otherwise. Due

to the ideal MHD pressure balane a onsistent Maxwellian must lead to a spatially

varying density n0,s (x) [20℄. In a low-β equilibrium the density pro�le an be

approximated very well by onstants n0,s [13℄.

4.3 Implementation of the slab geometry

The ode EUTERPE is designed to solve for the gyrokineti equation in three-

dimensional toroidal geometries. To aount for a one-dimensional slab it has to be

modi�ed. As the ode is three-dimensional in its struture the slab implementation

must �t into this framework and is thus somewhat ounterintuitive.

EUTERPE uses two intrinsi oordinate systems for omputations. The trajeto-

ries of the partiles are pushed in ylinder oordinates ~x =
(

r, z, φ̄
)

. The seond

oordinate system is a straight �eld line system and used for solving the �eld equa-

tions,

~ξ =
(

s̄, χ, φ̄
)

= {ξi} (i = 1, 2, 3). It an be dedued diretly from the

three-dimensional magneti equilibrium. These both oordinate systems are har-

aterised by the toroidal oordinate φ̄, while the in-plane oordinates are (r, z) re-
spetively (s̄, χ).
In analyti alulations, however, usually the oordinate system (x, y, ẑ) is used as

depited in Figure 4.1. Here, the toroidal oordinate is ẑ and the in-plane oordi-

nates are x, y. Thus, the three oordinate systems are linked qualitatively by the

mappings

(

r, z, φ̄
)

↔
(

s̄, χ, φ̄
)

↔ (x, y, ẑ). In this hapter the mapping of ~x to

~ξ
is disussed.

In general three-dimensional geometry the equilibrium is assumed to have nested

�ux surfaes. These two-dimensional surfaes themselves are urved manifolds and

their interior geometry is diretly onneted to the three-dimensional magneti equi-

librium. However, a slab geometry is a one-dimensional equilibrium, whose �ux

surfaes are planes.

The task of implementing a slab geometry in EUTERPE is twofold: on the one

hand it is neessary to hoose proper geometri quantities, i. e. a suitable metri for

a slab whih desribes the oe�ients of the �eld equations. On the other hand the

slab domain is subjet to boundary onditions of the �utuating �elds whih have

to be spei�ed at s̄ = 0 and s̄ = 1, in ontrast to the toroidal ase where the �elds

have only to be spei�ed at s̄ = 1.
In the following the geometri onstrution of the slab is outlined. To illustrate

the ation of the geometri quantities on the mathematial struture of the �eld

equations, the quasi-neutrality equation is used. Without loss of generality the

quasi-neutrality is written in the long wavelength approximation

ne = 〈ni〉+∆φ = 〈ni〉+
3
∑

i,j=1

1√
g

∂

∂ξi

(√
g gij

∂

∂ξj
φ

)

.
(4.8)
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An analogue to Eq. (4.8) an be formulated for Ampère's law in urvilinear o-

ordinates. In this form the magneti topology is �xed by hoosing values for the

metri oe�ients gij, de�ned in terms of the loal gradients gij = ∇ξi · ∇ξj, and
its determinant g. On this stage the only onstraint with respet to the magneti

oordinates used in EUTERPE is that s̄ ∈ [0, 1] , χ ∈ [0, 2π] and φ̄ ∈ [0, 2π]. The
inhomogeneous oordinate is by de�nition s̄.
The onrete extensions of the slab and the relations between partile- and solver-

oordinates will be desribed by the following spei�ations of the simulation domain

whih is shown in Figure 4.3. The spei�ation of the geometry as explained above

must be only managed in the (s̄, χ) plane, sine EUTERPE has already a so-alled

ylinder mode. It represents a straight, non-toroidal, geometry periodi in the φ̄-
diretion.

As skethed in Figure 4.3 the magneti axis is loated at (r, z) = (r0, 0) (blue

z

r

∆z

-∆z

z=0

∆zeq

-∆zeq

r0-∆req r0 r0+∆req

-s=const -s=1-s=0

r1 r2

Figure 4.3: The Figure shows the dimensions of the slab used for all simulations with

EUTERPE. The blue point represents the loation of the magneti axis.

The onnetion between the partile oordinate system r, z, (φ̄ = const.)
and the solver oordinates s̄, χ is explained in the text.

point). The larger of both boxes represents the oordinate bakground whih ranges

in the interval r1, . . . , r2 horizontally and −∆ z, . . . ,∆z vertially.

The smaller box is the equilibrium box and enloses the whole plasma. Its extension

is spei�ed by [r0 −∆req, . . . , r0 +∆req] × [−∆zeq, . . . ,∆zeq]. The parameters are

hosen to be ∆req = Lx/2 and ∆zeq = Ly/2 here.

The radial oordinate s̄ is proportional to r, inluding additionally the ondition s̄ ∈
[0, 1]. As depited in Figure 4.3 the s̄ = 0 surfae oinides with r = r0 − Lx/2,
while s̄ = 1 is set at r = r0 + Lx/2.
The χ-values range from 0, . . . , 2π, when z ranges in the interval −Ly/2, . . . , Ly/2.
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4 Eletromagneti simulations in a slab

Finally, the transformation of the oordinate systems an be summarised as

r (s̄) = s̄ Lx + r0 −
Lx

2
, z(χ) =

χ

2π
Ly −

Ly

2
. (4.9)

The orresponding gradients are ∇s̄ = êr/Lx, ∇χ = êz 2π/Ly and ∇φ̄ = êφ̄/r1. The
parameter r1 an be hosen freely, but was �xed here as r1 = r0 − Lx. The only

non-zero omponents of the metri are

gs̄s̄ =
1

L2
x

, gχχ =
(2π)2

L2
y

, gφ̄φ̄ =
1

r21
. (4.10)

Due to the hoie of the metri gij the slab gets a physial length 2π · r1 in the

φ̄-diretion and Ly in the χ-diretion.

The seond step of implementing the slab in EUTERPE is to speify the boundary

onditions of the �elds with respet to the solver oordinates. The perturbed �elds

respet Dirihlet boundary onditions at s̄ = 0, 1 and are treated periodially in

the φ̄- and χ-diretion.
The partile trajetories are also subjet to boundary onditions with respet to s̄, χ.
At the boundaries of the simulation domain the partiles are re�eted at s̄ = 0, 1
and periodially injeted at χ = 0, 2π. The points on the gyroring obey periodi

boundary onditions in both diretions. It turns out that this spei� hoie of

the partile boundary onditions in the s̄-diretion has no essential impat on the

simulations results sine the dynamis of the tearing mode is mainly onentrated

around the resonant layer.

4.4 Linear benhmark in slab geometry

At the very beginning of the simulations it has to be proven that the slab modi�a-

tion works orretly. One possibility is to measure the frequeny ω̂ of shear Alfvén

waves. In this benhmark the magneti equilibrium has only a toroidal guiding �eld

omponent,

~B = (0, 0, 1) whih is subjet to perpendiular magneti perturbations

haraterised by the wave vetor

~k⊥ = (kx, ky). The mode number (m, n) = (10, 1)
was extrated during the simulations. The equilibrium domain has an extension

of Lx = Ly = 150. In this benhmark Np = 107 eletron markers were used, aom-

panied by one iteration yle of the enhaned ontrol variate method per time step.

In this test the eletrons are the only kineti speies and ions are �xed serving as a

neutralising bakground. Thus, the weights of the ions are set to zero.

Only Ampère's law is taken into aount to simplify the physial setup. The quasi-

neutrality ondition is swithed o� by setting the B-spline oe�ients of the ele-
trostati potential φ to zero.

From a generalised dispersion relation of a sheared slab the dispersion of Alfvén
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4.4 Linear benhmark in slab geometry

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.01  0.02  0.03  0.04

∧ ω

β

EUTERPE
EV Solver

Figure 4.4: The frequeny of the shear Alfvén wave over β. The benhmark is su-

essful, thus the slab geometry has been implemented orretly.

modes an be derived as

1

k2
⊥d

2
e + 1 = 2Z3 (ζe) . (4.11)

Here, ζe = ω/
(√

2µk‖
)

is the omplex argument of the plasma dispersion funtion

of third order, Z3. The n-th order plasma dispersion funtion Zn (ζe) is de�ned

by [62℄

Zn (ζ) =
1√
π

∫ ∞

−∞
dt

tn e−t2

t− ζ
. (4.12)

The omplex algebrai equation (4.11) was solved for ω (β) numerially with a root

�nder.

In Figure 4.4 the frequeny depending on β is shown. The length sale of the

perturbation in x-diretion is Lx/25. The frequeny obtained with EUTERPE and

the results of the eigenvalue (EV) solver agree to high auray. Therefore, the

benhmark is suessful and the slab geometry has been implemented orretly.

1

The most general dispersion relation of a sheared slab with onstant equilibrium gradients will

be derived in Se. 5.1.
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5 Linear simulations of the tearing

mode

5.1 Linear dispersion relation

In this hapter the dispersion relation of linear tearing modes is disussed. The most

general linear eigenvalue problem of the gyrokineti equation in a slab is derived by

means of Eqs. (2.5�2.10) without any restrition of the sales involved.

Both kineti ions and eletrons ontribute to the soure terms of the �eld equa-

tions. The plasma is assumed to be inhomogeneous in general by employing a loal

approah of temperature and density gradients in ontrast to the global urrent pro-

�le, i. e. the gradients have onstant values n′
0,s and T ′

0,s respeting the x-diretion.
The linear mode is assumed to be two-dimensional, thus setting ∂z = 0. This re-

strition does not narrow the essential physis, sine otherwise only the resonant

surfae is shifted in spae. However, three-dimensional nonlinear tearing an indeed

di�er substantially from two-dimensional tearing [2, 72℄.

Using the δf -ansatz, the linearised Eq. (2.10) for the perturbed part of the distri-

bution funtion reads

~̇R1
s

∂f0,s

∂ ~R
+ ṗ1‖

∂f0,s
∂p‖

= −∂δfs
∂t

− ~̇R0
s

∂δfs

∂ ~R
− ṗ0‖

∂δfs
∂p‖

.

The unperturbed and perturbed ontributions of the partiles trajetories are given

by Eqs. (2.5) (Se. 2.2).

Applying the usual Fourier ansatz for the spatio-temporal struture, ∂t 7→ −i ω,
∂y 7→ i ky, one obtains

δfs = f0,s

(

φ− p‖
ms

A
)

k‖(x)
(

ω
k‖(x)

− p‖
ms

)

[

ky κs +
qs
τs

k‖(x)

(

p‖
ms

− u0,s(x)

)]

. (5.1)

Two-dimensional reonnetion leads to a parallel wave vetor k‖(x) = ky B0,y(x).
The generalised gradient term κs has been de�ned in Eq. (2.10) (Se. 2.2).The

x-dependeny of the problem is kept, sine it is neessary to resolve the spatial

struture of the layer.

The �eld equations lose the Vlasov-Maxwell system. For vanishing ion to eletron

temperature ratio τ ≪ 1, the approximation 〈ni〉 ≈ ni is employed and analogously

39



5 Linear simulations of the tearing mode

for the urrent 〈j‖,i〉 1

. This is an important modi�ation for all subsequent benh-

marks arried out, sine otherwise the exat gyroaveraging operator leads to an

eigenvalue problem for a relatively ompliated set of integro-di�erential equations.

The e�ort to solve this problem is quite beyond the sope of this work.

In the subsequent benhmarks the long wavelength approximation is used. With

these assumptions the quasi-neutrality equation reads

δni +∆φ = δne
∫

2π v⊥ dv⊥ d(p‖/mi) δfi +∆φ =

∫

2π v⊥ dv⊥ d(p‖/me) δfe.
(5.2)

The density responses δns ontain terms δns,φ related to the eletrostati potential,

and terms δns,A related to the vetor potential resulting from the orresponding

terms related to φ, A in Eq. (5.1).

The �urrent� in Ampère's law is given by the �rst moment of δfs with respet to

the momentum oordinate p‖/ms
2

− 1

β
∆A+

∑

s

µs q
2
s A =

∑

s

〈j‖,s〉

=
∑

s

qs

∫

2π v⊥ dv⊥ d(p‖/ms) (p‖/ms) δfs

=
∑

s

δjs.

(5.3)

The ontribution of eah speies to the urrent ontains parts δjs,A related to A, and
terms δjs,φ related to φ. The omplete set of di�erential equations, Eqs. (5.2, 5.3),

an be ast into the �nal eigenvalue problem

d

2φ

dx2
= k2

yφ−
∑

s

qs (δns,φ φ+ δns,AA) ,

d

2A

dx2
=

(

β
∑

s

µsq
2
s + k2

y

)

A−
∑

s

β (δjs,φφ+ δjs,AA) .

(5.4)

1

By experiene with EUTERPE the approximation 〈ni〉 ≈ ni is valid to a high degree for the

benhmarks of the tearing mode onsidered here. The simulation results pratially do not hange

when varying τ = O(10−3), . . . ,O(1).
2

Note that normalised quantities are used so qe = −1, qi = 1 and vi =
√
τ , ve =

√
µ.
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5.1 Linear dispersion relation

The oe�ients are obtained by inserting Eq. (5.1) into Eqs. (5.2, 5.3)

δns,φ = − 1

k‖

(

kyK
0
s +

qs
τs

k‖ 〈V 1
s 〉
)

, (5.5)

δns,A =
u0,s

k‖

(

kyK
0
s +

qs
τs
k‖〈V 1

s 〉
)

+
1

k‖

(

kyK
1
s +

qs
τs

k‖〈V 2
s 〉
)

, (5.6)

δjs,φ = − qs
k‖

(

ky K
1
s +

qs
τs
k‖〈V 2

s 〉
)

− qsu0,s

k‖

(

ky K
0
s +

qs
τs

k‖〈V 1
s 〉
)

, (5.7)

δjs,A =
qsu

2
0,s

k‖

(

ky K
0
s +

qs
τs
k‖〈V 1

s 〉
)

+
2qsu0,s

k‖

(

ky K
1
s +

qs
τs
k‖〈V 2

s 〉
)

(5.8)

+
qs
k‖

(

kyK
2
s +

qs
τs
k‖〈V 3

s 〉
)

.

The funtions Km
s (x, ω) with m integer ontain all gradient terms aording to

Km
s (x, ω) = κn,s〈V m

s 〉 − 1

2
κT,s〈V m

s 〉+ κT,s〈V m+2
s 〉 − du0,s

dx

〈V m+1
s 〉
v2s

. (5.9)

The moments 〈V n
s 〉 are de�ned in terms of Zn (ζs) with ζs =

(

ω
k‖

− u0,s

)

/
(√

2vs
)

,

〈V n
s 〉 (x, ω) =

(√
2vs

)n−1 1√
π

∫ ∞

−∞
dt

tn e−t2

t−
[

1√
2vs

(

ω
k‖(x)

− u0,s(x)
)]

=
(√

2vs

)n−1

Zn (ζs) .

(5.10)

It is important to note that k‖(x) and u0,s(x) depend on x. These funtions also

appear within the plasma dispersion funtion, so the solution of this kineti eigen-

value problem is quite ambitious.

It is important to take are of the orret use of Zn(ζs) in the omplex plane when

rossing the layer from x > 0 to x < 0, where k‖ rosses zero. Sine the solution of

the dispersion relation Eq. (5.4) should always give an instability, it must hold γ > 0
everywhere. Let k‖(x) > 0 if x > 0, and vie versa. If k‖ > 0, then ℑ (ζs) > 0 and

one an use the plasma dispersion funtion Zn(ζs) de�ned in Eq. (5.10). If one

rosses the layer, the sign of k‖ swithes beause the diretion of the equilibrium

magneti �eld lines swithes as well. Then ℑ (ζs) < 0, although γ > 0 is still de-

manded. The appliation of Eq. (5.10) desribes now a stable mode. However, the

domain x > 0 has no speial features ompared with x < 0. This an be understand

by inspeting the mode struture of A, whih is known to be symmetri with respet

to x and so the physis is the same in both domains. Therefore, one has to maintain

the ondition of an unstable mode and one must replae Zn with the omplemen-

tary plasma dispersion funtion Z̄n, de�ned by Z̄n (ζs) = −Zn (−ζs). This funtion
is analyti with respet to ω as well, but it inorporates the property to desribe

instabilities when ℑ (ζs) < 0. This gives the orret desription of the tearing mode
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5 Linear simulations of the tearing mode

when k‖ < 0.
The omplete linear dispersion relation, Eqs. (5.4), has to be solved for ω (ky), us-
ing the oe�ients de�ned by Eqs. (5.5�5.8). The eigenvalue problem de�ned by

Eqs. (5.4) is the most general expression for an eigenvalue problem in a slab with

onstant density and temperature pro�les, sine neither a speial urrent pro�le is

�xed nor a sale ordering is implied. For instane, it is ommon in analytial work

on slab tearing modes to employ a > de whih mathes experimental reonnetion

setups. From the mathematial point of view this is a restrition to the appliabil-

ity of the resulting dispersion relation. The dispersion relation derived here an be

applied to every physial situation.

The solution of the eigenvalue problem Eqs. (5.4) is referred to as full tearing mode

or just tearing mode in this thesis. Note that this ase inludes both �elds A, φ and

both kineti speies.

The full tearing mode model an be simpli�ed by negleting the ion response as well

as the �utuations of the eletrostati �eld. The resulting solution of the dispersion

relation is referred to as eletron tearing mode. This model is motivated by the

observation that eletrons play always the dominant role in the dynamis due to the

large natural mass ratio µ. The eigenvalue problem of the eletron tearing mode

thus redues to

d

2A

dx2
=
(

βµ+ k2
y

)

A + δje,AA

=
(

βµ+ k2
y

)

A− βA
qe
k‖

[

u2
0,e

(

kyK
0
e + qek‖〈V 1

e 〉
)

+ 2u0,e

(

kyK
1
e + qek‖〈V 2

e 〉
)

+ kyK
2
e + qek‖〈V 3

e 〉
]

.

(5.11)

This model also permits reonnetion and serves as a minimal eletromagneti

model

1

. The eigenvalue problem Eq. (5.11) is still di�ult to solve. Moreover, no

reonnetion-typial sale ordering nor a spei� urrent pro�le is imposed. Thus,

a simple analytial derivation of the growth rate of the eletron tearing mode will

be given following Ref. [20℄.

The ideal MHD domain was desribed by Eq. (1.16). For the sake of simpliity it

is assumed that gradients of temperature and density vanish. Close to the resonant

layer x ≈ Lx/2, the variation of the urrent an be negleted setting du0,e/dx = 0
and so Km

e = 0, too. It is a ommon approximation to treat the limit u0,e ≪ ve and

1

The dispersion relation Eq. (5.11) simpli�es further when the shifted Maxwellian is being removed

using u0,e = 0 and the gradients are set to zero. The singular layer vanishes and it follows

Km
e = 0. Sine the equations do not depend on x anymore, a harmoni spatial exponential eikxx

is an eigenfuntion. Inluding the substitution k‖ 7→ kz one gets

−k2x =
(

βµ+ k2y
)

− β〈V 3
e 〉,

−k2⊥ = βµ (1− 2Z3,e) ,

whih is the eletron Alfvén wave, Eq. (4.11) (Se. 4.1).
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5.2 Benhmark of the tearing mode without gradients

so all terms in Eq. (5.11) proportional to u0,e are small, resulting in

d

2A

dx2
=
(

βµ+ k2
y

)

A− β A 〈V 3
e 〉. (5.12)

At x ≈ Lx/2 the spatial struture in the x-diretion varies muh stronger than in

the y-diretion (∂x ≫ ky), therefore,

d

2A

dx2
≈ (βµ− 2βµZ3,e)A = ζ2eZ0,eA. (5.13)

The moment 〈V 3
e 〉 has been expressed in terms of Z3(ζe) with the argument ζe =

ω/
(√

2vek‖
)

. The relation Z3,e = 1/2 + ζ2eZ0,e redues the order of the plasma

dispersion funtion [62℄.

The inner layer sale δin related to the perturbed urrent is de�ned by the ondition

|ζe| ≈ 1, or equivalently k‖ (δin) ve ≈ γ. This estimation of the width of the eletron

urrent hannel is often used in kineti alulations [18℄, sine the plasma dispersion

funtion has a peaked pro�le whih is extended up to a sale δin.
Eq. (5.13) an be manipulated similar to the proedure desribed in Se. 1.4 giving

the growth rate [18, 20℄

γ = ∆′ kyved
2
e

2
√
πls

. (5.14)

This is the simplest kineti analytial dispersion relation for slab tearing modes valid

in the limit ∆′de ≪ 1. It reprodues the same saling with ky and de as the result
of the �uid model in Se. 1.4.2.

An extended alulation of the growth rate within a hybrid approah inluding φ an

be found in Ref. [46℄ whih also uses a detailed mathed asymptoti expansion for

both �elds. The linear equations in this referene an be mapped to the eigenvalue

problem derived here.

5.2 Benhmark of the tearing mode without

gradients

The full tearing mode as well as the eletron tearing mode are simulated with EU-

TERPE. The results are benhmarked solving the assoiated eigenvalue problems

Eq. (5.4, 5.11) by means of a shooting method. The shooting method relies on a

reformulation of the eigenvalue problem into a Riati di�erential equation. The

algorithm originates from Ref. [73℄.

The algorithm will be explained shortly by inspeting a general set of omplex

oupled �rst order di�erential equations de�ned on the domain [0, Lx] [74℄. The
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5 Linear simulations of the tearing mode

vetors d~u/dx and similarly d~v/dx may ful�l the equations

d~u

dx
= A(x, ω) ~u+B(x, ω)~v,

d~v

dx
= C(x, ω) ~u+D(x, ω)~v.

(5.15)

The matries A, . . . , D may speify the problem with the unknown eigenvalue ω
whereas boundary onditions for ~u, ~v at x = 0 and x = Lx are set. One introdues

the unknown Riati matrix R(x, ω) by the de�nition ~u = R~v. Inserting this ansatz
into Eq. (5.15) the nonlinear Riati equation beomes

dR

dx
= −RCR− RD + AR +B. (5.16)

For the solution of Eq. (5.16) the boundary onditions R(0, ω) = R(Lx, ω) =
0 are employed. The shooting ode integrates R(x, ω) aording to Eq. (5.16)

from the left starting at point x = 0 and from the right starting at point x =
Lx to a ertain inner point xf ∈ (0, Lx). The orresponding solutions are de-

noted Rl(xf , ω) and Rr(xf , ω). It an be shown that the ontinuity of the solutions

~u, ~v and d~u/dx, d~v/dx at x = xf is guaranteed if the neessary and su�ient on-

dition det [Rl(xf , ω)− Rr(xf , ω)] = 0 is ful�lled. Thus, for a �xed mathing point

xf the searh for the eigenvalue ω is reformulated into �nding the omplex root ω
of the omplex determinant depending on the matries Rr(xf , ω), Rl(xf , ω). The

eigenfuntions are obtained in a separate step by integrating d~v/dx = (CR +D)~v
and ~u = R~v bakwards from xf with the already obtained R(x, ω).
The algorithm also inludes an adaptive step size method for the spatial integration

and gives high preision results even when strong spatial variations are present.

Eqs. (5.4, 5.11) were implemented into the shooting ode. For the eigenvalue prob-

lem of the full tearing mode, Eq. 5.15 redues to a set of four �rst-order di�erential

equations with u1 = φ, u2 = A, v1 = dφ/dx, and v2 = dA/dx. It is an unique

advantage to solve the exat eigenvalue problem ontaining all the physis within.

Numerially exat benhmarks of the full tearing mode are very rarely found in lit-

erature [25℄ in ontrast to the eletron tearing mode [20, 26℄. Prinipally, it is quite

possible to extend this low-β desription inluding the parallel magneti perturba-

tions δB‖, solving a set of three omplex di�erential equations

1

.

The plasma is assumed here to be homogeneous employing a onstant temperature

and density. Magneti �eld on�guration I was hosen whih is motivated by a diret

omparison of the dispersion relation of Ref. [26℄. The shear length of the magneti

equilibrium is given by ls = 1/
(

Cβ
√
µ
)

≈ 23.3 using β = 10−3
. The onstant C

is always set to unity if not stated otherwise. The size of the simulation box is

1

This task has never been solved with a shooting ode. Although simulations results are available

in this ase [38℄, it is ommon to use muh less exat dispersion relations obtained by analyti

approahes, often in asymptoti limits.

Despite the fat that exat asymptoti limits required by analyti derivations an not be ahieved

by numerial simulations, simulations results often still deviate from the analyti dispersion rela-

tion up to 50% [29℄. This might enlight the power of the Riati method presented here.
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5.2 Benhmark of the tearing mode without gradients
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Figure 5.1: Spatial eigenmode struture of A and φ both for EUTERPE and the

shooting method (a = 0.9). The maximum amplitude of both �elds is

normalised to unity. EUTERPE is able to perform linear reonnetion

simulations to high auray.

Lx ×Ly = 10× 10. In EUTERPE the long wave length approximation of the quasi-

neutrality ondition was used to math the required assumptions of the eigenvalue

problem. The old ion limit was enfored by setting τ = 10−3
. For the simulations

here the resolution of the domain aounts for ns̄ = 256 and nχ = 16 points. An

amount of Np = 107 markers for eah speies was used with a time step ∆t = 0.05.
The lear numerial veri�ation of the mode needs about 64 CPUhwhih is rela-

tively heap. The �lter in EUTERPE was adjusted to pass only the m = 1 mode.

In ase of the eletron tearing mode, the weights of the ions have been set to zero

suppressing the ion response. When simulating the eletron tearing mode the ele-

trostati potential was swithed o� as skethed in Se. 4.4.

For numerial reasons it is neessary to use a su�iently high resolution of all rel-

evant sales. The eletron urrent layer of width δe ≈ γlsky/ve ≈ 0.17, with ky =
2π/10 ≈ 0.62, has been resolved with at least four points. The reonnetion pro-

ess is mainly indued by inertia e�ets with the relevant ollisionless eletron skin

depth de = 1/
√
βµ ≈ 0.7 whih is somewhat smaller than the ion sound radius

ρS,e = 1. This orresponds to a spatial resolution of the skin depth with 17 points.

The ollisionless ion skin depth di = 1/
√
β ≈ 31.6 is muh larger than the simulation

box size and plays no role. The ion urrent hannel of width δi ≈ γls/ky ≈ 7.3 is

also not of importane due to the large mass ratio. In the old ion limit the Larmor

radius beomes muh smaller than any other sale in the system, ρi ≈ 0.03 ≪ δe.
At �rst a �xed equilibrium sale a = 0.9 is hosen to benhmark a single eigen-

value and the orresponding eigenfuntions in the full tearing mode ase. From

EUTERPE simulations a growth rate γ = 0.37 is obtained, while the result of the

shooting method is γ = 0.3694. A omparison between the mode strutures alu-
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5 Linear simulations of the tearing mode

lated with EUTERPE and the shooting ode is shown in Figure 5.1. The vetor

potential A and the eletrostati potential φ alulated with EUTERPE �t very well

with the eigenmodes obtained with the shooting ode. The mode struture of φ in

the viinity of the resonant layer is somewhat wider than for A and typially varies

on sales ρS,e [46℄, re�eted by the estimate de < ρS,e.
The benhmark was extended to a broad range of values of a measuring the growth
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Figure 5.2: Benhmark of the growth rate over kya for �xed ky = 2π/10 and both

tearing mode ases. EUTERPE is able to simulate reonnetion to very

high preision.

rate. Starting in the range of marginal stability with a ≈ 1.4 (kya ≈ 0.9), the equi-
librium urrent width was dereased approahing a ≈ 0.08 (kya ≈ 0.05). Although
the variation of a, espeially if a ≪ de, allows formally tearing mode solutions, this

kind of sale variation is rather unusual, as will be disussed below. For small val-

ues a ≈ 0.08, tearing modes with poloidal mode number m = 2, 3, . . . exist being
more unstable than the m = 1 mode, but are �ltered out. The dispersion rela-

tion γ(kya) obtained with EUTERPE ompared with the results of the shooting

method are shown in Figure 5.2. The red urve and points refer to the growth

rate of the redued (eletron) tearing mode model, whereas the blue values repre-

sent the dispersion relation of the full tearing mode. The mode beomes stable at

a ≈ 1.4 (kya ≈ 1.1). Reduing the equilibrium urrent width a maximum growth

rate γ = 0.52 was found at a = 0.42 (kya ≈ 0.25) for the tearing mode ase whih is

somewhat larger than for the eletron tearing mode (γ ≈ 0.47). In the ase of small

values of a ≈ 0.08 the modes require a very high spatial resolution, but are benh-

marked to high preision. Thus, the adaptive step size integration of the shooting

ode is able to fae this ambitious task and overs the simulation results perfetly.

The depited growth rates of both models (with and without φ) di�er only slightly

over the whole range of a. The omparison makes evident that the eletrostati

potential gives a small orretion ompared to the eletron tearing ase. The ap-

proximation beomes better for a > 1.1 (kya > 0.7). For the parameter hosen

here (de < ρS,e) it has been shown analytially that the eletrostati response an
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Figure 5.3: Comparison between the analytial result of Drake with the result of the

shooting method (eletron tearing mode ase). The blue urves math

the physial ordering de ≪ a muh better then the red urves (de > a).

be negleted in the regime ∆′de ≪ 1 [18℄. In the medium range 0.1 < a < 1.3 the

eletrostati potential destabilises the eletron tearing mode more dominantly.

To make a loser ontat to literature the analyti dispersion relation of the ele-

tron tearing mode Eq. (5.14), the result of Drake [18℄ and the numerially exat

dispersion relation are ompared.

In ontrast to the strit derivation of Eq. (5.14), Drake obtained a similar dispersion

relation by using heuristi saling arguments allowing the estimate of the perturbed

urrent width and struture of the vetor potential. These both results di�er by a

prefator 1/
√
π whih an be summarised to

γ = ∆′ kyved
2
e

2ls

(

1√
π

)l

, (5.17)

setting l = 0 (Drake) and l = 1 (Eq. 5.14, [20℄). The onstant prefators are less

interesting, rather the orret dependene of γ on the essential values ky,∆
′
and ls

matters. The ase l = 0 is ompared with the dispersion relation of the eletron

tearing mode obtained with the shooting ode.

Mainly two setups of parameters are of interest, either a variation of a with a on-

stant wave vetor or vie versa. The resulting dispersion relations are depited in

Figure 5.3. The growth rate depending on a with �xed ky = 2π/10 was disussed in

the previous benhmark. Drake's result is only valid in the small-∆′
range whih is

ahieved when kya & 0.7 and the onstant-Ψ approximation beomes valid. The red

urves show the ontrast of Eq. (5.17) to the shooting method. When a is varied as

in the previous benhmark one reahes values ky a ≈ 0.4, onsequently a . de ∼ 0.7.
Due to this unusual reversion of reonnetion relevant sales, Drake's result an not
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5 Linear simulations of the tearing mode

over this parameter range. The analytial dispersion relation Eq. (5.17) even does

not math the qualitative behaviour of the urve obtained by the shooting method

if kya . 0.7.
The ondition de ≪ a ful�ls better the assumptions of the derivation of Eq. (5.17).

This result is shown in Figure 5.3 indiated by the blue urves. Here de ≈ 0.7 . a =
1.3 is ommonly used and ky is varied. The typial x-variation of A is in the order

of de (∇2
⊥A ≈ A/d2e) at the resonant layer and is muh larger than the variation

in y-diretion. As in the derivation of Eq. (5.14) adopted, ky ≪ ∂x is well satis�ed

for ky a ≈ 1. Thus, the qualitative shape of the both the dispersion relation obtained
with the shooting method and Drake's result is the same.

5.3 Benhmark of the tearing mode with gradients

The exat MHD equilibrium ondition in a slab requires the magneti pressure pB to

be balaned by kineti pressure aording to p(x)+pB(x) = const. Inspeting a sim-

ple equation of state of the plasma, p(x) = n(x) T (x), the density and temperature

pro�les n(x) and T (x) must satisfy the ideal MHD pressure balane self-onsistently.

The derived pressure gradient ∇⊥p arises due to variations of temperature and den-

sity aording to ∇⊥p = ∇⊥n · T + n · ∇⊥T . Instead of alulating the pressure

gradient derived from the exat funtions n, T , the variations of the bakground are

set to onstants aording to ∇⊥n ≈ n0/Ln and ∇⊥T ≈ T0/LT independent from

eah other [18℄. This approah simpli�es analyti work, beause the globally varying

pressure pro�le is essentially replaed by the sales of pressure variation.

The tearing mode is strongly loalised at the resonant surfae and therefore it is

expeted that in this region equilibrium gradients will play the major role. This

non-onsistent, loal approah in the global slab domain is adopted for all subse-

quent simulations inluding diamagneti e�ets.

The aim of the investigations here is to observe and benhmark the eletron tearing

mode in the presene of diamagneti e�ets. Similar to the parameter variation in

Se. 5.2, the length sale a was hanged and the linear growth rate and real fre-

queny was measured. The extensions of the simulation box are Lx = Ly = 10
while employing magneti on�guration I and β = 10−3

. A Fourier �lter selets the

m = 1 mode, therefore, the wave vetor ky = 2π/10 of the perturbation is �xed. The
temperature ratio τ = 1 has been used while inluding the exat gyroaveraged ion

response 〈ni〉 and long wavelength approximation is enfored during the simulations.

A spatial resolution of ns̄ = 256 points in radial diretion, a time step ∆t = 0.1 and
up to Np = 4 · 107 eletron markers su�e for the numerial onvergene of the

growth rates and give relatively short simulation times. A temperature gradient

of κT,e = 1 for the eletrons has been hosen without a density variation (κn,e = 0).
The temperature gradient is rather large ompared with a realisti physial setup,

sine it hanges signi�antly over one ion sound radius ρS,e.
The dispersion relation γ (ky a) obtained with EUTERPE is depited in Figure 5.4

(red points). The magneti equilibrium sale ranges from a = 0.5, . . . , 1.3 (kya =
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Figure 5.4: Growth rate of the drift tearing mode depending on a (κT,e = 1,
ky = 2π/10) obtained with EUTERPE (points) and the shooting method

(solid lines). The dispersion relation for the ase κT,e = 0 is solved with

the shooting method (blue line). The benhmark of the growth rates

sueeded.

0.3, . . . , 0.81). These results were ompared with the results of the shooting ode

(red solid line). The blue urve shows the ase when no eletron temperature gradi-

ent is present indiating the stabilising in�uene of diamagneti e�ets on the mode.

Although a rather high temperature gradient is apparent the mode gets stabilised

only slightly.

The real frequeny ω̂ depending on a obtained with both EUTERPE and the shoot-

ing method are shown in Figure 5.5. The simulations results are measured via time

series of a �eld value at a �xed point in the simulation domain. Using several periods

the mean value of the periods was used to alulate the frequeny. The simulations

in this range of parameter require a high omputational e�ort, sine the frequenies

do not di�er very muh when hanging a = 0.3, . . . , 1.3 (kya = 0.18, . . . , 0.81). The
omparison visualises small di�erenes between the results of EUTERPE and the

shooting method. The error of measurement results from the standard deviation of

the repeated simulations for �xed a and is depited, too. It turned out that the

size of the momentum sphere matters. Even though κv,e = 8, . . . , 9.5 exeeds the

thermal speed widely, it seems that the high thermal speed a�ets the frequenies

muh more than the growth rates due to the relatively large value C = 1. The

auray of the simulation results ould be improved by inreasing the number of

markers, but the results shown in Figure 5.5 might su�e to prove that EUTERPE

an desribe even drift tearing modes to high auray.

The kineti theory of Drake [18℄ predits that the frequeny of the drift tearing

mode is haraterised roughly by the diamagneti frequeny ω∗
T only, ω̂ ≈ ω∗

T/2 =
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Figure 5.5: Frequeny of the drift tearing mode depending on a (κT,e = 1, ky =
2π/10) obtained with EUTERPE (red points) and the shooting method

(red line). At �rst this high preision benhmark visualises small di�er-

enes between the results of both methods.

kyκT,e/2 ≈ 0.3. This estimation is valid in the range ∆′de ≪ 1 whih orresponds

here to 0.8 . ky a. The theory shows that the drift frequeny is a onstant in this

range, onsistent with the drift frequenies obtained with EUTERPE. For kya < 0.8
(∆′de ≈ 1) it has been proven with EUTERPE that ω̂ is also nearly onstant for

various a. Although the predition is roughly twie the frequeny with kya = 0.81,
ω∗
T/2 ≈ 2 · 0.16 and thus does not math the values of the simulation, it gives the

orret order of magnitude. The on�rmation of this analytial result requires fur-

ther extended parameter studies in the orresponding low-∆′
regime.

5.4 Critial behaviour aused by diamagneti

e�ets

As indiated in the previous setion, the eletron tearing mode gets stabilised in the

presene of a temperature gradient aross the layer. In the �rst part of this hapter

the full tearing mode is studied by applying �nite temperature and density gradients.

It has been shown analytially that the stabilisation of the full tearing mode must

our for a ertain value Ln [49℄. This analytial result has never been veri�ed in

an broad parameter spae. Reent simulations obtained with gyro�uid models [44℄

were restrited to a few results in the high-∆′
regime missing an extended numerial

proof of the analytial predition [49℄.

For the present sope the medium- to high-∆′
regime is of interest employing mag-
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Figure 5.6: Growth rates depending on η. The ritial behaviour of the growth rate

has been measured for di�erent C (full tearing mode ase, a = 0.5, ky =
2π/10). Results obtained with EUTERPE (points) are overed well by

the analyti estimate Eq. (5.18) (lines).

neti on�guration I setting β = 10−3
and a = 0.5. Eah speies is exposed to the

same temperature and density gradients, κT,e = κT,i = κT and κn,e = κn,i = κn.

Furthermore, it is de�ned ηs = η = Ln/LT. For a good performane of the sim-

ulations Np = 4 · 106, . . . , 12 · 106 markers are su�ient, while resolving the sim-

ulation domain needs ns̄ = 128 radial points. The quasi-neutrality equation in

the long wavelength approximation is employed with a �xed temperature ratio

τ = 1, whereas the exat density response of the gyroenters was taken into a-

ount. The �rst simulations are arried out measuring the growth rates by varying

the density gradient κn with a �xed temperature gradient κT = −0.005. Addition-
ally, the simulations over various strengths of the perpendiular magneti �eld,

C = 0.2, 0.02, 0.002. In Figure 5.6 (points) the growth rates obtained with EU-

TERPE are depited.

Fixing any value of the shear strength C, and large values of η (η ≫ 1), a derease of
η does not in�uene the growth rate very muh. Inspeting γ(η) related to C = 0.2
(red points), the growth rate remains almost onstant with respet to η when re-

duing η ≈ 103 by �ve orders of magnitude to η ≈ 10−1
. In the viinity of η ≈ 10−2

,

referred here to as the ritial threshold ηcr, the growth rate drops suddenly. Below

this threshold the tearing mode gets stabilised ompletely.

A omplete stabilisation in ases of muh smaller shear strengths C = 0.02, 0.002
has been veri�ed as well, shown in Figure 5.6 (blue and green points). In a low

shear equilibrium, C ≪ 1, or equivalently u0,e/ve ≪ 1, the ritial η reahes values

lose to unity. In this ase the gradient sales vary on sales muh larger than ρS,e
getting more relevant for fusion appliations.

For the set of parameters onsidered here analytial dispersion relations have been
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Figure 5.7: Critial η for various β for the eletron tearing mode ase (a = 0.5, κT =
−0.05). For realisti β-values O(1%) the threshold ηcr = O(10−4) is very
small, thus the tearing mode is pratially always unstable for realisti

equilibrium gradients.

obtained in the presene of diamagneti e�ets [44, 49℄. They rely on a �uid desrip-

tion of the eletrons ombined with a gyrokineti ion response inluding full FLR

e�ets. In ontrast to the quasi-neutrality equation used in EUTERPE the analyti

predition uses a Padé-response of the ions. By experiene and due to the results

of Se. 7.2 this di�erene matters beause the growth rates obtained with both �eld

equations an deviate from eah other in the range O(10%). To apply the predition
properly respeting the dependeny on τ its limit of vanishing temperature ratio of

the ions is employed. Thus, the analytial predition �tting for the parameters here

reads (see Table 1.3, Se. 1.4.2)

1

γ2 = γ2
0 −

(

kyκT,e

2η

)2

, γ0 =
ky

ls
√
β

(

2

π
√
µβ

)1/3

. (5.18)

The ase η → ∞ orresponds to a vanishing density gradient (γ = γ0). The

omparison of the simulated growth rates with Eq. (5.18) is shown in Figure 5.6

(solid lines). Both results agree well over the whole range of η and for the values

C = 0.2, 0.02. In the ase C = 2 · 10−3
the predition deviates up to 50% from

the simulation results in the range η = O(102). Note that the validity of Eq. (5.18)
reahes its limit for the parameters hosen here. Though this equation is valid for

de < ρS,e it requires ρS,e < a, whih mathes here not ompletely (a = O(ρS,e)).
Small deviations of the growth rates our when omparing the analytial result

and the results obtained with EUTERPE, espeially lose to the ritial η. This

an be traed bak to the high omputational e�orts whih are neessary to resolve

1

Note that the predition here is subjet to EUTERPE units.
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5.4 Critial behaviour aused by diamagneti e�ets

small γ. If the growth rate beomes very small, the inauray beomes larger in

ontrast to the values γ ≈ γ0. The omputations beome hallenging for very low

shear strengths C = 2 · 10−3
and require relatively long simulation times even in a

slab. For the runs with a shear strength of C = 2 · 10−3
, the omputations needed

approximately 3 · 104 CPUh for eah point.

The threshold ηcr is of speial interest, beause it marks the value at whih reon-

netion is prevented. Subsequently, this threshold is exposed to investigations using

the eletron tearing mode model. Maintaining the previous simulation onditions,

but for κT = −0.05, the dependeny of ηcr on the plasma-β is examined within the

eletron tearing mode ase. In Figure 5.7 the relation ηcr(β) is depited for a single

value C = 1. The ritial threshold ηcr dereases strongly with higher β. For realisti
β-values of the order O(1%) the tearing mode is always unstable for the parameters

under onsideration here. Indeed, if a small temperature gradient κT,e = O(10−2)
is present, only a relatively large density gradient κn,e = O(101) or higher prevents
the reonnetion proess. The absolute error bars of ηcr inrease with higher values.

However, the ratio of error to measured value remains the same for all points.

A saling of the ritial ηcr(β) an be derived from Ref. [44, 49℄, evaluating Eq. (5.18)

at the ritial threshold γ = 0,

0 = γ2
0 −

(

kyκT

2ηcr

)2

=
ky

ls
√
β

(

2

π
√
βµ

)1/3

−
(

kyκT

2ηcr

)2
(5.19)

From Eq. (5.19) the proportionality ηcr ∼ 1/β1/3
(ls ∼ 1/β) follows and supports

qualitatively the dereasing of ηcr with higher β-values obtained with EUTERPE

(Figure 5.7). Note that the inrease of β aording to Figure 5.7 hanges the ratio

de/ρS,e = 1/
√
µβ in the range 1.0, . . . , 0.3. Therefore, the saling derived from the

dispersion relation Eq. (5.18) applies orretly only in the higher β-regime (β =
O(1%)) when de < ρS,e and requires more simulation results for this ase. The

saling ηcr(C), indiretly shown in Figure 5.6, an be estimated using Eq. (5.19).

Realling that ls ∼ 1/C, the saling ηcr ∼ 1/C an be dedued whih overs well

the derease of ηcr with larger shear strength.

The kineti approah of Ref. [54℄ predits the stabilisation of the tearing mode in

the presene of diamagneti e�ets as well. The gyrokineti equation used in this

work an be mapped to the gyrokineti model here as well as the similar magneti

equilibrium. The predition states ηcr ∼ 1/β1/2
, if ∆′a is of order unity overing

qualitatively the �ndings of the simulations (Figure 5.7).

The kineti approah proposed by Drake [18℄ in the presene of equilibrium gradients

primarily does not predit a ritial threshold. A reason might be the medium-∆′

value that allows the mode to get stabilised for su�ient large gradients.
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6 Nonlinear simulations of tearing

modes

Nonlinear simulations of tearing modes are a hallenging numerial task in every

geometry, thus even in a slab. From the numerial point of view nonlinear sim-

ulations are important for at least two reasons: the numerial simulation of the

nonlinear saturation over large periods will �nally demonstrate that EUTERPE an

handle the subjet of reonnetion. Seondly, a good numerial performane of the

single-mode simulations serves as a good starting point for investigations regarding

mode-oupling, three-dimensional reonnetion and further nonlinear eletromag-

neti modes in toroidal geometries.

The saturation of the ollisionless tearing mode in the range ∆′de < 1 is known as

Rutherford-like or �sub-exponential� behaviour. This type of nonlinear stabilisation

is aompanied by the observation that the atual growth rate γ(t) does not exeed
the linear growth rate γk for all times (γ(t) ≤ γk) [34℄.
The nonlinear aeleration of the �eld amplitude is known as �super-exponential�

reonnetion

1

, mainly investigated in high-∆′
senarios

2

. This type of nonlin-

ear destabilisation is haraterised by an instantaneous growth rate γ(t) > γk when
entering the nonlinear phase. The simulations presented here are the �rst results ob-

tained with PIC methods at all. The numerial e�ort desribing this non-saturation

is dramatially higher ompared to the Rutherford-like type, sine an extremely

small urrent hannel evolves and ollapses during a very short time interval. Both

types of nonlinear behaviour are still far apart from a omprehensive physial un-

derstanding whih motivates further simulations.

1

The terms super-exponential, quasi-explosive, impulsive and faster-than-exponential arise often

in this ontext desribing the same strong inrease of the reonneted �ux in time. Further

similar notations our in similarity solutions of extended MHD models [13℄. Although not om-

parable diretly to the reonnetion proess here, the amplitudes A also grow �explosive� when

approahing a ertain time t1: an algebrai term beomes signi�ant in the early nonlinear regime,

A ∼ exp(γkt)/(t1 − t).
2

The roughly given threshold ∆′de ≈ 1 whih divides both nonlinear phases is obtained by

experiene with numerial simulations. It has never been proven stritly that it is a general

su�ient ondition for observing the super-exponential phase.
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Figure 6.1: Left: The nonlinear evolution of the �eld energy while saturation (a =
0.6). A lear saturation phase is reprodued. Right: Isoontours of the

full vetor potential A0(r) + A (r, z, t = 113) showing the struture of

the magneti island lose to the singular layer x = Lx/2 = 2.5.

6.1 Simulations of nonlinear saturated

reonnetion

For the subsequent outline magneti on�guration I has been hosen and a do-

main size Lx × Ly = 2.5 × 2π. The domain extension is resolved with up to

ns̄ × nχ = 768 × 16 in the x, y-diretion. To ompare with the simulation re-

sults of Ref. [26℄, the plasma-β is hosen to be β = 10−3
, not at least beause the

width of the perturbed urrent hannel inreases when reduing β and an be easier

resolved numerially. The eletron tearing mode model is used, but additionally the

ions ontribute to the dynamis, although they are not expeted to play a domi-

nant role. About 5, . . . , 20 · 106 markers for eah speies have been used to obtain a

good omputational performane. The nonlinear mode-oupling between the m = 1
mode, higher harmonis (m = 2, . . . , mmax) and the (m, n) = (0, 0) mode might

essentially in�uene the simulations. For the parameters under investigation, vari-

ous �lter sizes mmax = 2, . . . , 7 with n = 0 have been employed to hek e�ets of

mode-oupling inluding possibly damped tearing modes with ∆′ < 0. In all ases

it has been veri�ed that the m = 1 mode dominates ompletely. This is important,

beause later on the results will be ompared with analytial estimations relying on

a single-mode model.

A typial nonlinear saturation of the tearing mode is depited in Figure 6.1 (left)

showing ǫpot,e(t) for a = 0.6. After the initial linear phase t . 20, the amplitude of

the mode is large enough to alter the partile orbits and allowing the eletrons to

follow the island struture. In the learly saturated period (t > 40) a typial osil-

lation frequeny of the eletron �eld energy is observed aompanied by a periodi

osillation of the �eld amplitude at eah spatial loation. It has been proven learly

with EUTERPE that the saturation persists for all times t = O(102 ·γ−1
k ). The nu-

merial proof of the saturation and standing osillations is important to validate the

ode. Moreover, EUTERPE provides a redible energy onservation of ∆ǫ(t) . 5%
for all nonlinear simulations disussed in this hapter.
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6.1 Simulations of nonlinear saturated reonnetion

The spatial struture of the magneti island at a �xed time t = 113 is shown in

Figure 6.1 (right). The full parallel vetor potential onsisting of the equilibrium

bakground A0 and the perturbation A has been plotted in the viinity of the layer

x ≈ Lx/2. The struture of the magneti island an be learly resolved.

The estimation of the island half width w(t) in the onstant-Ψ regime was disussed

in Eq. (1.25) (Se. 1.4.3). If the onstant-Ψ approximation an not be applied, the

shape and width of the separatrix an be obtained only numerially. Setting the

X-point at (z = 2π/ky, r = 0) without onstraints of generality, the separatrix is

the set of points (r, z) at eah time t whih obeys the ondition

A

(

z =
2π

ky
, r = 0, t

)

= A0 (r = w(t)) + A

(

z =
π

ky
, r = w(t), t

)

.
(6.1)

The island half width an be obtained by starting at the X-point and following the

isoontour of the full vetor potential. The maximum elongation with respet to r
is reahed at (z = π/ky, r = w(t)).
Eq. (6.1) presumes that the X-point is �xed at eah time step whih is not ne-

essarily the ase in the simulations. In the beginning of the simulations the mode

an drift in the poloidal diretion beause of omputational reasons, although no

equilibrium gradients are applied. After the mode has prospered well in the linear

phase the mode struture remains �xed during simulations. To solve Eq. (6.1) for

w(t) a MATLAB routine has been written using the �eld struture A(r, t) extrated
from EUTERPE. Sine the vetor potential is given on a disrete spatial grid and no

additional interpolation routine is used, the solution of Eq. (6.1) will result in a step-

like funtion w(t). Additionally, the island half width obtained with the onstant-Ψ
approximation is also omputed measuring the vetor potential at the O-point.
To ompare the simulated island half width with analytial preditions the time

dependeny of w(t) is removed by de�ning the temporal mean value w = 〈w(t)〉T
over a large time period T & γ−1

k .

The temporal evolution of w(t) with the simulation parameter a = 0.5 is depited

in Figure 6.2. The solution of Eq. (6.1) in this ase, w ≈ 0.6, the saled �eld energy

ǫpot,e(t) and a simulation result of Wan (w = 0.59) [26℄ is ompared. Wan estimated

w ≈ 0.6 using the model of Drake [19℄ whih will be disussed later. All values of

w agree very well with eah other, but are not very meaningful to proof Drake's

predition. Only an extended parameter study ould reveal the reliability of this

model.

Filling this gap of nonlinear gyrokineti simulation studies in low-β senarios, the

island half width w depending on a has been investigated. The equilibrium ur-

rent width was varied a = 0.1, . . . , 0.75. This variation of a is rather unusual in

the sense of the disussion in Se. 5.2, beause is leads to a possible on�guration

with 0.1 ≈ a < de ≈ 0.7.
In Figure 6.3 the island half width w depending on the linear growth rate γ (red

points) is depited. Here w was obtained by solving Eq. (6.1). The onstant-Ψ
approximation was heked as well by solving Eq. (1.25) for w(γ). The results from
both methods agree with eah other better than 5%. The analytial �nding by
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Figure 6.2: The temporal evolution w(t) and ǫpot,e(t) for a = 0.5, Lx = 2.5. The is-
land half width w = 〈w(t)〉T obtained with EUTERPE is ompared with

the predition of Drake [19℄ and the one simulation result of Wan [26℄.

Drake gives a relation w ∼ ∆′
. When ∆′de < 1, the dispersion relation Eq. (5.17)

an be applied stating essentially ∆′ ∼ γ. Therefore, it has been hosen to represent

the saturated island half width w depending on the growth rate whih emphasises

the dependene of w on the most important linear quantity γ. The linear dispersion
relation obtained with the shooting method γ(kya) is shown in Figure 6.4 to relate

w with the exat solution of the linear eigenvalue problem. In the small-∆′
range,

whih orresponds to kya & 0.75 in Figure 6.4, the island half widths w . 0.1 are

small ompared to the ollisionless skin depth. The term small (or skin-size) islands

refers to the relation w ≪ de [75℄ and is overed well, sine w ≪ de ≈ 0.7 ≈ a = 0.75.
Dereasing the equilibrium width to approximately a ≈ 0.5 (kya ≈ 0.5), the growth
rate beomes larger (γ ≈ 0.4). In this range the island half width inreases linearly

with the growth rate up to values of w ≈ 0.5.
The single simulation result of Wan (w = 0.59) is shown as well (blue point) and

�ts well with the result of EUTERPE. At this point the magneti island beomes as

large as the equilibrium urrent width a. The islands are alled large-sized if they ex-
tend as far as the �marosopi� region a. This term does not �t very well here, sine

additionally it is a ≪ de. In most of reonnetion simulations de ≪ a holds, and if

w ≈ a the term ould be applied adequately. When a ≈ 0.3 (kya ≈ 0.3) the growth
rate reahes the maximum value γ = 0.57 and the island width as well, w ≈ 0.7
(Figure 6.3). The island widths beomes smaller when dereasing a further and a

�url� appears. This range is not supposed to be a reasonable reonnetion senario

ompared with the assumptions of Drake's theory and the predition must fail. If a
reahes the lowest value a < 0.1 (kya < 0.1), the island half width exeeds learly

this equilibrium sale, 0.1 ≈ a < w ≈ 0.4. Here also �nite size e�ets play a role,

sine w ≈ 0.7 ≈ Lx/2 = 1.25.

The simulation results of w are disussed in terms of Drake's predition: in this
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Figure 6.3: Comparison between the saturated island w(γ) obtained with EU-

TERPE, analytial theory (Drake) and Wan [26℄ (The red solid line

onnets simulations results). In the low-∆′
regime (γ . 0.4) Drake's

predition is proved.

model eletrons dominate the reonnetion proess while the eletrostati potential

has been negleted. Under these onditions the saturated island half width is given

by

w = ∆′ d
2
e

2G
, (6.2)

with an estimated onstant G = 0.41.
As pointed out in Se. 5.2, there are two similar kineti dispersion relations derived in

the small-∆′
regime, Eqs. (5.17). Using simple saling arguments one an estimate

a heuristi dispersion relation, whih deviates from the exat derived dispersion

relation by prefators. The Eqs. (5.17) an be ombined with Eq. (6.2) obtaining

w = γ

√
π
l
ls

kyveG
. (6.3)

Inspeting Figure 6.3 (dashed lines), the ase l = 0 orresponds to the heuristi

derivation (heur) and l = 1 to the analyti results (exat).

Drake's theory is stritly valid only in the small-∆′
regime whih refers here to values

kya & 0.75 (w . 0.1, Figure 6.3). Dereasing the equilibrium urrent width to val-

ues a ≈ 0.5, the island width inreases linearly, as predited by Drake. This marks

the threshold validity of the theory. A further derease of the equilibrium sale a
gives the estimation 0.1 ≈ a < w ≈ 0.4, in whih the island width is omparable

to the simulation size Lx. The island width saturates with respet to γ and drops
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Figure 6.4: Linear dispersion relation γ(kya) depending on a (ky = 1) obtained with

EUTERPE (points) and the shooting method (solid line). The relation

γ(a) is used to support the disussion of Figure 6.3.

when reduing a.
Wan ompared his result w = 0.59 (Figure 6.2) with the analyti predition, Eq. (6.3)
(l = 0), but properly speaking, Drake's model is not suited for this parameter on-

�guration. Despite that, Eq. (6.3) on�nes the simulation results for both values

l = 0, 1 and gives a reasonable predition if the growth rates are su�iently small.

The physial mehanism of the saturation in the nonlinear regime is still under dis-

ussion. Drake suggests that eletrons interat with the mode via resonane e�ets

in phase spae. This an not be the �nal answer, beause it will be shown later that

�uid simulations reprodue similar island half widths ompared with the gyrokineti

model in the low-∆′
regime.

6.2 Simulations of nonlinear super-exponential

reonnetion

In the following the essential di�erene of both nonlinear phases as well as the phe-

nomenology will be disussed. A parameter study is performed whih onnets both

phases. Additionally, there are a ouple of results in literature whih are badly om-

pared to eah other. Therefore, in the last setion an extended parameter study is

presented relating several simulation results presented in literature.

The full tearing model is used throughout this hapter exluding FLR e�ets by

using the drift kineti limit (τ ≪ 1). In the quasi-neutrality equation the gyroaver-

aging operator ating on the ions is inluded while the polarisation density is sub-
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Figure 6.5: Eletron �eld energy over time. Phenomenologial di�erene between

a mode with super-exponential growth (kA
y = 1.44) and a saturated

mode (kA
y = 1.46). In the ase kA

y = 1.44 the short saturation period at

t ≈ 175 is not physial, but plotted for ompleteness.

jet to the long wavelength approximation. The results obtained with EUTERPE

are ompared with simulation results from (redued) gyro�uid models subjet to

magneti equilibrium II [21, 22℄. For simplifying a diret omparison to those in-

vestigations and parameter values the quantities are expressed in Alfvén units if

neessary. The supersript 'A' refers to Alfvén normalisation while quantities in the

EUTERPE normalisation stay unmarked.

6.2.1 Phenomenology and �rst numerial simulations

The phenomenology of nonlinear destabilisation is outlined employing magneti on-

�guration II. A Fourier �lter extrated the m = 1 mode after proving numerially

that this does not lead to an essential restrition regarding mode-oupling. In most

of the simulations disussed in this hapter the partiles are pushed using a newly

implemented Fehlberg time integrator. It will be outlined later that this method is

a helpful numerial tool for the simulations presented here.

A summary of the seleted parameters are listed in Table 6.1 for both unit systems.

The resolution of the spatial sales is very important and numerially demanding.

In the �rst simulations presented here, a resolution of ns̄ × nχ = 18470× 40 points

has been used with one bin in the φ̄-diretion to simulate a real two-dimensional

mode. Otherwise at least eight points in the toroidal diretion must be taken into

aount inreasing the extension of the solver matrix unneessarily. The subsequent

super-exponential reonnetion studies needed 512, . . . , 4096 ores per run.

In Figure 6.5 simulation results are depited showing the eletron �eld energy over
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6 Nonlinear simulations of tearing modes

EUTERPE units Alfvén units

domain size in x Lx = 20.94 LA
x = 2π

magneti equilibrium sale a = 3.33 aA = 1

ion sound Larmor radius ρS,e = 1 ρAS,e = 0.3

eletron skin depth de = 0.33 dAe = 0.1

wave vetor varied ky kA
y = ky/ρ

A
S,e

Table 6.1: Seleted parameter values for the simulations represented in both unit

systems. The values are equivalent to a onstant plasma-β of 4.91 · 10−3
.

time for two values of the wave vetor kA
y = 1.44, 1.46. In the ase kA

y = 1.46 the

nonlinear phase starts at t & 100. The �eld energy (red urve) as well as the mode

amplitude saturated showing the osillating behaviour. The energy onservation

proved learly, sine ∆ǫ . 1% during simulation.

For the wave number kA
y = 1.44 the mode also tries to enter the saturated state

shortly until t ≈ 125 (blak urve). However, a subsequent saturation phase an

not be observed by inspeting the �eld energy whih inreases rapidly as well as the

mode amplitude. At t ≈ 175 the �eld energy seems to saturate but this an not be

learly proven numerially as will be disussed below. It is this super-exponential

behaviour γ(t) ≫ γk whih haraterises the phenomenon and the non-saturation.

The alulations break down indiated by, for instane, the violation of energy on-

servation for t & 170 (∆ǫ = O(1)).
The high spatial resolution in x-diretion is neessary, sine for example in the ase

of a spatial grid with fewer points (ns̄ × nχ = 6 · 103 × 40) the eletron �eld energy

would not reah the �numerially saturated� urve shown in Figure 6.5 (blak). The

explosive phase would appear earlier motivating an inrease of the grid resolution

and number of markers. Also, if the onservation of energy an no longer be im-

proved, the ��nal� set of numerial parameters is reahed.

It is important to note that these simulations are always linked with a loss of

partiles in the momentum spae. After the initial aelerate phase the eletrons

exeed the κv-sphere independent of its size. The simulation breaks down for t & 170
beause ∆ǫ gets large and the eletrons get lost. The loss of partiles through the

momentum sphere per time step, the atual growth rate and energy diagnosti are

depited in Figure 6.6. The partile loss was always observed in super-exponential

simulations and was investigated for several runs. The radius of the momentum

spae κv,s was tuned using values κv = 4, . . . , 17 with a orresponding inrease of

the numbers of markers, Np = 20 · 106, . . . , 120 · 106. These manipulations do not

a�et the simulations at all hinting a physial drive whih aelerates the partiles to

super thermal energies. For kA
y ≪ 1.44 (∆′de ≫ 1) the summarised loss of eletrons

beomes of the order O(Np) whih is a serious problem for the simulations as well

as the omparison with analyti models.
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Figure 6.6: Diagnostis to haraterise the nonlinear stage for kA
y = 1.44. Atual

growth rate γ(t), numbers of eletrons exeeding the momentum sphere

and violation of the energy onservation ∆ǫ(t).

It has been observed in previous related works that a thin urrent hannel of width

O(de) evolves. During the evolution its width shrinks rapidly whih is thought

thought to be responsible for the extreme numerial e�ort of the simulations [23℄.

Figure 6.7 shows the spatial pro�le of the physial urrent jph,‖,e(s̄) = j0,‖(s̄) +
δjph,‖,e(s̄) at various time steps for the ase kA

y = 1.44, referring to the run disussed

in Figure 6.5. The physial urrent jph,‖,e(s̄) was obtained by applying the transfor-

mation p‖/ms − qs/msA 7→ v‖ during marker binning. The urrent was binned via

marker summation on disrete s̄-values repeated for various poloidal positions χ and

is representative for all χ-values. The noise on the urrent was smoothed for better

visualisation: at a spei� disrete lattie point s̄i of the urrent pro�le obtained

by EUTERPE the mean value of the urrent inluding ten points, [s̄i−5 . . . s̄i+4] has
been alulated. Inspeting Figure 6.7, up to the time t = 132.1 the evolving ur-

rent struture δjph,‖,e(s̄) (blue) is similar to the initial pro�le (green). Within the

next short period ∆tcoll ≈ 20 (ollapse time), the urrent pro�le at the resonant

layer s̄ = 0.5 peaks very fast while the width of the urrent hannel further de-

reases. The extend of the urrent hannel is roughly given by the eletron skin depth

or ∆s̄ ≈ 0.02. Although the largest growth rate γ(t) is not reahed (Figure 6.5),

the urrent starts already to ollapse. For t = 158.8 a reasonable urrent pro�le an
be resolved just in time, although the diagnosti quantities depited in Figure 6.6

do not hint a rash of the simulations for the following period t = 160, . . . , 167.
Previous simulations of �uid models have found similar urrent spikes as depited in

Figure 6.7 of both the unphysial [23℄ and physial urrent density [36℄. Although

the adaptive Fehlberg integrator redued the time step ∆t = 0.05, . . . , 1.5 · 10−3

a saturation after the ollapse of the urrent pro�le ould not be ahieved. The
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Figure 6.7: Temporal evolution of the physial urrent pro�le jph,‖,e(s̄) (blue)

for kA
y = 1.44. The perturbed urrent δjph,‖,e is multiplied by a fa-

tor of �ve. The initial urrent pro�le is shown for omparison (green).

tremendously short ollapse period makes it hard to obtain reasonable simulation

results.

For omparison the evolution of the smoothed urrent pro�le related to kA
y = 1.46 is

shown in Figure 6.8. In the saturated mode ase the evolving urrent pro�le (blue)

does not show peaked urrent pro�les from t = 101.3, . . . , 154.7 ompared with the

initial pro�le (green).

In the analytial work of Refs. [23, 76℄ a di�erential equation was derived desrib-

ing the temporal evolution of the island width normalised to the eletron skin

depth ŵ = w/de. In this referene a minimal �uid model was investigated in the old

eletron limit (ρAS,e = 0, orresponding to 1/a → 0 if T0,e = const.), thereby using a

heuristi ansatz for a �xed �ow pattern related to φ. The authors of Ref. [36℄ ex-

tended the analysis to the ase of hot eletrons (ρAS,e > 0) whih is more relevant for

the ases onsidered here. Similar to [23℄, the evolution of ŵ = w/
[

(

dAe
)1/3 (

ρAS,e
)2/3
]

is governed by the di�erential equation d

2ŵ/dt̂2 = ŵ/4 + cJ/4 · ŵ4
. The time is nor-

malised to the growth rate, t̂ = kA
y

[

(

dAe
)1/3 (

ρAS,e
)2/3
]

t. The onstant cJ = O(1)

must be hosen after the simulations to math the time series ŵ(t), thus an extended
disussion of the solution ŵ(t) in omparison to simulations is fairly hard.

Reently, a generalisation of the MHD energy priniple with a nonlinear displae-

ment map was applied to the two-�uid model of Ref. [23℄ desribing the evolution

of the mode amplitude in a more rigorous fashion [35℄. However, this predition
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Figure 6.8: Temporal evolution of the urrent pro�le jph,‖,e(s̄) (blue) (k
A
y = 1.46).

The perturbed urrent δjph,‖,e is multiplied by a fator of �ve. The

initial urrent pro�le is shown for omparison (green) The urrent does

not evolve a peaked pro�le sine the mode saturates.

is also only valid in the old eletron limit and in the asymptoti limit kA
y → 0,

thus kA
y ≪ 1.44. It is important to note that this analyti approah predits also a

substantial di�erent island evolution ompared to Ref. [23℄, namely d2ŵ/d2t ∼ ŵ2
.

Presently, in none of the time-series of for instane the eletron �eld energy or am-

plitude evolution a typial physial time sale T ≪ ∆tcoll ould be identi�ed in the

super-exponential phase similar to, for instane, the osillation period in the satu-

rated phase whih would allow a muh more ompat haraterisation of the proess.

Moreover, with the gyrokineti simulations performed so far a physial saturation

after the explosive growth has never been ahieved in ontrast to results of reent

works whih employ gyro�uid models [10, 34℄, although the same parameters have

been adopted. Obviously, there is a substantial di�erene between the nonlinear

gyrokineti and nonlinear gyro�uid alulations whih is an important point when

omparing both models.

6.2.2 The transition between both nonlinear phases

As indiated in the previous setion, a small variation of the wave vetor kA
y an

hange the harater of the nonlinear phase ompletely. There ertainly is a ritial

wave number kA
y,cr between kA

y = 1.44 < . . . < kA
y = 1.46, where a transition ours.

This transition is very interesting, sine a small hange of the wave vetor hanges
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6 Nonlinear simulations of tearing modes

the nonlinear harater of the system ompletely. This has never been disussed

before in the literature where only the extreme limits of ∆′
have been examined.

For the subsequent investigations both kinds of magneti equilibria are used. The

high omputational e�ort is evident by using up to 2048 ores for eah run for

roughly 5 ·105CPUh . A detailed listing of the setup senarios is shown in Table 6.2.

magneti equilibrium EUTERPE units Alfvén units

Lx = 20.94 LA
x = 2π

a = 3.33 aA = 1

II ρS,e = 1 ρAS,e = 0.3

de = 0.33 dAe = 0.1

wave vetor varied

Lx = 157.08 LA
x = 4π

a varied aA = 1

I ρS,e = 1 ρAS,e varied

de = 1 dAe = 1

ky = 0.04 kA
y = 0.5

Table 6.2: Di�erent setups for the simulations in both unit systems. The two di�er-

ent values of de result in two di�erent values for the plasma-β: 4.91 · 10−3

(II) and 5.47 · 10−4
(I).

It turned out that the osillation frequeny ωB of the �eld energy in the deeply

nonlinear phase is supposed to be a good quantity to indiate the transition as long

as the physial saturation an be proven learly. The frequeny ωB was obtained

by alulating the mean value over several periods np of the �eld energy, ωB =
2 π/[np (Tf − Ti)], Ti, Tf being the initial and �nal time point of measurement. It

is also possible to measure the island width, but one has to solve additionally the

nonlinear Eq. (6.1).

First, magneti equilibrium II is onsidered to extend the results of the previous

hapter. The strategy is to haraterise the transition by starting with a value kA
y ≈ 2

in the well-behaved Rutherford-regime and redue it slowly to kA
y,cr, until the osil-

lation frequeny hanges strongly when rossing both regimes. Figure 6.9 shows the

osillation frequeny versus the wave vetor kA
y . In the viinity of marginal instabil-

ity kA
y ≈ 2, a lear saturated and osillating phase an be observed. Reduing the

wave vetor to values kA
y ≈ 1.5, the osillation frequeny inreases (∆′de ≈ 1). Close

to kA
y ≈ 1.45 the frequeny falls with smaller kA

y approahing a ritial wave vetor

kA
y,cr. In Figure 6.9 this threshold is indiated by setting the osillation frequeny

manually to zero (ωB = 0). Due to the high sensitivity of the threshold a loser

approah aording to kA
y = kA

y,cr + ǫk (0 < ǫk ≪ 1) ould not be ahieved.
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Figure 6.9: Osillation frequeny ωB depending on the wave vetor kA
y . The tran-

sition between saturated and super-exponential reonnetion ours

at kA
y,cr ≈ 1.45 (Equilibrium II).

The strongly redued osillation frequeny indiates that the saturated phase be-

omes quasi-stati ompared to the linear growth rate in this range (ωB ≪ γk =
O(0.1)). A further derease of kA

y leads again to the super-exponential phase and

no osillation frequeny an be assigned to the mode.

Simulations with a wave vetor very lose, but below the threshold kA
y = kA

y,cr − ǫk
(kA

y = 1.4425, 1.445, . . . < kA
y,cr) require a very high resolution of the grid (ns̄ =

1.85 · 104). For the value kA
y = 1.4425 the Fehlberg integrator allowed to ahieve

at least an energy onservation of ∆ǫ . 5% whih was not possible before with

the Runge-Kutta sheme and marks a lear numerial improvement. The step size

redued to ∆t = 0.05, . . . , 10−3
when the mode approahes the largest slope of the

�eld energy. When using the adaptive time step integrator, the evaluation of the

marker statistis similar to Figure 6.6 showed that the loss of eletron markers ould

be redued by three orders of magnitude. Despite that the urrent pro�le still under-

goes a rash for ky . ky,cr the numerial enhanements may serve as a starting point

for a loser inspetion of the super-exponential behaviour at the ritial threshold.

Similar simulations of the transition were performed using magneti equilibrium I.

The question arises whether this equilibrium might allow for the super-exponential

growth, too. The parameter used here refer to similar simulation onditions of

Ref. [21℄. Instead of kA
y the width of the equilibrium urrent a was varied.

Figure 6.10 shows the nonlinear osillation frequeny ωB(a) and the linear growth

rate γ(a). For relatively large a & 16 nonlinear saturation is observed. The growth

rate γ is of the same order of magnitude as the osillation frequeny, γ ≈ ωB,

moreover, the shape of both urves suggests a linear relation ωB ∼ γ. When redu-
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Figure 6.10: ωB and γ depending on a (on�guration I). The transition of the nonlin-
ear phase is proven to our with on�guration I at acr ≈ 12.5. Below
this value the osillation frequeny is set to zero.

ing a . 16, the osillation frequeny ahieves a maximum at a ≈ 13 (ωB ≈ 4 · 10−3
).

A further derease of a auses the osillation frequeny to fall and subsequently,

a sharp transition ours at acr ≈ 12.5. The results show that slightly above the

threshold a & acr the saturated mode is quasi-stati (ωB ≪ γ). For smaller values

a < acr the osillation frequeny was set to zero manually, sine during super-

exponential growth an osillation ould not be assigned to the mode. These inves-

tigations prove that simulations with on�guration I also reveal a ritial threshold

for nonlinear tearing modes. Reall that a = 1/ρAS,e is hanged, thus the threshold
ours at ρAS,e ≈ 0.08 ≪ dAe = 1. It is an open issue how the ratio of these both

quantities haraterise the threshold.

Further simulations are neessary to quantify the saturated island width at riti-

al acr and kcr. Additionally, a detailed quanti�ation of the plasma in�ow pattern

at the resonant layer might give further insight into the ritial threshold. In Ref.[10℄

the nonlinear aeleration is investigated by means of a gyro�uid model. The a-

elerated phase is aompanied with larger

~E × ~B �ow veloities at the X-point

than in the saturated phase. However, the simulation results obtained with the gy-

ro�uid model ould not be reprodued with EUTERPE, thus hinting a substantial

di�erene in the models. The transition between both nonlinear phases shown for

the osillation frequenies here is very sharp. It would be helpful if equilibria and

seleted parameters were investigated allowing a �smoother� transition to improve

the numerial ontrol of the mode.
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6.2 Simulations of nonlinear super-exponential reonnetion

6.2.3 Extended parameter studies

An extensive parameter study is presented giving an overview of the ritial thresh-

old depending on the parameters Lx, Ly and a. The simulation results of the previ-

ous hapter will be lassi�ed within this set of results obtained with on�guration I

as well.

Furthermore, the results in a broad parameter spae are ompared with available

results in literature. In ontrast to results obtained with EUTERPE onerning

the super-exponential phase, it has been shown that a saturation mehanism and

a well-de�ned onservation of the energy our after the super-exponential phase

for τ ≈ 1 and τ ≪ 1 [34, 51℄. The fast-reonnetion is known to be neessary

for super-exponential growth, but ounterexamples were found [34℄. Reently, it

was shown that a seond aeleration an our after the �rst explosive phase for

∆′de > 1 [10℄. It is still unlear whether the physial model is signi�ant in order

to observe super-exponential growth or if there are universal parameter regions in-

dependent from the models.

To relate simulation results of the gyrokineti model with previous investigations

two parameter sans were performed in whih either (a, Lx) is varied (san (i)), or
(a, Ly) (san (ii)). Table 6.3 summarises the seleted parameter regions. Due to

the de�nition of the Alfvén units in the �rst san (i) LA
x is varied when ρAS,e hanges,

and similarly in (ii) LA
x , although Lx = 15 remains a onstant.

The �elds were spatially resolved with up to ns̄ × nχ = 2 · 104 × 20 points in

parameter san parameter values

Lx, a varied ( 7→ dAe , ρ
A
S,e)

(i) de = 1

Ly = 157.08 (kA
y = 0.5)

Lx = 15, a varied ( 7→ dAe , ρ
A
S,e)

(ii) de = 1

ky = 2 π/Ly varied

Table 6.3: Parameter values of the two sans (i), (ii). The plasma-β is kept onstant

at 5.47 · 10−4
. Due to the di�erent normalisations the values in brakets

hange as well.

x, y-diretion. This ensures a resolution of a, de with at least ten points. The time

onsuming omputations are performed with up to 1024 ores and at most 8 · 107
markers for eah speies needing roughly 5 · 105 CPUh .
The parameter sans desribe a binary deision whether a nonlinear saturation takes

plae or not. Figure 6.11 shows the results of parameter san (i). The green

area represents the omplete domain of simulated pairs (a, Lx) with a resolution

of about (∆a, ∆Lx) = (0.1, 5). This area is bounded from above by the linear
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Figure 6.11: Parameter san (i). The green shaded area overs the range of the pa-

rameters (a, Lx). The inner of the polygon marks the super-exponential

regime. The dotted line does not denote neessarily a transition from

left to right, but loses only the polygon from (B) to the point with

smallest a, (0.3, 78.54).

stability threshold above whih the mode is linearly stable. The linear stability pa-

rameter was omputed by solving ∆′(Lx, Ly, a) = 0 numerially at various points

and interpolated (blak solid line). Note that the m = 1 mode is always seleted.

The green shaded area is bounded from below by the minimum value a = 2 · 10−2
.

The region an be just resolved using the omputational means available (memory

onsumption of the solver matrix and number of markers).

Within the blue polygon the mode shows super-exponential growth. Point (A) marks

the parameter values studied in the previous hapter, (a, Lx) = (12.5, 78.54) (It

also refers to Ref. [21℄ at whih ρAS,e = dAe ). Starting at this point, a lowering of a
with onstant Lx maintains the super-exponential harater of the mode. However,

for small enough values a < 0.3, the study reveals a seond ritial threshold below

whih the mode beomes again nonlinearly stable. These values of a are equivalent

to the relation ρAS,e ≫ dAe . Thus, in the large-∆′
range the saturation of the mode

sets in again.

When Lx = 10, . . . , 80, the upper boundary of the polygon refers to the low- to

medium-∆′
regime (∆′de ≈ 1, if a & 3). In this range the nonlinear destabilisation

of the mode has been veri�ed when ∆′
is of order unity. If Lx is small enough in the

regime Lx = O(10), both ritial thresholds vanish and a Rutherford-like stabilisa-

tion was observed: a variation of the magneti equilibrium sale an not exite the

super-exponential growth in the range O(10−2) < . . . a . . . < O(1).
A speial point (B) marks (a, Lx) ≈ (45, 117). It was shown that as the mode

rosses the linear stability threshold its growth immediately experienes a super-
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6.2 Simulations of nonlinear super-exponential reonnetion

exponential aeleration. This is remarkable sine at this point ∆′de ≈ 0 is valid

whih ontradits the general regime of super-exponential aeleration. The point

(B) an be ompared with results of Ref. [34℄, where a was �xed but, enlarging

the di�ulty of a diret omparison, a deuterium plasma with an unnatural proton

to eletron ratio was onsidered. Additionally, the plasma-β was varied within the

range 10−5, . . . , 10−3
, resulting in di�erent ratios de/ρS,e and maintaining the ondi-

tion de = O(1) ≪ a = O(10). This referene, however, found a physial saturation

after an explosive phase whih ould not be on�rmed. In the simulations here,

following point (B) to lower values of a (Lx = 117), a seond nonlinear stability

threshold ould not be veri�ed within the green shaded area. Therefore, the poly-

gon in Fig. 6.11 was losed with the dashed line.

A short overview of the parameter regime under investigation ompared with signif-

iant referenes is provided by Table 6.4.

The parameter spae is extended by varying Ly, when Lx = 15 is �xed (san (ii)).

∆′de < 1 ∆′de > 1

ρAS,e > dAe [34℄, Figure 6.11 [21℄, Figure 6.5

ρAS,e ≈ dAe [34℄, Figure 6.11 [36℄, Figure 6.11

ρAS,e < dAe [34℄, Figure 6.11 [23, 36℄, Figure 6.9�6.11

Table 6.4: Summary of referenes investigating super-exponential reonnetion and

results obtained with EUTERPE.

This variation of parameters is motivated by the fat that in previous nonlinear

simulations with the magneti equilibrium I [26℄ it has never been observed with

EUTERPE that the super-exponential behaviour ours. The exploration provided

by san (ii) relates both the domain of parameters used in Se. 5.1 and in san (i).
In Figure 6.12 the green shaded area marks the parameter regime whih has been

investigated to observe whether the nonlinear aeleration is exited or not. The

blue area refers to the set of parameters (a, Ly) that allow for a nonlinear aelera-

tion phase. Additionally, the threshold ∆′de = 1 (red solid line) is depited as well

as the linear stability threshold provided by solving the equation ∆′(Lx, Ly, a) = 0
(blak solid line).

In Figure 6.12 the threshold de�ned by the ondition ∆′de = 1 is valid in the domain

Ly = 30, . . . , 100 and a ≈ 2. If the equilibrium urrent width a and Ly are small

enough, (a, Ly) = (O(1), O(10)), the equilibrium values of the linear benhmark

in Se. 5.1 are overed approximately by (a, Ly) = (O(1), 10) and β = 10−3
. A

similar range of parameters is used in Ref. [26℄. This parameter range does not

support super-exponential behaviour of the nonlinear mode: the blue area ontrats

for small enough (a, Ly) showing that the nonlinear aeleration is inhibited. Even

smaller values of a do not hange this result, although ∆′de ≈ 1.
The simulations in the range Ly = 50, . . . , 200 (or small enough ky) show that the

ritial threshold of nonlinear aeleration appears for two di�erent values of a,
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Figure 6.12: An extended parameter study showing the threshold of super-

exponential reonnetion. Lx = 15 is �xed and Ly, a varied (Equi-

librium I).

marking an upper and a lower ritial threshold. The upper threshold remains on-

stant, while the estimated ondition ∆′de = 1 is learly not valid.

The parameter sans (i), (ii) demonstrate learly that the threshold ∆′de ≈ 1,
widely used in nonlinear simulations using �uid models, does not neessarily mark

the transition between both nonlinear phases. Due to substantial di�erenes of the

nonlinear simulations performed with the gyrokineti model here and the �uid mod-

els of disussed referenes, the result of the parameter sans (i), (ii) probably do not
hold universally independent of the model. An important �nding is the seond riti-

al threshold of the equilibrium urrent width a, below whih the super-exponential

phase is inhibited and saturation sets in again.
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7 Comparison of a ompressible

gyro�uid and gyrokineti model

7.1 Introdution

Although muh of the progress in the understanding of magneti reonnetion has

been possible thanks to the use of �uid-based models, the results ahieved with

these models require independent on�rmation when kineti e�ets are expeted

to be important. Here, a ompressible gyro�uid ode that has been employed in

Refs. [10, 51℄ to investigate ion gyro-orbit averaging e�ets on ollisionless magneti

reonnetion, is ompared with the gyrokineti equation

1

.

After a linear benhmark of the odes with a numerial eigenmode and eigenvalue

analysis, the results of the two models in the linear regime are ompared over the

whole spetrum of linearly unstable wave numbers, both in the drift kineti limit

and for �nite ion temperature. Nonlinearly, fousing on the small-∆′
regime, rele-

vant observables as the evolution and saturation of the island half width and the

osillation frequeny at saturation are ompared

2

.

7.1.1 The ompressible gyro�uid model

The gyro�uid model onsidered here has been adopted in Refs. [10, 51℄ to investigate

magneti reonnetion in ollisionless high-temperature plasmas with a strong guide

�eld.

This model originates from a omprehensive gyro�uid model for both ions and ele-

trons derived from the gyrokineti equation by Snyder and Hammett [61℄. The

moments are obtained by applying veloity spae integrals to the gyrokineti equa-

tion with an unshifted Maxwellian. This model inludes magneti urvature e�ets,

mirror terms, FLR and diamagneti e�ets. The highest moments of the veloity

integrals are subjet to losure shemes related to three ategories. It onsiders

the inlusion of Landau damping, the losure of toroidal terms and mirror terms

(trapped partiles).

A simpli�ed version of this model has been derived in Ref. [40℄ negleting magneti

urvature e�ets and restriting it to two-dimensional dynamis. Furthermore, the

1

The results of the omparison of both models developed from a ollaboration with Lua Comisso

and Daniela Grasso, members of �The Burning Plasma Researh Group� at the Politenio di

Torino, Dipartimento di Energia. The simulation results of the gyro�uid model are provided by

Lua Comisso.

2

In this setion all quantities have been normalised to Alfvén units.
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7 Comparison of a ompressible gyro�uid and gyrokineti model

redued model trunates the moment hierarhy by taking only the �rst two veloity

moments of the gyrokineti equation for both the eletrons and the ions (four-�eld

model). The speies temperature are taken to be onstant while the eletron Larmor

radius has been negleted. Eletron inertia terms were retained in order to break

the frozen-in ondition and allow for magneti reonnetion. Ion ompressibility is

adopted to investigate the in�uene of ion sound waves on reonnetion [10℄.

Therefore, the evolution equations of the ompressible gyro�uid model onsist of

the ontinuity equation and the z-omponent of the equation of motion for the ion

gyroenters,

∂ni

∂t
+ [〈φ〉, ni] = −[ui, 〈A〉], (7.1)

∂D

∂t
+ [〈φ〉, D] = τρ2S,e[〈A〉, ni], (7.2)

and similar equations for the eletrons,

∂ne

∂t
+ [φ, ne] = −[ue, A], (7.3)

∂F

∂t
+ [φ, F ] = −ρ2S,e[A, ne]. (7.4)

Here D = 〈A〉 + d2iui is proportional to the ion gyroenter parallel anonial mo-

mentum, whereas F = A − d2eue is proportional to the eletron parallel anonial

momentum. Furthermore, 〈φ〉 = Γ
1/2
0 φ is the gyro-averaged eletrostati potential

and 〈A〉 = Γ
1/2
0 A is the gyro-averaged parallel magneti potential, where the symbol

Γ
1/2
0 refers to the gyro-averaging operator that is adopted in its lowest-order Padé

approximant form [37℄

Γ
1/2
0 =

1

1− ρ2i
2
∇2

⊥

. (7.5)

The system of equations is ompleted by the parallel omponent of Ampère's law,

∇2
⊥A = ue − Γ

1/2
0 ui, (7.6)

and by the quasi-neutrality ondition

ne = Γ
1/2
0 ni +

Γ0 − 1

ρ2i
φ. (7.7)

The resulting model is dissipationless and suitable for the study of reonnetion

mediated by eletron inertia. In partiular, it possesses a nonanonial Hamiltonian

struture [40℄ that reveals the presene of four Lagrangian invariants, whih have

proved to be helpful to understand how the reonnetion evolution is a�eted by the

plasma-β and by the ratio of speies temperatures [51℄.

This model has been subjet to various simpli�ations in literature. By negleting

ion ompressibility in Eq. (7.1) ([〈φ〉, ni] = 0), the equations over the three-�eld
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7.1 Introdution

model of Ref. [44℄.

The eletrons are mainly responsible for parallel and perpendiular dynamis so one

an simplify the equations by negleting the ion response. Then, Eq. (7.1) is not

needed and the density and urrent of the ions do not ontribute to the ondition of

quasi-neutrality, Eq. (7.7) and Ampère's law, Eq. (7.6). Employing additionally the

onstraint k⊥ρi < 1 on this redued two-�eld model the quasi-neutrality Eq. (7.7)

an be simpli�ed to (1− ρ2i ∇2
⊥)ne = ∇2

⊥ φ [42, 77℄.

As shown in Se. 5.1, the eletrostati �utuation φ an be interpreted as a small

orreting quantity ompleting the eletromagneti desription of the tearing mode.

By negleting φ the quasi-neutrality an be disarded and the model inludes only

the evolution of the parallel urrent ue and the density response ne of the eletrons.

This minimal model has been used in Se. 1.4 to derived the linear dispersion relation

of the tearing mode.

7.1.2 Equilibrium on�guration and numerial setup

To investigate spontaneous reonnetion the model equations are solved numeri-

ally by employing magneti on�guration II in a two-dimensional slab geometry

(∂/∂z = 0). The parameter was hosen to be C = 0.1 if not stated otherwise. This

results in a maximal relative shear strength of B0,y/B0,z ≈ 0.08 in the domain and

a shear length ls = B0,z/(dB0,y/dx) = 5 at the resonant surfae x = 0.

The equilibrium magneti �eld

~B0 results from an equilibrium urrent u0,e from

eletrons only as desribed in Se. 4.2. Furthermore, the plasma is onsidered ho-

mogeneous with �at density ns(x) = n0 and temperature pro�les Ts(x) = Ts for eah

speies. The simulation domain is haraterised by {(x, y) : −π ≤ x ≤ π,−âπ ≤
y ≤ âπ}. The parameter â �xes the domain length Ly in y-diretion whih is linked

to the wave number ky = 2πm/Ly of the longest wave length mode m = 1 of the

system. The tearing mode stability quantity ∆′
is then haraterised by the wave

vetor ky aording to Eq. (4.6) (Se. 4.2).
The gyro�uid ode deomposes the �elds into a time-independent bakground equi-

librium and an evolving perturbation within a pseudospetral method [51, 78℄. Pe-

riodi boundary onditions are employed in both the x- and y-diretions, and a grid

of 1024×128 points has been used. Sine periodi boundary onditions are imposed

also along the x-diretion, a Fourier series trunated to eleven modes is used to ap-

proximate the equilibrium magneti �eld. Finally, an Adams-Bashforth algorithm

is applied to push the �elds in time and an initial disturbane on the out-of-plane

urrent density of width O(de) around the resonant surfae is set to aelerate the

onset of the tearing instability.

It is important to note that the boundary onditions for the �elds with respet to

the x-diretion are di�erent in both odes. Due to the numerial method underlying

the gyro�uid ode periodi boundary onditions arise naturally. The hoie of the

domain size in the x-diretion is su�ient to avoid �nite domain size e�ets on the

value of the tearing stability parameter. However, in the following the e�ets on the

boundary onditions will be heked by performing a detailed linear benhmark with

the eigenvalue approah. If simulations in the drift kineti limit were performed, this
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7 Comparison of a ompressible gyro�uid and gyrokineti model

was ahieved by setting the temperature ratio to τ = 1/900, giving ρi = 1/30 ≪ de,
whih makes the e�et of the gyroaveraging operators negligible. Additionally, in-

stead of the Padé approximation the long wavelength approximation was then used

for the quasi-neutrality equation in EUTERPE.

7.2 Linear omparison of the models

As a �rst step the auray of the odes is heked in the linear regime with a

benhmark. For this purpose a numerial eigenmode and eigenvalue analysis is

applied to eah of the two models in the drift kineti limit. After the auray of

the odes has been proven to a high degree, a omparison of the models in both the

drift kineti limit and the ase of �nite Larmor radii follows.

7.2.1 Eigenvalue equations

In this setion the proedure of performing a numerial benhmark is desribed

using the shooting method explained in Se. (5.2) to get the linear dispersion re-

lations in the drift kineti limit. An analysis of the eigenvalues and the eigen-

mode struture is given here for both the linearised gyro�uid and the gyrokineti

equations. The gyro�uid equations (7.1�7.4), and the gyrokineti equation (2.5-

2.9), are linearised using the ansatz ∂t 7→ −iω and ∂y 7→ iky for the perturbed

quantities, additionally assuming a long wavelength approximation for the quasi-

neutrality equation, Eq. (2.13). The �eld equations are ast into a general form with

the oe�ients qij , with (i, j) = (A, φ),

d

2φ

dx2
= −qφφ (x, ω)φ− qφA (x, ω)A, (7.8)

d

2A

dx2
= −qAΦ (x, ω)φ− qAA (x, ω)A. (7.9)

The linearisation of the gyro�uid system gives the following oe�ients

qφφ (x, ω) = −k2
y +

∑

s

qs
F ′
0,s

Ns

ky
ω
, (7.10)

qφA (x, ω) = −
∑

s

qs
Ns

(

qs +
ks
k‖

Ns + τsρ
2
S,e

k‖ks
ω2

)

, (7.11)

qAφ (x, ω) = −
∑

s

F ′
0,s

Ns

ky
ω
, (7.12)

qAA (x, ω) = −
∑

s

qs
Ns

(

qs + τsρ
2
S,e

k‖ks

ω2

)

, (7.13)
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Figure 7.1: Benhmark of the gyro�uid eigenfuntions. Left: The real part of the

parallel vetor potential A. Right: The imaginary part of the eletro-

stati potential φ.

where the prime denotes the derivative with respet to x. Also the quantities

F ′
0,s = −By,0 + qs d

2
s u

′
0,s, k‖ = −A′

0ky,

ks = −u′
0,sky, Ns = d2s

(

1− τs
ρ2S,e
d2s

k2
‖

ω2

)

,
(7.14)

have been introdued to make the notation more ompat.

The oe�ients resulting from the linearisation of the gyrokineti model were de-

rived in Se. (5.1), Eqs. (5.4) and normalised to Alfvén units. Both these sets of

eigenvalue equations are solved numerially using the shooting method desribed

Se. 5.1 with Dirihlet boundary onditions in the x-diretion.

7.2.2 Linear benhmark with eigenvalue approah

The �rst benhmark is arried out for the parameter values de = 0.1, di = 4.285,
ρS,e = 0.6 and ky = 0.6. This orresponds to β = 1.96 · 10−2

and a realisti proton

to eletron mass ratio µ = 1836.
The omparison of the eigenfuntion resulting from the shooting method with re-

sults from the gyro�uid simulation is shown in Figure 7.1. Due to symmetries of

the equations and the pure imaginary eigenvalue, γ = 0.0248, only the real part

of A remains, as well as only an imaginary part of φ. The �eld strutures agree

very well with results from the shooting ode, although the boundary onditions

with respet to x di�er. The same proedure has been performed with EUTERPE

whih gives in this ase γ = 0.0273. Both potentials are in good agreement with

the shooting method as well, as shown in Figure 7.2. In this ase both methods use

the same boundary onditions regarding the x-diretion. The omparison with the

solution of the gyro�uid problem shows that the instability is mainly in�uened by

the dynamis at the resonant layer. The solutions drop very fast to zero approahing

the boundaries and therefore the in�uene of the boundary onditions is suppressed.
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Figure 7.2: Benhmark of the gyrokineti eigenfuntions. Left: The real part of the

parallel vetor potential A. Right: The imaginary part of the eletro-

stati potential φ.

This will be important for further nonlinear omparisons.

To hek the eigenvalues over an extended ky-spetrum of unstable modes, simula-

tions have been performed with the previous setup varying the simulation domain

size Ly. The omparison of both �uid and kineti results and the relevant results of

the shooting method are shown in Figure 7.3

1

. These benhmarks show that the

two odes give exat results in the linear regime over a wide range of ky.
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Figure 7.3: A benhmark of the linear growth rates of both models for various wave

vetors ky. Both the gyro�uid and the gyrokineti ode work linearly

exat.

1

The solid lines in this Figure onnet simulation results as well as for all following Figures.
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7.2.3 Model omparison in the drift kineti limit

In the following two sets of parameters are used whih are relevant for reonnetion

physis. The parameter assoiated with Setup I and II are listed in Table (7.1).

Case I refers to a realisti mass ratio µ and �kineti� regime, β ≫ me/mi, or equiv-

alently ρS,e ≫ de, whereas ase II de�nes a �medium� range between kineti and

inertial regime, β ≈ me/mi.

Simulations for ases I and II have been performed for various ky. Over the full

range of wave numbers, from the large-∆′
to the small-∆′

ases, lose to the stability

threshold at ky ≈ 2.23, both models desribe the reonnetion proess very well, as

shown in Figure 7.4. A relative maximum deviation of about 20% is found around

ky ≈ 1 for both setups. However, in the small-∆′
limit the di�erenes of the growth

rates beome smaller.

The kineti desription allows one to estimate the width of the region of partile a-

eleration, δe, due to the resonane ondition k‖ ρS,e/de = ky δe/ls ·ρS,e/de ∼ γ in the

small-∆′
limit and δe ≪ L [18℄. Together with the kineti dispersion relation in this

limit, γ = ky de ρS,e∆
′/ls, one gets the estimate δe ∼ ∆′ d2e. Two-Fluid-desription

yields the same saling of the growth rate and urrent layer in the limit of marginal

instability [46, 49℄.

Another point whih might be important onerns the assumptions of the adopted

gyro�uid model: The derivation uses the restrition that the bulk veloity of the

speies u0,s is muh smaller than the thermal veloity vs. Moreover, this model uses

an unshifted Maxwellian when performing the integration over the veloity spae

to get the equations of moments. Therefore, the gyro�uid equations hold exatly

only for C ≪ 1. For the linear simulations done here the amplitude of the sheared

perpendiular �eld was hosen as C = 0.1, whih approximates this limit very well

and allows relatively short simulation times. However, this point has been heked

simulating a mode with ky = 1.0, de = 0.1, di = 4.285, ρS,e = 0.3 and dereasing C
from 10−1

to 10−4
. These runs required very long simulation times for small C, due

to the dependene of γ from ls. The relative deviation of the growth rates of the

models fell from approximately 20% to 12%.

Setup I II

µ 1836 100

β 4.91 · 10−3 4 · 10−2

ρS,e 0.3 0.2

de 0.1 0.1

di 4.285 1.0

Table 7.1: Set of parameters de�ning setup I and II used for the simulations.
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Figure 7.4: The omparison of the linear dispersion relations shows a good agreement

between the two approahes over the full ky range (Left: setup I, right:

setup II).

7.2.4 In�uene of gyro-e�ets

It is desirable to go beyond the drift kineti limit and simulate the tearing mode

for �nite ion temperatures when the gyroradius an beome muh larger than the

thikness of the eletron di�usion region whih is O(de) [54℄. Here only the linear
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γ

τ

Gyrofluid-Code
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Figure 7.5: In the medium-∆′
range (∆′de ≈ 1) the odes show a good agreement

of γ over whole range of τ .

simulations of the odes are ompared using the setup senario II for ky = 1 and

ky = 2, while varying τ . The gyrokineti e�ets now enter aording to Eq. (2.12, 7.7)

using the Padé approximation.

Figures 7.5 and 7.6 show that the growth rates obtained with the two di�erent odes

behave qualitatively very similar when τ is varied. While for small τ the growth rate
remains nearly onstant, for larger ion-gyroradii, ρi ≫ ρS,e (τ & 1), the growth rate
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Figure 7.6: Small-∆′
range: Both odes show a good agreement of the growth rates

for relatively small τ . The analytial predition, Eq. (7.15), �ts well for
both the gyrokineti and gyro�uid model.

begins to inrease strongly. For the medium range ky ≈ 1 both models over the

physis very well, see Figure 7.5. This result is important sine it shows learly that

the gyro-e�ets are being overed orretly by both gyro-approahes, whih provides

a good starting point for the following omparisons in the nonlinear regime.

Figure 7.6 displays the simulation results of the kineti and �uid simulations in the

small-∆′
limit. In this range of parameters an analytial predition for a gyrokineti

ion response together with an eletron �uid derived by Porelli gives [49℄

γ = ky∆
′√1 + τ

deρS,e
lsπ

, (7.15)

whih reprodues the simulation results to high auray.

7.3 Comparison of the nonlinear models

Continuing with the parameters of both ases I and II the nonlinear phase is dis-

ussed, onentrating on the small-∆′
regime. The saturated island half width w

and osillation frequeny ωB in the deeply nonlinear phase are the two most relevant

observables. Up to now, in the literature there are only a few extended simulation

results of these quantities in homogeneous plasmas [25, 26℄.

It is important to note that the equilibrium onsidered in this setion is unstable

with respet to modes with m = 1, whih an in general interat in the nonlinear

phase with the m = 0 mode. Pseudospetral odes simulate a omplete retangu-

lar domain [−mmax, . . .mmax]× [−nmax, . . . , nmax] in Fourier spae [78℄, n being the
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7 Comparison of a ompressible gyro�uid and gyrokineti model

mode number in z-diretion (nmax = 0 here), so the m = 0 mode is being simulated

as well. In the gyro�uid simulations all relevant sales were well resolved by hoosing

the extent of the Fourier spetrum to 1/kmax ≪ de. In EUTERPE it is not ne-

essary to hoose a orresponding domain setup. Nevertheless, to math the initial

omputational onditions of the two methods, EUTERPE was adjusted to adopt the

�lter [−1 . . . 1] × [0]. Beause higher modes numbers m = 2, 3, . . . are expeted to

play no role in the dynamis the hosen �lter does not restrit the essential physis.

The gyrokineti simulations were performed with up to Np = 3 · 107 markers with a

minimum time step ∆t = 0.125. The skin depth de = 0.1 is resolved with at least 16

points, whereas the width of the perturbed urrent produed by the parallel eletri

�eld, δe, was resolved with about ten points. The numerial resolution of the vetor

potential in the x-diretion amounts to ns̄ = 1024 points, whih separates sales up

to ∆x = 5 · 10−3
. This introdues an upper error range, whih an be removed with

�ner grid resolutions but demands a muh higher omputational e�ort.

Two di�erent methods are applied to obtain the island half widths w of the ollision-

less tearing mode. Assuming the onstant-A approximation, Eq. (1.25) (Se. 1.4.3)

is used. Otherwise, without any approximation, one an obtain the exat island half

width using the geometri de�nition of the island separatrix by solving numerially

Eq. (6.1) (Se. 6.1) on the disrete spatial grid used in the odes.

7.3.1 Drift kineti limit

The evolution of the island half width into the deeply nonlinear regime is shown in

Figure 7.7 for the parameter ase I and ky = 1.8 obtained with both odes. The

Figure depits the solution of Eq. (6.1) (geometri island half width) at eah time

step. Both gyro�uid and gyrokineti models behave well in the nonlinear phase

and show a lear saturated phase beginning at t ≈ 1500. The energy onservation

proved to be more aurate than 2.5%. Moreover, it turned out for all simulations

presented here that the oupling between the modes m = 0 and m = 1 is very weak

and an be negleted. Figure 7.8 shows a omparison of the evolution of the exat

island half width and the island half width obtained aording to Eq. (1.25) for the

gyro�uid simulation shown in Figure 7.7 for ky = 1.8. For wave vetors ky ≥ 1.8,
whih orresponds to the small-∆′

limit, the island half width alulated with the

onstant-A approximation is valid within the preision of the measurement. Never-

theless, in the following Eq. (6.1) (geometri de�nition of w) is used.
When the island width beomes omparable to the linear urrent sheet thikness δe,
the mode saturates [19℄. After the transition into the saturation phase the width of

the island begins to osillate with the harateristi frequeny ωB, whih is learly

visible in Figure 7.7 and 7.8. From the time series w(t) the saturated island width

w is measured by taking the mean value w = 〈w(t)〉T after saturation starts.

In the following both quantities w and ωB are measured for an extended parameter

range to ompare the gyrokineti and gyro�uid models, and to hek the validity of

analytial preditions in this regime of parameters.

Figure 7.9 shows w as a funtion of the longest wavelength in the system for both

parameter ases. For low values of ky ≈ 1.6 the relative di�erene of the island
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Figure 7.7: Island half width as a funtion of time for ky = 1.8 (ase I, small-∆′
).

Both gyro�uid and gyrokineti models show lear saturated behaviour

of the mode. The steps are due to the spatial disrete grid points.

half widths obtained with the two adopted models is found to about 30% for both

parameter ases I and II. Inreasing ky to the range ky = 1.9, . . . , 2.23 (lose to

the stability threshold) the agreement between the results of the two odes is muh

better. The relative deviation of the island half widths is approximately 10% for

ky = 1.9 in both setups and vanishes pratially for higher wave numbers. This

shows that for ∆′ . 1 both models agree very well. Therefore, there are no signif-

iant di�erenes between the gyro�uid and the gyrokineti model for small island

widths, i. e. when w . de. So, for the ases investigated here in whih the island half

width and the extend of the eletron urrent layer thikness δe are muh smaller

than the equilibrium sales, the �uid desription produes pratially the same is-

land half widths as the more omplete kineti model. The omparison between the

models also shows that the island width is slightly higher in the �uid desription

than in the kineti model. These are the �rst extended omparisons of the saturated

island width in slab geometry over a broad range of parameters.

Sine for both parameter ases the ion skin depth is muh larger than the ele-

tron skin depth, de ≪ di, eletron inertia dominates ompletely. It was shown

by Drake and Lee that the tearing mode saturates approximately when w ≈ δe,
whih in this regime means w ∼ ∆′d2e [19℄. The detailed estimation yields w =
∆′d2e/ (2G) (Se. 6.1). Therefore, in the small island limit, de ≪ L ≈ ls, the satu-
rated island half width is desribed only by the skin depth de and the tearing mode

stability parameter ∆′
, whih for the equilibrium here is known analytially from

Eq. (4.6) (Se. 4.2).

The analytial predition in omparison with our simulation results depending on ky
is shown in Figure 7.10. Drake and Lee's estimate of w re�ets well the qualitative
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Figure 7.8: Comparison between the exat island width obtained by solving Eq. (6.1)

on a disrete spatial grid and the island half width alulated aording

to Eq. (1.25) (Setup I and ky = 1.8). In the small-∆′
limit the onstant-A

approximation is numerially on�rmed.

behaviour of the saturated island half widths over the shown ky-range and agrees

more losely with the gyrokineti than the gyro�uid results. The deviations of the

predition of w an be aused by assumptions whih are not ompletely valid in

the simulations. For instane, in the analytial estimations the shifted bakground

Maxwellian was not used rigorously, and in addition the density response was ne-

gleted.

For both parameter ases investigated here, the island width does not seem to depend

on the values of ρS,e = 0.2, 0.3, as an be seen by omparing the left and right panel

of 7.9. This suggests that there is no in�uene of �nite eletron temperature e�ets

on the island width. This is onsistent with the fat that the analytial predition

of Drake and Lee does not ontain �nite eletron temperature e�ets related to ρS,e,
whih are linked to �nite pressure e�ets and the width of the ion in�ow region [46℄.

Sine ρS,e is omparable to the eletron skin depth and the analytial model does not

ontain this quantity, it is unlear whether it plays an important role in nonlinear

simulations with both kineti speies. To investigate this dependene the parameters

ky = 1.8, ∆′de ≈ 0.25, µ = 1836 are �xed and ρS,e = 0.3, 0.1, 0.05, 0.025 is varied.

The simulations have shown that the island half width remains the same (w ≈ 0.04)
to high auray in both gyrokineti and gyro�uid simulations. It follows that in

the small-∆′
regime the pressure sale has no in�uene on the saturation level of the

tearing mode.

A further important nonlinear quantity whih has been ompared within the adopted

gyrokineti and gyro�uid models is the osillation frequeny ωB that haraterises

the saturation phase, as shown in Figure 7.7 and 7.8. The parameter ases I and

84



7.3 Comparison of the nonlinear models

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1.4  1.6  1.8  2  2.2  2.4

w

ky

Gyrofluid-Code
EUTERPE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1.2  1.4  1.6  1.8  2  2.2  2.4

w

ky

Gyrofluid-Code
EUTERPE

Figure 7.9: Saturated island half width w as a funtion of ky (Left: setup I, right:

setup II). The gyrokineti and gyro�uid models show a very good agree-

ment in determining the saturated island half width in the small-∆′

limit.

II are onsidered again measuring the osillation frequeny in the deeply nonlinear

saturation phase as desribed in Se. 6.1. In the gyro�uid simulations the osilla-

tion frequeny an always be learly observed. While for parameters of ase I the

frequeny an be measured learly for the gyrokineti model, it is more di�ult in

ase II. Therefore, the number of markers was doubled to Np = 3 · 107 and the

previous time step was halfed to ∆t = 0.125.
The results are displayed in Figure 7.11, where the left panel refers to setup I and

the right panel to setup II. Both models agree very well for all wave numbers ky
shown here, also for moderate values of ∆′de ≈ 1. These results learly show that

also in this regime the osillatory behaviour of the saturated reonnetion proess

an be desribed ompletely by a �uid desription.

From a rough kineti estimation one gets ωB ∼ kyvew/ (2ls) [19, 26℄, so the fre-

queny is roughly proportional to the island width and the stability parameter ∆′
.

The results in Figure 7.11 on�rm this linear saling in the limit of low-∆′
values. As

stated in Se. (6.1), the explanation by Drake referring to a resonant interation of

trapped eletron with the mode ausing saturation and osillation is not ompletely

onvining. Both models show pratially the same nonlinear behaviour when ∆′de
is small enough.

7.3.2 Finite ion temperature e�ets

This setion deals with the extension of previous nonlinear results by inluding �nite

ion temperature e�ets using the full �nite Larmor radius response. Here the fous

lies on the parameter ase I and the behaviour of the saturated island half width

with inreasing ion temperature.

In Figure 7.12 the saturated island half width is shown when the ion temperature is

varied using the values τ = 1/900, 0.25, 1, 4 and �xing ky = 1.8. The island width

only hanges by about 5% over approximately three orders of magnitude of τ . This
shows that �nite Larmor radius e�ets on w are weakly relevant for ∆′de . 1.
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the predition by Drake and Lee (ase I). The analytial model shows

a good qualitative agreement with simulation results for ∆′de < 1.

As stated earlier, Ref. [19℄ predits the general saturation ondition w ≈ δe. Here,
due to the in�uene of �nite ion temperature, the eletron urrent hannel width

hanges aording to [38℄

δe ∼ γls

kyve
√
1 + τ

. (7.16)

On the other hand the growth rate inreases aording to γ ∼
√
1 + τ , as has been

shown in Se. 7.2. Using Eq. (7.15) for the growth rate and Eq. (7.16) for the

modi�ed urrent width, the generalised saling of the saturated island half width
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Figure 7.11: Osillation frequeny as a funtion of the wave number ky for the two

models (Left: ase I, right: ase II). Both models agree very well in the

low- and medium-∆′
range.
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Figure 7.12: Comparison of the island half widths w as a funtion of the temperature

ratio τ (setup I and ky = 1.8).

for �nite τ beomes

w ∼ ∆′ d2e,

as stated for the drift kineti ase. This estimation makes evident that the saturated

island width does not hange signi�antly with ion temperature.

The gyro�uid model has been benhmarked for the �rst time. The omparison of

both models shows a good agreement for linear and nonlinear simulations. For the

drift kineti limit the saturated island widths di�er only slightly from eah other

while the boune frequenies are pratially the same. E�ets of FLR a�et both

models with the same amount in the linear as well as in the nonlinear regime for

the parameters hosen here.
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8 Conlusions and outlook

Eletromagneti simulations of the linear tearing mode without equilibrium gra-

dients have been performed with EUTERPE. The dispersion relation has been

ompared with a shooting method showing an exellent agreement between both

methods. Linear simulations in the presene of �nite temperature gradients were

benhmarked as well to high preision. Employing �nite density and temperature

gradients a ritial threshold of the linear growth rate over the temperature to den-

sity ratio has been observed. Comparing the simulations with an analyti hybrid

approah it's preditions ould be on�rmed to good agreement as well as the our-

rene of the ritial threshold in this parameter regime. The kineti theory of Drake

and Lee is not able to predit the linear ritial threshold what hints that their

estimates are too rough. A detailed kineti linear stability analysis in the presene

of diamagneti e�ets is presently not available.

Nonlinear single-mode simulations of the saturated tearing mode have been arried

out. The simulation results are ompared to the predited saturated island half

width predited by Drake and Lee. For small enough growth rates the analyti

result an be reovered but deviates from the simulation results in the medium-∆′

range. Therefore, the analyti predition is on�rmed. An omprehensive theory of

nonlinear ollisionless magneti reonnetion whih inludes more realisti senar-

ios, e. g. inluding the oupling of higher harmonis modes and parameter ranges

whih allow �nite-∆′
values of order unity is urrently not available. Also, it is im-

portant to note that a apaious theory of nonlinear tearing inluding diamagneti

e�ets ould be highly desirable.

The super-exponential behaviour of the tearing mode has been demonstrated for

two magneti equilibria and numerial di�ulties has been disussed.

For the �rst time the threshold between sub- and super-exponential behaviour has

been veri�ed measuring the osillation frequeny of the �eld energy depending on

the wave number and equilibrium urrent width. This threshold is an important

quantity and ould be the starting point for numerial investigations getting deeper

insight into the question of possible non-saturation of tearing modes.

A detailed parameter study of the threshold for di�erent equilibrium parameters was

presented. The san of the equilibrium width a and box size Lx shows learly that

the assumption of the high-∆′
regime does not neessarily leads to super-exponential

behaviour. Moreover, there exists a region in the parameter spae allowing a super-

exponential phase of mode right at linear stability threshold.

A omparison of the gyrokineti model and a ompressible gyro�uid model has been

performed. The results of both approahes have been ompared to eah other lin-

early and nonlinearly for an extended set of parameters. As a �rst step, the shooting

method has been used to benhmark the linear simulations of both odes in the drift
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kineti limit. The linear eigenmodes of the two models have been benhmarked for a

single wave number and a �xed set of plasma parameters, whereas the linear growth

rates of both odes have been ompared for a range of wave numbers. It has been

shown that in the linear regime both odes give results with high degree of auray.

Then the results of the two models have been ompared over the whole spetrum of

linearly unstable wave numbers for two sets of plasma parameters showing a good

agreement between the growth rates obtained with the gyrokineti model and the

gyro�uid one.

The linear simulations have been extended to the ase of �nite ion temperature,

where it has been shown that ion gyro-orbit averaging e�ets an be properly de-

sribed by both approahes. Furthermore, numerial simulations in the small-∆′

range ompare favourably with the asymptoti theory of Porelli.

Nonlinear simulations of both models have been arried out in the small-∆′
regime.

A detailed omparison of observables suh as the evolution and saturation of the

island width, as well as it's osillation frequeny in the saturated phase has been

arried out. The gyrokineti and gyro�uid simulations have shown that lose to

marginal stability the evolution and saturation of the island width for both models

is pratially the same. Moreover, an important and new observation is that the os-

illation frequeny of the island width shows no di�erene between the two models.

Therefore, the main result is that the nonlinear evolution of the ollisionless tear-

ing mode in the drift kineti limit an essentially be well desribed by �uid theory.

Also �nite ion temperature e�ets in the saturated island phase have been onsid-

ered. Here again both models di�er only slightly when measuring the island width.

Therefore, in the regimes investigated here, the nonlinear reonnetion physis an

be ompletely desribed with a gyro�uid approah.

Slightly stronger deviations between the simulation results our for ∆′de of order
unity, suggesting that further investigations will be of interest in this regime, as

well as in ases where ∆′de is muh larger than unity for whih a detailed nonlinear

omparison between the gyrokineti and gyro�uid models is still missing.

Numerial simulations of magneti reonnetion using �uid models inluding resis-

tivity an be performed in a straight manner. However, it is still an open issue how

to perform numerially exat benhmarks of the ollisional tearing mode using the

PIC framework. Closely related to this topi are simulations of miro-tearing modes

with PIC methods whih are left for further work.
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