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Abstract. A hallmark of object-oriented programming is the abilitygerform
computation through a set of interacting objects. A commanifestation of this
style is the notion of gackage which groups a set of commonly used classes
together. A challenge in using a package is to ensure thaeat dbllows the
implicit protocol of the package when calling its method®lations of the pro-
tocol can cause a runtime error or latent invariant viotatiorhese protocols can
extend across fferent, potentially unboundedly many, objects, and areispeéc
informally in the documentation. As a result, ensuring thatient does not vio-
late the protocol is hard.

We introducedynamic package interfaces (DPB formalism to explicitly cap-
ture the protocol of a package. The DPI of a package is a finttefsrules that
together specify how any set of interacting objects of thekpge can evolve
through method calls and under what conditions an error egpdn. We have
developed a dynamic tool that automatically computes amoappation of the
DPI of a package, given a set of abstraction predicates. Akagyerty of DPI is
that the unbounded number of configurations of objects otkgme are summa-
rized finitely in an abstract domain. This uses the obsemdtiat many packages
behave monotonically: the semantics of a method call oveméiguration does
not essentially change if more objects are added to the aoafign. We have
exploited monotonicity and have devised heuristics toialstaccinct yet general
DPIs. We have used our tool to compute DPIs for several corymaed Java
packages with complex protocols, such as JDBC, HashSeAmagList.

1 Introduction

Modern object-oriented programming practice uses packémencapsulate compo-
nents, allowing programmers to use these packages throetitd@fined application

programming interfaces (APIs). While programming langsguch as Java and C#
provide a clear specification of the static APIs of a packaderims of classes and their
(typed) methods, there is usually no specification of thdititgprotocolthat constrains

the temporal ordering of method calls orffdrent objects. If the protocol is limited to
a single object of a single class, it can be specified in forra sfate machine whose

* Shahram Esmaeilsabzali was at MPI-SWS when this work was.don
** Damien Zudferey was at IST Austria when this work was done.


http://arxiv.org/abs/1311.4934v2

states are the abstract states of the object and whose eggt®anvocations of its
methods|[2, 13, 15]. For example, a lock object has two stideked and unlocked.
While in the unlocked (resp. locked) state, a call to the igekp. unlock) method takes
it to the locked (resp. unlocked) state. Any other methotkeallts in an error. The no-
tion of state-machine interfaces has been studied ex&lpsand there are many tools
to generate interfaces using static or dynamic technid@& 12 14]. However, exist-
ing notions of state machines on object states must be demeravhen considering a
package. First, the internal state of an object should bsidered in the context of the
internal states of other objects; e.g., in the Java Databaseectivity (JDBC) package,
aStatement object can execute safely only if its correspondingnection object is
open. Second, the execution of a method on an object can elthagnternal state of
other objects in the environment; e.g., calling thecuteQuery method on a JDBC
Statement object closes its corresponding opesultSet object. Finally, the pro-
tocol can constrain the states and transitiongrdfoundedlynany interacting objects;
e.g., considering a collection object and its iteratorsdifiying the collection directly
invalidatesall of its iterators.

The problem of generalizing interfaces from single to nplétiobjects has been
studied recently([9=11]. However, what is missing is a chfinition of what consti-
tutes an interface in the presence of unboundedly many whpecthe heap. Our first
contribution is the introduction alynamic package interfag®PI), which allows to
capture the protocol of a package in a succinct manner. ThePpackage is a set of
rules each of which specifies théfect of a method call on an object within an abstract
configurationof objects. An abstract configuration denotes an unboundetber of
concrete configurations of objects from a package. A ruledsmurceand adestina-
tion configuration, together with mappingthat specifies how the objects in the source
change to the objects in the destination.

Our first technical ingredient is a representation of alostcanfigurations using
nested graphfLg]. In a nested graph, a subgraph can be marked to be réfeaad
repetitions can be nested. Nested graphs naturally regresbounded heap configu-
rations. For example, Figuié 1 shows a (two-level) nestaglyrepresenting an open
JDBC Connection object with its many corresponding clos8datement objects,
each with many closeRlesul tSet objects.

Our second ingredient is an abstract semantics of Javdalilguages over the do-
main of nested graphs that is monotonic (in fact, the abstracsition system isvell-
structured[I]): if a method can be called in a “smaller” configurationcan be also
called in a “larger” configuration, with the resulting configtions maintaining the re-
lationship. Monotonicity enables us to define the DPI rules @ackage only over
its maximalabstract configurations, letting each rule subsume infiniteany similar
“smaller” rules. We prove that the set of maximal configumas has a finite represen-
tation, and thus the DPI of a package has a finite number of [B]e

Our second contribution is a dynamic analysis techniqueotopute an approxi-
mation of the DPI of a package directly from the source code. t0ol explores the
usage scenarios of a package by runningnaversal clientthat in each of its finite
number of steps, nondeterministically, either createsmaaigect or invokes a method
of an existing object. Each step of the universal clientlteso a rule. The universal



client can end up computing hundreds or thousands of digtitkes, which makes the
resulting DPI practically not useful. The challenge is to@mlize these rules to ob-
tain a compact DPI by exploiting similarity. Often, a pairrafes for the same method
are incomparable only because their sources and destigaie slightly dierent. For
example, in one rule for thelose method of theStatement class, the source config-
uration has closeResultSet objects but not an open one, and vice versa, another rule
might have an opeResultSet object but not closed ones. It makes sense, however, to
combine these two rules because tifee of the two rules are essentially the same: the
Statement object and its opeResultSet object are closed.

We have devised three heuristics that generalize a set lfrexirules into a smaller,
more general set. Owxtrapolationheuristic compares the configurations offelient
rules and deduces whether the configuration of a certaincariebe expanded by re-
peating part of it based on the repetitions observed in théiguarations of other rules.
Our mergeheuristic combines two rules that are based on similar nieithvacations
into one rule. Ouexception isolatiorheuristic combines two similar exception rules
into one. While merging is similar to the union of the two sylexception isolation is
closer to an intersection that isolates the root cause okegpgion. Our heuristics are
all grounded in the monotonicity property of our abstrachastics.

We have used our tool to compute the DPIs of Java packagesasu¢DBC (26
rules), HashSet (16 rules), and ArrayList (15 rules). THeswf these DPIs can be
traced to their documentation, as well as to the programmingrs discussed in on-
line discussion groups. Our tool more often than not congpthie expected number
of rules for these packages, but not all these rules are ttst gemeral ones. Our tool
never computes a rule that is not consistent with the behawiba package. This is an
indication that our heuristics aréfective.

The remainder of the paper is organized as follows. SeCtipre&ents an overview
of DPI and how it is computed in our tool. Sect[dn 3 preserasibtion of DPI formally.
Sectiorl 4 presents the algorithm that converts a heap coafign into a nested object
graph. Sectionl5 describes how our tool explores the betawia package and create
rules. Sectionld.]7, aid 8 describe our extrapolation, mgrgind exception isolations
heuristics, respectively. Sectigh 9 discusses our impfeation. Sectiol 10 presents
our experimental results. Sectiod 11 concludes our paper.

2 Overview: Dynamic Package Interface of JDBC

We now explain through an example how our tool works to compiuie DPI of a set
of classes that are part of Java Database Connectivity (JPBEkage (more precisely
the java.sql package).

2.1 JDBC

We consider four commonly-used classes of JDBC and theinadst TheDriver-
Manager class allows to create a new connection to a database byimydk static
getConnection method. The string parameter of the method specifies the dfpe
database, its address, and the needed credentials to #icd®Sonnection object



can serve multiplStatement objects, each of which can be used to read or change
the content of the database. TéweateStatement method of theConnection class
creates a neWwtatement object. SQL commands and queries are executed through the
execute andexecuteQuery methods of theStatement class. Both methods accept

a string argument that is an SQL statement. #kecuteQuery method returns a new
ResultSet object, which is a collection of rows retrieved from the datse; thenext
method can be used to traverse these ron®nhection, Statement, orResultSet
object isopeninitially, but can be closed via their corresponditippse methods. In-
voking theexecuteQuery method on &tatement object causes an op@8esultSet
object that referencesiit to be closed, while creating a rmmResultSet object. If an
object, or one of the objects that it references directlyamgitively, is closed, invoking

a nonclose method on it would raise an exception.

2.2 System Input

Besides the names of classes and the signatures of theipdsetbur tool receives
a set of abstraction predicates over the attributes of thesek. A predicate is either
scalar, defined over the simple, non-reference attributes of thesels, oreference
determining which objects of a class are related to whiclkabjof another class via a
certain reference attribute. For simplicity, we assumesdhgedicates are input by the
user, but standard techniques based on Boolean methodsfanehce-valued fields in
classes can be used to identify these predicates [14].

For example, in JDBC, th8tatement class has aactive attribute that deter-
mines whether it is open or not. This attribute is a unaryasqadedicate, but in general
a scalar predicate may read multiple fields from referendgedots. We also use the
applicationConnection field of the Statement class to define a reference predi-
cate that determines whidtatement object points to whicltonnection object. We
define similar scalar predicates for thennection andResultSet classes, which de-
termine whether their objects are open or closed. We alsoalafreference predicate
that determines whicResultSet objects reference whichtatement objects.

We require that the set of reference attributes do not creatycle when evalu-
ated over objects: i.e., when objects are considered asraodkthe true valuations of
reference attributes as directed edges, the resultindidsagcyclic. This is necessary
as some of our algorithms rely on computing the topologicdédng of heap-related
graphs. This requirement can be relaxed: it is possibleltwahe more general class
of the depth-bounded graphs [5].

2.3 DPIRules

The DPI of a package is a set nfles each of which represents a family of method
calls. A rule essentially specifies how a certain family otmoe calls change the shape
of their corresponding heaps. To obtain general yet conaigs, we have developed
the domain ofnested object grapht® represent such heaps. The nodes of a nested
object graph represent objects and its edges represergmeés between the objects.
The nodes and edges of the graph are labelled according iaghescalar and ref-
erence abstraction predicates, respectively. Furthernaosubgraph of a nested object



graph can be marked as repeatable, denoting that arbitrany- sets of objects simi-
lar to the objects in the subgraph can exist in the heap. Riepetan be nested, and
hence the name “nested object graph.” As an example, thechebject graph in Fig-
ure[d represents a configuration of heap consisting @mmection object with un-
bounded many closegitatement objects (possibly 0), each of which has unbounded
many closeesultSet objects (possibly 0). Repetitions are specified via “*” next
nodes or subgraphs. No@ which represents thResultSet objects, is marked re-
peatable in a nested manner: Each group of repeciabléel tSet objects is associated
with a Statement object, which itself is marked as repeatable via the “*”" nxthe
subgraph specified by the dotted line.

ConnectiofiA]
c.open

conn

;| StatemenB]
| —s.open

T stmty |

. | ResultS¢C]
—r_open

Fig. 1. A nested object graph.

Each rule has a source and a destination nested object gvhajui, correspond to
the heaps before and after the method call. A rule also hasraesand a destination
cast nested object grapkach of which is a nested object graph some of whose nodes
are labelled with roles, such aslleg parameterO, andnew that specify the roles of
objects in the method call. The cast nested object graphswéare meant to specify
the objects in the heap that are directly involved in the meétbtall, while the nested
object graphs of the rule specify the entire heffieaed by the method call. A rule
has anobject mappingrole mapping relation that specifies how, as a result of the
method call, the objects represented by the nodes of thesmasted object graph
(correspondingly, source cast nested object graph) amsfeaed to the nodes of the
destination nested object graph (correspondingly, detitin cast nested object graph).
The mapping in each of these relations are annotated wittipticity information that
specify how many of the objects in the source node of a tumeransferred to the
destination node of the tupleneor many Lastly, the object mapping and role mapping
relations of a rule are derived from disjoint sets of Javactsj i.e., considering the
underling method call related to a rule and the involved &djacts of the method call,
each of the object is mapped either by the object mappinglemnapping of the rule,
but not both.

As an example, Figufé 2 shows the rule that our system comfartexecuteQuery
method calls that raise no exceptions. The rule specifidsath@penResultSet is



closed when its correspondiSgatement object perform&xecuteQuery; instead, a
newResultSet object is created. Figufe 2[a) specifies the role mappingefule,
via dotted arrows that connect the nodes in the source cattchebject graph to the
nodes in the destination cast nested object graph. Theetadind “new” labels deter-
mine the callee and the newly created objects, respectiFeyre[ 2(b) specifies the
object mapping of the rule via dotted arrows that, for theesakbrevity, connect the
subgraphs of the nested object graphs. While in this rulebject mapping does not
specify any change in its corresponding objects, in gertbedlis not the case. Both
nested object graphs and cast nested object graphs of tnexhibit repetitions. In
the case of the nested object graphs in Fi§ure] 2(b), thestitieps are nested. The
left subgraph of the source nested object graph, for examgpeesents an arbitrary
number (unbounded, possibly 0) of clossxchtement objects, each of which can have
unbounded many closekksultSet objects. It is this ability to express unbounded
number of concrete heap configurations that allows us to céengeneral, yet concise
interface rules.

conn conn

o cdllee one
StatemerC] |~~~ "7 77> Statemerjt]
s.open s.open
« / stmt T stmt « / stmt T stmt
new
ResultS4E] ResultSéfF] | ¢ One | ResultSéK] ResultSét ]
—r.open r_open | -r-open r_open
\\‘*-\;\“ //,_/‘/'many
(a) Role mappings.
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.| StatemeriB] | : L StatemerjC] i .| StatemerH] | : T Statemerjt] :
—-s.open : L s.open i | ~s.open : o s.open
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(b) Object mappings. The arrows over a nested subgraph etetiwdt all nodes of its source are
mapped to their isomorphic nodes in the destination.

Fig. 2. The most general rule farxecuteQuery, with no exception.



While for a rule of a method call when it raises no exceptidins,more nodes and
repetition that its nested object graphs have and the l@sgerapping relations are the
more general the rule would be (because it can capture maceete method calls), for
a rule for a method call with an exception that is not the chséact, for such a rule
it is desirable to have the smallest rule that isolates thereason why the exception
is raised. As such, for an exception rule, we are only intetes its cast nested object
graphs and their corresponding role mapping relation Heunore, for exception rules,
we use a ternary logic that assigns an unknown value “*” toedjmate of an object
when the evaluation of the predicate does ritea whether the exception will be raised
or not. These characterizations of the most general rutes feethod call are inspired
by the monotonic semantics that we have developed for cbjgented programs. For
a safe method call, it should be possible to replicate itslt@s a context with more
objects. For a method call with an exception, there wouldexigt any context with
more object that can avoid the exception.

Figure3 shows the two rules that our tool computesitert method when it raises
the ResultSet not open exception. In Figur¢ 3(h), the “*” values for tteeopen
andc_openpredicates denote that regardless of whether the corrdsgpatatement
or connection objects of Resultset object are open or not, the method call over the
Resultset object raises the exception when it is closed. Fifure] 3(byvstthe case
when theResultset object is actually open, but its correspond@umnection object
is not. These two rules seem to point out succinctly the raose of the bug discussed
at an Apache forurd.

ConnectiofiU] one | ConnectiofiX]
7777777 =
c.open= c-open= * Connectiofd] | one | ConnectiofA]
—~c.open —c.open
conn conn
Tconn T conn
Statemerjty] one | Statemerjv] StatemedC] | one | StatemeriC]
sopen=x [ 7 s.open= * s.open s.open
T stmt T stmt T stmt T stmt
ResultSd7] one | ResultSd¢iv] ResultSdF] one | ResultS¢F]
[ [ T
—r.open callee| ~r-open r_open callee | -r.open
(a) CloseResultSet. (b) ClosedConnection.

Fig. 3. The two most general rules faext with ResultSet not open exception.

2.4 From a Method Call to a Rule

To compute the DPI of a package, our system explores the lmehiaf the package
through repeatedly invoking its methods and creating né@sr\ key step in comput-
ing a rule from a method call is to derive the necessary (c&stied object graphs from
different heaps. In this section, we describe this through amggbea

lhttps://issues.apache.org/jira/browse/DERBY- 5545
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Ouir first step in computing the nested object graph of a hetayptisn the heap into
a directed labelled graph by using the input scalar and eater predicates. We call
such a graph aeap graph Figure/4(d) shows a heap graph corresponding to 9 JDBC
objects. The graph is created using three scalar preditatsietermine whether a
Connection, Statement, orResultSet objectis open or not, together with two refer-
ence predicates that determine whiafatement objects reference whictonnection
objects, and whicResultSet objects reference whicttatement objects. Each node
of the graph is labelled with the name of its class, the evalna of its scalar predi-
cates, as well as a unique id that is enclosed inside a panaokéts. Each edge of the
graph is labelled with the name of its corresponding refezguredicate. Figure 4(b)
is another heap graph resulting from the invocation of mgttixecuteQuery on the
Java object that the node with id 4 in Fig{ire (a) represdtits.nodes with the same
identifiers in the two objects graphs represent the sameoljeats.

.| Connectiofil] |_
c.open
conn conn

conr?

[ Statemerjg] [ StatemerjB8] ] [ Statemerjt]

-s.open sopen s.open

stmt stm stmt stmt| stmt
ResultSg6] ResultS¢6) ResultSg#] ResultSg8] ResultSg0]
-r.open -r.open -r.open -r.open ropen
(a) Heap graph before method call.
| Connectiofl] |
c.open
5
conn|

Statemerjg] [Slatemeris] ] [Slatemerm] stmt ResullSe{tLO]]

conn conn

—~s.open sopen sopen r_open

stmt stmt stmt stmt| stmt

ResultSg6] ResultS46) ResultSg] ResultSg8] ResultS¢8]
—r_open —r_open —r_open —r_open —r_open

(b) Heap graph after method call.

Fig. 4. Two heap graphs for invocation ekecuteQuery on object 4.

The second step is to reduce a heap graph to a nested objelet §hee idea is that if
an object or a pattern for a set of interconnected objectsagpnore than once, then it
can be marked as repeatable. The reduction from a heap grapmested object graph
can be considered as a bisimulation reduction: Two nodebé&ap graph are equivalent
iff they have the same evaluations for their scalar predicates furthermore, they
mimic one another by reaching equivalent nodes followirgrtsimilar reference edges.
Figurel® shows two object graphs that our tool computes fhtap graphs in Figure
[. Repetition of a single node is denoted just by a “*” nexti®epetition of a subgraph
(not shown in this figure) is denoted by a dotted line arourdstibgraph together with
a“"; e.g., as in Figur¢ 2()). The nodes of the object graptesgraphically similar to



heap graphs except that they are shown by solid rectangtethay are labelled with
alphabetic ids. As examples of repetition, nade Figure[5(d) is the equivalent class
for the nodes 5, 6, and 7 in Figdre 4(a), and node Figureg[5(0) is the equivalent class
for the nodes 8 and 9 in Figure 5(b).

Connectiofia] Connectiofih]
con c-open conn con c-open conn
connT connT
Statemerjb] Statemeijt] Statemerjtl] Statemerft] Statemerff] Statemerjk]
—s.open s.open s.open —-s.open s.open s.open
T ¥ stmt T stmt T « « / stmt T stmt
ResultSde] ResultSdf] ResultSdg] ResultSdt] ResultSgm] ResultS¢n]
—r_open —r_open r.open —r.open —r_open r_open

(a) Nested object graph corresponding to (b) Nested object graph corresponding to
heap graph in Figuie 4{a). heap graph in Figuie 4{b).

Fig. 5. Two nested object graphs.

To compute a rule, first, the set of objects that are relevanbimputing the rule
are determined. These are used to create the nested olgpbsmf the rule. A subset
of these objects that are directly involved in the methotlar@ used to create the cast
nested object graphs of the rule, as well as its role mappingobject mapping of the
rule deals with the rest of objects that are not mapped byliésmapping.

2.5 Computation Stages

Creating a rule from a method call provides an abstract sgmtation of the method
call, but this abstraction is not nearly enough to createcaisat interface of the pack-
age: We could end up creating hundreds or thousands of Algsithm([T outlines the
main steps that our tool performs to compute the DPI of a ppekidext, we describe
these steps briefly. More details about each step appeats ¢orresponding section
that is mentioned inside comments in Algorithin 1.

Exploration StageLines[2 {7 specify the main steps in exploring the behavidw o
package. Secio 5 explains how a rule is computed from theugire of a method.
Using a repository, our tool keeps track of the rules thatfil@res. For each computed
rule, r, it checks whether there already exists a miléhatcovers t roughly meaning
that the object graphs, role graphs, object mapping, ardmalpping of can be all in

a way simulated by the corresponding elements.df such anr’ exists,r is redundant
and is not stored. The system continues its exploratioth amiaximum number of re-
dundant method invocations is encountered; e.g., in oweraxgnts with JDBC we set
this threshold to 1200. After this initial phase of expldmat to achieve a good coverage
of the behaviour of the package, our system also ensurealthpatssible method calls
on all objects of all rules in the repository are executedtaed corresponding rules, if



Algorithm 1: ComputeDPI
Input: A set of classes and methods and a set of abstraction preslica
Result A set of general rulefRules each of which represents a family of method calls
1 Rules= 0;
/* Section [4 and [§] */
while =Thresholddo
Pick a snapshot, a concrete Java object, execute one oftitedse
Computey, the corresponding rule of the method call;
if there is no f € Rules that “covers” rthen Rules= Rulesu {r};
end
Remove any € Rulesthat is “covered” by another rule;
/* End Section [4 and [5] . */
8 Extrapolate € Rulesusingr’ € Rules when possible; prune rules that are covered;by
/* Section [. */
Merge all pairs of mergeable rulesRules
/* Section [7. */
10 Isolate all pairs of similar exception rulesiRules
/* Section [8. */

N o o b~ wN
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non-redundant, are stored in the repository. Lastly, allirelant rules are pruned from
the repository.

Extrapolation Stageln order to obtain a DPI with a small number of rules, our tool
generalizes rules so that one generalized rule covers ntaaymiles. In the absence of
such general rules, many incomparable rules can be expmetdtored, making a DPI
too large to be of any practical use. Sometimes a rule coutd bavered many other
rules if certain nodes in its source g@addestination (cast) nested graphs were marked
as repeatable. Our tool usesextirapolation heuristito mark such nodes as repeatable
using the information in the graphs of other rules.

To identify opportunities for extrapolation, our tool lcokor deficientnodes in a
(cast) nested object graph: A node is deficient if it is notestpble and belongs to
a pair in one of the the two mapping relations of a rule, andatmer node in the
pair is repeatable. Our hypothesis is that a deficient nodetisepeatable because our
exploration has not managed to produce enough objects at &ythe. As an example,
if we consider the graphs in Figulé 5 as the correspondintpdesbject graphs of a
rule, thenf andg, which would be both mapped to node are deficient nodes. For a
deficient node, our system explores all other rules in itesépry checking for a source
or a destination object graph into which the correspondbijgai graph of the deficient
node can bembeddeccording to a subgraph isomorphism relation. If accordiing
the embedding relation the corresponding node of the definiede in the other graph
is repeatable, then the deficient node will be marked as taplesoo. In our example,
our tool can find an embedding relation that would allow ta@xtlate nodé, but it
cannot extrapolate nodg because in JDBC ea®tatement object cannot have more
than one opeResultSet object.



After the exploration stage, we apply our extrapolationrigtic to all rules. Once
all possible extrapolation have been performed, our toekkh for redundant rules
and removes them. While the extrapolation stage could pausigbstantial number of
rules, there could still exist a large number of rules in a;BRy., hundreds of rules
for JDBC. The reason is thatftérent rules for the same method might have explored
different instances of heaps that have incomparable sets atelgad there are various
exception cases. To further reduce the number of the rula®éfl, we have developed
two heuristics — thenergeheuristic and thexception isolatiorneuristic. Each of the
heuristics combines a set of related rules into one.

Merging For a pair of rules whose role mappings are similar and ov@n@phic
cast nested object graphs, the merge heuristic essetitiatigomputes their union and
then performs a reduction over the resulting source anda@isin object graphs of the
resulting rule. This reduction can be considered as a bisiton reduction except that
two nodes could be equivalent even if one has some incomigeseithat the other one
does not have. This is as opposed to the kind of reductiomthatescribed for reducing
heap graphs to object graphs earlier. This reduction isarsgirit ofdownward closed
graphs, where a nested object graph not only representsagilihstances arising from
the repetition of its repeatable subgraphs, but also reptesill heap instances arising
from its nested objectulgraphs — hence the term “downward closed”. The reduction
favours repetition over non-repetition when combiningesd-inally, the role mapping
and object mapping of the resulting rule are adjusted adogtd the reduction. As an
example, assuming that the nested object graphs in HigjuetoBdpto a rule, then node
c in Figure[5(@), for instance, would be mapped to n@de Figure[2(b) during the
merge operation.

Exception IsolationWhile the first merging heuristic corresponds to the unioa eét
of rules, the second heuristic corresponds to the intecseof a set of rules. For a pair
of rules whose role mappings are isomorphic when their sedistraction predicates
are not considered, this heuristic essentially combinesthiresponding nodes of the
cast nested object graphs of the two rules and merges eguivabdes via a ternary
logic. If the value of a predicate in two merged nodes afiedint, the unknown value,
denote by “*”, is chosen. Figuifg 3 shows the two rules thattoal computes for the
next method on @&Resultset object when it raises thResultSet not open ex-
ception. The “*” values for the_openandc_openpredicates denote that regardless of
whether the correspondiisgatement or Connection objects of a result set object are
open or not, the method call raises the exception when tidt st object is closed.

3 DPI Formally

Graph Definitions.A directed multigraph is a tuplé = (V, E, s t, 1), whereV is a set
of nodesE is a set of edges : E — V is theedge sourcéunction,t : E — V is the
edge destinatiofunction, and : E — Lg is theedge labellingthat assigns a string
label to each edge. Node € G.V is reachable froma nodeu; € G.V, or u; reaches
Uy, if a sequence of edges connagto u,. By ReachableFroifG, u), we denote the set



of all nodes that are reachable franplusu itself; similarly, byReachingT¢G, u), we
denote the set of all nodes that reaciplusu itself. By ReachingUndirectg@s, u), we
denote the set of all nodes that are reachable fromssuming that for eaghe G.E, we
adde to G.E such thats(€') = t(e), t(e) = s(€), andl(¢) = I(e) (i.e., assuming thab
is a undirected graph). We also extend these notation to withka set of nodes; e.g.,
ReachableFroitG, U) = |J,y ReachableFroff, u). By ReachableToFrof®, u), we
denote the set of all nodes that that reacplus those that are reached frorand those
that reachu: i.e., ReachableToFrof®, u) = ReachableFroifG, Reaching TG, u)). For
a set of nodedJ C G.V, by subgraplfG, U), theinduced subgraplof G overU is a
directed multigraph that is the sameG@sut its elements are restrictedltio

A graphH is subgraph isomorphito G if there exists two injective mappings :
H.V — G.V andke : H.E — G.E such that:

H = (| k(). [ k@), [ (@ k), ) (k@) k), () (). b))

veH.V ecH.E (ev)eH.s (ev)eH.t (eb)eH.l

is an induced subgraph &foverH’.V; we callk, andke, respectively, theodeandedge
isomorphism mappingf H to G. A graphH is graph isomorphido G if [H.V| = |G.V],
|H.E| = |G.E|, andH is subgraph isomorphic 3.

Two distinct nodesy; anduy, of G arecoincidingif for eache; € G.E such that
s(e1) = u; there exist®, € G.E such thats(e;) = up, t(ey) = t(e2), andl(er) = I(e),
and furthermore, vice versa: for each edge whose sourggtisere is a correspond-
ing edges whose sourcels and the two edges have the same target and label. Two
distinct nodesy; andup, of G aredownward consisterif they are coinciding, and
subgraptiG, ReachingT@G, u;)) andsubgraphG, ReachingT¢G, up)) are isomorphic.

Modelling Heap. A Java class is represented as a tufler (nameAtts Mc, My),
wherenameis thenameof the classAttsis its set ofattributes Mc is its set ofcreator
methods, each of which is either a constructor or a statihatethat returns a new
object, andMy, is its set ofmodifiersmethods, each of which can be invoked on an
object of the class, changing its attributes. An attribsteitherprimitive, meaning that
its type is a simple type, aeference meaning that its type is a class. A method can
have a set of formal parameters and a return value, each chvdain be a class. A
package®, is a set of classes.

A Java object, also calledancrete objectis represented s a tuple = (id, clasg,
whereid is its uniqueobject idandclassis its corresponding class. A concrete object,
canreachanother concrete objed,, if by following a sequence of reference attributes
starting fromo, o’ is reached. Asnapshatsp, is a set of concrete objects.rale is a
tuplel = (o,rname, whereo is a concrete object anthameis therole name which
is a string representing the responsibility of the objea method call, e.g., “callee”,
“return”, “new”, or “paraml”. A method call is representesl aninvocation which
is a tuple,invoc = (m, e, sp;, Spy, Role3, wherem is the methode is the name of an
exception if the method call raises the exception and emjbigravise sp; is thesource
snapshatwhich is the snapshot before the method cdl,is thedestination snapshpt
which is the snapshot after the method call, &udesis a set of roles corresponding to
the method call.



A scalar predicateover an object is an abstraction predicate over its primmigit-
tributes and, possibly, the primitive attributes of theealt$ that are reachable from it.
A reference predicatis an abstraction predicate oves@urceobject, adestinatiorob-
ject, and a reference attribute of the source object. ltseve true if the source object
references the destination object through its referertdbuate, and is false otherwise.
These predicates are defined over the classes of a packageeaedaluated with re-
spect to the objects of a snapshot. We assume that theseaiestre defined such that
they can always be evaluated: i.e., it is never the case thedlar predicate cannot be
evaluated because a certain object that is assumed to bwldedés not reachable.

An abstract objects a tupleao = (o, Pred9 whereo is a concrete object aritreds
is the evaluation of its corresponding scalar predicatse.dbstract objectsoandad,
areequivalent denoted byao = ad, if their corresponding predicates have the same
valuations.

A heap graphs a directed, acyclic multigraphg = (V, E, s, t,1), whose nodes are
abstract objects and whose edges are labelled by referttribatas. Given a snapshot
spand a set of scalar and reference predicatesriderlying heap grapbf sp, denoted
by hg(sp), is a heap graph whose nodes are the corresponding absjacts of the
concrete objects ispand whose edges correspond to the true valuations of thenete
predicates over the objectssp the labels of the edges correspond to the names of their
corresponding reference attributes. By construction ofiaterlying heap graph, no
two edges with the same source node have the same label. Weeatsat the reference
predicates are defined such that for any snapshdig(sp) is acyclic.

A nested abstract objed$ a tuplenao = (id, ao, pl, nj), whereid is its uniqueid,
ao is its representativeabstract objectpl is its plural flag, andnj is its injective flag.
If either pl or nj is true, themaorepresents more than one equivalent abstract objects,
otherwisenaois singular and represents a single abstract object. These two flags are
used to denote the two kinds of equivalent abstract objeatst nested abstract object
can represent. Intuitively, ihiaapl is true, thenmao represents a group of equivalent
abstract objects, representedrtaoao, that point to the same abstract objects via their
same reference attributes. Intuitivelynaan;j is true, themaorepresents a group of
equivalent abstract objects, representechbgao, that pairwise disagree at least on
the destination of one of their reference attributes. Byl@mato entity relationship
modelling, the plural flag represents a many-to-one relatigp and the injective flag
representsnanyone-to-one relationships. A nested abstract ohjecy is equivalent
to a nested abstract objetag,, denoted bynao, = nag, if: (i) nag.ao = nag.ao,
(i) nao.pl = naoy.pl, and (i) nao.nj = naoy.nj. A nested abstract objeofo, is
smallerthan nested abstract objetag,, denoted bynag < nao, if: (i) nag.ao =
nag.ao, and (ii) neithemaa.pl nornao;.nj is true, but eithenag,.pl or nao;.nj is true.
A nested abstract objenag is coveredby a nested abstract objetag, denoted by
nag < nao, if eithernaog = nag or naog < nag. Given a pair of nested abstract
objectsnag andnag, therenestingof nag, with nag, denoted byenestnao,, nag),
modifiesnag, such thahaa.pl = nag.pl andnao;.nj = nag.n;j.

A nested object grapts a directed, acyclic graphg = (V, E, s t,1), whose nodes

are nested abstract objects and whose edges are labelledeognce attributes. We
use nested object graphs as a means to generalize heap.®gpthe definition of



this generalization, which will be presented in Secfibnhgre is not more than one
edge with the same label between two nodes of a nested olggui;calso, for each
edge faa, na) of a nested object graph if bottao;.pl andnag,.nj are false, then it
should be the case that batho..pl andnag.nj are also false. Aested object graph
ng, is coveredby a nested object grapig,, denoted byng, < ng,, if: (i) ng, is sub-
graph isomorphic tang, when the two graphs are considered as simple graphs whose
nodes have unique labels and whose edges are the same agthal,cand (ii) for
any pair of isomorphic nodesiao € ng;.V andnag € ng,.V, nao, < nag. The
correspondingnested object graph of a heap gramy denoted byhtonhg), is the
same a$g except that each nodao € hg.V, is replaced with a nested abstract object
nao = (newid ao, false false), wherenewidis a unique id.

A cast nested object gragh a tuplecng = (V, E,s t,1,u), where ¥/,E, s, t,1) is a
nested object graph ands arole labellingfunction that relates ele, derived from an
invocation, to a nested abstract object. This function issugjective as it only labels
the objects that are directly labelled by the roles of theesponding invocation of the
graph.

Rules. A mappingis a tuplem = (naoy, nag, u) that relates aourcenested abstract
objectnaq to adestinatiomested abstract objecho, via amultiplicity valueu, which
is eitheroneor many A “one” multiplicity means that exactly one abstract obhjexpre-
sented bynao.aois mapped to one abstract object representeddny.ao. A “many”
multiplicity means more than one such abstract objects agped. A singular source
nested abstract object can be mapped only via a one mulijpBamilarly, a destination
nested abstract object can be mapped to via a one multypkcinappingmis covered
by a mappingx, denoted byn < nY if: (i) m.nag < m'.naq, (i) mnag < M'.nao,
and (iii) it is not the case tha.u = many andn’.u = one.

A ruleis atupler = (m, e ng ng, cngcnd, p, q), where:

— mis the corresponding method of the rule;

— eis either the name of an exception of the method or is empty;

— ngandng are thesourceanddestinationnested object graphs of the rule, respec-
tively;

— chgandcng are thesourceanddestinationcast nested object graphs of the rule,
respectively;

— p € ngV x ng.V x {one many is theobject mappingelation, which is a set of
mappings such that any nodeng.V or in ng.V is part of at least one mapping;
and

— g ccngV — (cnd.V x {one many) is therole mappingelation, which is a set of
mappings such that any nodedngV or in cng.V is part of at least one mapping,
except for a node whose role is “new” or “return”.

A dynamic package interfad®PlI) is a set of rules.

4 From Heap Graphs to Nested Object Graphs

In Algorithm([dl, a key step is to compute a rule from a methodaation (lind4). The
challenging aspect of this step is how to compute the negegsaphs of a rule from



the corresponding heap graphs corresponding to the hearelsid the heap after the
method invocation. Given a heap graghansfertoNested in Algorithm[2 computes
a nested object graph that is structurally a minimizatiothef heap graph, similar to
the bisimulation reduction of a transition system or DFA imization. The diference,
however, is that the resulting nested object graph embadsesinformation about the
repetition patterns in the heap graph. Next, we descrilseallyiorithm in more detail.

Algorithm 2: TransfertoNested Algorithm.
Input: A heap graphhg
Result A nested object grapimg
ng = htor(hg);
orderedSet TopologicalSort(ng);
foreach naose orderedSet visited in the topological sort ordsw
partition = FindSimilars(ng, naos;
ng = Lump(ng, partition);
end
coarsestPartition= CoarsestPartition(ng, ng.V);
return LumpFinal(ng, coarsestPartitioly
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In the first step of the algorithm, the input heap graph is eoted to its correspond-
ing nested object graph (lié 1). In the second step, thesoftithe resulting nested
object graph are sorted according to a topological sortrdite puts diferent sets of
incomparable nodes in their corresponding equivalense et result is a sequence of
sets of nodes, with the nodes with no incoming edges in thesétsand the nodes with
no outgoing edges in the last set; it is storedideredSe(line[2). The next step is to
traverse through these sets and reduce each by combiningith#ar nodes (the loop
on line[3). FunctiorFindSimilars, on line[4, finds the set of nested abstract objects that
can be summarized into one; functibamp, on line[®, lumps the graph by replacing
such nodes with one representative node. Next, we desbeise two functions.

FunctionFindSimilars takes a set of nested abstract objentsys and partitions
them to a set of sets of nested abstract objects each of whimiaximal set of pair-
wise downward consistent nodes, such that for each pair @¢$10; andu,, in the
set, subgrapling ReachingTéng u;)) and subgrapling ReachingTéng u,)) are iso-
morphic via equivalent nested abstract objects. Eaclblsekl € partition, e.g., the
set of closedkesultSet objects pointing to the sanBtatement object, represents a
set of concrete objects that are pointing to the same canolgects (because nodes
are processed in the topological sort order and becausetiesinblock are pairwise
coinciding) and are pointed by similar objects (becausi twgresponding downward
subgraphs are isomorphic). Functibnmp takes ablock; € partition and removes
all nodes otloclk together with their corresponding edges framm except one node,
which is randomly chosen and we refer toramep. If [block| > 1, ng,ep.pl is set to
true, indicating thahg,, represents “many” objects.

After the loop on lindB terminates, a summarized nestedoblgj@ph is obtained.
However, this graph can be further summarized. As an exariaples consider a set of



closedResultSet concrete objects that point to the same concsetecement object.
The operations in the loop on lifé 3 lumps s®&fsultSet concrete objects into one,
but if there are two such sets BésultSet concrete objects that point to twofidir-
ent concretsStatement objects, the result would be two lump@dsultSet nested
abstract objects that point to the same lumpedtement nested abstract object. The
two ResultSet nested abstract objects, however, should also be lumpeHegpsre
essentially the same and already point to the séa@ement object.

FunctionCoarsestPartition, on line[7, identifies opportunities for such lumpings. It
is essentially a partition refinement algorithm, akin to Difimization or bisimula-
tion reduction algorithms, that starts with an initial p@onh of the set of all nodes afg
and refines this partition until the partition cannot befiertrefined. The initial parti-
tion consists of the set of sets of equivalent nested aligibgects. A blockplock, of
a partition,partition,, can be refined if: (i) some of the nodeshiock, have incoming
edges with a certain label, while the others do not have soobniing edges; or (ii)
some of the nodes iblock2 have outgoing edges with a certain label to another block,
while the others do not have such outgoing edges. In eithsr, caich a block is parti-
tioned into two blocks. The rational for this refinement iglistinguish between nested
abstract objects that are pointed to or point tedfent types of nested abstract objects.
For example, the refinement distinguishes betwstertement objects that are pointed
by openResultSet objects and those that are not. Finally, functiempFinal lumps
the nested object graphg, according to the partitions abarsestPartitionand returns
the result (lin€B). FunctiobumpFinal is the same alsump, except that when choosing
a representative nested abstract objeat.p, of a block,block e coarsestPartitionif
[block| > 1 andnagep.pl = falsg thennagep.nj will be marked as true. Settingep.nj
to true models the many one-to-one relationship; e.g. used to model the case when
many open individuakesultSet objects point to their correspondiSgatement ob-
jects.

Algorithm TransfertoNested returns also a mapping that specifies how the node of
hgare mapped to the nodesu.

Nesting LevelLastly, we describe an alternative method to representekgng struc-
ture of a nested object graph; we have used this method irooual abstract semantics
for OO programs[5]. This method naturally describesrthsting levebf each node of
a graph via a number, which can be either zero or a positivdoeurithe nesting level
of zero for a node denotes no repetition. A positive nestavgllfor a node specifies
repetition, but the scope of repetition also depends on #s¢ing level of the neigh-
bouring nodes of the node. Adjacent nodes with the samengestiel that is greater
than zero together denote the repetition of the subgraphhbga represent. Repetition
can be nested through nodes that have edges to nodes wittektsg) levels. Based on
the observation that the nesting level of a source node #mah edge to destination
node cannot be less than the nesting level of the destinatide, we have developed
a simple algorithm to assign nesting levels to the nodes stiedeobject graph. First,
we sort the nodes of the nodes of the graph according to thesiiegopological sort
order in a list: i.e., the list starts with the nodes with nagming edges and ends with
the nodes with no incoming edges. We then process the notles list as follows. For
a nested abstract objectag let maxbe the maximum nesting level of the immediate



nodes that it can reach with its outgoing edgesdtpl is true, then its nesting level
would bemax+ 1, if naanj is true, then it isnax if both naapl andnaanj are false
then it 0. It can be shown that this assignment of nestingdesaptures the intended
repetition structure of a nested object graph. As an exartipkescheme assigns 0, 1,
and 2 to the nodea, B, C of the nested object graph in Figlide 1, respectively.

5 Exploration Stage

Algorithm[3 shows how our tool explores the behaviour of akage, using a notion of
universal client The universal client consists of a while loop (l[de 3) thahtinues to
execute the methods of the classes of a package until a maximmber of redundant
rules are visited. The exploration is random in that the metiat is to be executed,
the snapshot on which the method will be executed, the caldgect, and the actual
parameters are all chosen randomly. When a new exploredoah@tkiocation is not
coveredby any of the already-explored rulesRules(line[14), it is added t&Rules the
new snapshot created as a result of the method call is alsladdhe set of already-
explored snapshotSps The formal definition of rule coverage is presented at thie en
of this section, but intuitively, a ruleis covered by a rule’, if each of the elements of
r has a corresponding element in the elements.of

After an initial exploration of a package, our tammpletest exploration by exe-
cuting all modifier methods, on all distinct objects of alapshots. But before doing
that it prunes all redundant rules Rulegline[28). FunctiorCompletifyRules, on line
[28, takes the set of already-generated ruRades and for eachr € Rulesexecutes all
possible modifier method calls over the corresponding @iaasbjects of the nested
abstract objects af.ng andr.ng. (Note that a nested abstract object is related to an
abstract object, which in turn is related to a concrete dlgiad a snapshot.) For each
such invocation, if a new non-redundant rule is resulted,added to th&ules As ob-
served by other$[3], trying to complete what has already lesplored could improve
the coverage of exploration. At the end, the set of ruRades is returned after being
pruned of redundant rules.

Next, we describe the key steps of this algorithm in moreideta

5.1 Creating A Rule

The call to functionCreateRule on line[11 transforms an input method invocation,
invog to a generalized rule, The first two elements a@f r.mandr.e, are simplyinvocm
andinvoce, respectively. We next describe how other elementsasé computed.

To compute the source and destination nested object gréphtheTransfertoNested
algorithm in Algorithn2 is employed. In our analysis, theisze and destination nested
object graphs of a rule are meant to inclukeobjects that are involved in the corre-
sponding method call of the rule, as well as those objectsthdd be possiblyféected
by the method call. Our hypothesis is that these objects eaharacterized as the ones
that could be reachable from or could reach to the objedts/imcRoles plus the ones
that reach such objects. At below, layos we denote the domain dafivocRoles The
nested object graphs are then:



Algorithm 3: Explore Algorithm.

1
2

Input: A set of classes, their methods together with a set of sealdureference
predicates over the classes

Result An distinct set of initial rules

Rules= 0;

Sps= {spy}, wheresp, is empty;

3 while redundants< maxRedundardo

4
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Pickm, a method of a clags randomly;
Pickspe Spsrandomly;
Pick params the actual object parameters farandomly fromsp
if me C.My then
| Pick a callee objeccajiee, from sprandomly;
end
Executem over og,ee Usingparams and then derive invocation tupievoc
r = CreateRule(invoo);
redundantFlag= false
foreachr’ € Rulesdo
if r <r’then
redundantst+ +;
redundantFlag= true;
break;
end
nd
f —redundantFlaghen
Rules= Rulesu {r};
Sps= Spsu {invocspy};

= 0D

end

end

Rules= PruneRedundants(Ruley;
Rules= CompletifyRules(Ruley;
return PruneRedundants(Ruley;




r.ng = TransfertoNested(hg(ReachingUndirectgghvocsps, raos )); and

r.ng = TransfertoNested(hg(ReachingUndirectehvocspy, raos )).

(We can useaosobjects both for computing the source and destination desistract
object graphs because the unique ids of objects identify thelifferent snapshots.)

In our analysis, the source and destination cast nestethabebject graphs of a
rule are meant to include the objects that are directly vein the method call. These
objects are the one that are reachable from or reach to tleetekijpraos As such,
the nested object graph components.ofig andr.cng are computed using a varia-
tion of TransfertoNested that ensures that each elementadsbelongs to a singleton
partition, otherwise, the dependencies between variojgststhat are cast will be lost
through lumping of similar nodes. This can be achieved byifgiod) the FindSimilars
andCoarsestPartition functions each to accept a parameter that specifies the tizates
each requires its own block. The role labelling componehtsomg andr.cng can be
derived frominvocRolesby using the mapping information generated by Algorithm
TransfertoNested that relates concrete objects to nested abstract objects.

Lastly, r.p is computed by keeping track of how abstract objects thaeweed to
creater.ngandr.ng, but were not used in the creationraéngandr.cng, are mapped
from a source nested abstract object to a destination nakgtdct object. The compu-
tation ofr.q is similar to the computation afp, considering only the abstract objects
that were used to createngandr.cng.

Lastly, we present the formal definition of covering relatlietween two rules.

Rule ComparisorRuler is coveredby ruler’, denoted by </, if:

—rm=r’.m,

—re=r'.g

— r.ng < r’.ng, according to a node subgraph isomorphism mappipg r.ng.v —
r'.ngV,

— r.ng < r’.ng, according to a node subgraph isomorphism mapping r.ng.v —
r'.ng.V,

— (r.cngV,r.cngE, r.cngs, r.cngt, r.cngl) <
(r'.cngV,r’.cngE,r’.cngs, r’.cngt, r’.cngl), according to a node subgraph iso-
morphism mapping; C r.cngV — r’.cngV,

— (r.eng.V,r.cngd.E,r.eng.sr.cng.t,r.cng.l) <
(r'.cnd.V,r’.cnd.E,r’.cng.s,r’.cnd.t, r’.cnd.l), according to a node subgraph iso-
morphism mapping, C r.cnd.V — r’.cnd.V,

— foranym e r.p, there exists a mapping’ € r’.p such that:

e (mnaqg, nt.naq) € Ny,
e (mnag, n’.na®) € Ny, and
em=<m;
— for anym e r.q, there exists a mapping’ € r’.q such that:
e (mnaqg, nt.naq) € Ry,

(m.nag, m.nag) € Ry,

m=<n,

r.cngu-t(mnao) = r’.cngu~i(nv.nao,), and

r.ng.u"i(mnag) = r’.ng.u"(n7.nag).



6 A Heuiristic for Rule Generalization

The result of running th&xplore in Algorithm[3 is a set of rules, each of which is a
generalization of a particular method call. While such aegalization may be able to
identify repetition pattern over some parts of the heapaiy mot identify repetition for
other parts. One way to further generalize a rule is to trgxtapolatethe nodes in
its nested object graphs and cast nested object graph$iairigular nodes in these
graphs, try to change thgit andnj properties to true, whenever it is possible.

We have developed a heuristic for extrapolating the nodeseofraphs in a rule.
The extrapolation opportunities are identified by checkhganomalies in the object
mapping and role mapping of a rule: if one element of a mapjsrsingleton but not
the other, then our heuristic tries to find another rule tlaatdnsimilar, but more general
version of this mapping, in which case the graphs in the vaigiule can be generalized
based on the nodes in the graphs of the other rule. Next, weideour heuristic for
the case where we deal with the nested object graphs of anmdlgsaobject mapping.
The heuristic for cast nested object graphs of a rule is amil

6.1 Extrapolation of Deficit Nested Abstract Objects

Given a ruler, a nested abstract objectaq is deficit if naois singular, and there
exists a mappingn € r.p such that: eithem.nag, = naoandm.nag, is not singular,
or mnag = naoandm.naq is not singular. For example, if.nag is a singular,
openResultSet object, whilem.nag is a non-singular closeRksultSet object, then
m.nao, is deficit.

Our heuristic is based on the hypothesis that a nested abshjgct,naq is deficit
as a result of the universal client having not explored aeriae cases of a package. If
there is a nested object graph of another rule, either itscsaur destination nested ob-
ject graph, that has a nod®ao,, such thahaaao = nao,.ao andnaq, is not singular,
then our hypothesis could be somewhat validated: thereiishesent reason faraoto
be singular; it is perhaps singular because offiiisient exploration. However, this ob-
servation does not take into account thabandnao, could belong to two nested object
graphs with diferent structures. A nested abstract object may have to lyesorgular
in one structure, but need not be singular in another strecithus, the extrapolation
of the deficit nested abstract objecg, is allowed only if

subgrapliG, ReachableToFro(®, nag) < subgrapltH, ReachableToFrof, nag)),

whereG andH are the nested object graphs thabandnag, belong to, respectively.
The extrapolation of a node in a graph, however, should bsis@mt in that the
resulting graph should not have an edge whose destinatiansimaller nested ob-
ject graph than its source; e.g., a singular opesultSet object should not point
to a non-singular opeftatement object. As such, in our heuristic, we extrapolate
a group of objects together. Considering the node isomsnpiappingk,, between
the nodes of the above subgraphs, for eawn{, naay) € k,, we extrapolatenaas



via renesfnaas, naay). In our experience, we have observed that this collective e
trapolation always precludes creating any ill-formed edsibject graph, although the
collective extrapolation only applies to a subset of theasoofG andH.

This heuristic is also applied to the nodes of cast nestetleatb®bject graphs of a
rule by identifying the deficit nodes in the role mappingsha tule. The only dference
is that a node that is labelled by the role labelling functidrits corresponding cast
nested object graph cannot be extrapolated. Those objecisheerently singular.

In our tool, we apply the extrapolation heuristic to all sii@ an arbitrary order.
After this step, we also check one more time to see wheth#érduextrapolation can
be performed using the elements of the rules that have gifezeh extrapolated.

6.2 Adjusting the Multiplicity of a Mapping

One source of inconsistency that could arise as a resultgyiag our heuristic would
be the creation of a mapping whose multiplicity is “one” vehils source or destination
nested abstract object has been extrapolated from a sinwedted abstract object to a
non-singular one. We can fix a certain class of such incarsigts by changing these
multiplicities to “many”; namely, if both the source and thestination of a mapping
m are non-singular anch.u = one andm.naq; is not the source of any other mapping,
thenm.uis set tomany For other cases, it is not certain that by changimgto “many”,
we will not change the semantics of the rule. In our expegsnthe above fix captures
almost all the needed adjustments.

7 Rule Merging

The extrapolation heuristic can result in more generak;uddich in turn render many
exploredrules as redundant. However, there could stétexay distinct rules for a DPI.
The merging of a pair of rules results a new rule that can bsidered as a summary
of the union of the two rules. Thus, the two rules are repladgéitone. The rationale to
allow for such a merging is rooted in the abstract semarttiasvwwe have developed for
OO programs ovewell-structured transition systenfS]: Given a method invocation
over a nested object graph, it can be replicated levger nested object graph, where
the notion of “larger” is similar to the covering relationtveen nested object graphsin
this paper. Based on this property, in our merging algorjtiverely on the assumption
that by taking a ruler,, and adding objects of a similar ruké, tor, we only generalize
further, but do notintroduce a behaviour that is not obdaeia the package. Of course,
this assumption does not always hold in a dynamic analysispbour experiences, it
always held.

Two rules,r andr’, aremergeable denoted bymergeablér, r’), if the following
conditions hold:

—rm=r'.m,
—re=r’.e and
— roleconsistertt, r’),

where two rulest andr’, arerole consistentdenoted byoleconsister(t, r’), if:



— subgraplfr.cng ReachableFroifi.cng ranggr.cngu))) and
subgraplfr.cng ReachableFroifi.cng ranggr.cngu))) are isomorphic according
to a node graph isomorphism mappiMy <€ r.cngV — r’.cngV, in which if
(naq, na) € My, thennag,.ao = nag.ag;
— subgraplfr.cnd, ReachableFroifi.cnd, ranggr.cng.u))) and
subgraplfr.cnd, ReachableFroifi.cngd, ranggr.cnd.u))) are isomorphic accord-
ing to a node graph isomorphism mappivg C r.cnd.V — r’.cnd.V, in which if
(naq, nag) € My, thennag,.ao = nag.ac; and
— For any role mapping € r.q such tham.nao, € ranggr.cngu), there exists a role
mappingnY € r’.q such that:
e (mnag, nY.naq) € My;
e (Mmnag, nY.nag) € My; and
e r.gi(mnaq) = r’.q }(n.naq); i.e., the two nodes have the same role label.
— And similarly, for anym’.nag, € rangg(r’.cngu), there exists a matching role map-
pingm e r.q.

Essentially, two rules are mergeable if they are based oitesimvocations. The role
consistency criteria checks the similarity of objects thate role labels and ignores
the rest of nested abstract objects in the cast nested agats of the two rules that
are likely not to be common in all related invocations. Basadur observation that
method calls can be generalized odewnward-closetieaps[[5], we characterize these
non-consequential nested abstract objects as those thatalee a rule “larger” but not
essentially dierent.

Algorithm[4 shows the algorithm that merges all mergeablesrof a given set
of rules. When a pair of rules are merged, the first rule isaegd with the result of
merging (lind6), while the second is removed from the redink[7). The key function
is Merge, which merges two rules into one.

Algorithm 4: MergeAll Algorithm.

Input: A set of rulesRules

Result A set of merged ruleRRules
1 copyofRules= Rules

2 foreachr e copyofRuleslo

3 if r ¢ Rulesthen continug

4 foreachr’ € Rules such that'r= r do
5 if mergeablér,r’) then
6

;

8

9

r = Merge(r,r’);
Rules= Rules- {r'};
end

end
10 end
11 return Rules

The Merge algorithm itself is essentially based on two algorithmg t@mbine a
pair of cast nested object grapierger algorithm) and nested object grapMefgey



algorithm). Before describintylerge, we first describévlerger; Mergey is similar to
Mergerg.

Algorithm[8 presents thilerger algorithm. It accepts a pair of cast nested object
graphsgcngandcngd, together with an isomorphism mappiMjresulting from check-
ing that the two graphs are mergeable, and creates a newesastiobject graplengs.
The steps between lingk 1 dnd 14 compute the union of nodesiged otngandcng,
while removing those nodes ofd that has an isomorphic nodeéng In the process
of removing these nodes, the corresponding nodengs, is renested. The result is a
nested object graph whose elements are storedgnOnce these nodes and edges are
computed, a coarsest partition of these nodes is computésicdmputation is the same
as the computation on liié 7 in Algorithmh 2, except that twde®can belong to the
same block of partition even if their incoming edges do notamaThis partitioning
results in a reduction of the graph that embodies the seosaatidownward-closed
heaps([5]. Based on this partition, functiommpMergeds, on line[I®, reduces the cor-
responding nested object graphcofy,. This algorithm is similar t&.umpFinal used in
line[d of Algorithm[2, except that when choosing a repredamaested abstract object
for a block, a non-singular node is chosen if there existsniy singular objects exist,
then the representative will be singular. Lastly, basecderpgrtition, the role labelling
of cngy, needs to be adjusted (libel17).

Applying Mergeg to a pair of graphs could create an inconsistent graph that ha
edges whose sources are singular but their destinatiomogrénis happens because of
renesting that is done in the process. For such edges, wieichnarely observed in our
experiences, there is a function that adjust their sourdesito have the sanpéandnj
properties as their destinations.

FunctionMergey is the same aMerger except that it does not accept as an
input, and that the union of the corresponding nested objegihs ofcngandcnd is
simply the union of their elements.

Algorithm[d presents functionlerge, which usesMergey andMergeg to merge a
pair of rules,r andr’. Lines[2 and B combine the source cast nested object graphs of
r andr’. FunctionCombineMappings, on line[4, first computes the union of the role
mappings of the two rules, and then adjusts them to the nddke oast abstract object
graphs ofr,; L1 is a mapping that specifies how each node of the cast nestedtobj
graphs of the original rules are mapped to the nodes of thieeated object graphs of
rm. The next three lines are similar, but deal with nested algjeaphs.

FunctionCombineMappings may come across two maps between the same pair of
nested object graphs, with one haviogeand one withmanymultiplicity. In such a
case, only the mapping with thmanymultiplicity is kept. Lastly, if, a nested abstract
object is the destination of two maps, it cannot be singgianjlarly, a singular nested
abstract object cannot be the sole destination of a non#gingested abstract object,
neither the multiplicity of such a mapping candr@e These anomalies are all adjusted.

8 Exception Isolation

While theMergeAll algorithm is éfective in deriving the most general rules of a pack-
age for the method calls that do not raise exceptions, it isuedl-suited for method



Algorithm 5: Merger Algorithm.

Input: A pair of cast nested object grapltsigandcng, and an isomorphism mapping,
M c cngV x cng.V
Result A new nested object grapbng,, which is a summary of the input graphs
cngn.V =r.Vur.V - ranggM);
foreach (naoy, nae) € M do
| cngy.V = cngy.V U {renestnao;, nao)};
end
cngn.E = cngE; cng,.s=cngs cng,.t = cngt;
foreache € cng.E do
if cng.s(e) € ranggM) A cnd.t(e) € ranggM) then
| continue;
end
cngn.E = cngn.E U {e};
if cng.s(€) € ranggM) then cngy.s = cngn.sU {(e, M~1(cng .s(e))));
if cng.t(e) e ranggM) then cngy.t = cng,.t U {(e, M~(cng .t(e)))};
end
cngn.l =cnglucng.l;
partition = CoarsestPartitionUpward(cngy, cngy.V);
cng, = LumpMergeds(cngy,, partition);
cngn.U = AdjustRoleLabels(r.u, CoarsestPartitionUpward);
return cngmy;
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Algorithm 6: Merge Algorithm.

Input: A pair of mergeable rules,andr’

Result A new rule,rp,, that is the merge of input rules
'm-Mm=r.mandrp.e=r.g

rm.cNg= Mergeg(r.cng r’.cng My);

rm.cng = Mergeg(r.cnd,r’.cng, My);

rm.q = CombineMappings(r.p,r’.p, L1);

rm.ng = Mergey(r.ng, r’.ng);

rm.ng = Mergey(r.ng,r’.ng);

r'm.p = CombineMappings(r.g,r’.q, Lo);

return rpy;
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calls with exceptions. The reason is twofold. First, oftemew an exception is raised
the states of objects of a rule do not change. Thus adding noafes to the cast nested
object graphs and nested object graphs of a rule, througginggerdoes not make the
rule any more general. Second, for rules with exceptionsgiften not important to de-
termine the fates of objectdter the method call, but rather it is important to determine
what was especial about the states of objbefsrethe method call.

We have developed a method for summarizing rules with eiaeptcalledexcep-
tion isolation which, similar to the merge process in the previous secttombines
a set of related rules into one. Furthermore, it addresseatibve two considerations.
First, we only consider the cast nested object graphs ofilee when isolating a certain
exception. Second, we use a three-value logic, including, tialse, and an unknown
value “*”, that can combine the objects of the same classtthe¢ diterent scalar pred-
icate values. It works as follows. For a pair of isomorphifects identified in a a pair of
cast nested object graphs, if a certain predicate Heeréeint values for the two objects,
the value of the predicate is set to “*”. The unknown valuesgdedicates isolate the
root cause of when a method can raise a certain exceptiom \8fezking for isomor-
phism, however, we need to make sure that an obfjed, will not be paired with an
object whose predicates is not the sameas while there indeed exists another object
whose predicates conform with the onesiat e.g., an opeResultSet object should
not be matched with a clos@&#sultSet if it can be matched with an open one. Thus,
to avoid premature combination of objects witlffeient predicates, we first apply the
merge algorithm on rules with exceptions, in order to havgdagraphs that decrease
the chance of combining objects prematurely.

Our three-valued combination scheme, however, could sorastcreate too coarse
an isolation for a set of rules. For example, if we furthefasathe rules in Figurie 3(a)
and Figur¢ 3(B) by combining them into one, then the resyitite would prescribe that
thenext method always raises an exception. To avoid such overtiso& our isolation
algorithm can be tuned to pair two callee objects of two ragssomorphic only if
they are equivalent. Our tool has an option that specifieshveneallee objects can be
combined in three-value logic or not. One way to decide wéaeth apply three-value
combination to callee objects or not, is to first allow thigeyof combination, and check
whether an overlap happens. If it does, then try the isolgpimcess without three-
value combination of callee objects, otherwise acceptéialting set of rules. While
for JDBC package, we chose not to combine the pairs of isoniowgallee objects
in the three-value logic, for the Array-lterator package, ehose to combine them in
three-value logic.

9 System

Figure[® shows the high-level architecture of our systemiclviis implemented in
Java.The arrow between the components of the system spieeifygh-level input com-
municated between these components.

The Package Abstractiocomponent provides the abstract information about the
package that our tool uses to compute the DPI of the packageal programmatic
way to provide an input to our system. It consists of a set a§s#s whose methods



specify the classes of the package under study, the mettiddese classes, and the
valuations of the abstraction predicates of the objecte@prckage. These classes ba-
sically use Java reflection to present the aforementiorfediration about the package
under study. Furthermore, there are classes that providadtual parameters for the
method calls of the universal client; these actual pararséi@/e random values. While
we manually create these classes, but many of them can bmatitally generated
based on inputs from a user; e.g., the names of chosen ¢latstisaction predicates
over their attributes, etc.

Package Package package Explored
. Heuristics
Abstraction :> Explorer :>
Information Rules

Fig. 6. The main components of the system.

ThePackage Explorecomponent essentially implements our exploration alporit
described in Sectiopnl 5. To implement a notion of snapshotsetabjects can be ac-
cessed throughout the exploration, we need to be able tinabtzopy of an object of
a snapshot on demand. To achieve this, for each snapshqgectsour tool maintains
the corresponding trace of method calls that resulted istiagshot. To call a method
of an object of a snapshot, our tool recreates the entirestioajpy replaying its cor-
responding trace. (Cloning or saving an object, in gengralld not work, as not all
classes implement these methods.) A recreated snapshsitrikzs objects as the orig-
inal snapshot, assuming that, as far as the abstractioicptes are concerned, method
calls are deterministic. To relate the objects in a snapshitite objects in its replayed
copy, we use a notion dbgical id for each of the objects of the snapshots; objects that
have the same logical ids are treated as copy of one another.

In our implementation of the exploration algorithm, as ogpgbto the algorithms in
Sectior[ b, we use the nested abstract object graphs of artépetesent its cast nested
abstract object graphs as well. These cast nested abdtjact graphs are in a sense an
unfoldingof their corresponding nested object graphs, as descnibfE]. i

To ensure that our exploration does not prematurely ideatdertain kind of object
as singular in a rule, we use a repetitive object creatioersehin our exploration: If a
creator method is chosen to be executed, we invoke the matlkatnumber of times
consecutively, and only after that compute the rule witipeesto the snapshot before
consecutive method calls and the snapshot after that. Tiol avalesired redundant
method calls, a method is not called more than once on the ehjeet of a snapshot;
similarly, our system nondeterministically chooses notexecute a method over an
object of a snapshot if the last method call in the snapshbeigxecution of the same
method, possibly on a fierent object.

Lastly, theHeuristic component implements the algorithms in Seclibhl6, 7,[and 8.
We use the graph data structures in JGraphT library to imgieimur graph algorithms.



Table 1.Duration and number of rules afterfiirent stages in computing DPIs of three packages.
Information, except for the last column, correspond to agervalues of five runs.

N N
& &° & KO
Q
@& . 2 @& O\fb&\q \©
SEFGEE) > OSSP
{(/-\.Q & W@ gy {(/-\.Q Qe o
Package |Threshold # Time (min:sec) #Rules

ArrayList| 200000 [010:37000:03000:00000:00 572|299 29| 15 (once 14
HashSet 200000 |168:26000:23000:01000:00114Q 503 |34 16
JDBC 1200 {032:01000:51000:05000:002465237029|26 (twice 25

9.1 Limitations

While we expect our tool to work in a straightforward mannempackages that solely
work on heap (e.g., Java collections), for packages thak wiith external devices,
the Package Abstraction part of this system would be morgt®mFurthermore, for
such packages, thétect of our “replay” mechanism should be taken into accoumnt. F
example, if a trace of method cause a certain port to be bdbadaive replay of the
same trace would not obtain a new copy of the object of intehestead, a dferent
port during the replay should be used. These limitation®at&nique to our approach,
but are inherent to dynamic approaches.

10 Experiences

We have computed the DPI of three Java packages using ouJDRBdl, ArrayList,
andHashSet. While our tool usually identifies the right number of rules the DPI of
a package, some of these rules could be in principle morerglzed. The converse,
however, has never happened in our experiments: i.e., dauéepackaged computed
by our tool always corresponded to the actual behaviourepttkage.

Table[1 shows the results of running our tool for each of tipesskages. The mea-
surements for each package are for the average of five rungloalaore CPU Win-
dows 7 desktop machine with 8 GB of RAM. In all our experimewts have set JVM
options to use 5120MB of physical memory and to avoid raisirgarbage Collection
exception, because of the lack of progress in computationekch package, Tadlé 1
presents the time taken and the number of rules at each stage computation of
a DPI, namely after the exploration phase, after the extatipn phase, and after the
merge phase. We use the line numbers of Algorithm 1, in Selic¢o indicate the
stages that these measurements have been performedineqiuinbef]7 denotes a
measurement after the computation at [ihe 7 has concluded.

JDBC. In Sectior 2, we have already presented some of the ruleg @ of JIDBC.
In our experiments, the universal client connects to a légache Derby database.
We use a key-value table that is manipulated through INSBRLETE, and SELECT
SQL commands with random values, via JDBC. We are thus asgutimat the DPI of
the JDBC package is independent of the schema of databasesithbe connected via



JDBC, which is justified by our interest in determining th&ati®enship of interacting
objects of a package, and not its interaction with externadmonents. Increasing the
threshold value to a value bigger than 1200 could cause fenteonory exceptions in
our system. Our tool computes 26 rules in three out of five;rumihe other two runs,
it computes 25 rules. The missing rule in both cases is thefanlclose method call
over an opeResultSet object that references a closgthtement object that in turn
references a clos&tatement object.

ArrayList. We consider two classes afrayList: Array and its internal classtr,
which implements Javaterator. Besides the creator methods for these classes, we
consider theAdd method ofArray, and thenext andremove methods ofItr. We
provide a reference predicatiéer_of, to the system, which determines whighr
object belongs to whiclArray object. We provide four scalar predicates to the sys-
tem: empty= size> 0, which determines whether atrray object is empty or not,
nextCalled= lastRet# —1, which determines whether themove method of anltr
object can be called (i.e., ifext has been calledjmover= size> cursor, which de-
termines whether aiitr has traversed all members of its correspondingay or not,
andsync= modCount= expectedModCounivhich determines whether array ob-
ject has the same version as Btr object expects it (i.e., therray object has only
been modified by th&tr object). Lastly, we specify integers as the domairhofay
objects.

Our tool can compute 15 rules that cover all possible belhawbArrayList. It
once missed computing the rule forxt when called on an iterator whose all predicates
are true and remain true after the method call. Fifiire 7 showexceptions rules that
our tool computes for theext method. Figur¢ 7(R) shows the case whenrtbet
method raise€oncurrentModificationException because aitr callee object
is notsync Figure[7(b) specifies when th®SuchElementException exception is
raised. Figur€&l8 specifies one of the three rules that ourctmoputes for theremove
method in one of our experiments. This rule is interestinthat it demonstrates that
the object mapping of a rule can be non-deterministic: a.mover, sync iterator object
can either become non-mover or stay mover, in both casesdnbes non-sync. This
rule could have been more general, however. First, in theceauested object graph,
the object withnextCalled= false mover= falsg andsync= falseis missing. Second,
the object mapping frorb to j could have had multiplicity “many”. And lastly, there
could have been an object mapping frdrto | with multiplicity “many” denoting that
some of the mover, sync objects whaosxtCalledis false become non-movers.

HashSet. The input for computing the DPI diashSet is somewhat dierent from
ArraylList’s. TheHashSet class has aap field, which is aHashMap. Most of the se-
mantics ofHashSet is implemented viaap and its methods. In particular, an iterator
for a HashSet object, is an inneHashIterator object of itsmap object. Further-
more, two of the input predicates are also defingtedently:mover= next# null and
nextCalled= current# null. Using these input information, our tool computed 15 rules:
the same number of rules as farrayList. Upon a closer examination, we noticed two
differences between the two rules of the two packages. Firdg whirrayList rules

for invoking theadd method on amirray object causeall iterators that point to it to



ArrayLisf{A] one | ArrayLis{C] ArrayLisf{A] one | ArrayLis{C]
empty=+ [ 7777 = empty= empty=+ [ 7777 = empty= *
iter_of iter_of iter_of iter_of
* *
Itr[B] one | Itr[D] Itr[B] one | Itr[D]
nextCalled=+ [ .2y~ ~~| nextCalled= + nextCalled= + | caliee | nextCalled= *
mover= mover= * mover= false mover= false
sync= false sync= false sync= true sync= true
(@ (b) NoSuchElementException.

ConcurrentModificationException.

Fig. 7. Two exceptions for theext method ofArrayList.

ArrayLis{A] one | ArrayLisfC]
empty=F [~ """ 77 = empty=F
iter_of iter_of
Itr[B] one | Itr[D]
nextCalled= T callee nextCalled= F
mover=T mover=T
sync=T sync=T

(a) Role Mapping.

ArrayLista]
empty=F
* * * * * * *
Itr [c] Itr [b] Itr[d] Itr (€] Itr[f] Itr[g] Itr[h]
nextCalled= F nextCalled= F nextCalled= F | | nextCalled=T nextCalled= T | | nextCalled=T | | nextCalled= T
mover=T mover=T mover=T mover= F mover= F mover=T mover=T
sync=T sync=F sync=T sync=F sync=T sync=F sync=T
\ ’ \ : : / S
| / 3 : g L R
v / \ | \ | , s ' |
\many  /one many- ' many ‘\many ! many’ many -~ many ' many | many
\ v * \ v * v_oov* s v v *
Itr[j] Itr[K] Itr[l] Itr[m]
nextCalled= F nextCalled= F nextCalled= T nextCalled= T
mover= F mover=T mover= F mover=T
sync=F sync=F sync=F sync=F
ArrayListi]
empty= F

(b) Object Mapping.

Fig. 8. One of the three rules faremove method ofArrayList. “T” and “F” representrue and

false respectively. For the sake of clarity the arrows représgmneference predicates are not
labelled withiter_of .



become unsync (which made sense because the other itesladaisl become invalid),
in the case of the rules féfashSet some sync iterators would become unsync, while
the others would remain sync. The reason turned out to beatldihg a duplicate el-
ement to éashSet object does not change tmedCount attribute of the object, and
thus a sync iterator would remain sync. Our tool, howevet,rharged rules for adding
duplicate elements with rules for adding new elementsjtegd a mix of sync and un-
sync iterator objects as a result. Metheatdl, however returns a false value if it receives
a duplicate value. We adjusted our input to the tool sodldtrules with distinct return
values are distinguished. By default, our tool abstractayafrom the return value of
modifier methods, because they are in general not usefutiogiish genuinely dier-
entrules; e.g., the return value néxt method of an iterator returns an object, which
can have no role in distinguishing between genuineffedent rules. With this new in-
put, our tool computed a set of 16 rules, which distinguidiwben the case when a new
element is added to a non-empty set and the case when a degiement is added to
a non-empty set.

The second dierence is that thenover predicate of anlterator object of a
HashSet only correctly denotes whether it has traversed all elemefits correspond-
ing HashSet or not if its syncpredicate is true. This is essentially because unlike an
ArrayList object, whose iterator objects maintain an index of the dgitg array of
theArrayList object, the iterators of HashSet need to traverse the underlying hash
table of theHlashSet, which is not contiguously populated.

Lastly, from TabldL, it is clear that computing the DPIHfshSet takes signifi-
cantly longer than computing the DPI &frayList. This diference can be partly justi-
fied by the fact thaArrayList implementRandomAccess, which provides constant-
time access, whilélashSet does not. Another slowing factor is the way the refer-
ence predicates are computed for the two packagesAfrayList, we only need to
check whichArray object anl tr object resides in. FdfashSet, we can check which
HashMap aHashIterator resides in, butthen we need to check wiiielshSet object
wraps thatlashMap object. To find thallashSet object we need to check all objects of
the snapshot and perform reflection on their type and tiegirfields.

11 Conclusion

We have introduced the notion of dynamic package interf@&d)(that provides a suc-
cinct way to describe valid usage patterns for a packageDHi®f a package is a set
of rules, each of which specifies thext of a method call over a general configuration
of a set of objects. We have developed a dynamic tool that otgs@n approximation
of the DPI of a Java package automatically, given a set ofatigin predicates. The
rules of such a DPI generalize the usual examples used irothemkentation of the Java
package and can be traced to problems discussed in onlun@$or

A DPI captures both thimter-object aspects of the dynamic behaviour of the classes
of a package, as well as tlirgtra-object aspects of individual classes of the package,
relative to a set of scalar and reference predicates, even wiboundedly many objects
interacf In contrast, previous dynamic techniques primarily focnse@her deriving

2 We use the terms “inter-object” and “intra-object” in a dimisense as in OO desidn [4].



intra-object specifications for one object or deriving Bnitate machines that capture
the interaction pattern of a finite number of objetis |3l &0412].

Lastly, our work focuses on the analysis of the classes dfauges that are non-

recursive; it abstracts away from their underlying reargglata structures, which are
often only accessible internally or privately via the pualidiasses of the package. Our
analysis can be considered as orthogonal to the technigao#sdynamic and static,
that deal with recursive data structures.
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