
ar
X

iv
:1

31
1.

49
34

v2
 [

cs
.S

E
]

19
 J

an
 2

01
4

Dynamic Package Interfaces
Extended Version

Shahram Esmaeilsabzali1⋆, Rupak Majumdar2, Thomas Wies3, and Damien
Zufferey4⋆⋆

1University of Waterloo 2MPI-SWS 3NYU 4MIT CSAIL
sesmaeil@uwaterloo.ca,rupak@mpi-sws.org, wies@cs.nyu.edu,

zufferey@csail.mit.edu

Abstract. A hallmark of object-oriented programming is the ability toperform
computation through a set of interacting objects. A common manifestation of this
style is the notion of apackage, which groups a set of commonly used classes
together. A challenge in using a package is to ensure that a client follows the
implicit protocol of the package when calling its methods. Violations of the pro-
tocol can cause a runtime error or latent invariant violations. These protocols can
extend across different, potentially unboundedly many, objects, and are specified
informally in the documentation. As a result, ensuring thata client does not vio-
late the protocol is hard.
We introducedynamic package interfaces (DPI), a formalism to explicitly cap-
ture the protocol of a package. The DPI of a package is a finite set of rules that
together specify how any set of interacting objects of the package can evolve
through method calls and under what conditions an error can happen. We have
developed a dynamic tool that automatically computes an approximation of the
DPI of a package, given a set of abstraction predicates. A keyproperty of DPI is
that the unbounded number of configurations of objects of a package are summa-
rized finitely in an abstract domain. This uses the observation that many packages
behave monotonically: the semantics of a method call over a configuration does
not essentially change if more objects are added to the configuration. We have
exploited monotonicity and have devised heuristics to obtain succinct yet general
DPIs. We have used our tool to compute DPIs for several commonly used Java
packages with complex protocols, such as JDBC, HashSet, andArrayList.

1 Introduction

Modern object-oriented programming practice uses packages to encapsulate compo-
nents, allowing programmers to use these packages through well-defined application
programming interfaces (APIs). While programming languages such as Java and C#
provide a clear specification of the static APIs of a package in terms of classes and their
(typed) methods, there is usually no specification of the implicit protocolthat constrains
the temporal ordering of method calls on different objects. If the protocol is limited to
a single object of a single class, it can be specified in form ofa state machine whose

⋆ Shahram Esmaeilsabzali was at MPI-SWS when this work was done.
⋆⋆ Damien Zufferey was at IST Austria when this work was done.

http://arxiv.org/abs/1311.4934v2

states are the abstract states of the object and whose edges are the invocations of its
methods [2, 13, 15]. For example, a lock object has two states: locked and unlocked.
While in the unlocked (resp. locked) state, a call to the lock(resp. unlock) method takes
it to the locked (resp. unlocked) state. Any other method call results in an error. The no-
tion of state-machine interfaces has been studied extensively, and there are many tools
to generate interfaces using static or dynamic techniques [2, 8, 12, 14]. However, exist-
ing notions of state machines on object states must be generalized when considering a
package. First, the internal state of an object should be considered in the context of the
internal states of other objects; e.g., in the Java DatabaseConnectivity (JDBC) package,
aStatement object can execute safely only if its correspondingConnection object is
open. Second, the execution of a method on an object can change the internal state of
other objects in the environment; e.g., calling theexecuteQuery method on a JDBC
Statement object closes its corresponding openResultSet object. Finally, the pro-
tocol can constrain the states and transitions ofunboundedlymany interacting objects;
e.g., considering a collection object and its iterators, modifying the collection directly
invalidatesall of its iterators.

The problem of generalizing interfaces from single to multiple objects has been
studied recently [9–11]. However, what is missing is a cleardefinition of what consti-
tutes an interface in the presence of unboundedly many objects on the heap. Our first
contribution is the introduction ofdynamic package interface(DPI), which allows to
capture the protocol of a package in a succinct manner. The DPI of a package is a set of
rules, each of which specifies the effect of a method call on an object within an abstract
configurationof objects. An abstract configuration denotes an unbounded number of
concrete configurations of objects from a package. A rule hasa sourceand adestina-
tion configuration, together with amappingthat specifies how the objects in the source
change to the objects in the destination.

Our first technical ingredient is a representation of abstract configurations using
nested graphs[16]. In a nested graph, a subgraph can be marked to be repeatable, and
repetitions can be nested. Nested graphs naturally represent unbounded heap configu-
rations. For example, Figure 1 shows a (two-level) nested graph representing an open
JDBC Connection object with its many corresponding closedStatement objects,
each with many closedResultSet objects.

Our second ingredient is an abstract semantics of Java-likelanguages over the do-
main of nested graphs that is monotonic (in fact, the abstract transition system iswell-
structured[1]): if a method can be called in a “smaller” configuration, it can be also
called in a “larger” configuration, with the resulting configurations maintaining the re-
lationship. Monotonicity enables us to define the DPI rules of a package only over
its maximalabstract configurations, letting each rule subsume infinitely many similar
“smaller” rules. We prove that the set of maximal configurations has a finite represen-
tation, and thus the DPI of a package has a finite number of rules [5].

Our second contribution is a dynamic analysis technique to compute an approxi-
mation of the DPI of a package directly from the source code. Our tool explores the
usage scenarios of a package by running auniversal clientthat in each of its finite
number of steps, nondeterministically, either creates a new object or invokes a method
of an existing object. Each step of the universal client results in a rule. The universal

client can end up computing hundreds or thousands of distinct rules, which makes the
resulting DPI practically not useful. The challenge is to generalize these rules to ob-
tain a compact DPI by exploiting similarity. Often, a pair ofrules for the same method
are incomparable only because their sources and destinations are slightly different. For
example, in one rule for theclosemethod of theStatement class, the source config-
uration has closedResultSet objects but not an open one, and vice versa, another rule
might have an openResultSet object but not closed ones. It makes sense, however, to
combine these two rules because the effect of the two rules are essentially the same: the
Statement object and its openResultSet object are closed.

We have devised three heuristics that generalize a set of explored rules into a smaller,
more general set. Ourextrapolationheuristic compares the configurations of different
rules and deduces whether the configuration of a certain rulecan be expanded by re-
peating part of it based on the repetitions observed in the configurations of other rules.
Our mergeheuristic combines two rules that are based on similar method invocations
into one rule. Ourexception isolationheuristic combines two similar exception rules
into one. While merging is similar to the union of the two rules, exception isolation is
closer to an intersection that isolates the root cause of an exception. Our heuristics are
all grounded in the monotonicity property of our abstract semantics.

We have used our tool to compute the DPIs of Java packages suchas JDBC (26
rules), HashSet (16 rules), and ArrayList (15 rules). The rules of these DPIs can be
traced to their documentation, as well as to the programmingerrors discussed in on-
line discussion groups. Our tool more often than not computes the expected number
of rules for these packages, but not all these rules are the most general ones. Our tool
never computes a rule that is not consistent with the behaviour of a package. This is an
indication that our heuristics are effective.

The remainder of the paper is organized as follows. Section 2presents an overview
of DPI and how it is computed in our tool. Section 3 presents the notion of DPI formally.
Section 4 presents the algorithm that converts a heap configuration into a nested object
graph. Section 5 describes how our tool explores the behaviour of a package and create
rules. Section 6, 7, and 8 describe our extrapolation, merging, and exception isolations
heuristics, respectively. Section 9 discusses our implementation. Section 10 presents
our experimental results. Section 11 concludes our paper.

2 Overview: Dynamic Package Interface of JDBC

We now explain through an example how our tool works to compute the DPI of a set
of classes that are part of Java Database Connectivity (JDBC) package (more precisely
thejava.sql package).

2.1 JDBC

We consider four commonly-used classes of JDBC and their methods. TheDriver-
Manager class allows to create a new connection to a database by invoking its static
getConnection method. The string parameter of the method specifies the typeof
database, its address, and the needed credentials to accessit. A Connection object

can serve multipleStatement objects, each of which can be used to read or change
the content of the database. ThecreateStatementmethod of theConnection class
creates a newStatement object. SQL commands and queries are executed through the
execute andexecuteQuerymethods of theStatement class. Both methods accept
a string argument that is an SQL statement. TheexecuteQuerymethod returns a new
ResultSet object, which is a collection of rows retrieved from the database; thenext
method can be used to traverse these rows. AConnection,Statement, orResultSet
object isopeninitially, but can be closed via their correspondingclose methods. In-
voking theexecuteQuerymethod on aStatement object causes an openResultSet
object that references it to be closed, while creating a new openResultSet object. If an
object, or one of the objects that it references directly or transitively, is closed, invoking
a non-closemethod on it would raise an exception.

2.2 System Input

Besides the names of classes and the signatures of their methods, our tool receives
a set of abstraction predicates over the attributes of the classes. A predicate is either
scalar, defined over the simple, non-reference attributes of the classes, orreference,
determining which objects of a class are related to which objects of another class via a
certain reference attribute. For simplicity, we assume these predicates are input by the
user, but standard techniques based on Boolean methods and reference-valued fields in
classes can be used to identify these predicates [14].

For example, in JDBC, theStatement class has anactive attribute that deter-
mines whether it is open or not. This attribute is a unary scalar predicate, but in general
a scalar predicate may read multiple fields from referenced objects. We also use the
applicationConnection field of theStatement class to define a reference predi-
cate that determines whichStatement object points to whichConnection object. We
define similar scalar predicates for theConnection andResultSet classes, which de-
termine whether their objects are open or closed. We also define a reference predicate
that determines whichResultSet objects reference whichStatement objects.

We require that the set of reference attributes do not createa cycle when evalu-
ated over objects: i.e., when objects are considered as nodes and the true valuations of
reference attributes as directed edges, the resulting graph is acyclic. This is necessary
as some of our algorithms rely on computing the topological ordering of heap-related
graphs. This requirement can be relaxed: it is possible to allow the more general class
of the depth-bounded graphs [5].

2.3 DPI Rules

The DPI of a package is a set ofrules, each of which represents a family of method
calls. A rule essentially specifies how a certain family of method calls change the shape
of their corresponding heaps. To obtain general yet conciserules, we have developed
the domain ofnested object graphsto represent such heaps. The nodes of a nested
object graph represent objects and its edges represent references between the objects.
The nodes and edges of the graph are labelled according to theinput scalar and ref-
erence abstraction predicates, respectively. Furthermore, a subgraph of a nested object

graph can be marked as repeatable, denoting that arbitrary-many sets of objects simi-
lar to the objects in the subgraph can exist in the heap. Repetition can be nested, and
hence the name “nested object graph.” As an example, the nested object graph in Fig-
ure 1 represents a configuration of heap consisting of aConnection object with un-
bounded many closedStatement objects (possibly 0), each of which has unbounded
many closedResultSet objects (possibly 0). Repetitions are specified via “*” nextto
nodes or subgraphs. NodeC, which represents theResultSet objects, is marked re-
peatable in a nested manner: Each group of repeatableResultSet objects is associated
with a Statement object, which itself is marked as repeatable via the “*” nextto the
subgraph specified by the dotted line.

conn

Connection[A]
c open

Statement[B]
¬s open

ResultSet[C]
¬r open

∗

∗stmt

Fig. 1. A nested object graph.

Each rule has a source and a destination nested object graph,which correspond to
the heaps before and after the method call. A rule also has a source and a destination
cast nested object graph, each of which is a nested object graph some of whose nodes
are labelled with roles, such ascallee, parameter0, andnew, that specify the roles of
objects in the method call. The cast nested object graphs of arule are meant to specify
the objects in the heap that are directly involved in the method call, while the nested
object graphs of the rule specify the entire heap affected by the method call. A rule
has anobject mapping(role mapping) relation that specifies how, as a result of the
method call, the objects represented by the nodes of the source nested object graph
(correspondingly, source cast nested object graph) are transferred to the nodes of the
destination nested object graph (correspondingly, destination cast nested object graph).
The mapping in each of these relations are annotated with multiplicity information that
specify how many of the objects in the source node of a tuple are transferred to the
destination node of the tuple:oneor many. Lastly, the object mapping and role mapping
relations of a rule are derived from disjoint sets of Java objects: i.e., considering the
underling method call related to a rule and the involved Javaobjects of the method call,
each of the object is mapped either by the object mapping or role mapping of the rule,
but not both.

As an example, Figure 2 shows the rule that our system computes forexecuteQuery
method calls that raise no exceptions. The rule specifies that an openResultSet is

closed when its correspondingStatement object performsexecuteQuery; instead, a
newResultSet object is created. Figure 2(a) specifies the role mapping of the rule,
via dotted arrows that connect the nodes in the source cast nested object graph to the
nodes in the destination cast nested object graph. The “callee” and “new” labels deter-
mine the callee and the newly created objects, respectively. Figure 2(b) specifies the
object mapping of the rule via dotted arrows that, for the sake of brevity, connect the
subgraphs of the nested object graphs. While in this rule theobject mapping does not
specify any change in its corresponding objects, in generalthat is not the case. Both
nested object graphs and cast nested object graphs of the rule exhibit repetitions. In
the case of the nested object graphs in Figure 2(b), these repetitions are nested. The
left subgraph of the source nested object graph, for example, represents an arbitrary
number (unbounded, possibly 0) of closedStatement objects, each of which can have
unbounded many closedResultSet objects. It is this ability to express unbounded
number of concrete heap configurations that allows us to compute general, yet concise
interface rules.

ResultSet[K]

Connection[A]
c open

Statement[C]
s open

Connection[G]
c open

Statement[I]
s open

ResultSet[F]
r open

ResultSet[L]
r open¬r open

conn conn

∗stmt stmt stmt stmt∗

one

one

many

new

callee

ResultSet[E]
¬r open

one

(a) Role mappings.

connConnection[A]
c open

Statement[B]
¬s open

ResultSet[D]
¬r open

ResultSet[F]
r open

Connection[G]
c open

Statement[C]
s open

Statement[H]
¬s open

Statement[I]
s open

ResultSet[J]
¬r open

ResultSet[L]
r open¬r open

conn

∗

conn

¬r open

∗stmtstmt stmt stmt stmt

∗
∗

∗
∗

many

many

∗stmt∗

ResultSet[E] ResultSet[K]

conn

(b) Object mappings. The arrows over a nested subgraph denotes that all nodes of its source are
mapped to their isomorphic nodes in the destination.

Fig. 2. The most general rule forexecuteQuery, with no exception.

While for a rule of a method call when it raises no exceptions,the more nodes and
repetition that its nested object graphs have and the largerits mapping relations are the
more general the rule would be (because it can capture more concrete method calls), for
a rule for a method call with an exception that is not the case.In fact, for such a rule
it is desirable to have the smallest rule that isolates the real reason why the exception
is raised. As such, for an exception rule, we are only interested in its cast nested object
graphs and their corresponding role mapping relation. Furthermore, for exception rules,
we use a ternary logic that assigns an unknown value “*” to a predicate of an object
when the evaluation of the predicate does not affect whether the exception will be raised
or not. These characterizations of the most general rules for a method call are inspired
by the monotonic semantics that we have developed for object-oriented programs. For
a safe method call, it should be possible to replicate its result in a context with more
objects. For a method call with an exception, there would notexist any context with
more object that can avoid the exception.

Figure 3 shows the two rules that our tool computes fornextmethod when it raises
the ResultSet not open exception. In Figure 3(a), the “*” values for thes open
andc openpredicates denote that regardless of whether the corresponding statement
or connection objects of aResultset object are open or not, the method call over the
Resultset object raises the exception when it is closed. Figure 3(b) shows the case
when theResultset object is actually open, but its correspondingConnection object
is not. These two rules seem to point out succinctly the root cause of the bug discussed
at an Apache forum.1

one

Statement[Y]
s open= ∗

Connection[U]
c open= ∗

Connection[X]
c open= ∗

Statement[V]
s open= ∗

ResultSet[W]
¬r open

ResultSet[Z]
¬r open

stmt stmt

connconn

one

one

callee

(a) ClosedResultSet.

∗

Connection[A]
¬c open

Statement[C]
s open

Connection[A]
¬c open

Statement[C]
s open

ResultSet[F]
¬r open

conn conn

stmt

r open

ResultSet[F] one

callee

one

one

stmt

(b) ClosedConnection.

Fig. 3. The two most general rules fornext with ResultSet not open exception.

2.4 From a Method Call to a Rule

To compute the DPI of a package, our system explores the behaviour of the package
through repeatedly invoking its methods and creating new rules. A key step in comput-
ing a rule from a method call is to derive the necessary (cast)nested object graphs from
different heaps. In this section, we describe this through an example.

1 https://issues.apache.org/jira/browse/DERBY-5545

https://issues.apache.org/jira/browse/DERBY-5545

Our first step in computing the nested object graph of a heap isto turn the heap into
a directed labelled graph by using the input scalar and reference predicates. We call
such a graph aheap graph. Figure 4(a) shows a heap graph corresponding to 9 JDBC
objects. The graph is created using three scalar predicatesthat determine whether a
Connection,Statement, orResultSet object is open or not, together with two refer-
ence predicates that determine whichStatement objects reference whichConnection
objects, and whichResultSet objects reference whichStatement objects. Each node
of the graph is labelled with the name of its class, the evaluations of its scalar predi-
cates, as well as a unique id that is enclosed inside a pair of brackets. Each edge of the
graph is labelled with the name of its corresponding reference predicate. Figure 4(b)
is another heap graph resulting from the invocation of method executeQuery on the
Java object that the node with id 4 in Figure 4(a) represents.The nodes with the same
identifiers in the two objects graphs represent the same Javaobjects.

ResultSet[8]

stmt stmt stmt stmt

Connection[1]
c open

conn
conn

conn

¬r open ¬r open¬r open

Statement[2] Statement[3]
¬s open sopen

stmt

ResultSet[5]
¬r open r open

Statement[4]
s open

ResultSet[9]ResultSet[6] ResultSet[7]

(a) Heap graph before method call.

ResultSet[8] ResultSet[9]
¬r open

ResultSet[10]
r open

stmt stmt stmt stmt

Connection[1]
c open

conn
conn

conn

¬r open ¬r open¬r open

Statement[2] Statement[3]
¬s open sopen sopen

stmt

ResultSet[5] ResultSet[6] ResultSet[7]
¬r open

Statement[4] stmt

(b) Heap graph after method call.

Fig. 4. Two heap graphs for invocation ofexecuteQuery on object 4.

The second step is to reduce a heap graph to a nested object graph. The idea is that if
an object or a pattern for a set of interconnected objects appears more than once, then it
can be marked as repeatable. The reduction from a heap graph to an nested object graph
can be considered as a bisimulation reduction: Two nodes in aheap graph are equivalent
iff they have the same evaluations for their scalar predicates,and furthermore, they
mimic one another by reaching equivalent nodes following their similar reference edges.
Figure 5 shows two object graphs that our tool computes for the heap graphs in Figure
4. Repetition of a single node is denoted just by a “*” next to it. Repetition of a subgraph
(not shown in this figure) is denoted by a dotted line around the subgraph together with
a “*”; e.g., as in Figure 2(b). The nodes of the object graphs are graphically similar to

heap graphs except that they are shown by solid rectangles and they are labelled with
alphabetic ids. As examples of repetition, nodee in Figure 5(a) is the equivalent class
for the nodes 5, 6, and 7 in Figure 4(a), and nodem in Figure 5(b) is the equivalent class
for the nodes 8 and 9 in Figure 5(b).

ResultSet[f]

Connection[a]
c open

Statement[b]
¬s open

Statement[c]
s open

Statement[d]
s open

ResultSet[e]
¬r open

ResultSet[g]
r open

conn

stmtstmt

¬r open

conn conn

∗

(a) Nested object graph corresponding to
heap graph in Figure 4(a).

ResultSet[m]

Connection[h]
c open

Statement[i]
¬s open

Statement[j]
s open

Statement[k]
s open

ResultSet[l]
¬r open

ResultSet[n]
r open

conn

stmtstmt

conn conn

¬r open

∗ ∗

(b) Nested object graph corresponding to
heap graph in Figure 4(b).

Fig. 5.Two nested object graphs.

To compute a rule, first, the set of objects that are relevant in computing the rule
are determined. These are used to create the nested object graphs of the rule. A subset
of these objects that are directly involved in the method call are used to create the cast
nested object graphs of the rule, as well as its role mapping.The object mapping of the
rule deals with the rest of objects that are not mapped by its role mapping.

2.5 Computation Stages

Creating a rule from a method call provides an abstract representation of the method
call, but this abstraction is not nearly enough to create a succinct interface of the pack-
age: We could end up creating hundreds or thousands of rules.Algorithm 1 outlines the
main steps that our tool performs to compute the DPI of a package. Next, we describe
these steps briefly. More details about each step appears in its corresponding section
that is mentioned inside comments in Algorithm 1.

Exploration StageLines 2 - 7 specify the main steps in exploring the behaviour of a
package. Secion 5 explains how a rule is computed from the execution of a method.
Using a repository, our tool keeps track of the rules that it explores. For each computed
rule, r, it checks whether there already exists a ruler ′ thatcovers r, roughly meaning
that the object graphs, role graphs, object mapping, and role mapping ofr can be all in
a way simulated by the corresponding elements ofr ′. If such anr ′ exists,r is redundant
and is not stored. The system continues its exploration until a maximum number of re-
dundant method invocations is encountered; e.g., in our experiments with JDBC we set
this threshold to 1200. After this initial phase of exploration, to achieve a good coverage
of the behaviour of the package, our system also ensures thatall possible method calls
on all objects of all rules in the repository are executed andtheir corresponding rules, if

Algorithm 1: ComputeDPI.
Input : A set of classes and methods and a set of abstraction predicates
Result: A set of general rules,Rules, each of which represents a family of method calls

1 Rules= ∅;
/* Section 4 and 5 */

2 while ¬Thresholddo
3 Pick a snapshot, a concrete Java object, execute one of its methods;
4 Compute,r, the corresponding rule of the method call;
5 if there is no r′ ∈ Rules that “covers” rthen Rules= Rules∪ {r};
6 end
7 Remove anyr ∈ Rulesthat is “covered” by another rule;
/* End Section 4 and 5 . */

8 Extrapolater ∈ Rulesusingr ′ ∈ Rules, when possible; prune rules that are covered byr;
/* Section 6. */

9 Merge all pairs of mergeable rules inRules;
/* Section 7. */

10 Isolate all pairs of similar exception rules inRules;
/* Section 8. */

non-redundant, are stored in the repository. Lastly, all redundant rules are pruned from
the repository.

Extrapolation StageIn order to obtain a DPI with a small number of rules, our tool
generalizes rules so that one generalized rule covers many other rules. In the absence of
such general rules, many incomparable rules can be exploredand stored, making a DPI
too large to be of any practical use. Sometimes a rule could have covered many other
rules if certain nodes in its source and/or destination (cast) nested graphs were marked
as repeatable. Our tool uses anextrapolation heuristicto mark such nodes as repeatable
using the information in the graphs of other rules.

To identify opportunities for extrapolation, our tool looks for deficientnodes in a
(cast) nested object graph: A node is deficient if it is not repeatable and belongs to
a pair in one of the the two mapping relations of a rule, and theother node in the
pair is repeatable. Our hypothesis is that a deficient node isnot repeatable because our
exploration has not managed to produce enough objects of a that type. As an example,
if we consider the graphs in Figure 5 as the corresponding nested object graphs of a
rule, thenf andg, which would be both mapped to nodem, are deficient nodes. For a
deficient node, our system explores all other rules in its repository checking for a source
or a destination object graph into which the corresponding object graph of the deficient
node can beembeddedaccording to a subgraph isomorphism relation. If accordingto
the embedding relation the corresponding node of the deficient node in the other graph
is repeatable, then the deficient node will be marked as repeatable too. In our example,
our tool can find an embedding relation that would allow to extrapolate nodef , but it
cannot extrapolate nodeg, because in JDBC eachStatement object cannot have more
than one openResultSet object.

After the exploration stage, we apply our extrapolation heuristic to all rules. Once
all possible extrapolation have been performed, our tool checks for redundant rules
and removes them. While the extrapolation stage could prunea substantial number of
rules, there could still exist a large number of rules in a DPI; e.g., hundreds of rules
for JDBC. The reason is that different rules for the same method might have explored
different instances of heaps that have incomparable sets of objects, and there are various
exception cases. To further reduce the number of the rules ofa DPI, we have developed
two heuristics – themergeheuristic and theexception isolationheuristic. Each of the
heuristics combines a set of related rules into one.

Merging For a pair of rules whose role mappings are similar and over isomorphic
cast nested object graphs, the merge heuristic essentiallyfirst computes their union and
then performs a reduction over the resulting source and destination object graphs of the
resulting rule. This reduction can be considered as a bisimulation reduction except that
two nodes could be equivalent even if one has some incoming edges that the other one
does not have. This is as opposed to the kind of reduction thatwe described for reducing
heap graphs to object graphs earlier. This reduction is in the spirit ofdownward closed
graphs, where a nested object graph not only represents all heap instances arising from
the repetition of its repeatable subgraphs, but also represents all heap instances arising
from its nested objectsubgraphs – hence the term “downward closed”. The reduction
favours repetition over non-repetition when combining nodes. Finally, the role mapping
and object mapping of the resulting rule are adjusted according to the reduction. As an
example, assuming that the nested object graphs in Figure 5 belong to a rule, then node
c in Figure 5(a), for instance, would be mapped to nodeC in Figure 2(b) during the
merge operation.

Exception IsolationWhile the first merging heuristic corresponds to the union ofa set
of rules, the second heuristic corresponds to the intersection of a set of rules. For a pair
of rules whose role mappings are isomorphic when their scalar abstraction predicates
are not considered, this heuristic essentially combines the corresponding nodes of the
cast nested object graphs of the two rules and merges equivalent nodes via a ternary
logic. If the value of a predicate in two merged nodes are different, the unknown value,
denote by “*”, is chosen. Figure 3 shows the two rules that ourtool computes for the
next method on aResultset object when it raises theResultSet not open ex-
ception. The “*” values for thes openandc openpredicates denote that regardless of
whether the correspondingStatement orConnection objects of a result set object are
open or not, the method call raises the exception when the result set object is closed.

3 DPI Formally

Graph Definitions.A directed multigraph is a tupleG = (V,E, s, t, l), whereV is a set
of nodes,E is a set of edges,s : E → V is theedge sourcefunction,t : E → V is the
edge destinationfunction, andl : E → LE is theedge labellingthat assigns a string
label to each edge. Nodeu2 ∈ G.V is reachable froma nodeu1 ∈ G.V, or u1 reaches
u2, if a sequence of edges connectu1 to u2. By ReachableFrom(G, u), we denote the set

of all nodes that are reachable fromu plusu itself; similarly, byReachingTo(G, u), we
denote the set of all nodes that reachu, plusu itself. By ReachingUndirected(G, u), we
denote the set of all nodes that are reachable fromu, assuming that for eache ∈ G.E, we
adde′ to G.E such thats(e′) = t(e), t(e) = s(e′), andl(e′) = l(e) (i.e., assuming thatG
is a undirected graph). We also extend these notation to workwith a set of nodes; e.g.,
ReachableFrom(G,U) =

⋃
u∈U ReachableFrom(G, u). By ReachableToFrom(G, u), we

denote the set of all nodes that that reachu, plus those that are reached fromu and those
that reachu: i.e.,ReachableToFrom(G, u) = ReachableFrom(G,ReachingTo(G, u)). For
a set of nodesU ⊆ G.V, by subgraph(G,U), the induced subgraphof G overU is a
directed multigraph that is the same asG but its elements are restricted toU.

A graphH is subgraph isomorphicto G if there exists two injective mappingskv :
H.V → G.V andke : H.E→ G.E such that:

H′ = (
⋃

v∈H.V

kv(v),
⋃

e∈H.E

ke(e),
⋃

(e,v)∈H.s

(ke(e), k(v)),
⋃

(e,v)∈H.t

(ke(e), k(v)),
⋃

(e,b)∈H.l

(ke(e), b))

is an induced subgraph ofG overH′.V; we callkv andke, respectively, thenodeandedge
isomorphism mappingof H to G. A graphH is graph isomorphicto G if |H.V| = |G.V|,
|H.E| = |G.E|, andH is subgraph isomorphic toG.

Two distinct nodes,u1 andu2, of G arecoinciding if for eache1 ∈ G.E such that
s(e1) = u1 there existse2 ∈ G.E such thats(e2) = u2, t(e1) = t(e2), andl(e1) = l(e2),
and furthermore, vice versa: for each edge whose source isu2 there is a correspond-
ing edges whose source isu1 and the two edges have the same target and label. Two
distinct nodes,u1 and u2, of G are downward consistentif they are coinciding, and
subgraph(G,ReachingTo(G,u1)) andsubgraph(G,ReachingTo(G, u2)) are isomorphic.

Modelling Heap. A Java class is represented as a tuple,C = (name,Atts,MC,MM),
wherenameis thenameof the class,Atts is its set ofattributes, MC is its set ofcreator
methods, each of which is either a constructor or a static method that returns a new
object, andMM is its set ofmodifiersmethods, each of which can be invoked on an
object of the class, changing its attributes. An attribute is eitherprimitive, meaning that
its type is a simple type, orreference, meaning that its type is a class. A method can
have a set of formal parameters and a return value, each of which can be a class. A
package,P, is a set of classes.

A Java object, also called aconcrete object, is represented s a tuple,o = (id, class),
whereid is its uniqueobject idandclassis its corresponding class. A concrete object,o,
canreachanother concrete object,o′, if by following a sequence of reference attributes
starting fromo, o′ is reached. Asnapshot, sp, is a set of concrete objects. Arole is a
tuple l = (o, rname), whereo is a concrete object andrnameis therole name, which
is a string representing the responsibility of the object ina method call, e.g., “callee”,
“return”, “new”, or “param1”. A method call is represented as an invocation, which
is a tuple,invoc = (m, e, sps, spd,Roles), wherem is the method,e is the name of an
exception if the method call raises the exception and empty otherwise,sps is thesource
snapshot, which is the snapshot before the method call,spd is thedestination snapshot,
which is the snapshot after the method call, andRolesis a set of roles corresponding to
the method call.

A scalar predicateover an object is an abstraction predicate over its primitive at-
tributes and, possibly, the primitive attributes of the objects that are reachable from it.
A reference predicateis an abstraction predicate over asourceobject, adestinationob-
ject, and a reference attribute of the source object. Its value is true if the source object
references the destination object through its reference attribute, and is false otherwise.
These predicates are defined over the classes of a package andare evaluated with re-
spect to the objects of a snapshot. We assume that these predicates are defined such that
they can always be evaluated: i.e., it is never the case that ascalar predicate cannot be
evaluated because a certain object that is assumed to be reachable is not reachable.

An abstract objectis a tupleao= (o,Preds) whereo is a concrete object andPreds
is the evaluation of its corresponding scalar predicates. Two abstract objects,aoandao′,
areequivalent, denoted byao ≡ ao′, if their corresponding predicates have the same
valuations.

A heap graphis a directed, acyclic multigraph,hg = (V,E, s, t, l), whose nodes are
abstract objects and whose edges are labelled by reference attributes. Given a snapshot
spand a set of scalar and reference predicates, theunderlying heap graphof sp, denoted
by hg(sp), is a heap graph whose nodes are the corresponding abstractobjects of the
concrete objects inspand whose edges correspond to the true valuations of the reference
predicates over the objects insp; the labels of the edges correspond to the names of their
corresponding reference attributes. By construction of anunderlying heap graph, no
two edges with the same source node have the same label. We assume that the reference
predicates are defined such that for any snapshotsp, hg(sp) is acyclic.

A nested abstract objectis a tuplenao = (id, ao, pl, nj), whereid is its uniqueid,
ao is its representativeabstract object,pl is its plural flag, andnj is its injectiveflag.
If either pl or nj is true, thennaorepresents more than one equivalent abstract objects,
otherwisenao is singular and represents a single abstract object. These two flags are
used to denote the two kinds of equivalent abstract objects that a nested abstract object
can represent. Intuitively, ifnao.pl is true, thennao represents a group of equivalent
abstract objects, represented bynao.ao, that point to the same abstract objects via their
same reference attributes. Intuitively, ifnao.nj is true, thennao represents a group of
equivalent abstract objects, represented bynao.ao, that pairwise disagree at least on
the destination of one of their reference attributes. By analogy to entity relationship
modelling, the plural flag represents a many-to-one relationship and the injective flag
representsmanyone-to-one relationships. A nested abstract objectnao1 is equivalent
to a nested abstract objectnao2, denoted bynao1 ≡ nao2, if: (i) nao1.ao ≡ nao2.ao,
(ii) nao1.pl ≡ nao1.pl, and (iii) nao1.nj ≡ nao1.nj. A nested abstract objectnao1 is
smaller than nested abstract objectnao2, denoted bynao1 ≺ nao2, if: (i) nao1.ao ≡
nao2.ao, and (ii) neithernao1.pl nornao1.nj is true, but eithernao1.pl or nao1.nj is true.
A nested abstract objectnao1 is coveredby a nested abstract objectnao2, denoted by
nao1 � nao2, if either nao1 ≡ nao2 or nao1 ≺ nao2. Given a pair of nested abstract
objects,nao1 andnao2, therenestingof nao1 with nao2, denoted byrenest(nao1, nao2),
modifiesnao1 such thatnao1.pl = nao2.pl andnao1.nj = nao2.nj.

A nested object graphis a directed, acyclic graph,ng = (V,E, s, t, l), whose nodes
are nested abstract objects and whose edges are labelled by reference attributes. We
use nested object graphs as a means to generalize heap graphs. By the definition of

this generalization, which will be presented in Section 5, there is not more than one
edge with the same label between two nodes of a nested object graph; also, for each
edge (nao1, nao2) of a nested object graph if bothnao1.pl andnao1.nj are false, then it
should be the case that bothnao2.pl andnao2.nj are also false. Anested object graph
ng1 is coveredby a nested object graphng2, denoted byng1 � ng2, if: (i) ng1 is sub-
graph isomorphic tong2 when the two graphs are considered as simple graphs whose
nodes have unique labels and whose edges are the same as the original, and (ii) for
any pair of isomorphic nodes,nao1 ∈ ng1.V andnao2 ∈ ng2.V, nao1 � nao2. The
correspondingnested object graph of a heap graphhg, denoted byhton(hg), is the
same ashg except that each node,ao ∈ hg.V, is replaced with a nested abstract object
nao= (newid, ao, false, false), wherenewidis a unique id.

A cast nested object graphis a tuplecng= (V,E, s, t, l, u), where (V,E, s, t, l) is a
nested object graph andu is arole labellingfunction that relates arole, derived from an
invocation, to a nested abstract object. This function is not surjective as it only labels
the objects that are directly labelled by the roles of the corresponding invocation of the
graph.

Rules. A mappingis a tuplem = (nao1, nao2, u) that relates asourcenested abstract
objectnao1 to adestinationnested abstract objectnao2 via amultiplicity valueu, which
is eitheroneor many. A “one” multiplicity means that exactly one abstract object repre-
sented bynao1.ao is mapped to one abstract object represented bynao2.ao. A “many”
multiplicity means more than one such abstract objects are mapped. A singular source
nested abstract object can be mapped only via a one multiplicity; similarly, a destination
nested abstract object can be mapped to via a one multiplicity. A mappingm is covered
by a mappingm′, denoted bym � m′ if: (i) m.nao1 � m′.nao1, (ii) m.nao2 � m′.nao2,
and (iii) it is not the case thatm.u = many andm′.u = one.

A rule is a tupler = (m, e, ng, ng′, cng, cng′, p, q), where:

– m is the corresponding method of the rule;
– e is either the name of an exception of the method or is empty;
– ng andng′ are thesourceanddestinationnested object graphs of the rule, respec-

tively;
– cngandcng′ are thesourceanddestinationcast nested object graphs of the rule,

respectively;
– p ⊆ ng.V × ng′.V × {one,many} is theobject mappingrelation, which is a set of

mappings such that any node inng.V or in ng′.V is part of at least one mapping;
and

– q ⊆ cng.V → (cng′.V × {one,many}) is therole mappingrelation, which is a set of
mappings such that any node incng.V or in cng′.V is part of at least one mapping,
except for a node whose role is “new” or “return”.

A dynamic package interface(DPI) is a set of rules.

4 From Heap Graphs to Nested Object Graphs

In Algorithm 1, a key step is to compute a rule from a method invocation (line 4). The
challenging aspect of this step is how to compute the necessary graphs of a rule from

the corresponding heap graphs corresponding to the heap before and the heap after the
method invocation. Given a heap graph,TransfertoNested in Algorithm 2 computes
a nested object graph that is structurally a minimization ofthe heap graph, similar to
the bisimulation reduction of a transition system or DFA minimization. The difference,
however, is that the resulting nested object graph embodiesalso information about the
repetition patterns in the heap graph. Next, we describe this algorithm in more detail.

Algorithm 2: TransfertoNested Algorithm.
Input : A heap graph,hg
Result: A nested object graph,ng

1 ng= hton(hg);
2 orderedSet= TopologicalSort(ng);
3 foreach naos∈ orderedSet visited in the topological sort orderdo
4 partition = FindSimilars(ng,naos);
5 ng= Lump(ng,partition);
6 end
7 coarsestPartition= CoarsestPartition(ng,ng.V);
8 return LumpFinal(ng, coarsestPartition);

In the first step of the algorithm, the input heap graph is converted to its correspond-
ing nested object graph (line 1). In the second step, the nodes of the resulting nested
object graph are sorted according to a topological sort order that puts different sets of
incomparable nodes in their corresponding equivalence sets; the result is a sequence of
sets of nodes, with the nodes with no incoming edges in the first set and the nodes with
no outgoing edges in the last set; it is stored inorderedSet(line 2). The next step is to
traverse through these sets and reduce each by combining their similar nodes (the loop
on line 3). FunctionFindSimilars, on line 4, finds the set of nested abstract objects that
can be summarized into one; functionLump, on line 5, lumps the graph by replacing
such nodes with one representative node. Next, we describe these two functions.

FunctionFindSimilars takes a set of nested abstract objects,naos, and partitions
them to a set of sets of nested abstract objects each of which is a maximal set of pair-
wise downward consistent nodes, such that for each pair of nodes,u1 andu2, in the
set, subgraph(ng,ReachingTo(ng, u1)) and subgraph(ng,ReachingTo(ng, u2)) are iso-
morphic via equivalent nested abstract objects. Each setblock1 ∈ partition, e.g., the
set of closedResultSet objects pointing to the sameStatement object, represents a
set of concrete objects that are pointing to the same concrete objects (because nodes
are processed in the topological sort order and because the nodes inblock1 are pairwise
coinciding) and are pointed by similar objects (because their corresponding downward
subgraphs are isomorphic). FunctionLump takes ablock1 ∈ partition and removes
all nodes ofblock1 together with their corresponding edges fromng, except one node,
which is randomly chosen and we refer to asnaorep. If |block1| > 1, ngrep.pl is set to
true, indicating thatngrep represents “many” objects.

After the loop on line 3 terminates, a summarized nested object graph is obtained.
However, this graph can be further summarized. As an example, let us consider a set of

closedResultSet concrete objects that point to the same concreteStatement object.
The operations in the loop on line 3 lumps suchResultSet concrete objects into one,
but if there are two such sets ofResultSet concrete objects that point to two differ-
ent concreteStatement objects, the result would be two lumpedResultSet nested
abstract objects that point to the same lumpedStatement nested abstract object. The
two ResultSet nested abstract objects, however, should also be lumped, asthey are
essentially the same and already point to the sameStatement object.

FunctionCoarsestPartition, on line 7, identifies opportunities for such lumpings. It
is essentially a partition refinement algorithm, akin to DFAminimization or bisimula-
tion reduction algorithms, that starts with an initial partition of the set of all nodes ofng
and refines this partition until the partition cannot be further refined. The initial parti-
tion consists of the set of sets of equivalent nested abstract objects. A block,block2, of
a partition,partition2, can be refined if: (i) some of the nodes inblock2 have incoming
edges with a certain label, while the others do not have such incoming edges; or (ii)
some of the nodes inblock2 have outgoing edges with a certain label to another block,
while the others do not have such outgoing edges. In either case, such a block is parti-
tioned into two blocks. The rational for this refinement is todistinguish between nested
abstract objects that are pointed to or point to different types of nested abstract objects.
For example, the refinement distinguishes betweenStatement objects that are pointed
by openResultSet objects and those that are not. Finally, functionLumpFinal lumps
the nested object graph,ng, according to the partitions ofcoarsestPartition, and returns
the result (line 8). FunctionLumpFinal is the same asLump, except that when choosing
a representative nested abstract object,naorep, of a block,block2 ∈ coarsestPartition, if
|block2| > 1 andnaorep.pl = false, thennaorep.nj will be marked as true. Settingnaorep.nj
to true models the many one-to-one relationship; e.g., it isused to model the case when
many open individualResultSet objects point to their correspondingStatement ob-
jects.

Algorithm TransfertoNested returns also a mapping that specifies how the node of
hgare mapped to the nodes ofng.

Nesting LevelLastly, we describe an alternative method to represent the nesting struc-
ture of a nested object graph; we have used this method in our formal abstract semantics
for OO programs [5]. This method naturally describes thenesting levelof each node of
a graph via a number, which can be either zero or a positive number. The nesting level
of zero for a node denotes no repetition. A positive nesting level for a node specifies
repetition, but the scope of repetition also depends on the nesting level of the neigh-
bouring nodes of the node. Adjacent nodes with the same nesting level that is greater
than zero together denote the repetition of the subgraph that they represent. Repetition
can be nested through nodes that have edges to nodes with lessnesting levels. Based on
the observation that the nesting level of a source node that has an edge to destination
node cannot be less than the nesting level of the destinationnode, we have developed
a simple algorithm to assign nesting levels to the nodes of nested object graph. First,
we sort the nodes of the nodes of the graph according to the opposite topological sort
order in a list: i.e., the list starts with the nodes with no outgoing edges and ends with
the nodes with no incoming edges. We then process the nodes inthe list as follows. For
a nested abstract object,nao, let maxbe the maximum nesting level of the immediate

nodes that it can reach with its outgoing edges. Ifnao.pl is true, then its nesting level
would bemax+ 1, if nao.nj is true, then it ismax, if both nao.pl andnao.nj are false
then it 0. It can be shown that this assignment of nesting levels captures the intended
repetition structure of a nested object graph. As an example, this scheme assigns 0, 1,
and 2 to the nodesA, B, C of the nested object graph in Figure 1, respectively.

5 Exploration Stage

Algorithm 3 shows how our tool explores the behaviour of a package, using a notion of
universal client. The universal client consists of a while loop (line 3) that continues to
execute the methods of the classes of a package until a maximum number of redundant
rules are visited. The exploration is random in that the method that is to be executed,
the snapshot on which the method will be executed, the calleeobject, and the actual
parameters are all chosen randomly. When a new explored method invocation is not
coveredby any of the already-explored rules inRules(line 14), it is added toRules; the
new snapshot created as a result of the method call is also added to the set of already-
explored snapshots,Sps. The formal definition of rule coverage is presented at the end
of this section, but intuitively, a ruler is covered by a ruler ′, if each of the elements of
r has a corresponding element in the elements ofr ′.

After an initial exploration of a package, our toolcompletesit exploration by exe-
cuting all modifier methods, on all distinct objects of all snapshots. But before doing
that it prunes all redundant rules inRules(line 25). FunctionCompletifyRules, on line
26, takes the set of already-generated rules,Rules, and for eachr ∈ Rulesexecutes all
possible modifier method calls over the corresponding concrete objects of the nested
abstract objects ofr.ng and r.ng′. (Note that a nested abstract object is related to an
abstract object, which in turn is related to a concrete object and a snapshot.) For each
such invocation, if a new non-redundant rule is resulted, itis added to theRules. As ob-
served by others [3], trying to complete what has already been explored could improve
the coverage of exploration. At the end, the set of rules,Rules, is returned after being
pruned of redundant rules.

Next, we describe the key steps of this algorithm in more detail.

5.1 Creating A Rule

The call to functionCreateRule on line 11 transforms an input method invocation,
invoc, to a generalized rule,r. The first two elements ofr, r.mandr.e, are simplyinvoc.m
andinvoc.e, respectively. We next describe how other elements ofr are computed.

To compute the source and destination nested object graphs of r, theTransfertoNested
algorithm in Algorithm 2 is employed. In our analysis, the source and destination nested
object graphs of a rule are meant to includeall objects that are involved in the corre-
sponding method call of the rule, as well as those objects that could be possibly affected
by the method call. Our hypothesis is that these objects can be characterized as the ones
that could be reachable from or could reach to the objects ininvoc.Roles, plus the ones
that reach such objects. At below, byraos, we denote the domain ofinvoc.Roles. The
nested object graphs are then:

Algorithm 3: Explore Algorithm.
Input : A set of classes, their methods together with a set of scalarand reference

predicates over the classes
Result: An distinct set of initial rules

1 Rules= ∅;
2 Sps= {sp0}, wheresp0 is empty;
3 while redundants< maxRedundantdo
4 Pickm, a method of a classC randomly;
5 Picksp∈ Spsrandomly;
6 Pickparams, the actual object parameters form randomly fromsp;
7 if m ∈ C.MM then
8 Pick a callee object,ocallee, from sprandomly;
9 end

10 Executemoverocallee usingparams, and then derive invocation tupleinvoc;
11 r = CreateRule(invoc);
12 redundantFlag= false;
13 foreach r ′ ∈ Rulesdo
14 if r � r ′ then
15 redundants+ +;
16 redundantFlag= true;
17 break;
18 end
19 end
20 if ¬redundantFlagthen
21 Rules= Rules∪ {r};
22 Sps= Sps∪ {invoc.spd};
23 end
24 end
25 Rules= PruneRedundants(Rules);
26 Rules= CompletifyRules(Rules);
27 return PruneRedundants(Rules);

r.ng = TransfertoNested(hg(ReachingUndirected(invoc.sps, raos,)); and
r.ng′ = TransfertoNested(hg(ReachingUndirected(invoc.spd, raos,)).

(We can useraosobjects both for computing the source and destination nested abstract
object graphs because the unique ids of objects identify them in different snapshots.)

In our analysis, the source and destination cast nested abstract object graphs of a
rule are meant to include the objects that are directly involved in the method call. These
objects are the one that are reachable from or reach to the objects inraos. As such,
the nested object graph components ofr.cng and r.cng′ are computed using a varia-
tion of TransfertoNested that ensures that each element ofraosbelongs to a singleton
partition, otherwise, the dependencies between various objects that are cast will be lost
through lumping of similar nodes. This can be achieved by modifying theFindSimilars
andCoarsestPartition functions each to accept a parameter that specifies the nodesthat
each requires its own block. The role labelling components of r.cngandr.cng′ can be
derived frominvoc.Rolesby using the mapping information generated by Algorithm
TransfertoNested that relates concrete objects to nested abstract objects.

Lastly, r.p is computed by keeping track of how abstract objects that were used to
creater.ng andr.ng′, but were not used in the creation ofr.cngandr.cng′, are mapped
from a source nested abstract object to a destination nestedabstract object. The compu-
tation of r.q is similar to the computation ofr.p, considering only the abstract objects
that were used to creater.cngandr.cng′.

Lastly, we present the formal definition of covering relation between two rules.

Rule ComparisonRuler is coveredby ruler ′, denoted byr � r ′, if:

– r.m= r ′.m,
– r.e= r ′.e,
– r.ng � r ′.ng, according to a node subgraph isomorphism mappingN1 ⊆ r.ng.V →

r ′.ng.V,
– r.ng� r ′.ng, according to a node subgraph isomorphism mappingN2 ⊆ r.ng′.V →

r ′.ng′.V,
– (r.cng.V, r.cng.E, r.cng.s, r.cng.t, r.cng.l) �

(r ′.cng.V, r ′.cng.E, r ′.cng.s, r ′.cng.t, r ′.cng.l), according to a node subgraph iso-
morphism mappingR1 ⊆ r.cng.V → r ′.cng.V,

– (r.cng′.V, r.cng′.E, r.cng′.s, r.cng′.t, r.cng′.l) �
(r ′.cng′.V, r ′.cng′.E, r ′.cng′.s, r ′.cng′.t, r ′.cng′.l), according to a node subgraph iso-
morphism mappingR2 ⊆ r.cng′.V → r ′.cng′.V,

– for anym ∈ r.p, there exists a mappingm′ ∈ r ′.p such that:
• (m.nao1,m′.nao1) ∈ N1,
• (m.nao2,m′.nao2) ∈ N2, and
• m� m′;

– for anym ∈ r.q, there exists a mappingm′ ∈ r ′.q such that:
• (m.nao1,m′.nao1) ∈ R1,
• (m.nao2,m′.nao2) ∈ R2,
• m� m′,
• r.cng.u−1(m.nao1) = r ′.cng.u−1(m′.nao1), and
• r.ng′.u−1(m.nao2) = r ′.ng′.u−1(m′.nao2).

6 A Heuristic for Rule Generalization

The result of running theExplore in Algorithm 3 is a set of rules, each of which is a
generalization of a particular method call. While such a generalization may be able to
identify repetition pattern over some parts of the heap, it may not identify repetition for
other parts. One way to further generalize a rule is to try toextrapolatethe nodes in
its nested object graphs and cast nested object graphs: for the singular nodes in these
graphs, try to change theirpl andnj properties to true, whenever it is possible.

We have developed a heuristic for extrapolating the nodes ofthe graphs in a rule.
The extrapolation opportunities are identified by checkingthe anomalies in the object
mapping and role mapping of a rule: if one element of a mappingis singleton but not
the other, then our heuristic tries to find another rule that has a similar, but more general
version of this mapping, in which case the graphs in the original rule can be generalized
based on the nodes in the graphs of the other rule. Next, we describe our heuristic for
the case where we deal with the nested object graphs of a rule and its object mapping.
The heuristic for cast nested object graphs of a rule is similar.

6.1 Extrapolation of Deficit Nested Abstract Objects

Given a rule,r, a nested abstract object,nao, is deficit, if nao is singular, and there
exists a mappingm ∈ r.p such that: eitherm.nao1 = nao andm.nao2 is not singular,
or m.nao2 = nao and m.nao1 is not singular. For example, ifm.nao1 is a singular,
openResultSet object, whilem.nao2 is a non-singular closedResultSet object, then
m.nao1 is deficit.

Our heuristic is based on the hypothesis that a nested abstract object,nao, is deficit
as a result of the universal client having not explored certain use cases of a package. If
there is a nested object graph of another rule, either its source or destination nested ob-
ject graph, that has a node,naop, such thatnao.ao ≡ naop.ao andnaop is not singular,
then our hypothesis could be somewhat validated: there is noinherent reason fornaoto
be singular; it is perhaps singular because of insufficient exploration. However, this ob-
servation does not take into account thatnaoandnaop could belong to two nested object
graphs with different structures. A nested abstract object may have to be only singular
in one structure, but need not be singular in another structure. Thus, the extrapolation
of the deficit nested abstract object,nao, is allowed only if

subgraph(G,ReachableToFrom(G, nao)) � subgraph(H,ReachableToFrom(H,naop)),

whereG andH are the nested object graphs thatnaoandnaop belong to, respectively.
The extrapolation of a node in a graph, however, should be consistent in that the

resulting graph should not have an edge whose destination isa smaller nested ob-
ject graph than its source; e.g., a singular openResultSet object should not point
to a non-singular openStatement object. As such, in our heuristic, we extrapolate
a group of objects together. Considering the node isomorphism mapping,kv, between
the nodes of the above subgraphs, for each (naoG, naoH) ∈ kv, we extrapolatenaoG

via renest(naoG, naoH). In our experience, we have observed that this collective ex-
trapolation always precludes creating any ill-formed nested object graph, although the
collective extrapolation only applies to a subset of the nodes ofG andH.

This heuristic is also applied to the nodes of cast nested abstract object graphs of a
rule by identifying the deficit nodes in the role mappings of the rule. The only difference
is that a node that is labelled by the role labelling functionof its corresponding cast
nested object graph cannot be extrapolated. Those objects are inherently singular.

In our tool, we apply the extrapolation heuristic to all rules in an arbitrary order.
After this step, we also check one more time to see whether further extrapolation can
be performed using the elements of the rules that have already been extrapolated.

6.2 Adjusting the Multiplicity of a Mapping

One source of inconsistency that could arise as a result of applying our heuristic would
be the creation of a mapping whose multiplicity is “one” while its source or destination
nested abstract object has been extrapolated from a singular nested abstract object to a
non-singular one. We can fix a certain class of such inconsistencies by changing these
multiplicities to “many”; namely, if both the source and thedestination of a mapping
m are non-singular andm.u = one, andm.nao1 is not the source of any other mapping,
thenm.u is set tomany. For other cases, it is not certain that by changingm.u to “many”,
we will not change the semantics of the rule. In our experiences, the above fix captures
almost all the needed adjustments.

7 Rule Merging

The extrapolation heuristic can result in more general rules, which in turn render many
explored rules as redundant. However, there could still exist may distinct rules for a DPI.
The merging of a pair of rules results a new rule that can be considered as a summary
of the union of the two rules. Thus, the two rules are replacedwith one. The rationale to
allow for such a merging is rooted in the abstract semantics that we have developed for
OO programs overwell-structured transition systems[5]: Given a method invocation
over a nested object graph, it can be replicated in alarger nested object graph, where
the notion of “larger” is similar to the covering relation between nested object graphs in
this paper. Based on this property, in our merging algorithm, we rely on the assumption
that by taking a rule,r, and adding objects of a similar rule,r ′, to r, we only generalizer
further, but do not introduce a behaviour that is not observable in the package. Of course,
this assumption does not always hold in a dynamic analysis, but in our experiences, it
always held.

Two rules,r and r ′, aremergeable, denoted bymergeable(r , r ′), if the following
conditions hold:

– r.m= r ′.m,
– r.e= r ′.e, and
– roleconsistent(r , r ′),

where two rules,r andr ′, arerole consistent, denoted byroleconsistent(r , r ′), if:

– subgraph(r .cng,ReachableFrom(r .cng, range(r .cng.u))) and
subgraph(r .cng,ReachableFrom(r .cng, range(r .cng.u))) are isomorphic according
to a node graph isomorphism mappingM1 ⊆ r.cng.V → r ′.cng.V, in which if
(nao1, nao2) ∈ M1, thennao1.ao≡ nao2.ao;

– subgraph(r .cng′,ReachableFrom(r .cng′, range(r .cng′.u))) and
subgraph(r .cng′,ReachableFrom(r .cng′, range(r .cng′.u))) are isomorphic accord-
ing to a node graph isomorphism mappingM2 ⊆ r.cng′.V → r ′.cng′.V, in which if
(nao1, nao2) ∈ M2, thennao1.ao≡ nao2.ao; and

– For any role mappingm ∈ r.q such thatm.nao1 ∈ range(r .cng.u), there exists a role
mappingm′ ∈ r ′.q such that:
• (m.nao1,m′.nao1) ∈ M1;
• (m.nao2,m′.nao2) ∈ M2; and
• r.q−1(m.nao1) = r ′.q−1(m′.nao1); i.e., the two nodes have the same role label.

– And similarly, for anym′.nao1 ∈ range(r ′.cng.u), there exists a matching role map-
pingm ∈ r.q.

Essentially, two rules are mergeable if they are based on similar invocations. The role
consistency criteria checks the similarity of objects thathave role labels and ignores
the rest of nested abstract objects in the cast nested objectgraphs of the two rules that
are likely not to be common in all related invocations. Basedon our observation that
method calls can be generalized overdownward-closedheaps [5], we characterize these
non-consequential nested abstract objects as those that can make a rule “larger” but not
essentially different.

Algorithm 4 shows the algorithm that merges all mergeable rules of a given set
of rules. When a pair of rules are merged, the first rule is replaced with the result of
merging (line 6), while the second is removed from the result(line 7). The key function
is Merge, which merges two rules into one.

Algorithm 4: MergeAll Algorithm.
Input : A set of rules,Rules
Result: A set of merged rules,Rules

1 copyofRules= Rules;
2 foreach r ∈ copyofRulesdo
3 if r < Rulesthen continue;
4 foreach r ′ ∈ Rules such that r′ , r do
5 if mergeable(r , r ′) then
6 r = Merge(r, r ′);
7 Rules= Rules− {r ′};
8 end
9 end

10 end
11 return Rules;

TheMerge algorithm itself is essentially based on two algorithms that combine a
pair of cast nested object graphs (MergeR algorithm) and nested object graphs (MergeN

algorithm). Before describingMerge, we first describeMergeR; MergeN is similar to
MergeR.

Algorithm 5 presents theMergeR algorithm. It accepts a pair of cast nested object
graphs,cngandcng′, together with an isomorphism mappingM resulting from check-
ing that the two graphs are mergeable, and creates a new cast nested object graph,cngm.
The steps between lines 1 and 14 compute the union of nodes andedges ofcngandcng′,
while removing those nodes ofcng′ that has an isomorphic node incng. In the process
of removing these nodes, the corresponding node ofcngm is renested. The result is a
nested object graph whose elements are stored incng. Once these nodes and edges are
computed, a coarsest partition of these nodes is computed. This computation is the same
as the computation on line 7 in Algorithm 2, except that two nodes can belong to the
same block of partition even if their incoming edges do not match. This partitioning
results in a reduction of the graph that embodies the semantics of downward-closed
heaps [5]. Based on this partition, functionLumpMergeds, on line 16, reduces the cor-
responding nested object graph ofcngm. This algorithm is similar toLumpFinal used in
line 8 of Algorithm 2, except that when choosing a representative nested abstract object
for a block, a non-singular node is chosen if there exists; ifonly singular objects exist,
then the representative will be singular. Lastly, based on the partition, the role labelling
of cngm needs to be adjusted (line 17).

Applying MergeR to a pair of graphs could create an inconsistent graph that has
edges whose sources are singular but their destinations arenot; this happens because of
renesting that is done in the process. For such edges, which were rarely observed in our
experiences, there is a function that adjust their source nodes to have the samepl andnj
properties as their destinations.

FunctionMergeN is the same asMergeR except that it does not acceptM as an
input, and that the union of the corresponding nested objectgraphs ofcngandcng′ is
simply the union of their elements.

Algorithm 6 presents functionMerge, which usesMergeN andMergeR to merge a
pair of rules,r andr ′. Lines 2 and 3 combine the source cast nested object graphs of
r andr ′. FunctionCombineMappings, on line 4, first computes the union of the role
mappings of the two rules, and then adjusts them to the nodes of the cast abstract object
graphs ofrm; L1 is a mapping that specifies how each node of the cast nested object
graphs of the original rules are mapped to the nodes of the cast nested object graphs of
rm. The next three lines are similar, but deal with nested object graphs.

FunctionCombineMappings may come across two maps between the same pair of
nested object graphs, with one havingoneand one withmanymultiplicity. In such a
case, only the mapping with themanymultiplicity is kept. Lastly, if, a nested abstract
object is the destination of two maps, it cannot be singular;similarly, a singular nested
abstract object cannot be the sole destination of a non-singular nested abstract object,
neither the multiplicity of such a mapping can beone. These anomalies are all adjusted.

8 Exception Isolation

While theMergeAll algorithm is effective in deriving the most general rules of a pack-
age for the method calls that do not raise exceptions, it is not well-suited for method

Algorithm 5: MergeR Algorithm.
Input : A pair of cast nested object graphs,cngandcng′, and an isomorphism mapping,

M ⊆ cng.V × cng′.V
Result: A new nested object graph,cngm, which is a summary of the input graphs

1 cngm.V = r.V ∪ r ′.V − range(M);
2 foreach (nao1,nao2) ∈ M do
3 cngm.V = cngm.V ∪ {renest(nao1, nao2)};
4 end
5 cngm.E = cng.E; cngm.s= cng.s cngm.t = cng.t;
6 foreach e ∈ cng′.E do
7 if cng′.s(e) ∈ range(M) ∧ cng′.t(e) ∈ range(M) then
8 continue;
9 end

10 cngm.E = cngm.E∪ {e};
11 if cng′.s(e) ∈ range(M) then cngm.s= cngm.s∪ {(e,M−1(cng′.s(e)))};
12 if cng′.t(e) ∈ range(M) then cngm.t = cngm.t ∪ {(e,M−1(cng′.t(e)))};
13 end
14 cngm.l = cng.l ∪ cng′.l;
15 partition = CoarsestPartitionUpward(cngm, cngm.V);
16 cngm = LumpMergeds(cngm,partition);
17 cngm.u = AdjustRoleLabels(r.u,CoarsestPartitionUpward);
18 return cngm;

Algorithm 6: Merge Algorithm.
Input : A pair of mergeable rules,r andr ′

Result: A new rule,rm, that is the merge of input rules
1 rm.m= r.mandrm.e= r.e;
2 rm.cng= MergeR(r.cng, r ′.cng,M1);
3 rm.cng′ = MergeR(r.cng′, r ′.cng′,M2);
4 rm.q= CombineMappings(r.p, r ′.p, L1);
5 rm.ng= MergeN(r.ng, r ′.ng);
6 rm.ng′ = MergeN(r.ng′, r ′.ng′);
7 rm.p= CombineMappings(r.q, r ′.q, L2);
8 return rm;

calls with exceptions. The reason is twofold. First, often when an exception is raised
the states of objects of a rule do not change. Thus adding morenodes to the cast nested
object graphs and nested object graphs of a rule, through merging, does not make the
rule any more general. Second, for rules with exceptions, itis often not important to de-
termine the fates of objectsafter the method call, but rather it is important to determine
what was especial about the states of objectsbeforethe method call.

We have developed a method for summarizing rules with exceptions, calledexcep-
tion isolation, which, similar to the merge process in the previous section, combines
a set of related rules into one. Furthermore, it addresses the above two considerations.
First, we only consider the cast nested object graphs of the rules when isolating a certain
exception. Second, we use a three-value logic, including true, false, and an unknown
value “*”, that can combine the objects of the same class thathave different scalar pred-
icate values. It works as follows. For a pair of isomorphic objects identified in a a pair of
cast nested object graphs, if a certain predicate has different values for the two objects,
the value of the predicate is set to “*”. The unknown values for predicates isolate the
root cause of when a method can raise a certain exception. When checking for isomor-
phism, however, we need to make sure that an object,nao, will not be paired with an
object whose predicates is not the same asnao, while there indeed exists another object
whose predicates conform with the ones ofnao; e.g., an openResultSet object should
not be matched with a closedResultSet if it can be matched with an open one. Thus,
to avoid premature combination of objects with different predicates, we first apply the
merge algorithm on rules with exceptions, in order to have larger graphs that decrease
the chance of combining objects prematurely.

Our three-valued combination scheme, however, could sometimes create too coarse
an isolation for a set of rules. For example, if we further isolate the rules in Figure 3(a)
and Figure 3(b) by combining them into one, then the resulting rule would prescribe that
thenextmethod always raises an exception. To avoid such over-isolations, our isolation
algorithm can be tuned to pair two callee objects of two rulesas isomorphic only if
they are equivalent. Our tool has an option that specifies whether callee objects can be
combined in three-value logic or not. One way to decide whether to apply three-value
combination to callee objects or not, is to first allow this type of combination, and check
whether an overlap happens. If it does, then try the isolation process without three-
value combination of callee objects, otherwise accept the resulting set of rules. While
for JDBC package, we chose not to combine the pairs of isomorphic callee objects
in the three-value logic, for the Array-Iterator package, we chose to combine them in
three-value logic.

9 System

Figure 6 shows the high-level architecture of our system, which is implemented in
Java.The arrow between the components of the system specifythe high-level input com-
municated between these components.

The Package Abstractioncomponent provides the abstract information about the
package that our tool uses to compute the DPI of the package. It is a programmatic
way to provide an input to our system. It consists of a set of classes whose methods

specify the classes of the package under study, the methods of these classes, and the
valuations of the abstraction predicates of the objects of the package. These classes ba-
sically use Java reflection to present the aforementioned information about the package
under study. Furthermore, there are classes that provide the actual parameters for the
method calls of the universal client; these actual parameters have random values. While
we manually create these classes, but many of them can be automatically generated
based on inputs from a user; e.g., the names of chosen classes, abstraction predicates
over their attributes, etc.

Information

Package

Rules

Explored

Abstraction Explorer

Package
Heuristics

Package

Fig. 6.The main components of the system.

ThePackage Explorercomponent essentially implements our exploration algorithm
described in Section 5. To implement a notion of snapshot whose objects can be ac-
cessed throughout the exploration, we need to be able to obtain a copy of an object of
a snapshot on demand. To achieve this, for each snapshot of objects, our tool maintains
the corresponding trace of method calls that resulted in thesnapshot. To call a method
of an object of a snapshot, our tool recreates the entire snapshot by replaying its cor-
responding trace. (Cloning or saving an object, in general,would not work, as not all
classes implement these methods.) A recreated snapshot hassimilar objects as the orig-
inal snapshot, assuming that, as far as the abstraction predicates are concerned, method
calls are deterministic. To relate the objects in a snapshotto the objects in its replayed
copy, we use a notion oflogical id for each of the objects of the snapshots; objects that
have the same logical ids are treated as copy of one another.

In our implementation of the exploration algorithm, as opposed to the algorithms in
Section 5, we use the nested abstract object graphs of a rule to represent its cast nested
abstract object graphs as well. These cast nested abstract object graphs are in a sense an
unfoldingof their corresponding nested object graphs, as described in [5].

To ensure that our exploration does not prematurely identify a certain kind of object
as singular in a rule, we use a repetitive object creation scheme in our exploration: If a
creator method is chosen to be executed, we invoke the methodn > 1 number of times
consecutively, and only after that compute the rule with respect to the snapshot before
consecutive method calls and the snapshot after that. To avoid undesired redundant
method calls, a method is not called more than once on the sameobject of a snapshot;
similarly, our system nondeterministically chooses not toexecute a method over an
object of a snapshot if the last method call in the snapshot isthe execution of the same
method, possibly on a different object.

Lastly, theHeuristiccomponent implements the algorithms in Section 6, 7, and 8.
We use the graph data structures in JGraphT library to implement our graph algorithms.

Table 1.Duration and number of rules after different stages in computing DPIs of three packages.
Information, except for the last column, correspond to average values of five runs.

Exp
lor

at
ion

Extr
ap

ola
tio

n

M
er

gin
g

Iso
lat

ion

Exp
lor

at
ion

Extr
ap

ola
tio

n

M
er

gin
g

Iso
lat

ion

Package Threshold # Time (min:sec) #Rules
ArrayList 200000 010:37000:03000:00000:00 572 299 29 15 (once 14)
HashSet 200000 168:26000:23000:01000:001140 503 34 16
JDBC 1200 032:01000:57000:05000:002465237029 26 (twice 25)

9.1 Limitations

While we expect our tool to work in a straightforward manner on packages that solely
work on heap (e.g., Java collections), for packages that work with external devices,
the Package Abstraction part of this system would be more complex. Furthermore, for
such packages, the effect of our “replay” mechanism should be taken into account. For
example, if a trace of method cause a certain port to be bound,the naive replay of the
same trace would not obtain a new copy of the object of interest. Instead, a different
port during the replay should be used. These limitations arenot unique to our approach,
but are inherent to dynamic approaches.

10 Experiences

We have computed the DPI of three Java packages using our tool: JDBC, ArrayList,
andHashSet. While our tool usually identifies the right number of rules for the DPI of
a package, some of these rules could be in principle more generalized. The converse,
however, has never happened in our experiments: i.e., a rulefor a packaged computed
by our tool always corresponded to the actual behaviour of the package.

Table 1 shows the results of running our tool for each of thesepackages. The mea-
surements for each package are for the average of five runs on adual-core CPU Win-
dows 7 desktop machine with 8 GB of RAM. In all our experiments, we have set JVM
options to use 5120MB of physical memory and to avoid raisinga Garbage Collection
exception, because of the lack of progress in computation. For each package, Table 1
presents the time taken and the number of rules at each stage of the computation of
a DPI, namely after the exploration phase, after the extrapolation phase, and after the
merge phase. We use the line numbers of Algorithm 1, in Section 2, to indicate the
stages that these measurements have been performed; e.g., line number 7 denotes a
measurement after the computation at line 7 has concluded.

JDBC. In Section 2, we have already presented some of the rules of the DPI of JDBC.
In our experiments, the universal client connects to a localApache Derby database.
We use a key-value table that is manipulated through INSERT,DELETE, and SELECT
SQL commands with random values, via JDBC. We are thus assuming that the DPI of
the JDBC package is independent of the schema of databases that can be connected via

JDBC, which is justified by our interest in determining the relationship of interacting
objects of a package, and not its interaction with external components. Increasing the
threshold value to a value bigger than 1200 could cause out-of-memory exceptions in
our system. Our tool computes 26 rules in three out of five runs; in the other two runs,
it computes 25 rules. The missing rule in both cases is the rule for close method call
over an openResultSet object that references a closedStatement object that in turn
references a closedStatement object.

ArrayList. We consider two classes ofArrayList: Array and its internal classItr,
which implements JavaIterator. Besides the creator methods for these classes, we
consider theAdd method ofArray, and thenext andremove methods ofItr. We
provide a reference predicate,iter o f , to the system, which determines whichItr
object belongs to whichArray object. We provide four scalar predicates to the sys-
tem: empty≡ size> 0, which determines whether anArray object is empty or not,
nextCalled≡ lastRet, −1, which determines whether theremove method of anItr
object can be called (i.e., ifnext has been called),mover≡ size> cursor, which de-
termines whether anItr has traversed all members of its correspondingArray or not,
andsync≡ modCount= expectedModCount, which determines whether anArray ob-
ject has the same version as anItr object expects it (i.e., theArray object has only
been modified by theItr object). Lastly, we specify integers as the domain ofArray
objects.

Our tool can compute 15 rules that cover all possible behaviour of ArrayList. It
once missed computing the rule fornextwhen called on an iterator whose all predicates
are true and remain true after the method call. Figure 7 showstwo exceptions rules that
our tool computes for thenext method. Figure 7(a) shows the case when thenext
method raisesConcurrentModificationException because anItr callee object
is not sync. Figure 7(b) specifies when theNoSuchElementException exception is
raised. Figure 8 specifies one of the three rules that our toolcomputes for theremove
method in one of our experiments. This rule is interesting inthat it demonstrates that
the object mapping of a rule can be non-deterministic: e.g.,a mover, sync iterator object
can either become non-mover or stay mover, in both cases it becomes non-sync. This
rule could have been more general, however. First, in the source nested object graph,
the object withnextCalled= false, mover= false, andsync= falseis missing. Second,
the object mapping fromb to j could have had multiplicity “many”. And lastly, there
could have been an object mapping fromd to l with multiplicity “many” denoting that
some of the mover, sync objects whosenextCalledis false become non-movers.

HashSet.The input for computing the DPI ofHashSet is somewhat different from
ArrayList’s. TheHashSet class has amap field, which is aHashMap. Most of the se-
mantics ofHashSet is implemented viamap and its methods. In particular, an iterator
for a HashSet object, is an innerHashIterator object of itsmap object. Further-
more, two of the input predicates are also defined differently:mover≡ next, null and
nextCalled≡ current, null. Using these input information, our tool computed 15 rules:
the same number of rules as forArrayList. Upon a closer examination, we noticed two
differences between the two rules of the two packages. First, while in ArrayList rules
for invoking theadd method on anArray object causesall iterators that point to it to

callee

ArrayList[A]
empty= ∗

ArrayList[C]
empty= ∗

one

iter of iter of

Itr [B] Itr [D]

one

∗

mover= ∗
sync= falsesync= false

nextCalled= ∗
mover= ∗

nextCalled= ∗

(a)
ConcurrentModificationException.

callee

ArrayList[A]
empty= ∗

ArrayList[C]
empty= ∗

one

iter of iter of

Itr [B] Itr [D]

one

∗

sync= true sync= true

nextCalled= ∗
mover= false

nextCalled= ∗
mover= false

(b) NoSuchElementException.

Fig. 7. Two exceptions for thenext method ofArrayList.

mover= T

ArrayList[A]
empty= F

ArrayList[C]
empty= F

one

iter of iter of

Itr [B] Itr [D]

one

sync= T

callee nextCalled= F

sync= T
mover= T

nextCalled= T

(a) Role Mapping.

many

∗

nextCalled= T
mover= F
sync= T

Itr [f]

∗

nextCalled= T
mover= T
sync= F

Itr [g]

∗

nextCalled= T
mover= F
sync= F

Itr [l]

∗

nextCalled= T
mover= T
sync= F

Itr [m]

∗

nextCalled= T
mover= F
sync= F

Itr [e]

∗

nextCalled= F
mover= T
sync= F

Itr [b]

∗

nextCalled= F
mover= T
sync= T

Itr [d]

ArrayList[i]
empty= F

ArrayList[a]
empty= F

∗

mover= T
nextCalled= T

sync= T

mover= T
sync= F

nextCalled= F
mover= F
sync= F

∗

sync= T

nextCalled= F
mover= T

Itr [c] Itr [h]

Itr [j]
nextCalled= F
Itr [k]

∗

many one
∗

many many many many manymany many

(b) Object Mapping.

Fig. 8.One of the three rules forremove method ofArrayList. “T” and “F” representtrueand
f alse, respectively. For the sake of clarity the arrows representing reference predicates are not
labelled withiter of .

become unsync (which made sense because the other iteratorsshould become invalid),
in the case of the rules forHashSet some sync iterators would become unsync, while
the others would remain sync. The reason turned out to be thatadding a duplicate el-
ement to aHashSet object does not change themodCount attribute of the object, and
thus a sync iterator would remain sync. Our tool, however, had merged rules for adding
duplicate elements with rules for adding new elements, leading to a mix of sync and un-
sync iterator objects as a result. Methodadd, however returns a false value if it receives
a duplicate value. We adjusted our input to the tool so thatadd rules with distinct return
values are distinguished. By default, our tool abstracts away from the return value of
modifier methods, because they are in general not useful to distinguish genuinely differ-
ent rules; e.g., the return value ofnext method of an iterator returns an object, which
can have no role in distinguishing between genuinely different rules. With this new in-
put, our tool computed a set of 16 rules, which distinguish between the case when a new
element is added to a non-empty set and the case when a duplicate element is added to
a non-empty set.

The second difference is that themover predicate of anIterator object of a
HashSet only correctly denotes whether it has traversed all elements of its correspond-
ing HashSet or not if its syncpredicate is true. This is essentially because unlike an
ArrayList object, whose iterator objects maintain an index of the underlying array of
theArrayList object, the iterators of aHashSet need to traverse the underlying hash
table of theHashSet, which is not contiguously populated.

Lastly, from Table 1, it is clear that computing the DPI ofHashSet takes signifi-
cantly longer than computing the DPI ofArrayList. This difference can be partly justi-
fied by the fact thatArrayList implementsRandomAccess, which provides constant-
time access, whileHashSet does not. Another slowing factor is the way the refer-
ence predicates are computed for the two packages. ForArrayList, we only need to
check whichArray object anItr object resides in. ForHashSet, we can check which
HashMap aHashIterator resides in, but then we need to check whichHashSet object
wraps thatHashMap object. To find thatHashSet object we need to check all objects of
the snapshot and perform reflection on their type and theirmap fields.

11 Conclusion

We have introduced the notion of dynamic package interface (DPI) that provides a suc-
cinct way to describe valid usage patterns for a package. TheDPI of a package is a set
of rules, each of which specifies the effect of a method call over a general configuration
of a set of objects. We have developed a dynamic tool that computes an approximation
of the DPI of a Java package automatically, given a set of abstraction predicates. The
rules of such a DPI generalize the usual examples used in the documentation of the Java
package and can be traced to problems discussed in online forums.

A DPI captures both theinter-object aspects of the dynamic behaviour of the classes
of a package, as well as theintra-object aspects of individual classes of the package,
relative to a set of scalar and reference predicates, even when unboundedlymany objects
interact.2 In contrast, previous dynamic techniques primarily focus on either deriving

2 We use the terms “inter-object” and “intra-object” in a similar sense as in OO design [4].

intra-object specifications for one object or deriving finite state machines that capture
the interaction pattern of a finite number of objects [3,6,7,10–12].

Lastly, our work focuses on the analysis of the classes of packages that are non-
recursive; it abstracts away from their underlying recursive data structures, which are
often only accessible internally or privately via the public classes of the package. Our
analysis can be considered as orthogonal to the techniques,both dynamic and static,
that deal with recursive data structures.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS ’96. pp. 313–321. IEEE (1996)

2. Alur, R.,Černý, P., Madhusudan, P., Nam, W.: Synthesis of interfacespecifications for Java
classes. In: POPL’05. pp. 98–109. ACM (2005)

3. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases for specifi-
cation mining. In: ISSTA. pp. 85–96. ACM (2010)

4. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal Methods
in System Design 19(1), 45–80 (2001)

5. Esmaeilsabzali, S., Majumdar, R., Wies, T., Zufferey, D.: A notion of dynamic
interface for depth-bounded object-oriented packages. CoRR abs/1311.4615 (2013),
http://arxiv.org/abs/1311.4615

6. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by graph trans-
formation. In: ICSE. pp. 430–440. IEEE (2009)

7. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for java container
classes. IEEE Trans. Software Eng 33(8), 526–543 (2007)

8. Henzinger, T., Jhala, R., Majumdar, R.: Permissive interfaces. In: Wermelinger, M., Gall, H.
(eds.) ESEC/SIGSOFT FSE. pp. 31–40. ACM (2005)

9. Nanda, M., Grothoff, C., Chandra, S.: Deriving object typestates in the presence of inter-
object references. In: OOPSLA. pp. 77–96. ACM (2005)

10. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Graph-based min-
ing of multiple object usage patterns. In: ESEC/SIGSOFT FSE. pp. 383–392. ACM (2009)

11. Pradel, M., Jaspan, C., Aldrich, J., Gross, T.: Statically checking API protocol conformance
with mined multi-object specifications. In: ICSE’12. pp. 925–935. IEEE (2012)

12. Pradel, M., Gross, T.R.: Automatic generation of objectusage specifications from large
method traces. In: ASE. pp. 371–382. IEEE Computer Society (2009)

13. Strom, R.E., Yemini, S.A.: Typestate: A programming language concept for enhancing soft-
ware reliability. IEEE Transactions on Software Engineering 12(1), 157–171 (Jan 1986)

14. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom.
Softw. Eng. 18(3-4), 263–292 (2011)

15. Whaley, J., Martin, M., Lam, M.: Automatic extraction ofobject-oriented component inter-
faces. In: ISSTA. pp. 218–228 (2002)

16. Wies, T., Zufferey, D., Henzinger, T.: Forward analysis of depth-boundedprocesses. In: FOS-
SACS. LNCS, vol. 6014, pp. 94–108. Springer (2010)

http://arxiv.org/abs/1311.4615

	Dynamic Package Interfaces
	1 Introduction
	2 Overview: Dynamic Package Interface of JDBC
	2.1 JDBC
	2.2 System Input
	2.3 DPI Rules
	2.4 From a Method Call to a Rule
	2.5 Computation Stages

	3 DPI Formally
	4 From Heap Graphs to Nested Object Graphs
	5 Exploration Stage
	5.1 Creating A Rule

	6 A Heuristic for Rule Generalization
	6.1 Extrapolation of Deficit Nested Abstract Objects
	6.2 Adjusting the Multiplicity of a Mapping

	7 Rule Merging
	8 Exception Isolation
	9 System
	9.1 Limitations

	10 Experiences
	11 Conclusion

