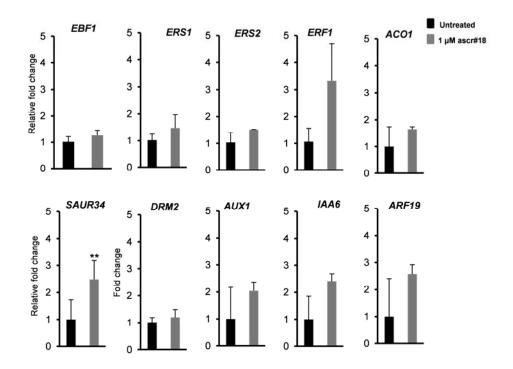
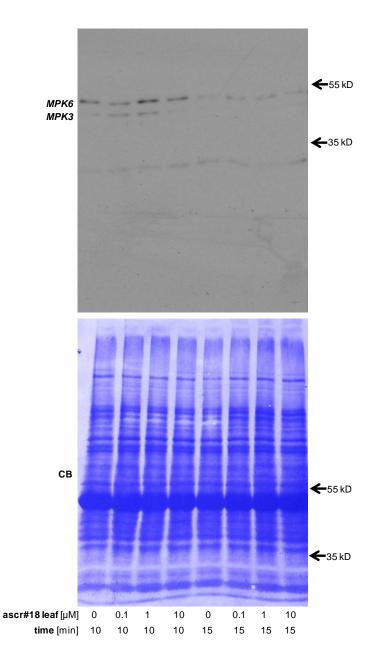
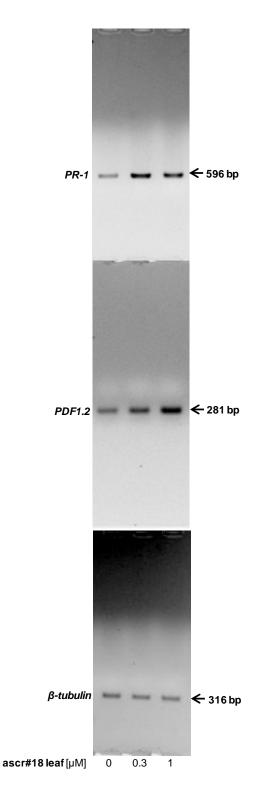

Supplementary Information

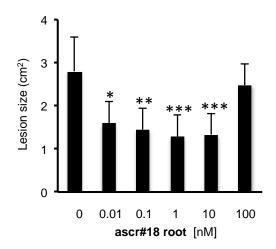
Supplementary Figures

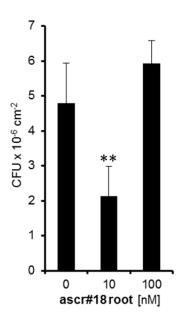


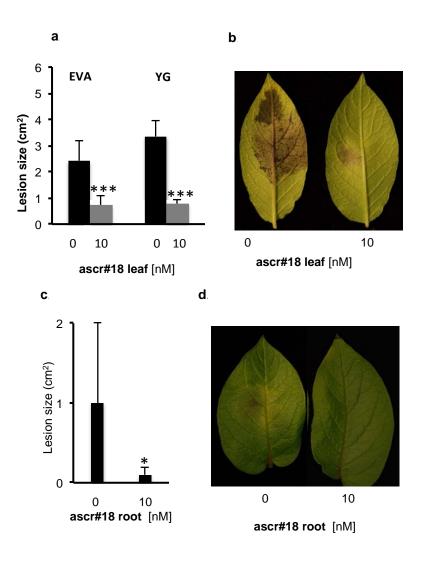
Supplementary Figure 1: Relative abundances of identified ascarosides, as determined from integration of HPLC-MS ion chromatograms, in the *exo*-metabolomes of three *Meloidogyne* species. All three species also produce trace amounts of ascr#24 (not shown).



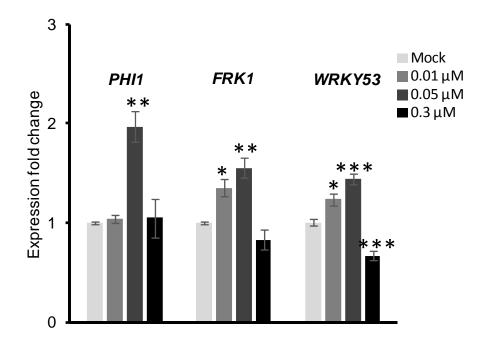

Quantification of TCV coat protein (CP) in inoculated (local) and uninoculated (systemic) leaves of plants root-pretreated for 24 h with ascr#18. Leaves were harvested at 2, 3, and 6 dpi for immunoblot analysis with the anti-CP antibody. Coomassie blue staining (CB) served as loading control.


Supplementary Figure 3: Ascr#18 enhances expression of defense-related genes in *Arabidopsis* leaves. Transcript levels as measured by qRT-PCR of ethylene- and auxinresponsive gene markers in leaves from plants root-pretreated with ascr#18 (1 μ M). Gene transcript levels of *EBF1*, *ERS1*, *ERS2*, *ERF1*, *ACO1*, *SAUR34*, *DRM2*, *AUX1*, *IAA6* and *ARF19* were determined at 24 h post pretreatment (hpt). **P \leq 0.005, two-tailed *t*-test.


Supplementary Figure 4: Ascr#18 activates MAPKs in *Arabidopsis* **leaves**. Activation of MPK3 and MPK6 in *Arabidopsis* 10 and 15 min after leaf pretreatment with ascr#18. CB served as loading control.


Supplementary Figure 5: Ascr#18 induces SA and JA marker genes in *Arabidopsis* leaves. Induction of SA and JA marker genes *PR-1* and *PDF1.2* respectively, after syringe infiltration of *Arabidopsis* leaves with ascr#18, as measured by qRT-PCR. β -tubulin was used as internal control.

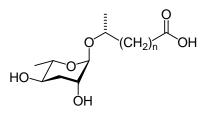
Supplementary Figure 6: Ascr#18 enhances disease resistance in tomato. Tomato cv. M82 plants were root-pretreated with the indicated concentrations of ascr#18 for 48 h before inoculation with *P. infestans* (US22) (4000 sporangia/mL) using a detached leaflet assay. Four leaves per plant from four plants were used for each concentration in a detached leaflet assay. Lesion size was determined at 5 dpi to assess disease symptoms. Data are average \pm SD (n = 16, where n denotes the number of independent samples). *P \leq 0.005; **P \leq 0.005; ***P \leq 0.0005, two-tailed *t*-test.



Supplementary Figure 7: Enhanced resistance to *Pst DC3000* in tomato cv. M82 rootpretreated with ascr#18 for 48 h. Bacterial growth was assayed at 4 dpi. Data are average \pm SD (n = 6). **P \leq 0.005, two-tailed *t*-test.

Supplementary Figure 8: Effect of ascr#18 on resistance to P. infestans in potato.

(**a,b**) Potato cultivars Eva and Yukon Gold (YG) were sprayed with the indicated ascr#18 concentrations 48 h before inoculation with *P. infestans* (US22) (4000 sporangia/mL). (**a**) Using a detached leaflet assay lesion size was determined at 5 dpi to assess disease symptoms. (**b**) Pictures of the blighted area in Yukon Gold were taken at 6 dpi. Data are average \pm SD (n = 10, where n denotes the number of independent samples. *P \leq 0.05; **P \leq 0.005; ***P \leq 0.0005, two-tailed *t*-test. (**c,d**) Potato cultivar Désirée was pretreated via root bathing using the indicated ascr#18 concentrations for 48 h before inoculation with *P. infestans* (US22) (4000 sporangia/mL). (**c**) Size of lesions in the detached leaflet assay caused by *P. infestans* was measured at 5 dpi. (**d**) Photographs of inoculated potato leaflets were taken at 5 dpi. Data are average \pm SD (n = 7, where n denotes the number of independent samples). *P \leq 0.05, two-tailed *t*-test.


Supplementary Figure 9: Ascr#18 enhances expression of defense-related genes in *Arabidopsis* roots. Eight days old *Arabidopsis* seedlings were treated by root bathing using the indicated concentrations of ascr#18. Root samples were collected 6 h after treatment for RNA extraction. Transcript levels of *PHI1*, *FRK1* and *WRKY53* were determined by qRT-PCR and normalized to endogenous *UFP* (AT4G01000). *P \leq 0.05; **P \leq 0.005; ***P \leq 0.0005, two-tailed *t*-test.

Supplementary Tables

Supplementary Table 1: Chemical structures and high-resolution mass spectroscopic data, acquired in negative-ion electrospray ionization mode, of ascarosides detected in plantparasitic nematodes. x: present; o: not detected. SMID: Small Molecule IDentifier, see www.smid-db.org for details on nomenclature.

SMID	n ^a	<i>m/z</i> [M-H] ⁻ , calculated	<i>m/z</i> [M-H] ⁻ , observed	M. hapla	M. incognita	M. javanica	H. glycines	P. brachyurus
ascr#10	6	303.1808	303.1813	Х	х	Х	0	0
ascr#16	7	317.1964	317.1959	Х	х	Х	0	0
ascr#18	8	331.2121	331.2129	Х	Х	Х	Х	Х
ascr#20	9	345.2277	345.2267	Х	х	Х	0	0
ascr#22	10	359.2434	359.2429	Х	х	Х	0	0
ascr#24	11	373.2596	373.2653	Х	х	Х	0	0
ascr#26	12	387.2752	287.2727	Х	Х	Х	0	0

^an: number of CH₂ groups in the side chains of the ascarosides (see graphic below)

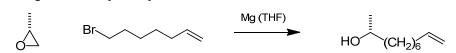
Supplementary Table 2: Induction of plant immune responses with various ascarosides.

Leaf pretreatment by syringe infiltration of different ascaroside concentrations (0.01, 0.3, and 10 μ M) were used for *PR-1/PDF1.2* expression studies in *Arabidopsis*. Resistance to *P. infestans* in tomato (M82) was performed using root pretreatment with 0.01 or 1 μ M ascaroside. (+) indicates enhanced expression or resistance while (-) indicates no effect.

	ascr#18	ascr#3	ascr#9	oscr#9
<i>PR-1</i> expression in Arabidopsis	+	+	+	±
<i>PDF1.2</i> expression in Arabidopsis	+	+	+	-
<i>P. infestans</i> resistance in tomato	+	-	+	-

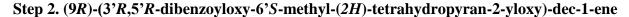
Primer Name	Sequence
AtPR-1 F	TCGTCTTTGTAGCTCTTGTAGGTG
AtPR-1 R	TAGATTCTCGTAATCTCAGCTCT
AtPDF1.2-F	TCATGGCTAAGTTTGCTTCC
AtPDF1.2-R	AATACACACGATTAGCACC
AtTubulin-S	GTCCAGTGTCTGTGATATTGCACC
AtTubulin-R	TTACGAATCCGAGGGAGCCATTG
HvPR1b-F	GGACTACGACTACGGCTCCA
HvPR1b-R	GGCTCGTAGTTGCAGGTGAT
HvUbiquitin-F	ACCCTC GCCGACTACAACAT
HvUbiquitin-F	CAGTAGTGGCGGTCGAAGTG
AtFRK1-fw	TGCAGCGCAAGGACTAGAG
AtFRK1-rv	ATCTTCGCTTGGAGCTTCTC
AtPHI-fw	TTGGTTTAGACGGGATGGTG
AtPHI-rv	ACTCCAGTACAAGCCGATCC
qAtUBQ-fw	GGCCTTGTATAATCCCTGATGAATAAG
qAtUBQ-rv	AAAGAGATAACAGGAACGGAAACATAG
AtPR4-F	CTGGACCGCCTTCTGCGGG
AtPR4-R	AGCCTCCGTTGCTGCATTGGT
AtAOS-F	TCTTCTCTTCGCCACGTGC
AtAOS-R	GGTTATGAACTTGATGACCCGC
AtLOX2-F	TTGCTCGCCAGACACTTGC
AtLOX2-R	GGGATCACCATAAACGGCC
AtGSTF6-F	GGCAGGAATCAAAGTTTTCG
ATGSTF6-R	CGACCAAAGTGAAGTGGTCA
LeGST-F	GCCCTTCCATCTTGCCTAAAG
LeGST-R	GTCACCAAAACAACTCCAGATGC
Leβ-1,3-glucanase-F	TGCTACATACTCGGCCCTTGAA
Leβ-1,3-glucanase-R	TTTGGCTGCCTGTTTGGTGT
LeGRAS4	CCGTCCTGATTTATTCATCCAT
LeGRAS4	TCGTGTGACGAAAAATGGAGT
LeActin	GAGCGTGGTTACTCGTTCA
LeActin	GAGCGTGGTTACTCGTTCA
LeAOS2-F	GCAACGAAGGATCCGAAAAT
LeAOS2-R	ACTGGCCGATAGTGACAGTG
qEBF1-F	CAGATCTTTAGTTTTGCCGGTGA
qEBF1-R	AGCATCCTTTGGGTTTGGGT
qERS1-F	CTGATTCTGTCTGCAGA

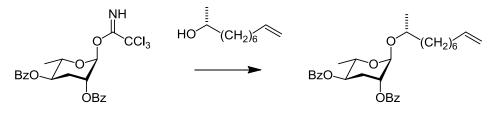
Supplementary Table 3: Primers used in this study.


qERS1-R	TGTGTGAATTCCACACCCTGTG
qERS2-F	GCCAAAACATTGTAAAGTATATGCA
qERS2-F	CTTCCTGACGTCAATGATCAGT
qERF1-F	TTTCTCGATGAGAGGGTC
qERF1-R	AAGCTCCTCAAGGTACTG
qACO1-F	AGGAACTCAGCAAGACGATGG
qACO1-R	GACGTGGGCATTCTGGGTAT
qSAUR34-F	CGACAGTTCCAAGAGGGCAT
qSAUR34-R	GTTCAAACCCGTAAACCCGC
qDRM2-F	CCCTTGACATCAAAGGTGTAGGA
qDRM2-R	GGGTGAGAAGGCTTGTCGAA
qAUX1-F	GATGAGATAAGCAGTCCAGCTTCC
qAUX1-R	CAGCTGCGCATCTAACCAAGTG
qIAA6-F	TTCGATTGGGTCTTCCAGGAGATA
qIAA6-R	ATCTTGCTGGAGACCAAAACCA
qARF19-F	CCTCCTGTGGGAAGTCTTGTGGTTTAC
qARF19-R	GCTCCAACCTGTGGTAAGCAAGTG
qWRKY53-F	TCACTTTTTCTGACCACTTTGG
qWRKY53-R	AAGGAAGAGATATGTTAAGTTGGG

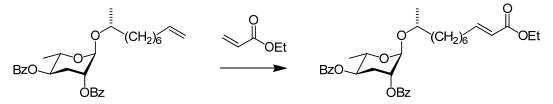
Supplementary Methods

Synthesis of ascr#18.

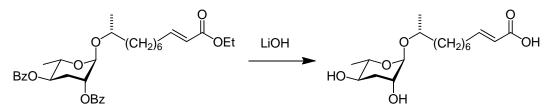

General synthetic procedures. Starting materials were synthesized as described in cited references or purchased from Sigma-Aldrich or Acros Organics and used without further purification. Anhydrous solvents were prepared with 4 Å molecular sieves. NMR spectra were recorded on a Varian INOVA-600 (600 MHz for ¹H, 151 MHz for ¹³C), INOVA-500 (500 MHz for ¹H and 125 MHz for ¹³C), and INOVA-400 (400 MHz for ¹H, 100 MHz for ¹³C) instruments. Flash chromatography was performed using a Teledyne ISCO CombiFlash system.


Step 1. (9R)-hydroxydec-1-ene

A solution of 7-bromoheptene (300 μ g, 2 mmol) in dry THF (1 mL) was added drop wise to magnesium (240 mg, activated with iodine) in THF (500 μ L). After stirring at RT for 1 h the Grignard solution was transferred, cooled to -40°C and treated with CuI (30 mg, 158 μ mol). After stirring for 1 min (*R*)-propylene oxide (100 μ L, 2 mmol) in THF (500 μ L) was added and the solution stirred for 1.5 h. The reaction was quenched with NH₄Cl (1 mL), extracted with diethyl ether, dried over Na₂SO₄, and concentrated in vacuum. Flash column chromatography on silica gel using an ethyl acetate – hexane gradient (0 to 20%) afforded (8*R*)-hydroxydec-1-ene (56 mg, 359 μ mol, 18% yield) as a colorless liquid.


¹H NMR (600 MHz, chloroform-d): δ 1.18 (3H, d, J = 6.2 Hz), 1.25-1.50 (10H, m), 2.01-2.07 (2H, m), 3.76-3.82 (1H, m), 4.91-4.95 (1H, m), 4.97-5.01 (1H, m), 5.81 (1H, ddt, J = 17.1 Hz, 10.4 Hz, 6.7 Hz). NMR spectroscopic data are in agreement with those reported in¹.

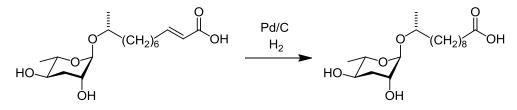
A solution of 2,4-di-O-benzoylascarylose² (139 mg, 390 µmol) in dry DCM (3 mL) was treated with trichloroacetonitrile (84 μ L) and DBU (5 μ L). After stirring at RT for 30 min the solution was concentrated in vacuum. Flash column chromatography on silica gel using a mixture of ethyl acetate in hexane (20%) afforded (3'R,5'R-dibenzoyloxy-6'S-methyl-(2H)-tetrahydropyran-2yloxy)-1-(2,2,2-trichloroacetimide) (152 mg, 302 µmol, 78%) as a colorless oil. A solution of 2,4-di-O-benzoyl-ascarylose-1-(2,2,2-trichloroacetimide) (152 mg, 302 µmol) in dry DCM (3 mL) at 0 °C was treated with (9R)-hydroxydec-1-ene (55 mg, 350 µmol) and trimethylsilyloxy triflate (5 µL). After 3 h the solution was washed with saturated aqueous NaHCO₃ solution (0.5 mL), dried over Na₂SO₄ and concentrated in vacuum. Flash column chromatography on silica gel using a ethyl acetate – hexane gradient (5 to 20%) afforded (9R)-(3'R,5'R-dibenzoyloxy-6'Smethyl-(2H)-tetrahydropyran-2-yloxy)-dec-1-ene (91.1 mg, 184 µmol, 61%) as a colorless oil. ¹H NMR (400 MHz, chloroform-d): δ 1.20 (3H, d, J = 6.1 Hz), 1.30 (3H, d, J = 6.1 Hz), 1.33 – 1.72 (10H, m), 2.09 (2H, m), 2.23 (1H, ddd, J = 13.5 Hz, J = 11.4 Hz, J = 2.9 Hz), 2.44 (1H, m), 3.87 (1H, m), 4.15 (1H, dq, J = 9.8 Hz, J = 6.1 Hz), 4.95 (1H, ddt, J = 10.2 Hz, J = 2.2 Hz, J = 10.2 Hz, J = 2.2 Hz, J = 10.2 Hz, J = 10.21.3 Hz), 4.98 (1H, s.br), 5.02 (1H, ddt, J = 17.1, Hz. J = 2.2 Hz, J = 1.6 Hz), 5.17 (1H, s.br), 5.21 (1H, ddd, J = 10.3 Hz, J = 4.6 Hz), 5.83 (1H, ddt, J = 17.1 Hz, J = 10.3 Hz, J = 6.8 Hz), 7.45-7.51 (4H, m), 7.57-7.62 (2H, m), 8.06 (2H, m), 8.13 (2H, m); ¹³C NMR (100 MHz, chloroformd): δ 17.84, 19.14, 25.65, 28.84, 29.08, 29.38, 29.68, 33.76, 37.08, 66.89, 70.62, 71.21, 72.53, 93.72, 114.20, 128.38, 129.55, 129.80, 129.82, 129.96, 133.12, 133.17, 139.01, 165.59, 165.72. High-resolution MS data for this compound have been reported previously, see³.


Step 3. Ethyl (10*R*)-(3'*R*,5'*R*-dibenzoyloxy-6'*S*-methyl-(2*H*)-tetrahydropyran-2-yloxy)undec-2-enoate

A solution of (9R)- $(3^{\circ}R, 5^{\circ}R$ -dibenzoyloxy- $6^{\circ}S$ -methyl-(2H)-tetrahydropyran-2-yloxy)-dec-1-ene (62 mg, 125 µmol) and ethyl propenoate (66 mg, 626 µmol) in DCM (5 mL) was treated with 1.4-benzoquinone (1.4 mg, 13 µmol) and Grubbs-II catalyst (5.3 mg, 6.3 µmol). After stirring at 40 °C for 15 h, the reaction was filtered through a pad of silica using DCM: ethyl acetate (3:1). Flash column chromatography on silica gel using a ethyl acetate – hexanes gradient (10 to 50%) afforded ethyl (10*R*)-(3^{\circ}R,5^{{\circ}}R-dibenzoyloxy-6'*S*-methyl-(*2H*)-tetrahydropyran-2-yloxy)-undec-2-enoate (55 mg, 97 µmol, 78%) as a colorless oil.

¹H NMR (400 MHz, chloroform-d): δ 1.19 (3H, d, J = 6.1 Hz), 1.27 (3H, t, J = 7.1 Hz), 1.28 (3H, d, J = 6.3 Hz), 1.33-1.70 (10H, m), 2.16-2.26 (3H, m), 2.38-2.46, (1H, m), 3.84 (1H, m), 4.07-4.15 (1H, m), 4.17 (2H, q, J = 7.1 Hz), 4.95 (1H, s.br), 5.12-5.23 (2H, m), 5.78-5.85 (1H. m), 6.97 (1H, dt, J = 15.6 Hz, 7.0 Hz), 7.42-7.50 (4H, m), 7.55-7.62 (2H, m), 8.01-8.06 (2H, m), 8.09-8.14 (2H, m). ¹³C NMR (100 MHz, chloroform-d): δ 14.42, 18.03, 19.30, 25.78, 28.16, 29.28, 29.53, 29.87, 32.32, 37.23, 60.29, 67.09, 70.80, 71.38, 72.78, 93.93, 117.65, 121.44, 128.58, 129.73, 129.98, 129.99, 130.13, 133.32, 133.38, 149.44, 165.80, 165.93, 166.89.

Step 4. (10*R*)-(3'*R*,5'*R*-dihydroxy-6'*S*-methyl-(2*H*)-tetrahydropyran-2-yloxy)-undec-2-enoic acid (ascr#17)



A solution of ethyl (10*R*)-(3'*R*,5'*R*-dibenzoyloxy-6'*S*-methyl-(2*H*)-tetrahydropyran-2-yloxy)undec-2-enoate (55 mg, 97 μ mol) in THF (1 mL) was added to a solution of lithium hydroxide (48 mg, 2 mmol) in water (380 μ L) and 1,4-dioxane (2 mL). After stirring at 67 °C for 3 h the mixture was neutralized with acetic acid and concentrated in vacuum. Flash column

chromatography on silica gel using a methanol – dichloromethane gradient (0 to 30%) afforded (10R)- $(3^{\circ}R,5^{\circ}R$ -dihydroxy-6 $^{\circ}S$ -methyl-(2H)-tetrahydropyran-2-yloxy)-undec-2-enoic acid (ascr#17) (25.2 mg, 76.4 µmol, 79%) as a colorless oil.

¹H NMR (500 MHz, methanol-d₄): δ 1.12 (3H, d, J = 6.1 Hz), 1.21 (3H, d, J = 6.3 Hz), 1.33 – 1.60 (10H, m), 1.76 (1H, ddd, J = 13.3 Hz, J = 11.4 Hz, J = 3.1 Hz), 1.95 (1H, dt.br, J = 13.1 Hz, J = 4.1 Hz), 2.23 (2H, ddt, J = 7.3 Hz, J = 1.7 Hz, J = 7.6 Hz), 3.52 (1H, ddd, J = 11.3 Hz, J = 9.5 Hz, J = 4.6 Hz), 3.63 (1H, dq, J = 9.3 Hz, J = 6.4 Hz), 3.71 (1H, m), 3.78 (1H, m), 4.64 (1H, s.br), 5.80 (1H, dt, J = 15.7 Hz, J = 1.4 Hz), 6.95 (1H, dt, J = 15.6 Hz, J = 7.0 Hz); ¹³C NMR (100 MHz, methanol-d₄): δ 18.27, 19.53, 26.95, 29.40, 30.40, 30.61, 33.29, 36.09, 38.51, 68.45, 70.10, 71.30, 72.62, 97.67, 122.75, 151.25, 170.37. High-resolution MS data for this compound have been reported previously, see³.

Step 5. (10*R*)-(3'*R*,5'*R*-dihydroxy-6'S-methyl-(2*H*)-tetrahydropyran-2-yloxy)-undecanoic acid (ascr#18)

A solution of (10R)-(3'R,5'R-dihydroxy-6'S-methyl-(2H)-tetrahydropyran-2-yloxy)-undec-2enoic acid (5 mg, 104 µmol) in methanol (1 mL) was treated with Pd/C (10% w/w) and hydrogenated for 14 h. The solution was filtered and concentrated in vacuum to afford (10*R*)-(3'*R*,5'*R*-dihydroxy-6'S-methyl-(2*H*)-tetrahydropyran-2-yloxy)-undecanoic acid (4.4 mg, 76.4 µmol, 73%) as a colorless oil.

¹H NMR (500 MHz, methanol-d₄): δ 1.12 (H, d, J = 6.1 Hz), 1.21 (3H, d, J = 6.3 Hz), 1.33 – 1.60 (14H, m), 1.76 (1H, ddd, J = 13.3 Hz, J = 11.4 Hz, J = 3.1 Hz), 1.95 (1H, dt.br, J = 13.1 Hz, J = 4.1 Hz), 2.27 (2H, t, J = 7.6 Hz), 3.52 (1H, ddd, J = 11.3 Hz, J = 9.5 Hz, J = 4.6 Hz), 3.63 (1H, dq, J = 9.3 Hz, J = 6.4 Hz), 3.71 (1H, m), 3.78 (1H, m), 4.64 (1H, s.br); ¹³C NMR (100 MHz, methanol-d₄): δ 18.11, 19.37, 26.40, 26.88, 30.37, 30.48, 30.61, 30.67, 35.97, 38.42, 68.34, 69.99, 71.17, 72.51, 97.56, 178.6. High-resolution MS data for this compound have been reported previously, see³.

Supplementary References

- 1 Trollsås, M. *et al.* Preparation of a Novel Cross-Linked Polymer for Second-Order Nonlinear Optics. *J. Am. Chem. Soc.* **118**, 8542-8548 (1996).
- 2 Jeong, P. Y. *et al.* Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. *Nature* **433**, 541-545 (2005).
- 3 von Reuss, S. H. *et al.* Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small molecule signals in *C. elegans. J. Am. Chem. Soc.* **134**, 1817–1824 (2012).