arxXiv:1311.4615v1 [cs.SE] 19 Nov 2013

A Notion of Dynamic Interface for Depth-Bounded
Object-Oriented Packages

Shahram EsmaeilsabZdlj Rupak Majumdat, Thomas Wie$ and Damien
Zufferey**

IUniversity of Waterloo ?MPI-SWS 3NYU 4“MIT CSAIL
sesmaeil@uwaterloo.ca,rupak@mpi-sws.org, wies@cs.nyu.edu,
zufferey@csail.mit.edu

Abstract. Programmers using software components have to follow potso
that specify when it is legal to call particular methods watrticular arguments.
For example, one cannot use an iterator over a set once thasbeen changed
directly or through another iterator. We formalize the antof dynamic package
interfaces(DPI), which generalize state-machine interfaces for Isirapjects,
and give an algorithm to statically compute a sound abstracif a DPI. States
of a DPI represent (unbounded) sets of heap configuratioth®dges represent
the dfects of method calls on the heap. We introduce a novel heamabdomain
based on depth-bounded systems to deal with potentiallgumdedly many ob-
jects and the references among them. We have implementealgarithm and
show that it is &ective in computing representations of common patternackp
age usage, such as relationships between viewer and lab&jmer and iterator,
and JDBC statements and cursors.

1 Introduction

Modern object-oriented programming practice uses packémencapsulate compo-
nents, allowing programmers to use these packages throatitdefined application
programming interfaces (APIs). While programming langsasuch as Java or C# pro-
vide a clear specification of trstatic APIs of components in terms of classes and their
(typed) methods, there is usually no specification ofdjieamicbehavior of packages
that constrain the temporal ordering of method calls dfedént objects. For exam-
ple, one should invoke thHeck andunlockmethods of a lock object in alternation; any
other sequence raises an exception. More complex corstrinnect method calls on
objects of diferent classes. For example, in the Java Database Conte{iBC)
package, &esultSet object, which contains the result of a database query esddyt
a Statement object, should first be closed before its corresponditagement object
can execute a new query.

In practice, such temporal constraints are not formallycsjgel, but explained
through informal documentation and examples, leaving @nogners susceptible to
bugs in the usage of APIs. Being able to specify dynamicfates for components that

* Shahram Esmaeilsabzali was at MPI-SWS when this work was.don
** Damien Zudferey was at IST Austria when this work was done.

http://arxiv.org/abs/1311.4615v1

capture these temporal constraints clarify constrainposed by the package on client
code. Moreover, program analysis tools may be able to autoatig check whether the
client code invokes the component correctly according th s interface.

Previous work on mining dynamic interfaces through statitt dynamic techniques
has mostly focused on the single-object case (such as a ljektp[2911, 19], and
rarely on more complex collaborations between sevefidmint classes (such as JDBC
clients) interacting through the hedap 13|15, 16]. In thapgr, we propose a system-
atic, static approach for extraction of dynamic interfatem existing object-oriented
code. Our work is closely related to the Canvas projedt [D6}. new formalization can
express structures than could not be expressed in previaks(ixe. nesting of graphs).

More precisely, we work wittpackageswhich are sets of classes. A configura-
tion of a package is a concrete heap containing objects frmrpackage as well as
references among them. dynamic package interfad®Pl) specifies, given a history
of constructor and method calls on objects in the packagkaamew method call, if
the method call can be executed by the package without @aasirerror. In analogy
with the single-object case, we are interested in repratiens of DPIs as finite state
machines, where states represent sets of heap configwratidriransitions capture the
effect of a method call on a configuration. Then, a method callddwatake the interface
to a state containing erroneous configurations is not atfolyethe interface, but any
other call sequence is allowed.

The first stumbling block in carrying out this analogy is ttta number of states
of an object, that is, the number of possible valuations&titributes, as well as the
number of objects living in the heap, can both be unboundedin®previous work
[10,[16], we can bound the state space of a single object ysadjcate abstraction
that tracks the abstract state of the object defined by a sketgafal formulas over
its attributes. However, we must still consider unboungediny objects on the heap
and their inter-relationships. Thus, in order to compute/@athic interface, we must
address the following challenges.

1. The first challenge is to define a finite representation ésisply unbounded heap
configurations and theffect of method calls. For single-object interfaces, states
represent a subset of finitely-many attribute valuationd, teansitions are labeled
with method names. For packages, we have to augment thissesgtation for two
reasons. First, the number of objects can grow unboundedlgxample, through
repeated calls to constructors, and we need an abstraotieptesent unbounded
families of configurations. Second, thé&ext of a method call may be fikrent
depending on the receiver object and the arguments, ang/iupdate not only the
receiver and other objects transitively reachable frorut,also other objects that
can reach these objects.

2. The second challenge is to compute, in finite time, a dyoamtérface using the
preceding representation. For single-object interfe@£E], interface construction
roughly reduces to abstract reachability analysis agdirestmost general client
(a program that non-deterministically calls all availablethods in a loop). For
packages, it is not immediate that abstract reachabiligyais will terminate, as
our abstract domains will be infinite, in general.

We address these challenges as follows. First, we descrilowel shape domain for
finitely representing infinite sets of heap configuration®asrsive unfoldings of nested
graphs. Technically, our shape domain combines prediteteaetion[[14, 117], for ab-
stracting the internal state of objects, with sets of ddutbnded graphs represented
as nested graphs [20]. Each node of a nested graph is lalvétled valuation of the
abstraction predicates that determine an equivalence fdasbjects of a certain class.

Second, we describe an algorithm to extract the DPI fronfithite state abstraction
based on abstract reachability analysis of depth-boundgghgewriting system$§ [21].
We use the insight that the finite state abstraction can Iéerpreted as a numerical
program. The analysis of this numerical program yieldsititanformation about how
a method fiects the state of objects when it is called on a concrete ha#maration,
and how many objects aréfected by the call.

We have implemented our algorithm on top of the Picassoatigtachability tool
for depth-bounded graph rewriting systems. We have appligcalgorithm on a set
of standard benchmarks written in a Java-like OO languags as container-iterator,
JDBC query interfaces, etc. In each case, we show that oaritdm produces an in-
tuitive DPI for the package within a few seconds. This DPI banused by a model
checking tool to check conformance of a client program usiiegpackage to the dy-
namic protocol expected by the package.

2 Overview: A Motivating Example

We illustrate our approach through a simple example.

ExampleFigurel shows two class®#ewer andLabel in a package, adapted from[13],
and inspired by an example from Eclips€sntentViewer and IBaseLabelProvider
classes. A abel object throws an exception if itsin or dispose method is called after
thedispose method has been called on it. There ar@edlent ways that this exception
can be raised. For example, ifdewer object sets it$ reference to the sameabel
object twice, after the second call $et, the Label object, which is already disposed,
raises an exception. As another example, for Wiewer objects that have thefrefer-
ence attributes point to the sarhabel object, when one of the objects calls itsne
method, if the other object calls ittone method an exception will be raised. Am-
terfacefor this package should provide possible configurationdheftieap when an
arbitrary client uses the package, and describe all usag@sos of the public methods
of the package that do not raise an exception.

Dynamic Package Interfacituitively, an interface for a package summarizes all pos-
sible ways for a client to make calls into the package (i/@ate instances of classes
in the package and call their public methods). In the caséngtesobjects, where all
attributes are scalar-valued, interfaces are represaastigite-state machines with tran-
sitions labeled with method calls|[2]10]19]. Each st&déthe machine represents a set
[] of states of the object, where a state is a valuation tdhalkttributes. (In case there
are infinitely many states, the methods[of[2, 10] abstracothject relative to a finite set
of predicates, so that the number of states is finite.) An Q@eindicates that calling
the methodn() from any state in f] takes the object to a state inf]] Some states of

class Viewer {
Label f;
public void Viewer() {
f := null; }
public void run() {
if (f !'= null) f.runQ; }
public void done() {
if (f != null) f.dispose(); }
public void set(Label 1){
if (f !'= null) f.dispose();

class Label {
boolean disposed;
public void Label() {
disposed := false;
}

protected void run() {

if (disposed) throw new Exception(); }

protected void dispose() {

if (disposed) throw new Exception();

£- 103 disposed := true; }
- bl
}
}
(a) TheViewer class (b) TheLabel class
Ho Herr
LT TNk RN Lo TN //,_-*
, * , * N . * N 0 *
[[Vaa] Viewer [Valviewer] / nd) Viewer| | /! 4] Viewer | |
] Vol Vi . | Ivalvi . 7| [VadlVi 7| [valvi
' | v’ \ vl \ vl
: P ‘ . oo f
\ f N f h \ Lo
! ! [LoglLabel | [Lg]Label /
. | [LnglLabel | .| [Lq]Label /! [~disposed| / . [disposed | /
\ | ~disposed | /' | disposed | // %)/ N)/
o ST >* >*
i v* [Vo] Viewer [Ver] Viewel
o] Viewer
i
[Lerr]Label
disposed
err

(c) Abstract heaplg (d) Abstract heapg,

Fig. 1. A package consisting ofiewer andLabel classes and its two abstract heaps

the machine are marked as errors: these represent in@mstites, and method calls

leading to error states are disallowed.
Below, we generalize such state machines to packages.

States: Ideals over ShapeBbhe first challenge is that the notion of a state is more
complex now. First, there are arbitrarily many states: fmt®, we can have a state with
n instances ot abel (e.g., when a client allocatesobjects of classabel); moreover,
we can have more complex configurations where there argailyjitmany viewers,
each referring to a singleabel, where thd_abel may havalisposed = true or not. We
call sets of (potentially unbounded) heap configurateiostract heaps

Our first contribution is a novel finite representation fostahct heaps. We repre-
sent abstract heaps using a combinatiopafametric shape analys{i7] andideal
abstractions for depth-bounded systdEiH. As in shape analysis, we fix a set of unary

predicates, and abstract each object w.r.t. these predidabr example, we track the
predicatedisposed(l) to check if an object of type Label hasdisposed set to true.
Additionally, we track references between objects by repméing the heap as a nested
graph whose nodes represent predicate abstractions aft®hjed whose edges repre-
sent references from one object to another. Unlike in pandcrehape analysis, refer-
ences are always determinate and the abstract domain éfdghestill infinite.

Figure[I(c) shows an abstract heldp for our example. There are five nodes in
the abstract heap. Each node is labelled with the name obitegponding class and
a valuation of predicates, and represents an object of theifigd class whose state
satisfies the predicates. Some nodes have an identifier aresdpuackets in order to
easily refer to them. For instancé,q represents &iewer object andLy4 represents a
Label object for whichdisposed is true. Edges between nodes show field references:
the edge between thg andLq objects that is labeled with shows that objects of type
Vq4 have anf field referring to some object of typley. Finally, nodes and subgraphs
can be marked with a “*”. Intuitively, the “*” indicates anlaitrary number of copies
of the pattern within the scope of the “*". For example, siNgds starred, it represents
arbitrarily many (including zerdYiewer objects sharing babel object of typel 4. Sim-
ilarly, since the subgraph over nodés andLq is starred, it represents configurations
with arbitrarily manyLabel objects, each with (sincéy is starred as well) arbitrarily
many viewers associated with it.

Figure[I({d) shows a second abstract hefp. This one has two extra nodes in
addition to the nodes iklp, and represents erroneous configurations in which ébel
object is about to throw an exception in one of its method® §ét a special error-bit
whenever an exception is raised, and the node with objeettyprepresents an object
where that bit is set.)

Technically (see Sectiohs b.2 dnd|5.3), nested graphssepirieleals of downward-
closed sets (relative to graph embedding) of configuratidaepth-bounded predicate
abstractions of the heap. While the abstract state spanériga, it is well-structured,
and abstract reachability analysis can be dbie 1,712, 20].

Transitions: Object MappingsSuppose we get a finite sStof abstract heaps repre-
sented as above. The second challenge is that method callbawa parameters and
may change the state of the receiver object as well as obgmthable from it or even
objects that can reach the receiver. As an example, corsisktrcontainer object with
some iterators pointing to it. Removing an element througfterator can change the
state of the iterator (it may reach the end), the set (it caoine empty), as well as
other iterators associated with the set (they become dwat&d and may not be used
to traverse the set). Thus, transitions cannot simply beléabwith method names, but
must also indicate which abstract objects participate énctlll as well as thefiect of
the call on the abstract objects. The interface must desthib €fect of the heap in all
cases, and all methods. In our example, we can enumerateséibjgotransitions from
Ho. To complete the description of an interface, we have tol{@wshow a method call
transforms the abstract heap, and (2) ensure that eactblgossthod call from each
abstract heap ity ends up in an abstract heap als&in

Consider invoking theset method of a viewer in the abstract heldp. There are
several choices: one can choose in Fidure] 1(c) an objecipef\y, Vng, or Vo as the

Ho HO
callee: argo: callee: argo:
V]Vi 0- V1Vi - 0-
[VIViewer [L]Label [VIViewer [L.]Label
disposed disposed
* SCopg: *
[V.]Viewer iLabel L F [[v.]Viewer
disposed J
(a) Object mapping fo¥.set(L,)
y Ho ‘\ . Her
callee: . callee: -
[V]Viewer [V.]Viewer [V]Viewer [V.]Viewer
f
/ f
Scope: argo: sope: argo:
) 0 L]Label 0-
[L]Label [La]Label M [La]Label
— —_ disposed —_
disposed err

(b) Object mapping fo¥.set(L,)

Fig. 2. Two object mappings for the package in Figule 1

callee, and pass it an object of type or Lnq. Note that the method call captures the
scenario in which onespresentativebject is chosen from each node and the method
is executed. Recall that, because of stars, a single nodeepegsent multiple objects.
Figure[2(d) shows how the abstract heap is transformed itwese a viewer pointing

to a label which is not disposed as the callee and pass it aghsdabel as argument.
The box on the left specifies tls@urceheap before the method call and the box on the
right specifies thelestinationheap after the method call. A representative object in a
method call is graphically shown by a rounded box and hadeanamethat prefixes

its object type. The source heap includes three repressntdijects with role names:
calleg argo, andscope. Thecalleeandargp role names determine the callee object
and the parameter object of the method call, respectivdig.stope is a Label ob-
ject that is in thescopeof the method call: i.e., the method caifects its type or the
valuation of its predicates. Lastly, there is a fourth objache left box that is not a
single representative, but a starred objécthat represents all viewers other than the
callee object that reference the object with reé@pe. The following properties hold.
First, both the source and the destination of the transai®Hy, hence, the method
call transforms objects in the abstract hé#pback toHy. Second, any object iRlg

that is not mentioned in the source box is untouched by thémdetall. Third, each
object in the left box is mapped to another representatiyecoln the right box: The

representative objects can be traced via their role namée thie other objects via the
arrows that specifies their new types (to model non-detésmiysuch an arrow can be
a multi-destination arrow). Thud/set(L,) transforms the callee object by changing
its reference to thel, object that was the parameter of the method call. The ohject
that the callee referenced before the method call get thee\alits disposed predicate
changed to true after the method call. All other objectsespnted by, that reference

L continue referencing that object.

The second transition, in Figyre 2(b), shows what happeses i called orvVg with
any label. This time, an error occurs, since the method de$ to dispose an already
disposed label. This is indicated by a transformation tcetiner nodeHe,r, and thus, is
not allowed in the interface.

Algorithm for Interface ComputatiorOur second contribution is an algorithm and a
tool for computing the dynamic package interfaces in forna atate machine, as de-
scribed above. Conceptually, the DPI of a package is condpatevo steps: (i) com-
puting thecovering sebf the package, which includes all possible configuratidrise
package, in a finite form; and (ii) computing the object mapggiof the package using
the covering set.

Computing the Covering SelWe introduce three layers of abstraction to obtain an
overapproximation of the covering set of a package in a ffoite. First, using a fixed
set of predicates over the attributes of classes, we intedpredicate abstraction layer.
Second, we remove from this predicate abstraction thosearée attributes of classes
that can create a chain of objects with an unbounded lergthetessentially correspond
to recursive data structures, such as linked lists. We beld two abstraction layers
the depth-bounded abstractioffhe soundness of depth-bounded abstraction follows
soundness arguments similar to the ones for classic abgttampretation. However,
unlike the classic abstract interpretation of non-objegented programs, the depth-
bounded abstraction of object-oriented packages doeswrgeneral result in a finite
representation; e.g., we may still have an unbounded nuafiliterator and set objects,
with each iterator object being connected to exactly onelsjetct.

Our third abstraction layer, namelgieal abstractionensures a finite representation
of the covering set of a package. The domain of ideal abstrags essentially the
same as the domain of nested graphs. The key property of lisisaation layer is
that it can represent an unbounded number of depth-bourgedts as the union of
a finite set of ideals, each of which itself is representedefiyi The soundness of this
abstraction layer follows from the general soundness trésuthe ideal abstraction of
depth-bounded systems[21].

To compute the covering set of a package, we use a notiomost general client
Intuitively, the most general cliert [10] runs in an infinie®p; in each iteration of the
loop, it non-deterministically either allocates a new ahjer picks an already allocated
object, a public method of the object, a sequence of argwsrenthe method, and
invokes the method call on the object. Using a widening dpever the sequence of
the steps of the most general client, our algorithm is abtietermine when the nesting
level of an object needs to be incremented. Our algorithmiteates due to the fact that
the ideal abstraction is a well-structured transition eyst

Computing the Object Mappingd.he object mappings are computed using the cover-
ing set as starting point. To compute the object mappingewté most general client
run one more time using the covering set as starting stateeafytstem. During that run
we record what #ect the transitions have. For a particular transition wemcamong
other information, what are the starting and ending abstr@aps and the correspond-
ing unfolded representative objects. The nodes of the unfolded hedjpcoations are
tagged with their respective roles in the transition. Hinale record how the objects
are modified and extract the mapping of the object mapping.

In our example, there are two maximal nodeg:andHe,r, whereHg, denotes the
error configurationsHy and He,r together represent the covering set of the package.
Accordingly, the interface shows thbly captures the “most general” abstract heap in
the use of this package; each “correct” method call corredpdo an object mapping
overHp. We omit showing the remaining 12 object mappings of therfate.

3 Concrete Semantics

We now present a core OO language.

SyntaxFor a set of symbolX (including variables), we denote IBxp.X andPred.X
the set of expressions and predicates respectively, cmestrwith symbols drawn from
X. We assume there are two special varialiésandnull.

In our language, a package consists of a collection of clefsitions. A class defi-
nition consists of a class name, a constructor method, d fietds, and a set of method
declarations partitioned into public and protected meshédconstructor method has
the same name as the class, a list of typed arguments, ang. al@dssume fields are
typed with either a finite scalar type (e.g., Boolean), orasglname. The former are
calledscalar fields and the lattereferencefields. Intuitively, reference fields refer to
other objects on the heap. Methods consist of a signature &ody. The signature of
a method is a typed list of its arguments and its return vale.body of a method is
given by a control flow automaton over the fields of the classlitively, any client can
invoke public methods, but only other classes in the packagenvoke protected ones.

A control flow automaton (CFA) over a set of variablésand a set of operations
Op.X is a tupleF = (X, Q,qo, gz, T), WhereQ is a finite set ofcontrol statesqy € Q
(resp.gs € Q) is a designated initial state (resp. final state), ar@ Q x Op.X x Qis a
set of edges labeled with operations.

For our language, we define the €g.X of operationsover X to consist of: (i)
assignmentshis.x := e, wherex € X ande € Exp.X; (ii) assumptionsassumeg),
wherep € Pred.({this} U X), (iii) constructionthis.x = new(C(a)), whereC is a class
name and’is a sequence i&xp.X, and (iv)method callghis.x := this.y.m(a), where
X,y e X.

Formally, a clas€ = (A, c, Mp, My), whereAis the set of fields; is the constructor,
M, is the set of public methods, ad is the set of protected methods. We @salso
for the name of the class. A packaBés a set of classes.

We make the following assumptions. First, all field and mdthames are disjoint.
Second, each class has an attrireteised to return values from a method to its callers.
Third, all CFAs are over disjoint control locations. Foyrdéhpackage is well-typed, in

that assignments are type-compatible, called methodsandgsare called with the right
number and types of arguments, etc. Finally, it is not cleav the pushdown system
and depth-bounded system mix and whether there exists athbtjmay accomodate
both. Therefore, we omit recursive method calls from ourahalysis.

A client | of a packagé is a class with exactly one methathin, such that (i) for
eachx € |.A, we have the type of is either a scalar or a class name fr&n(ii) in
all method callghis.x = this.y.m(a), mis a public method of its class, and (iii) edges
of main can have the additionalon-deterministic assignmehtwvocthis.x). An OO
program is a pairR, 1) of a packagé® and a client.

Concrete Semantic8Ve give the semantics of an OO program as a labeled transition
system. Atransition systen® = (X, Xo, —) consists of a seX of states, a seXy € X of
initial states, and a transition relatiem C X x X. We writex — X’ for (x, X') €—.

Fix an OO prograns = (P, 1). It induces a transition systen€@nf, Ug, —), with
configurationgConf, initial configurationdJy, and transition relatior» as follows.

Let O be a countably infinite set afbject identifierg(or simply objects) and let
class: O — P U {l,nil} be a function mapping each object identifier to its class.
A configuration ue Conf is a tuple Q, this, g, v, st), whereO C O is a finite set of
currently allocateabjects this € O is thecurrent objecf(i.e., the receiver of the call to
the method currently executed)is thecurrent control statewhich specifies the control
state of the CFA at which the next operation will be performead a sequence of triples
of object, variable, and control location (the program lkfaandst is a store which
maps an object and a field to a value in its domain. We requatgizontains a unique
null objectnull with clasgnull) = nil. We denote byConf the set of all configurations
of S.

The set ofinitial configurations | < Conf is the set of configurationgy =
({null, 0}, this, main.qp, &, st) such that (ixlasgo,) = I, (ii) the current objecthis = oy,
(i) the value of all reference fields of all objects in therg isnull and all scalar fields
take some default value in their domain, and (iv) the cordtate is the initial state of
the CFA of the main method dfand the stack is empty.

Given a store, we writst(e) andst(p) for the value of an expressiaor predicate
p evaluated in the storgt, computed the usual way.

The transitions in— are as follows. A configuratiorQ, this, g, v, sty moves to con-
figuration ', this, g, v/, st) if there is an edgeg; op, ') in the CFA ofq such that

— op=this.x:= eandO’ = O, this' = this, v/ = v, andst = sf{(this, X) > st(€)].

— op = assumggf) andO’ = O, this’ = this, v = v, st(p) = 1, andst’ = st

— op = this.x := this.y.m(@) andO’ = O, this' = this, v = (this x,q)v, andq =
m.go, and the formal arguments of are assigned valua#(a) in the store.

— op = this.x := new(C(a)) andO’ = O v {0} for a new objecb with clasgo) = C,
this' = 0, = (this, x, ")v, andq’ = c.qp for the constructoc of C, and the formal
arguments o€ are assigned valuasga) in the store.

— op = havocthis.x): O’ = O, this' = this, andst = sf{(this, x) + V], wherev is
some value chosen non-deterministically from the domaix of

Finally, if q is the final node of a CFA and = (o, x,q)y, and the configuration

(O, this, g, v, sty moves to Q,0,q,V/,st), wherest = stfo.x +— st(thisret)]. If none
of the rules apply, the program terminates.

i1 : Iterator io: Iterator i1:Iterator io:Iterator
0s=1 0S= 2 0s=1 0S= 2
ﬁ/er:Z E/er:Z ﬁ/erzz E/er:S

(a) Before removing an element viia (b) After removing the element

Fig. 3. Two configurations of set and iterator package

To model error situations, we assume that each class had erfielhich is initially
0 and set to 1 whenever an error is encountered (e.g., ariiassswiolated). An error
configuration is a configuration in which there exists an object € u.O such that
o.err = 1. An OO program isafeif it does not reach any error configuration.

Example 1 Figure[3 depicts two configurations for a set of objects bging to a “set
and iterator” package. For the sake of brevity, we do not shiesvwcode for this package,
but the functionality of the package is standard. The paeltes three classes, namely,
Set, Iterator,andElem. TheElemclass can create a linked list to store the elements
of a Set object. AnIterator objectis used to traverse the elements of its correspond-
ing Set object via itspos attribute as an index. It can also remove an element ofthte
object through itsremove method. Anfterator object can perform these operations
only if it has the samegersionas its correspondinget object. Thelterator version
is stored in theiver field and theSet version insver. In this example, we focus on
the remove method. Theremove method of anfterator object invokes theelete
method of its correspondinget object, passing itpos attribute as a parameter. The
delete method, in turn, deletes thmosth Elem object that is accessible through its
head attribute. The version attributes of both thieerator andSet objects are incre-
mented, while the version attributes of otlarerator objects remain the same. The
two configurations in Figurgl3 are abbreviated to show onkyitiformation relevant to
this example.

The configuration

u=({sis,iz.e1, &}, 8 ., (2, .), {((i, iver), 2), ((i2, iver), 2), - - -}),

depicted in Figuré3(a), is one of the configurations during éxecution obiremove,
namely the configuration immediately after executimg.iter of.delete(this.pos).
After a number of steps, the computation reaches configurati

U = ({sis.iz.e1,€}.8 ., & {((iL. iver), 2), ((i2, iver),3), - - -}),

depicted in Figurd3(b), which is the configuration afterremove() has completed
and the control has returned to the client, |. At i still has the same versiomy(iver)
as s, (ssver), but{ has a dfferent version now. Thus, cannot traverse or remove an
element of s any more.

4 Dynamic Package Interface (DPI)

For a package, its dynamic package interfads essentially a set afiested object
graphsrepresenting heap configurations together with a setbgdct mapping®ver
them, one for each distinct method invocation.

Each nested object graph represents an unbounded numbeatbnfigurations.
An object mapping for a method invocation specifies how theaib of a source heap
configuration are transformed to the objects of a destindteap configuration. Object
mappings use an extended notion of object graphs with labelling to identify the
callee and the arguments of the method calls. Up to isomsmphthe set of object
mappings of a DPI specify thedtect of all possible public method calls on distinct heap
configurations of a package.

In the remainder of this section, in Section]4.1, we predemtniotions of nested
object graphs and cast nested object graphs, followed hydtien of object mapping,
in Sectiof4.R. In Sectidn 4.3, we present DPI formally.

4.1 Nested Object Graphs
A nested object graph ldver a packag® is a tuple AL, AR O, 1, st nl) with

— AL andAR sets ofobject labelsandreference fieldsespectively,
— O: a set ofobject nodegdentifiers,

— st: (Ox AR) -» Othereference edgtunction,

— 1:0 — AL theobject labellingfunction,

— nl:0 — Np, thenesting levefunction.

We call an object node with nesting level zero @ject instanceand otherwise call

it an abstract object An abstract object represents an unbounded number oftobjec
instances. If an object node is connected via a referenet talmnother object node

in st it means that one or more object instances (depending anréiative nesting
levels) in the source node have reference attributes pgimdi an object instance in the
destination node. We denote blassthe function fromAL to P that extracts the class
information from a label.

A nested object graph iwell-formedif: ¥(01,r1,02), st(01,r) = 0, = nl(01) > nl(0y).

This constraint is necessary because it should not be pedsitan object instance to
reference more than one object instance with the same nefesdtribute.

Example 2 Let us consider the graph in Figufe TJ(c), which is a nestecobgraph.
Let the object node labelled wifN,g] Viewer be denoted by x, thepais the identifier
that we use to refer to x in the description, and we hdxe= Viewer, which tells the
class of x and the predicates and their valuation (none in taise). Finally, we have
ni(x) = 2.

A cast nested object graph @erPis a tuple AL, R, AR O, 1, st,n, nl) where

— (AL, AR O, 1, st nl) is a nested object graph ovey
— Ris a set ofobject rolelabels, and

— n:R — Ois arole namefunction.

An object of a cast nested object graph may have a role nanuglitian to its label. A
role name indicates the fixed responsibility of the objestance during a method call.

A cast nested object graph can be obtained from a nested gioggxh by unfolding
the graph and adding a role function. The unfolding stepeoaisubgraph with nesting
level greater than 0 and decreases the nesting level of fhelyoone. This process is
repeated until all the roles can be assigned to object instan

A cast nested object graph vgell-formedif its role name function is injective:
Yri,r2 € R n(r1)) = n(r2) = r1 = ry. Henceforth, we consider only well-formed
nested object graphs and well-formed cast nested objephgraVe denote the set of
all nested object graphs and the set of all cast nested afjaphs oveP as?p and
Gp, respectively.

In our analysis, each cast nested object gaghGe corresponds to a unique nested
object graptH € Hy, as we will see in the next section. We assumesthacefunction
src: Gp — Hp, which determines the nested object graph of a cast nesject gjoaph.

Example 3 Let us consider the graph inside the box in the left hand sideigure
[2(@), which is a cast nested object graph whose sourceyitnHrigure[I(C). Let the
object node labelled witleallee: [Vng] Viewer be x, then(X) = Viewer, n(x) = 0, and
n(x) = callee

The DPI shows the state of the system (i.e., the packagehteigeiith its most
general client) at the call and return points of public methim the package. In those
states, the stack of the client is empty dhis always refers to the most general client.
Therefore, we omit this information in nested object grafitne roles in abstract graphs
can be seen as a projection of the internal state of the mostaleclient on the objects
inthe heap. Thatis, the object instance of the most genlgat @dself is not represented
as a node in the graphs.

4.2 Object Mapping

Notation. For a packag®, we denote byMp the set of all its public method#vlp =
Ucep C.My. For a public method(Cy, - - - , Cy) of a classC, we define itsignatureas
Slg(m) = {(C’ Ca”e@, (Cl’ argO)’ T (Cn, argn)}-

An object mappingf a methodn € Mp is a tuple (n, G, G’, k) whereG, G’ € Gp,
k € G.Ox G'.Ois a relation, and the following conditions are satisfied:

— Gincludes object instances feig(m):
Y(C,) € sig(m), do € G.O, clasgG.I(0)) =C AG.n(0) ='s;

— domk) = G.0;
— k preserves the class of an objetfo;, 0,) € k, clasgG.I(01)) = clasgG’.1(0y));
— kis functional on object instance#(o1, 0,), (01, 03) € k, G.nl(0;) = 0 = 0, = 03;
— k preserves the nesting level of object instances:

¥(01,02) € k, G.nl(0;) = 0 & G’.nl(0y) = 0;

— k preserves the role names of object instances:
¥(01,02) € k, G.nl(0;) = 0= G.n(01) = G'.n(02).

ForaseM C Gp, by Maps,(M) we denote the set of all object mappings G, G’, k)
of packageP such thatG, G’ € M.

An object mapping is a compact representation of tiiecethat a method call has
on the objects of a package. The mapping specifies how olgeetsansformed by the
method call. A paird;, 02) € k indicates that each concrete object represented by the
abstract objead; might become part of the target abstract obgect he total number of
concrete objects is always preserved. Because nested gkapbs can represent more
than one concrete state, there can be more than one objeptmgassociated with a
given method call and source graph, as well as multiple targjects for each source
object in the source graph of one object mapping.

Example 4 Let us consider the two cast nested object graphs insidedkeshin the
left and right hand side of Fifl. 2(). Denote these two graph& and G. Figure[2(a)
then represents the object mappirtget, G, G', {(V, V), (La, La), (L, L), (V., V.)}).

Note that in addition tccallee and argg role names, the object mapping in Fig-
ure[2(@) also usescopg < G.R, which labels an object instance that is not part of
the signature of the method. Tiseope role names are used to label all such object
instances. One last type of role names that are used by ohpgmpings imew role
names, which label the objects that are created by a methlod@anprove the read-
ability of some figures we omit abstract objects that are radifred. We show only the
objects part of the connected componeftéeted by the call.

4.3 Definition: DPI
A DPI of a package is a tuple H, G, Q, &) where

— H C Hp is a finite set of nested object graphs,

— G C Gp is afinite set of cast nested object graphs,
— Q C Maps:(G) the set obbject mappingsand

— & C H the set oferror nested object graphs.

The DPI (H, G, Q, &) is well-formedif:

1. the castgraphs come frohfi: VG € G, sri(G) € H

2. itissafe Y(m, G, G’) € Q, sr(G) € (H - &); and

3. itiscompletdn that a non-error covering nested object graph has a mgpirall
methods:

VH e (H - &), Yoe H.O, Yme clasgG.1(0)).Mp, I(M, G, G’) € Q, src(G) = H.

Well-formed DPIs characterize the type of interface thataneinterested in com-
puting for OO packages. Following the analogy between a DiElan FSM, the set
of nested object graphs correspond to the “states” of the stachine and the set of
object mappings correspond to the “transitions”. Se¢fldegcribes how a well-formed

DPI can be computed for a package soundly via an abstracidiesithat simulates the
concrete semantics of Sectign 3. Henceforth by a DPI, we raeeell-formed DPI.

A DPI can be understood in two ways. The first interpretatiomes directly from
the abstract OO program semantics of Sedfion 5. The sectewbiatation views the
DPI as a counter program. In this program e&tlk H has a control location and for
each node irH.O there is a counter variable. The value of a counter keepk ttihe
number of concrete objects that are represented by thespameing abstract object
node. Object mappings can be translated into updates obth@ers. Further details of
that interpretation can be found in Section 5.4 and [4].

5 Abstract Semantics for Computing DPI

In this section, we present the abstraction layers that veg¢aisompute the DPI of a
package. Sectidn 3.2 presents depth-bounded abstradiomain, which ensures that
any chain of objects of a package has a bounded depth whessesgied in this domain.
Section[5.B presents ointeal abstractdomain, which additionally ensures that any
number of objects of a package are represented finitelyid®égi4 describes how the
DPI of a package can be computed by encoding the ideal absitarpretation of a
package as a numerical program.

5.1 Preliminaries

For a transition systei = (X, Xo, —), we define thepost operatomaspost.S : P(X) —
P(X) with post.S(Y) = {X € X | Ax € Y.x — X }. Thereachability setof S, denoted
Reacl(S), is defined byrReacl(S) = Ifp<(1Y.Xo U post.S(Y)).

A quasi-orderingg is a reflexive and transitive relatiahon a seiX. In the following
X(<) is a quasi-ordered set. Tldewnward closurgresp.upward closurgof Y C X is
lY ={xe X|3IyeVY.x<y}(resp.TY = {xe X | Iy e Yy < x}).AsetYis
downward-closedresp.upward-closedlif Y = Y (resp.Y = 1Y). An elementx € X
is anupper boundor Y ¢ X if for all y € Y we havey < x. A nonempty seD C X
is directedif any two elements irD have a common upper boundh A setl € X
is anideal of X if | is downward-closed and directed. A quasi-orderngn a setX is
awell-quasi-ordering(wgo) if any infinite sequencry, X, Xz, ... of elements fronX
contains an increasing pair < x; with i < j.

A well-structured transition systefWSTS) is a tupleS = (X, Xo, —, <) where
(X, Xo, =) is a transition system ardl C X x X is a wqo that isnonotoniawith respect
to —, i.e., for all xg, X2, y1,t such thatx; < y; andx; — Xp, there exists/, such that
y1 — Y2 andx; < y,. Thecovering sebf a well-structured transition systef) denoted
Covel(S), is defined byCovel(S) = |Reacl{S).

5.2 Depth-Bounded Abstract Semantics

We now present an abstract semantics for OO programs. Giv&Qaprograns, our
abstract semantics & is a transition systerSff = (Conf*, U?, —>ﬁ) that is obtained
by an abstract interpretationl [5] &. Typically, the systen‘.lsf;E is still an infinite state

system. However, the abstraction ensuresﬂﬁaﬁelongs to the class ofepth-bounded
systemd12]. Depth-bounded systems are well-structured traosisystems that can
be dfectively analyzed [20], and this will enable us to compute dignamic package
interface.
Heap Predicate AbstractioiVe start with a heap predicate abstraction, following shape
analysis[[14,17]. LeAP be a finite set ofinary abstraction predicatesom Pred.({x} U
C.A) wherex is a fresh variable dierent fromthis andnull. For a configuratiomu =
(O, -, st) ando € O, we writeu = p(0) iff s{x — 0](p) = 1. Further, [etARbe a subset
of the reference fields i6.A. We refer toAR asbinary abstraction predicate$-or an
objecto € O, we denote byAR(0) the setARN clasg0).A.

The concrete domaiB of our abstract interpretation is the powerset of configura-
tionsD = #(Conf), ordered by subset inclusion. The abstract dorwi'rs the powerset
of abstract configurations ﬁ): P(Conf?), again ordered by subset inclusion. An ab-
stract configuration € Conf” is like a concrete configuration except that the store is
abstracted by a finite labelled graph, where nodes are oidiectifiers, edges corre-
spond to the values of reference fieldsAR, and node labels denote the evaluation of
objects on the predicates AP. That is, the abstract domain is parameterized by both
AP andAR

Formally, an abstract configuratiafi € Conf* is a tuple Q, this, g, v, 7, st) where
O C O is afinite set of object identifierthis € O is the current objectj € F.Q is the
current control locationy is a finite sequence of triples,(x,) of objects, variables,
and control locatiory : OxAP — B is apredicate valuationpandstis anabstract store
that maps objects in € O and reference fields € AR(0) to objectsst(p, a) € O. Note
that we identify the elements @onf* up to isomorphic renaming of object identifiers.

The meaning of an abstract configuration is given by a coizeté&in functiony, :
Conf® — D defined as follows: fou* € Conf* we haveu e y,(Uu¥) iff (i) U*.O =
u.0; (ii) uthis = u.this; (i) u”.q = u.g; (iv) u*.v = u.v; (v) for all 0 € u.0 and
p € AP, u*.n(o, p) = 1iff u = p(0); and (vi) for all objectso € O, anda € AR(0),
u.st(o,a) = u”.st(o,a). We lift y, pointwise to a functiony, : Dﬁ — D by defining
yo(U#) = Uy (") | U € U#}. Clearly,y, is monotone. It is also easy to see that
distributes over meets because for each configuratithere is, up to isomorphism, a
unique abstract configuratiarf such that € y,(u). Hence, letr, : D — D be the
unique function such thaty, y,) forms a Galois connection betwe&nand fo, i.e.,
an(U) = N{U* U Cy(UH)).

The abstract transition systeﬁﬁt = (Conf* UZ, —>ﬁ) is obtained by setting,lg =
an(Uo) and defining—# c Conf* x Conf* as follows. Letu”, v € Conf*. We have
u* —>ﬁ VFiff v € ap o post.S o v (UF).

Theorem 1. The system 'Ssimulates the concrete system S, i.e.,)dyn(U§) and

(i) for all u,v € Conf and & € Conf®, if u € y,(u*) and u — v, then there exists
v# € Conf* such that @ —# v* and ve y,(v¥).

Proof. (Sketch)Ve can use the framework of abstract interpretation [6] wverthe
theorem. By definition,dy, yn) forms a Galois connection betweBrand Dﬁ. Further-
more,u” -7 V* iff V¥ € ap, o post.S oy, (7).

Depth-Boundednesket u* € Conf* be an abstract configuration. #imple pathof
lengthn in u” is a sequence of distinct objeats= o, ..., 0, in u¥.0 such that for all
1 < i < n, there exists; with u”.st(o;, &) = 0,1 or U*.st(0,1, &) = o (the path is not
directed). We denote dgp(u¥) the length of the longest simple pathudt We say that
a set of abstract configuratioh’ ¢ Conf” is depth-boundeif U* is bounded in the
length of its simple paths, i.e., there exikts N such that/u? € U, Isp(u”) < k and
the size of the stackr®.v| < k.

We show that under certain restrictions on the binary abstrapredicate#\R the
abstract transition systeBﬁ is a well-structured transition system. For this purpose, w
define theembedding ordeon abstract configurations. Aambeddindor two configu-
rationsu”, v : Conf* is a functionh : u¥.O — Vv*.0 such that the following conditions
hold: (i) h preserves the class of objects: for alle u*.0, clasgo) = clasgh(0));
(i) h preserves the current objedt(u” this) = V¥ this, (iii) h preserves the stack,
h(u*.v) = v¥.v whereh is the unique extension df to stacks; (iv)h preserves the
predicate valuation: for alb € u?*.0 andp € AP, u”.5(0, p) iff V¥.n(h(0), p); and
(v) h preserves the abstract store, i.e., foralke u*.O anda € AR0), we have
h(u”.st(0,a)) = v*.st’(h(0),a). The embedding ordex: Conf* x Conf* is then as
follows: for all u*,v* : Conf*, u* < V¥ iff ¥ andV* share the same current control
location (*.q = V¥.q) and there exists an injective embeddingibfnto v*.

Lemma 1. (1) The embedding order is monotonic with respect to abstraositions
in Sﬁ = (Conf*, UZ, —ﬁ;f). (2) Let U be a depth-bounded set of abstract configurations.
Then(U#, <) is a wqo.

Proof. The first part follows form the definitions. For the second pae can reduce it

to the result from[[4]. We just need to encode the stack intogtitaph. The stack itself
can be easily encoded as a chain with special bottom and tig fibe assumption that
the stack is bounded guarantees that can still apply [4, Le&m

If the set of reachable configurations of the abstract tr'mnskystemsﬁ is depth-
bounded, thelsff induces a well-structured transition system.

Theorem 2. If Reacl{S}) is depth-bounded, theiReacliS*), U%, —F, <) is a WSTS.
Proof. The theorem follows from Lemnid 1 arid[12, Theorem 2].

In practice, we can ensure depth-boundedne%atlﬁsﬁ) syntactically by choos-
ing the set of binary abstraction predicafeR such that it does not contain reference
fields that span recursive data structures. Such referezids fire only allowed to be
used in the defining formulas of the unary abstraction pegd& Recursive data struc-
tures can be dealt with only if they are private to the packagenot exposed to the
user. In that case the predicate abstraction can use a mm@ecodomain that under-
stand such shapes, elg.][17]. In the next section, we astwahéhe seReacIQSﬁ) is
depth-bounded and we identiﬁﬁ with its induced WSTS.

Example 5 Figure[4 depicts the two corresponding, depth-boundedrabistonfigu-
rations of the concrete configurations in Figlile 3. The ofgjere labelled with their
corresponding unary predicates. A labelled arrow betweendbjects specifies that the

e :Elem
positive

e :Elem
positive

e :Elem
positive
e :Elem
positive
i1:Iterator io: Iterator i1 : Iterator io: Iterator

mover —mover —mover —mover

sync sync —-sync sync

(a) Before removing an element viia (b) After removing the element

Fig. 4. Two depth-bounded abstract configurations

corresponding binary predicate between two object holtie. §et of unary abstraction
predicates consists of:

emptyx) = x.size=0 synch{x) = x.iver = X.iter_of.sver
movelx) = X.pos < X.iter_of.size positivgx) = x.e >0

The set of binary abstraction predicates is AR{iter_of}. If we had also included
head andnext in AR, the resulting abstraction would not have been deptinded.

5.3 Ideal Abstraction

In our model, the errors are local to objects. Thus, we ar&itgpat the control-
state reachability question. This means that the set ofadistrror configurations is
upward-closed with respect to the embedding order.e., we haveU%, = TUZ,.
From the monotonicity ok we therefore conclude th&eacliS}) n UZ, = 0 iff
Covel(Sﬁ) N U, = 0. This means that if we analyze the abstract transition syste
Sff modulo downward closure of abstract configurations, thissdwot incur an addi-
tional loss of precision. We exploit this observation aslhaslthe fact thanf is well-
structured to construct a finite abstract transition systénmse configurations are given
by downward-closed sets of abstract configurations. We ghemv that this abstract
transition system can béfectively computed.

Every downward-closed subset of a wqo idirte union of ideals. In previous
work [21], we formalized an abstract interpretation coingeal abstraction which
exploits this observation to obtain a generic terminatinglgsis for computing an
over-approximation of the covering set of a WSTS. We nextstimt ideal abstrac-
tion applies to the depth-bounded abstract semantics byding an appropriate finite
representation of ideals and how to use it to compute the T abstract domail':)ffjl
of the ideal abstraction is given by downward-closed setabstract configurations,
which we represent as finite sets of ideals. The concrete itmdmﬁﬁ. The ordering on
the abstract domain is subset inclusion. The abstractioctifon is downward closure.

Formally, we denote bydl(Conf) the set of all depth-bounded ideals of abstract
configurations with respect to the embedding order. Defireqgtiasi-orderingc on
Pin(Idl(Conf?)) as the point-wise extension affrom the ideal completiofdl(Conf*)
of Conf#(<) to Psin(IdI(Conf?)):

I,CJ1y = VYlieli. el 1 Cly

The abstract domaifgl is the quotient ofPf, (IdI(Conf*)) with respect to the equiva-
lence relatiorc N . For notational convenience we use the same symbot the
quasi-ordering o5, (ldI(Conf?)) and the partial ordering that it induces B@l. We
further identify the elements d:ﬁfgl with the finite sets of maximal ideals, i.e., for all
L e Df, andly, l2 € L, if I3 C I thenl; = I,. The abstract domaib?, is defined as
Piin(IdI(Conf?)). The concretization functiopg : Df, — Dfis ya(X) = UZ. Fur-
ther, define the abstraction functiegy : Df — Df, asaiq(U*) = {I € IdI(Conf’) |

I ¢ L[U#}. From the ideal abstraction framewofk [21], it follows tlfaky, yia) forms

a Galois connection betwedf andDZ,. The overall abstraction is then given by the
Galois connectiond, y) betweenD and Dfé", which is defined byr = «jg o an and

¥ = ¥h o ¥iai. We define theabstract post operatopost” of S as the most precise ab-
straction ofpost.S with respect to this Galois connection, ijgost”.S = aopost.Soy.

In the following, we assume the existence aeqjuence widening operat®y :
IdI(Conf*)* — IdI(Conf*, i.e., Viy satisfies the following two conditions: @overing
condition forall 7 € IdI(Conf#)+, if Vigi(Z) is defined, then for all in 7, | C Vig(Z).;
and (i) termination conditionfor every ascending chain)y in Idl(Conf?), the se-
quenceJy = lo, Ji = Vig(lp...l;), for all i > 0, is well-defined and an ascending
stabilizing chain.

The ideal abstraction induces a finite labeled transitimaysiﬁ, whose configu-
rations are ideals of abstract configurations. There areiapeansitions labeled with
€, which we refer to asovering transitions\We caIISfQI the abstract covering system
of Sﬁ. This is because the set of reachable configuratioﬁptbver-approximates the
covering set osﬁ, i.e.,Covet(Sﬁ) c yid.(Reacmsﬁl)). Furthermore, the directed graph
spanned by the non-covering transitionﬂy is acyclic.

Formally, we definésfél = (Liai, Lo, —Sfﬁ") as follows. The initial configurationgg
are given byl = aic"(Ug). The set of configurationgy C IdI(Conf#) and the tran-

sition relation—}i’g,g Tiq x Tig are defined as the smallest sets satisfying the following
conditions: (1)7o € Zig; and (2) for everyl € I, let pathgl) be the set of all se-
quences of idealky. .. I, with n > 0 such thaly € 7y, I, = |, and for all 0< i < n,

i —'%l lis1. Then, for every patll = lg... I, € pathgl), if there existd < n such that

| C I, thenl iﬁfﬂ l;. Otherwise, for all” € post”.S o yiq(l), let)’ = Vig(Z’1") where

I’ is the subsequence of all idedjsn 7 with I; C I, thenJ’ € Iy andl —Sffﬂ J.

Theorem 3. The abstract covering systenﬁ,,&‘bs computable and finite.

Proof. (Sketch)ollowing the result froni[21], we carfiectively compute an inductive
overapproximatio of the covering set oﬂsiﬁ,. From [20, Lemma 15], we have a finite

representation of?. Finally, —&ffﬂ can be fectively computed as we will see in the
remainder of the section.

Define the relationlffjl

main soundness theorem.

* . € .
C Tig x Tig as—l, = =% U of o - We now state our

Theorem 4. [SoundnessThe abstract covering systerﬂﬁ,&imulates S, i.e., (i) §c
v(Zo) and (i) for all | € 7y and uv € ReacliS), if u € y(I) and u— v, then there

exists Je Tiq such that e y(J) and | 5%, J.

Proof. (Sketch) The abstract covering system is just a lifting of the originansition
system to a finite-state system by partitioning the statessifinite number of sets given
by the incomparable ideals in covering set or an overappration of it. The lifting
relies on the monotonicity property of the underlying WS@®mhsures simulation. The
transition reIation%f&l maps states from ideal to ideal while ensuring that the targe
ideal contains at least one larger state.

In the rest of this section we explain how we represent idefédbstract configu-
rations and how the operations for computing the abstra@rang system are imple-
mented.

Representing Ideals of Abstract Configuratiod$e ideals of depth-bounded abstract
configurations are recognizable by regular hedge autor@@ia\lve can encode these
automata into abstract configuratidiighat are equipped with@esting level function
The nesting level function indicates how the substructaféise abstract store of can
be replicated to obtain all abstract configurations in tipeesented ideal.

Formally, aquasi-ideal configuration™ is a tuple Q, this, g, v, 5, st, nl) wherenl :
O — N is the nesting level function an@(this, g, v, i, st) is an abstract configuration,
except that is only a partial function; : O x AP — B. We denote byQIldIConf*
the set of all quasi-ideal configurations. We délk (O, this, g, v, , st nl) simply ideal
configuration if n is total and for allo € O, a € AR(0), nl(0) > ni(st(o, a)). We denote
by [I7] the inherentabstract configurationQ, this, g, v, n, sf) of an ideal configuration
I#. Further, we denote bigiConf* the set of all ideal configurations and b;lConfg
the set of all ideal configurations in which all objects haesting level 0. We call the
latterfinitary ideal configurations.

Meaning of Quasi-ldeal ConfigurationsAn inclusion mappingetween quasi-ideal
configurationsl” = (O, this g,v,stnl) and J* = (O, this,q,,st,nl’) is an em-
beddingh : O — O that satisfies the following additional conditions: (i) fal
0 € O, nl(o) < nl'(h(0)); (i) his injective with respect to level O vertices @ for
all 03,0, € O, 0 € O, h(0;) = h(o2) = o andnl’(0") = 0 implieso; = 0y; and (iii) for
all distinctos, 05,0 € O, if h(o;) = h(0,), ando; ando, are both neighbors af, then
nl’(h(o1)) = nl(h(02)) > nl'(h(0)).

We write I# <, J# if g = ¢, andh is an inclusion mapping betweét and J*. We
say thati* is includedin J#, written1# < J#, if 1# <, J¥ for someh.

We define the meanird] of a quasi-ideal configuratidrf as the set of all inherent
abstract configurations of the finitary ideal configuratimesuded inl*:

[1#] = {[J*] | ¥ e IdIConf} A J* < 1#)
We extend this function to sets of quasi-ideal configuratj@s expected.

Proposition 1. Ideal configurations exactly represent the depth-boundedls of ab-
stract configurations, i.e{,[1#] | I € IdIConf*} = IdI(Conf?).

Since the relatior is transitive, we also get:

Proposition 2. For all 1#, J* € QldIConf*, 1# < J* iff [1¥] < [J*].

0 & :Elem |1 0 ¢ Elem |1
positive positive

iter_of

i%:Iterator 1 i%:Iterator 1 i%: Iterator 1 i Iterator 1
mover ~mover =mover ~mover
sync sync -sync sync

(a) Before removing an element \@ (b) After removing the element

Fig. 5. Two ideal abstract configurations

It follows that inclusion of (quasi-)ideal configuratiorescbe decided by checking
for the existence of inclusion mappings, which is an NP-cletegproblem.

Quasi-ideal configurations are useful as an intermedigieesentation of the im-
ages of the abstract post operator. They can be thought ohase compact repre-
sentation of sets of ideal configurations. In fact, any qidesal configuration can be
reduced to an equivalent finite set of ideal configuration.d&Bote the function per-
forming this reduction byeduce: QldIConf* — P,(IdIConf*) and we extend it to
sets of quasi-ideal configurations, as expected.

Example 6 Figure[d depicts the two corresponding, ideal abstract aqunfitions of the
two depth-bounded abstract configurations in Fidre 4. Téxgting level of each object
is shown by the number next to it. When the abstract configursin Figurd4 are con-
sidered as finitary ideal configurations, then they are ideld in their corresponding
ideal configurations in Figurgl5. The two inclusion mappibgéwveen the correspond-
ing configurations in Figurgl4 and Figufé 5 até1, i%), (i2, i3). (s 5°), (1, €"), (&2, €%)}.

Note that since the nesting level df: Set in both ideal configurations is zero, it
is not possible to define inclusion mapping when there areertt@an one concrete set
object. However, if the nesting levels of the set and iteratgects are incremented,
then such an inclusion mapping can be defined.

Computing the Abstract Post Operataie next define an operatBpst”.S that imple-
ments the abstract post operapost”.S on ideal configurations. In the following, we
fix an ideal configuration” = (O, this, g, v, st nl) and a transitiort = (g, op, ') in S.
For transitions not enabled Ht, we setPost”.S.t(1%) = 0.

We reduce the computation of abstract transitidfisf u” to reasoning about log-
ical formulas. For fficiency reasons, we implicitly use an additional Carteslzstrac-
tion [3] in the abstract post computation that reduces thabar of required theorem
prover calls. For a set of variabl® we assume aymbolic weakest preconditiap-
eratorwp : Op.(C.A) x Pred.(X U C.A) — Pred.(X U C.A) that is defined as usual. In
addition, we need a symbolic encoding of abstract configanainto logical formulas.
For this purpose, define a function: O — Pred.(OUC.A) as follows: givero € O, let
O(0) be the subset of objects @ that are transitively reachable froorin the abstract

storest, thenr"(0) is the formula

I'(0) = distinct(©(0) U O(this)) A this = this A null = null A

[A n0.p)-pE)A /\ oa=sio.a)
0’eO(0)UO(this) \ pcAP acAR(0)
p(o) ifn,p) =1

wheren(0’, p) - p(0) = {ﬁp(of) if (0, p) = 0.

Now, let J* be the set of all quasi-ideal configuratialfs= (O, this ¢, v, 77, st, nl) that
satisfy the following conditions:

— I'(this) A g is satisfiable, ibp = assumed);

—forallo e O, p € AP, if I'(0) E wp(op, p(0)), thenr'(o, p) = 1, else ifI'(0) £
wp(op, =p(0)), theny'(o, p) = 0, elser’ (o, p) is undefined;

— forallo,0’ € O, a e AR(0), if I'(0) A I'(0') | wp(op, 0.a = 0), thenst'(o,a) = O,
else ifr'(0) A I'(0") E wp(op, 0.a # 0’), thenst' (o, a) # 0'.

Then definePost” S.t(1%) = reducé.J™).

5.4 Computing the Dynamic Package Interface

We now describe how to compute the dynamic package inteffa@egiven packagp.
The computation proceeds in three steps. First, we compeat®O prograns = (P, 1)
that is obtained by extendinig with its most general clienit. Next, we compute the
abstract covering syste®, of S as described in Sectiois b.2 dnd]5.3. We assume
that the user provides sets of unary and binary abstractiedigatesAP, respectively,
ARthat define the heap abstraction. Alternatively, we can eseistics to guess these
predicates from the program text of the package. For exam@ean add all branch
conditions in the program description as predicates. Finale extract the package
interface from the computed abstract covering system. Vgeridee this last step in
more detail.

We can interpret the abstract covering system as a numeriegtam. The control
locations of this program are the ideal configurationsmp With each abstract object
occurring in an ideal configuration we associate a countes. vialue of each counter
denotes the number of concrete objects represented by sbeiated abstract object.
While computingsfgl, we do some extra book keeping and compute for each tramsitio
of Sfé" a corresponding numerical transition that updates the tessiof the counter
program. These updates capture how many concrete objestgelheir representation
from one abstract object to another. A formal definition oflstnumerical programs
can be found in([4].

The dynamic package interfa8#1(P) of P is a numerical program that is an ab-
straction of the numerical program associated \Bmh The control locations dDPI(P)
are the ideal configurations Eﬁ;l that correspond to call sites, respectively, return sites
to public methods of classes B, in the most general client. A connecting path in
ngl for a pair of such call and return sites (along with all corgriransitions connect-
ing ideal configurations on the path) corresponds to theadistxecution of a single

method call. We refer to the restriction of the numericagnannsfél to such a path and

all its covering transitions asall program Each object mapping @PI(P) represents

a summary of one such call program. Hence, an object mappibgtP) describes,
both, how a method callffects the state of objects in a concrete heap configuration and
how many objects areffected.

Note that a call program may contain loops because of looplseirmethod exe-
cuted by the call program. The summarization of a call progtizerefore requires an
additional abstract interpretation. The concrete domathis abstract interpretation is
given by transitions of counter programs, i.e., relatioetsueen valuations of counters.
The concrete fixed point is the transitive closure of theditions of the call program.
The abstract domain provides an appropriate abstractionmgrical transitions. How
precisely the package interface captures the possibleeeegs of method calls de-
pends on the choice of this abstract domain and how conveegsfrthe analysis of the
call programs is enforced. We chose a simple abstract doofi@hbject mappingshat
distinguishes between a constant number, respectivéddifraaly many objects transi-
tioning from an abstract object on the call site of a methaahtother on the return site.
However, other choices are feasible for this abstract domait provide more or less
information than object mappings.

6 Experiences

We have implemented our system by extending the Picass§ZtplPicasso uses an
ideal abstraction to compute the covering sets of deptmtbed graph rewriting sys-
tems. Our extension of Picasso computes a dynamic packegéare from a graph
rewriting system that encodes the semantics of the metHizdica packagﬁ.

For a graph-rewriting system that represents a packagepolfirst computes its
covering set. Using the elements of the covering set, it fremforms unfolding over
them with respect to all distinct method calls to derive thgot mappings of the DPI
of the package. The computation of the covering elementstandbject mappings are
carried out as described in the previous section.

In addition to theViewer andLabel example, described in Sectibh 2, we have exper-
imented with other examples: a set and iterator packagehwiné used as our running
example in the previous sections, and the JDBC statementesodt package. In the
remainder of this section, we present the DPIs for thesegupek

Set and IteratotVe considered a simple implementation of 8t andlterator classes
in which the items in a set are stored in a linked list. Tteeator class has the usual
next, has_next, andremove methods. Th&et class provides a methdgtrator, which
creates ariterator object associated with the set, and aid method, which adds a
data element to the set. The interface of the package is nteaatoid raising ex-
ceptions of typeNoSuchElementException and ConcurrentModificationException.

A NoSuchElementException is raised whenever theext method is called on an itera-
tor of an empty list. AConcurrentModificationException is raised whenever an iterator

1Our tool and the full results of our experiments can be found: a
http://pub.ist.ac.at/~zufferey/picasso/dpi/index.html

http://pub.ist.ac.at/~zufferey/picasso/dpi/index.html

accesses the set after the set has been modified, eithegltmaall to theadd method
of the set or through a call to themove method of another iterator. An iterator that
removes an element can still safely access the set aftesw(@&idhilar restrictions apply
to other Collection classes that impleméstable.)

We used the following predicates. The unary abstractiodipageemptys) deter-
mines whether the size ofSet objectsis zero or not. Fotterator objects, we specified
two predicates that rely on the attributes of both #et and thelterator classes. The
predicatesyndi) holds for aniterator objecti that has the same version as its associated
Set object. The predicatmove(i) specifies that the position of dterator objecti in
the list of its associateflet object is less than the size of the set.

Our algorithm computes the maximal configuratidig shown in Figurd 6(&).
There are also four error abstract heap configurations,hwtacrespond to dierent
cases in which one of the two exceptions is raised fdteaator object. Figur¢ 6(§) and
show the object mappings of two transitions. For the sHlclarity, we have omit-
ted the name of the reference attribiter_of in the mappings. While both transitions
invoke theremove() method on ariterator object whosemoverand syncpredicates
are true, they have fierent €fects because they capturéfdient concrete heaps repre-
sented by the same abstract héfpThe first transition shows the case when the callee
object remains a mover, i.e., ip®s field does not refer to the last element of the list.
The second transition shows the case when the callee olgjeairies a non-mover;i.e.,
before the call teemove, its pos field refers to the last element of the linked list. In both
transitions, the othdterator objects that reference the sa®et object all become un-
synced. Some of these objects remain movers while somemftieeome non-movers.
In both cases, the callee remains sycned. There are twosytimenetric transitions that
capture the cases in which tBet object becomes empty.

JDBC(Java Database Connectivity) is a Java technology thatematcess to databases
of different types. We looked at three classes of JDBC for simpleygaecess to
databasesConnection, Statement, and ResultSet. A Connection object provides a
means to connect to a databaseStAtement object can execute an SQL query state-
ment through aonnection object. AResultSet object stores the result of the execu-
tion of a Statement object. All objects can be closed explicitly. If$tatement object

is closed, its correspondirigesultSet object is also implicitly closed. Similarly, if a
Connection object is closed, its correspondiBtatement objects are implicitly closed,
and so are the opeResultSet objects of these&tatement objects. Java documenta-
tion states: “By default, only onResultSet object perStatement object can be open
at the same time. Therefore, if the reading of ®esultSet object is interleaved with
the reading of another, each must have been generatedfesediStatement objects.

All execution methods in thBtatement interface implicitly close a statement’s current
ResultSet object if an open one exists.”

Figurg[7(@) shows the maximal abstract heggomputed by our tool. It represents
all safe configurations in which th@onnection object is either open or closed. Each
type of object has a corresponding “open” predicate thatiEps whether it is open or
not. The node is of particular interest, as it demonstrates the precsen&our algo-
rithm: It has the same nesting level as the nbdehich means that an op&tatement
object can have at most one ofResultSet object associated with it. We omit showing

-~ iter.of iter.of "~~~

- iter_of iter_of ~
e * * * * AN
/ [a]lterator [b]lterator [0]Set [c]Iterator [d]lterator \\‘
\ -~mover —mover mover mover !
NS =sync sync —empty —sync sync I
*
e " itero iter _of iter_of ter-of 7~ R
, ’ * k k k ~ N
! [a']iterator [b']Iterator [1]Set [c']Iterator [d']Iterator)
\ -~mover —mover mover mover)/
SN —sync sync empty -sync sync 7

(a) Abstract heap configuratiody of the set-iterator package using predica@sptys) =
S.size =0, synclfi) = i.iver = i.iter_of.sver, andmove(i) = i.pos < i.iter_of.size.

Ho HO
* *
SCop®: [b]Iterator [a]lterator
[0]Set
— —mover .~~~ =mover
-empty sync { | -sync
* /I‘ ////
[c]Iterator g K ’
callee: . ’ callee:
mover -
[d]lterator —sync . ;‘ [d]lterator
mover N mover
sync x o sync
[d.]lterator i} |[c]iterator
mover mover
sync : -sync

(b) Object mapping fod.remove()

Ho HO
* *
Scopg: [b]Iterator [a]lterator
[0]Set
— —-mover ~~Z =mover
—empty sync I | -sync
[c]lterator
callee: b’ "’ callee:
mover Sl
[d]iterator —sync [b]iterator
mover y —-mover
sync = I - sync
[d.]lterator i . |[c]iterator
mover | mover
sync g -sync

(c) Another possible object mapping fdremove()

Fig. 6. Set-iterator DPI: The abstract heap of the package togefitietwo of its object mappings

7 Al N
N / AN , [d’]R
) 0 o esultSe
7'/ | aResultset| /| [d]ResultSet N K
! /
A N i —r_open N ' —r_open)
o —r_open \ I NN | :
’ 1 \ 1 \ \ i \
I \ [. | f \
[\ ' | v :
Lo \ ' \ \
! 1 1 Vo
b [b]Statement] ! | [e]Statement] o [e¢]Statemen |
! | / |
| b b -s.open '
v sopen | v | "sopen)/ [N p) i
' | I N 7’ [\ - ,’
~ 4 1 \\ P
\\ \ Il Se o 7 v ~__|l_-- |
‘o 1 T // \ i
AN 1 \
Y [c]ResultSet | / N -
N / [1]Connection) \ [0]Connectio
\ \ / ,
N r_open /
\\\\\ p y c.open —c_open
N ’

(a) Abstract heap configuratioht of JDBC package

Ho

Ho

callee:
[e]Statement

—-s.open

SCop®: scopq : scopeg: scopq :
[0]Connectio [c]ResultSe| [0]Connectio [d]ResultSet
c_open r-open c_open —r_open

(b) Object mapping fob.close()

Fig. 7. JDBC DPI: The abstract heap of JDBC together with one of ijsaitmappings

abstract heaps capturing erroneous configurations. |.&glyre 7(b) shows the object
mapping for theclose method call on an opegtatement object with an opeiResult-
Set object. The mapping takes tis¢atement object and the opeResultSet object to
their corresponding closed objects. All other objects lierttae same.

7 Conclusions

We have formalized DPIs for OO packages with inter-objefgrences, developed a
novel ideal abstraction for heaps, and given a sound andrtatimg algorithm to com-
pute DPIs on the (infinite) abstract domain. In contrast &vjmus techniques for multi-
ple objects based on mixed static-dynamic analysis [13dl&]algorithm is guaranteed
to be sound. While our algorithm is purely static, an inteéngsfuture direction is to
effectively combine it with dual, dynamiCl[7/8.115] and tempkatased 18] techniques.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Abdulla, P.A.Cerans, K., Jonsson, B., Tsay, Y.K.: General decidabilggrems for infinite-

state systems. In: LICS 96. pp. 313-321. IEEE (1996)

. Alur, R.,éerny, P., Madhusudan, P., Nam, W.: Synthesis of interfaeeifications for Java

classes. In: POPL'05. pp. 98-109. ACM (2005)

. Ball, T., Podelski, A., Rajamani, S.: Boolean and caatesibstraction for model checking C

programs. STTT 5(1), 49-58 (2003)

. Bansal, K., Koskinen, E., Wies, T., Harey, D.: Structural counter abstraction. In: TACAS

(2013)

. Cousot, P., Cousot, R.: Systematic design of progranysisairameworks. In: POPL. pp.

269-282. ACM (1979)

. Cousot, P., Cousot, R.: Abstract interpretation: a whiétice model for static analysis of

programs by construction or approximation of fixpoints.RPQPL. pp. 238-252 (1977)

. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller,:&enerating test cases for specifi-

cation mining. In: ISSTA. pp. 85-96. ACM (2010)

. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensibpehavior models by graph trans-

formation. In: ICSE. pp. 430-440. IEEE (2009)

. Giannakopoulou, D., Pasareanu, C.: Interface genaratid compositional verification in

JavaPathfinder. In: FASE. LNCS, vol. 5503, pp. 94-108. $erii2009)

Henzinger, T., Jhala, R., Majumdar, R.: Permissivafates. In: Wermelinger, M., Gall, H.
(eds.) ESEZSIGSOFT FSE. pp. 31-40. ACM (2005)

Li, Z., Zhou, Y.: PR-Miner: automatically extracting piicit programming rules and detect-
ing violations in large software code. In: ESESE-13. pp. 306—-315. ACM (2005)

Meyer, R.: On boundedness in depth in the pi-calculusT@S. pp. 477-489. IFIP 273,
Springer (2008)

Nanda, M., Groth®, C., Chandra, S.: Deriving object typestates in the presefhdnter-
object references. In: OOPSLA. pp. 77-96. ACM (2005)

Podelski, A., Wies, T.: Boolean heaps. In: SAS. LNCS, 8672, pp. 268-283. Springer
(2005)

Pradel, M., Jaspan, C., Aldrich, J., Gross, T.: Stdyicdecking API protocol conformance
with mined multi-object specifications. In: ICSE’12. pp.38335. IEEE (2012)
Ramalingam, G., Varshavsky, A., Field, J., Goyal, Dgi§a5.: Deriving specialized pro-
gram analyses for certifying component-client conforngaria: PLDI. pp. 83-94. ACM
(2002)

Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape aislyia 3-valued logic. TOPLAS
24(3), 217-298 (2002)

Wasylkowski, A., Zeller, A.: Mining temporal specifigats from object usage. Autom.
Softw. Eng. 18(3-4), 263-292 (2011)

Whaley, J., Martin, M., Lam, M.: Automatic extractionafject-oriented component inter-
faces. In: ISSTA. pp. 218-228 (2002)

Wies, T., Ziferey, D., Henzinger, T.: Forward analysis of depth-bourgtedesses. In: FOS-
SACS. LNCS, vol. 6014, pp. 94-108. Springer (2010)

Zuterey, D., Wies, T., Henzinger, T.: Ideal abstractions fofl\sguctured transition sys-
tems. In: VMCAI. LNCS, vol. 7148, pp. 445-460. Springer (2p1

	A Notion of Dynamic Interface for Depth-Bounded Object-Oriented Packages
	1 Introduction
	2 Overview: A Motivating Example
	3 Concrete Semantics
	4 Dynamic Package Interface (DPI)
	4.1 Nested Object Graphs
	4.2 Object Mapping
	4.3 Definition: DPI

	5 Abstract Semantics for Computing DPI
	5.1 Preliminaries
	5.2 Depth-Bounded Abstract Semantics
	5.3 Ideal Abstraction
	5.4 Computing the Dynamic Package Interface

	6 Experiences
	7 Conclusions

