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Abstract
Partitioned global address space (PGAS) is a parallel programming model for the development of
high-performance applications on clusters. It provides a global address space partitioned among
the cluster nodes, and is supported in programming languages like C, C++, and Fortran by
means of APIs. In this paper we provide a formal model for the semantics of single instruction,
multiple data programs using PGAS APIs. Our model reflects the main features of popular
real-world APIs such as SHMEM, ARMCI, GASNet, GPI, and GASPI.

A key feature of PGAS is the support for one-sided communication: a node may directly
read and write the memory located at a remote node, without explicit synchronization with
the processes running on the remote side. One-sided communication increases performance by
decoupling process synchronization from data transfer, but requires the programmer to reason
about appropriate synchronizations between reads and writes. As a second contribution, we
propose and investigate robustness, a criterion for correct synchronization of PGAS programs.
Robustness corresponds to acyclicity of a suitable happens-before relation defined on PGAS
computations. The requirement is finer than the classical data race freedom and rules out most
false error reports.

Our main technical result is an algorithm for checking robustness of PGAS programs. The
algorithm makes use of two insights. Using combinatorial arguments we first show that, if a PGAS
program is not robust, then there are computations in a certain normal form that violate happens-
before acyclicity. Intuitively, normal-form computations delay remote accesses in an ordered way.
We then devise an algorithm that checks for cyclic normal-form computations. Essentially, the
algorithm is an emptiness check for a novel automaton model that accepts normal-form computa-
tions in streaming fashion. Altogether, we prove the robustness problem is PSpace-complete.

1 Introduction

Partitioned global address space (PGAS) is a parallel programming model for the develop-
ment of high-performance software on clusters. The PGAS model provides a global address
space to the programmer that is partitioned among the cluster nodes (see Figure 1(b)).
Nodes can read and write their local memories, but additionally access the remote address
space through (synchronous or asynchronous) API calls. PGAS is a popular programming
model, and supported by many PGAS APIs, such as SHMEM [9], ARMCI [20], GASNET
[4], GPI [18], and GASPI [14], as well as by languages for high-performance computing, such
as UPC [10], Titanium [15], and Co-Array Fortran [22].

A key ingredient of PGAS APIs is their support for one-sided communication. Unlike
in traditional message passing interfaces, a node may directly read and write the memory
located at a remote node without explicit synchronization with the remote side. One-sided
communication can be efficiently implemented on top of networking hardware featuring
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2 A Theory of Partitioned Global Address Spaces

int x = 1, y = 0;
write(x, rightNeighbourRank,

y, myWriteQ);
barrier();
assert(y == 1); NIC

Shared Memory 1× ADR

Process 1

Local Registers

Node 1

• • •

NIC

Shared Memory N× ADR

Process N

Local Registers

Node N

Network

Figure 1 (a) Program 1to1 is the compute and exchange results idiom often found in PGAS
applications. Each process copies an integer value to its neighbour. write asks the hardware to
copy the value of address x to y on the right neighbouring node. barrier blocks until all processes
reach the barrier. The assertion can fail, as the barrier may execute before the write completes.
(b) PGAS architecture — NIC stands for network interface controller.

remote direct memory access (RDMA), and increases performance of PGAS programs by
avoiding unnecessary synchronization between the sender and the receiver [18, 13].

However, the use of one-sided communication introduces additional non-determinism in
the ordering of memory reads and writes, and makes reasoning about program correctness
harder. Figure 1(a) demonstrates a subtle bug arising out of improper synchronizations:
while the barriers ensure all processes are at the same control location, the remote writes
may or may not have completed when address y is accessed after the barrier.

We make two contributions in this paper.
First, we provide a core calculus of PGAS APIs that models concurrent processes sharing

a global address space and accessing remote memory through one-sided reads and writes.
Despite the popularity of PGAS APIs in the high-performance computing community, to
the best of our knowledge, there are no formal models for common PGAS APIs.

Second, we define and study a correctness criterion called robustness for PGAS programs.
To understand robustness, we begin with a classical and intuitive correctness condition, se-
quential consistency [17]. A computation is sequentially consistent if its memory accesses
happen atomically and in the order in which they are issued. Sequential consistency is too
strong a criterion for PGAS programs, where time is required to access remote memory and
accesses themselves can be reordered. Robustness is the weaker notion that all computa-
tions of the program have the same happens-before (data and control) dependencies [25]
as some sequentially consistent computation. Our notion of robustness captures common
programming error patterns [12, 19], and is derived from a similar notion in shared memory
multiprocessing [25]. Related correctness criteria have been proposed for weak memory
models [7, 23, 2, 3, 6, 8, 5].

A simpler correctness property would be data race freedom (DRF), in which no two
processes access the same address at the same time, with at least one access being a write [1].
Indeed, data race free programs are sequentially consistent. Unfortunately, DRF is too
strong a requirement in practice [24], and leads to numerous false alarms. Many common
synchronization idioms for PGAS programs, such as producer-consumer synchronization,
and many concurrent data structure implementations, contain benign data races. Instead,
the notion of robustness captures the intuitive requirement that, even when events are
reordered in a computation, there are no causality cycles. Our notion of causality is the
standard happens-before relation from [25].

We study the algorithmic verification of robustness. Our main result is that robustness is
decidable (actually PSpace-complete) for PGAS programs, assuming a finite data domain
and finite memory. Note that our model of PGAS programs is infinite-state even when the
data domain is finite: one-sided communication allows unboundedly many requests to be in
flight simultaneously (a feature modeled in our formalism using unbounded queues).
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Our decidability result uses two technical ingredients. First, we show that among all
computations violating robustness, there is always one in a certain normal form. The normal
form partitions the violating computation into phases: the first phase initiates memory reads
and writes, and the latter phases complete the reads and writes in the same order in which
they were initiated.

Second, we provide an algorithm to detect violating computations in this normal form.
We take a language-theoretic view, and introduce a multiheaded automaton model which can
accept violating computations in normal form. Then the problem of checking robustness
reduces to checking emptiness for multiheaded automata. Interestingly, since the normal
form maintains orderings of accesses, the multiple heads can be exploited to accept violating
computations without explicitly modeling unbounded queues of memory access requests.
The resulting class of languages contains non-context-free ones (such as anbncn), but retains
sufficient decidability properties. Altogether this yields a PSpace decision procedure for
checking robustness of programs using PGAS APIs.

For lack of space, full constructions and proofs are given in the appendix.
Related Work Although PGAS APIs are popular in the high-performance computing
community [4, 9, 14, 18, 20], to the best of our knowledge, no previous work provides a
unifying formal semantics that incorporates one-sided asynchronous communication. As for
synchronization correctness, only recently Park et al. proposed a testing framework for data
race detection and implemented it for the UPC language [24]. However, the authors argue
that many data races are actually not harmful, a claim they support through the analysis
of the NAS Parallel Benchmarks [21]. For this reason, in contrast to data race freedom [1],
we consider robustness as a more precise notion of appropriate synchronization.

The robustness problem was posed by Shasha and Snir [25] for shared memory multipro-
cessing. They showed that non sequentially consistent computations have a happens-before
cycle. Alglave and Maranget [2, 3] extended this result. They developed a general theory
for reasoning about robustness problems, even among different architectures. Owens [23]
proposed a notion of appropriate synchronization that is based on triangular data races.
Compared to robustness, triangular race freedom requires heavier synchronization, which is
undesirable for performance reasons.

We consider here the algorithmic problem of checking robustness. For programs running
on weak memory models the problem has been addressed in [7, 8, 3], but none of these
works provides a (sound and complete) decision procedure. The first complete algorithm for
checking robustness of programs running on Total Store Ordering (TSO) architectures was
given in [6]. It is based on the following locality property. If a TSO program is not robust,
then there is a violating computation where only one process delays commands. This insight
leads to a reduction of robustness to reachability in the sequential consistency model [5].
PGAS programs allow more reorderings than TSO ones and, as a consequence, locality does
not hold. Instead, our decision procedure relies on a complex normal form for computations
and on a sophisticated automata-theoretic algorithm to look for normal-form violations.

2 PGAS Programs

2.1 Features of PGAS Programs
PGAS programs are single instruction, multiple data programs running on a cluster (see
Figure 1(b)). At run time, a PGAS program consists of multiple processes executing the
same code on different nodes. Each process has a rank, which is the index of the node it runs
on. The processes can access a global address space partitioned into local address spaces
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for each process. Local addresses can be accessed directly. Remote addresses (addresses
belonging to different processes) are accessed using API calls, which come in different flavors.

SHMEM [9] provides synchronous remote reads where the invoking process waits for
completion of the command. Remote write commands are asynchronous, and no ordering is
guaranteed between writes, even to the same remote node. The ordering can, however, be
enforced by a special fence command.

ARMCI [20] features synchronous as well as asynchronous read and write commands.
The asynchronous variants of the commands return a handle that can be waited upon. When
the wait on a read handle is over, the data being read has arrived and is accessible. When
the wait on a write handle is over, the data being written has been sent to the network but
might not have reached its destination. Unlike operations to different nodes, operations to
the same remote node are executed in their issuing order.

GASNet [4], like ARMCI, provides both synchronous and asynchronous versions of reads
and writes. Commands return a handle that can be waited upon, and a return from a
wait implies full completion of the operation. The order in which asynchronous operations
complete is intentionally left unspecified.

GPI [18] and GASPI [14] only support asynchronous read and write commands. Each
read or write operation is assigned a queue identifier. In GPI, operations with the same
queue id and to the same remote node are executed in the order in which they were issued;
in GASPI this guarantee does not hold. One can wait on a queue id, and the wait returns
when all commands in the queue are fully completed, on both the local and the remote side.

Summing up, in a uniform PGAS programming model it should be possible to
perform synchronous and asynchronous data transfers,
assign an asynchronous operation a handle or a queue id,
wait for completion of an individual command or of all commands in a given queue,
enforce ordering between operations.

We define a core model for PGAS that supports all these features. Our model only uses
asynchronous remote reads and writes with explicit queues, but is flexible enough to accom-
modate all the above idioms.

2.2 Syntax of PGAS Programs
We define PGAS programs and their semantics in terms of automata. A (non-deterministic)
automaton is a tuple A = (S,Σ,∆, s0, F ), where S is a set of states, Σ is a finite alphabet,
∆ ⊆ S × (Σ ∪ {ε})× S is a set of transitions, s0 ∈ S is an initial state, and F ⊆ S is a set
of final states. We call the automaton finite if the set of states is finite. We write s1

a−→ s2
if (s1, a, s2) ∈ ∆, and extend the relation to computations σ ∈ Σ∗ in the expected way. The
language of the automaton is L(A) := {σ ∈ Σ∗ | s0

σ−→ s for some s ∈ F}. We write |σ| for
the length of a computation σ ∈ Σ∗, and use succ(σ) to denote the successor relation among
the letters in σ. We write a <σ b if σ = σ1 · a · σ2 · b · σ3 for some σ1, σ2, σ3 ∈ Σ∗.

A PGAS program (P, N) consists of a program code P and a fixed number N ≥ 1 of
cluster nodes. The program code P := (Q,CMD, I, q0, Q) is a finite automaton with a set
of control states Q, all of them are final, initial state q0, and a set of transitions I labeled
with commands CMD.

Let DOM, ADR, and QUE be finite domains of values (containing a value 0), addresses,
and queue identifiers, respectively. Let REG be a finite set registers that take values from
DOM. The grammar of commands is given in Figure 2. For simplicity, we will assume
DOM = ADR = QUE. The set of expressions is defined over constants from DOM, registers
from REG, and (unspecified) operators over DOM. The set of commands CMD includes local
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〈cmd〉 ::= 〈reg〉 ← mem[〈expr〉]
| mem[〈expr〉] ← 〈expr〉
| 〈reg〉 ← 〈expr〉
| assume(〈expr〉)
| read(〈local-adr〉,〈rank〉,〈remote-adr〉,〈que-id〉)
| write(〈local-adr〉,〈rank〉,〈remote-adr〉,〈que-id〉)
| barrier

Figure 2 Syntax of commands. 〈reg〉 ranges over REG;
expressions 〈expr〉, local addresses 〈local-adr〉, remote ad-
dresses 〈remote-adr〉, and queue identifiers 〈que-id〉 range
over expressions; ranks 〈rank〉 over 1, N -valued expressions.

write write

popa popa

popb popb

bar bar

load

po

po

pocf

Figure 3 Happens-before relation
of τ1to1 (Example 1). Computation
τ1to1 violates robustness.

assignments and conditionals (assume), remote read and write API calls read and write
respectively, and barriers barrier.

At run time, there is a process on each node 1, N that executes program P, where
M,N := {M,M + 1, . . . , N}. We will identify each process with its rank from RNK := 1, N .
For modeling purposes, one may assume there are special constant expressions that let a
process learn about its rank in RNK and about the total number of processes N .

2.3 Semantics of PGAS Programs
The semantics of a PGAS program (P, N) is defined using a state-space automaton
X(P, N) := (SX ,E,∆X , s0X , FX). A state s ∈ SX is a tuple s = (st,m, fa, fb), where state
configuration st : RNK→ Q maps each process to its current control state, memory configur-
ation m : RNK×(REG∪ADR)→ DOM maps each process to the values stored in each register
and at each address, queue configuration fa : RNK× QUE → (RNK× ADR× RNK× ADR)∗
maps each process to remote read and write requests that were issued, and fb : RNK×QUE→
(RNK× ADR× DOM)∗ contains values to be transferred.

The initial state is s0X := (st0,m0, fa0, fb0), where for all ranks r ∈ RNK, registers and
addresses a ∈ REG∪ADR, and queue identifiers q ∈ QUE, we have st0(r) := q0, m0(r, a) := 0,
and fa0(r, q) := ε =: fb0(r, q). The set of final states is FX := {(st,m, fa, fb) ∈ SX | fa(r, q) =
ε = fb(r, q) for all r ∈ RNK, q ∈ QUE}. The semantics of commands ensures queues can
always be emptied, so acceptance with empty queues is not a restriction.

The alphabet of X(P, N) is the set of events E := K×RNK× ((RNK×ADR)∪{⊥}) with
event kinds K := {load, store, assign, assume, read,write, popa, popb, bar}. Consider an event
e = (k, r, (ra, a)) ∈ E. We use kind(e) = k to determine the kind of the event, rank(e) = r for
the rank of the process that produced the event, and addr(e) = (ra, a) to obtain the rank
and the address that are accessed by the event. If kind(e) ∈ {load, popa}, then e is said to
be a read of (ra, a). If kind(e) ∈ {store, popb}, then e is a write of address addr(e).

Table 1 shows a subset of the transition relation ∆X ; other rules are similar. When a
process executes a remote write command, Rule (write), a new item is added to a queue
in fa. This item contains the source rank and source address from which the data will be
copied, together with the destination rank and destination address to which the data will
be copied. Eventually, the item is popped from the queue in fa, Rule (popa), the value is
read from the source address, and a new item is pushed into the corresponding queue in fb.
The new item contains the destination rank and destination address, and the value that was
read from the source address. Eventually, this item is popped from the queue, Rule (popb),
and the value is written to the destination address in the destination rank. Modeling two
queue configurations yields a symmetry between remote writes and reads: a read can be
interpreted as a write that comes upon request. Moreover, two queue configurations capture
well the delays between request creation, reading of the data, and writing of the data.
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cmd = r ← mem[ea]

s
(load,r,(r,êa))−−−−−−−−→ (st′,m[(r, r) := m(r, êa)], fa, fb)

(load)

cmd = write(eloc
a , erem

r , erem
a , eq) fa(r, êq) = α

s
(write,r,⊥)−−−−−−→ (st′,m, fa[(r, êq) := α · (r, êloc

a , êrem
r , êrem

a )], fb)
(write)

fa(r, q) = (rs, as, rd, ad) · α fb(r, q) = β

s
(popa,r,(rs,as))−−−−−−−−−→ (st,m, fa[(r, q) := α], fb[(r, q) := β · (rd, ad,m(rs, as))])

(popa)

fb(r, q) = (rd, ad, v) · β

s
(popb,r,(rd,ad))−−−−−−−−−→ (st,m[(rd, ad) := v], fa, fb[(r, q) := β])

(popb)

st(r) barrier−−−−−−→ st′(r) for each r ∈ RNK

s
(bar,1,⊥)·(bar,2,⊥)···(bar,N,⊥)−−−−−−−−−−−−−−−−−−−−→ (st′,m, fa, fb)

(bar)

Table 1 Transition rules for X(P, N), given q1
cmd−−→ q2 and current state s = (st,m, fa, fb) with

st(r) = q1. We set st′ := st[r := q2] to update st so that process r is at q2. ê denotes the evaluation
of expression e in memory configuration m.

The semantics of a PGAS program C(P, N) := L(X(P, N)) ⊆ E∗ is the set of computa-
tions of the state-space automaton.

I Example 1. Consider PGAS program (1to1, 2) with the program code from Figure 1(a)
being run on two nodes. It has the following computation:

τ1to1 = write ·write · popa · popa · bar · bar · load · popb · popb.

Bold events belong to the process with rank 2, the other events to the process with rank 1.
We have addr(popa) = (1, x), addr(popb) = (2, y). Symmetrically, addr(popa) = (2, x) and
addr(popb) = (1, y). The assert in Figure 1 is a shortcut for a combination of load and
assume, and in this computation addr(load) = (1, y).

2.4 Simulating PGAS APIs
Our formalism natively supports asynchronous data transfers and queues. Operations in
the same queue are completed in the order in which they were issued. Using this, we can
model the ordering guarantees given by ARMCI and GPI — by putting ordered operations
into the same queue.

To model waiting on individual operations (waiting on a handle), we associate a shadow
memory address with each operation. Before issuing the operation, the value at this address
is set to 0. When the operation has been issued, the process sends to the same queue a read
request which overwrites the shadow memory to 1. Now waiting on the individual operation
can be implemented by polling on the shadow address associated with the operation. Waiting
on all operations in a given queue is done similarly. Synchronous data transfers are modeled
by asynchronous transfers, immediately followed by a wait.

3 Robustness: A Notion of Appropriate Synchronization

We now define robustness, a correctness condition for PGAS programs. Robustness is a
weaker criterion than requiring all computations to be sequentially consistent [17]: it allows
for reordering of events as long as there are no causality cycles. As causality relation, we
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adopt the happens-before relation [25]. Fix a computation τ ∈ C(P, N). Its happens-before
relation is the union of the three relations we define next, →hb (τ) := →po ∪ →cf ∪ ↔.

The program order relation →po is the union of the program order relations for all
processes: →po :=

⋃
r∈RNK →r

po. Relation →r
po gives the order in which events were issued

in process r. Formally, let τ ′ be the subsequence of all events e in τ such that rank(e) = r
and kind(e) 6∈ {popa, popb}. Then →r

po := succ(τ ′).
The conflict relation →cf orders conflicting accesses to the same address. Let τ =

α · e1 ·β · e2 · γ, where e1 and e2 access the same address, and at least one of them is a write:
addr(e1) = addr(e2) = (r, a), kind(e1) ∈ {store, popb} or kind(e2) ∈ {store, popb}. If there is
no e ∈ β such that addr(e) = (r, a) and kind(e) ∈ {store, popb}, then e1 →cf e2.

The identity relation ↔ identifies events corresponding to the same command. Let e be
a remote read or write event, kind(e) ∈ {read,write}, and e1 and e2 be the corresponding
requests, kind(e1) = popa and kind(e2) = popb. Then we have e ↔ e1 ↔ e2. In a similar
way, ↔ identifies matching barrier events in different processes.

We say a computation τ is violating if the associated happens-before relation contains
a non-trivial cycle, i.e., a cycle that is not included in ↔. Violating computations violate
sequential consistency. The robustness problem amounts to proving the absence of violations.

ROB Given a program (P, N), show that no computation τ ∈ C(P, N) is violating.

I Example 2. The happens-before relation of computation τ1to1 is depicted in Figure 3.
It is cyclic, therefore τ1to1 is violating and (1to1, 2) is not robust. Indeed, no sequentially
consistent execution of 1to1 allows the assert statements to load the initial value of y.

Our main result is the following.

I Theorem 3. ROB is PSpace-complete.

The PSpace lower bound follows from PSpace-hardness of control state reachability in
sequentially consistent programs [16]. To reduce to robustness, we add an artificial happens-
before cycle starting in the target control state. The rest of the paper shows a PSpace
algorithm, and hence upper bound, for the problem.

4 Normal-Form Violations

We show that a PGAS program is not robust if and only if it has a violating computation
of the following normal form.

I Definition 4. Computation τ = τ1 ·τ2 ·τ3 ·τ4 ∈ C(P, N) is in normal form if all e ∈ τ2 ·τ3 ·τ4
satisfy kind(e) ∈ {popa, popb} and for all a, b ∈ τ1 with kind(a), kind(b) /∈ {popa, popb} and
all a′, b′ ∈ τi with i ∈ 1, 4 we have:

a <τ1 b, a 6↔∗ b, a↔∗ a′, b↔∗ b′ implies a′ <τi
b′. (NF)

We explain the normal-form requirement (NF). Consider two accesses a and b to remote
processes that can be found in the first part of the computation τ1. Assume corresponding
pop events a′ and b′ are delayed and can both be found in a later part of the computation, say
τ2. Then the ordering of a′ and b′ in τ2 coincides with the order of a and b in τ1. Computation
τ1to1 is not in normal-form whereas τnf

1to1 in Figure 4 is. The following theorem guarantees
that, in case of non-robustness, normal-form violations always exist.

I Theorem 5. A PGAS program (P, N) is robust iff it has no normal-form violation.
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write popa write popa bar bar load popb popb
po popo cf

Figure 4 Normal-form violation τnf
1to1 from Example 9. The edges indicate the dependencies in

the computation and coincide with the relations in Figure 3.

Phrased differently, to decide robustness our procedure should look for normal-form viola-
tions. The remainder of the section is devoted to proving Theorem 5. We make use of the
following property of PGAS programs: every computation contains an event that can be
deleted, in the sense that the result is again a computation of the program.

I Lemma 6 (Cancellation). Consider ε 6= τ ∈ C(P, N). There is an event e ∈ τ so that
τ \ e ∈ C(P, N). Computation τ \ e is defined to remove e and all ↔-related events from τ .

Proof. Take as e the last event in τ with kind(e) 6∈ {popa, popb}. All events to the right
of e are unconditionally executable. Moreover, τ does not have →po-successors following e.
Therefore, the resulting computation τ \ e is in C(P, N). J

A PGAS program is not robust if and only if it has a violating computation τ of minimal
length. Let e ∈ τ be the event determined by Lemma 6. If kind(e) 6∈ {read,write}, then
τ = τ1 · e · τ2. Otherwise τ = τ1 · e · τ2 · e′ · τ3 · e′′ · τ4 with e↔ e′ ↔ e′′. Consider the latter
case where τ \ e = τ1 · τ2 · τ3 · τ4. Since |τ \ e| < |τ |, the new computation is not violating
and →hb (τ \ e) is acyclic. This acyclicity guarantees we find a computation σ ∈ E∗ with
the same happens-before relation as τ \ e and where pop events directly follow their remote
accesses. Intuitively, σ is a sequentially consistent computation corresponding to τ \ e.

I Lemma 7 ([25]). There is σ ∈ C(P, N) with→hb (σ) =→hb (τ \e) and σ = σ1 ·e1 . . . en ·σ2
for all e1 ↔ . . .↔ en.

We now use σ to rearrange the events in τ \ e and guarantee the normal-form requirement.
The idea is to project σ to the events in τ1 to τ4. Reinserting e yields a normal-form violation:

τnf := (σ↓τ1) · e · (σ↓τ2) · e′ · (σ↓τ3) · e′′ · (σ↓τ4).

The following lemma concludes the proof of Theorem 5.

I Lemma 8 (Reinsertion). τnf ∈ C(P, N), →hb (τnf) = →hb (τ), and τnf is in normal form.

I Example 9. Computation τ1to1 in Example 1 is a shortest violation. The event determined
by Lemma 6 is e = load. Therefore, τ \ e = τ1 · τ2 with

τ1 = write ·write · popa · popa · bar · bar and τ2 = popb · popb.

A sequentially consistent computation corresponding to τ \ e is

σ = write · popa · popb ·write · popa · popb · bar · bar.

The normal-form violation τnf
1to1 is depicted in Figure 4. Note that τnf

1to1 is indeed in
C(1to1, 2). Moreover, popa and popa immediately follow write and write, respectively.
Similarly, the popb and popb events in the second part of the computation respect the order
of write and write in the first part of the computation. This means, (NF) holds.
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5 From Normal-Form Violations to Language Emptiness

We now reduce checking the absence of normal-form violations to the emptiness problem in
a suitable automaton model. We introduce multiheaded automata and construct, for each
program (P, N), a multiheaded automaton accepting all normal-form computations. To
verify robustness, we check that the intersection of this automaton with regular languages
accepting cyclic happens-before relations is empty.

5.1 Multiheaded Automata
Multiheaded automata are an extension of finite automata. Intuitively, instead of generating
just a single computation, they generate several computations in one pass, each by a separate
head. The language of the multiheaded automaton then consists of the concatenations of
the computations generated by each head.

Syntactically, an n-headed finite automaton over alphabet Σ is a finite automaton that
uses the extended alphabet 1, n×Σ. So we have A = (S, (1, n×Σ),∆, s0, F ). The semantics,
however, is different from finite automata. Given σ ∈ (1, n×Σ)∗, we use σ↓k to project σ to
the letters (k, a), and afterwards cut away the index k. So ((1, a)·(2, b)·(1, c))↓1 = a·c. With
this, the language of A is L(A) := {comp(σ) | s0

σ−→ s for some s ∈ F} where comp(σ) :=
σ↓1 · · ·σ↓n.

Multiheaded automata are closed under regular intersection, and emptiness is decidable
in non-deterministic logarithmic space. Indeed, checking emptiness reduces to finding a path
from an initial to a final node in a directed graph.

I Lemma 10. Consider an n-headed automaton U and a finite automaton V over a common
alphabet Σ. There is an n-headed automaton W with L(W ) = L(U) ∩ L(V ).

I Lemma 11. Emptiness for n-headed automata is NL-complete.

Multiheaded automata are incomparable with context-free grammars, and indeed the
normal-form computations of a program may be non-context-free.1 Multiheaded automata
can be understood as a restriction of matrix grammars [11]. In matrix grammars, pro-
ductions simultaneously rewrite multiple non-terminals. Roughly, each production can be
understood as a Petri net transition, and emptiness is decidable as Petri net reachability is.
Since we target a PSpace result, matrix grammars are too expressive for our purposes.

5.2 Detecting Normal-Form Computations
We define a 4-headed automaton Y (P, N) := (SY ] Saux

Y ,E,∆Y , s0Y , SY ) that accepts all
normal-form computations τ = τ1 · τ2 · τ3 · τ4 ∈ C(P, N). In order to accept τ1, the new
automaton tracks the control and memory configurations in the way X(P, N) does. For
the remainder of the computation, these configurations are not needed. Indeed, τ2 to τ4
only consist of popa and popb events that are executable independently of the control and
memory configurations. However, Y (P, N) has to take care of the ordering of popa and popb
events from the same queue. In particular, if e1 handles a request issued before the request
of e2 with kind(e1) = kind(e2), then it cannot be the case that e1 ∈ τj and e2 ∈ τi with i < j.

1 Consider P := ({q0},CMD, {q0
read(0,0,0,0)−−−−−−−−−−→ q0}, {q0}) running on a single node. The language

C(P, 1) is not context-free. To see this, let kind(a) = read, kind(b) = popa, and kind(c) = popb. Then
C(P, 1) ∩ a∗b∗c∗ is the non-context-free language {apbpcp | p ≥ 0}.
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(gpa′)
pa(r, q) < pb(r, q)

s
ε−→ s′ pa′ := pa[(r, q) := pa(r, q) + 1]

pb(r, q) < 4
s

ε−→ s′ pb′ := pb[(r, q) := pb(r, q) + 1]
(gpb′)

cmd = write(eloc
a , erem

r , erem
a , eq) pa(r, êq) = m pb(r, êq) = n

s
1,(write,r,⊥)−−−−−−−−→ saux1

m,(popa,r,(r,êloc
a ))

−−−−−−−−−−−→ saux2
n,(popb,r,(êrem

r ,êrem
a ))

−−−−−−−−−−−−−→ s′ st′ := st[r := q2]
if n = 1 then m′ := m[(êr

rem
, êrem

a ) := m(r, êloc
a )]

(write′)

Table 2 Transition rules for Y (P, N), given q1
cmd−−→ q2 and current state s = (st,m, pa, pb) with

st(r) = q1. The target is s′ = (st′,m′, pa′, pb′) where, unless otherwise stated, st′ = st, m′ = m,
pa′ = pa, pb′ = pb. The auxiliary states saux1, saux2 ∈ Saux

Y are unique for each rule application.

Guided by this discussion, we define a state s ∈ SY as a tuple s := (st,m, pa, pb). The
state and memory configurations st and m are defined as in Section 2. They reflect the state
of the program after it has generated a prefix of τ1. The functions pa, pb : RNK×QUE→ 1, 4
give, for each process and each queue, the part τ1 to τ4 of the computation where the next
popa resp. popb event will be generated. The initial state is s0 := (st0,m0, pa0, pb0) with
pa0(r, q) := 1 =: pb0(r, q) for all r ∈ RNK and q ∈ QUE.

The transition relation ∆Y is the smallest relation defined by the rules in the Tables 2
and 4. Rule (gpa′) lets the automaton choose the part of the computation to which the
next popa event will be appended. The first restriction is that the index of the part can
only increase, as events from the same queue are processed in order. The second restriction
is that popa events cannot be generated to the right of popb events from the same queue.
Rule (gpb′) is the similar rule for popb events.

By Rule (write′), the automaton appends a write event to τ1 and the corresponding popa
and popb events in one shot to the parts determined by pa and pb. Since a single transition of
a multiheaded automaton can generate at most one letter, the rule makes use of intermediary
states from Saux

Y . If popb is added to τ1, the memory configuration is updated accordingly.
Note that the generation in one shot causes pop events within the same part τi to follow in
the order of the corresponding read/write events in τ1. Fortunately, this is always the case in
normal-form computations by (NF). Computations that are not in normal form, e.g. τ1to1,
cannot be generated by Y (P, N).

The set of final states of Y (P, N) is SY . The auxiliary states Saux
Y are not included in

the set of final states to forbid computations with pending remote requests.

I Lemma 12. {τ ∈ C(P, N) | τ is in normal form} = L(Y (P, N)).

5.3 Detecting Violations
The multiheaded automaton accepts all normal form computations, and we would like to
check if one of those computations is violating. In general, violating computations can
contain complicated cycles in the happens-before relation. However, we now show that
whenever a computation has a happens-before cycle, it has a cycle in which each process is
entered and left at most once. Our algorithm for robustness will look for happens-before
cycles of this special form that, as we will show, can be captured by a regular language.

I Lemma 13. Computation τ ∈ C(P, N) is violating iff there is a cycle

a1 ↔∗ b1 →∗po c1 ↔∗ d1  . . . ak ↔∗ bk →∗po ck ↔∗ dk  a1 (CYC)

where rank(xi) = rank(yj) iff i = j, for all xi, yj ∈ {a1, . . . , dk}, and  := →cf ∪ ↔.
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I Example 14. The computations τ1to1 (Example 1) and τnf
1to1 (Example 9) have a cycle

of the form (CYC) depicted in Figure 3: n = 2, a1 = b1 = bar, c1 = d1 = load, a2 = popb,
b2 = write, c2 = d2 = bar.

Note that di ↔ ai+1 means both are barriers, kind(di) = bar = kind(ai+1). This holds as
the ranks are different. In spite of the additional restrictions, cycles (CYC) are not trivial to
recognize. The reason is that the events constituting the cycle are not necessarily contained
in the computation in the order in which they appear in the cycle, see Figure 4. The idea
of our cycle detection is to first guess the events ai and di for each process and then check
that di →cf ai+1 holds. The former can be accomplished by an extension Y M(P, N) of the
multiheaded automaton Y (P, N), the latter by a regular intersection.

The automaton Y M(P, N) accepts computations over the alphabet E × M with M :=
2{enter,leave}. The events marked by enter are the guessed ai events in (CYC) and those
marked by leave are the di events in (CYC). We still have to guarantee we only mark ai
and di that satisfy ai ↔∗ bi →∗po ci ↔∗ di. This is straightforward thanks to the fact that
Y (P, N) generates the events of each process in program order, and generates events related
by ↔ in one shot. The full construction of Y M(P, N) is given in the appendix.

I Example 15. Consider the normal-form computation τnf
1to1 (Example 9) that has the

cycle (CYC) given in Figure 3. A corresponding marked computation of Y M(P, N) is

(write, ∅) · (popa, ∅) · (write, ∅) · (popa, ∅)·
(bar, {enter}) · (bar, {leave}) · (load, {leave}) · (popb, ∅) · (popb, {enter}).

Every cycle of the form (CYC) has a cycle type cyc, which is a sequence cyc = r1 . . . rk
of ranks from 1, N with ri 6= rj for i 6= j. The idea is that the events ai, bi, ci, di belong
to rank ri. For each pair ri, ri+1 in this sequence, we construct a finite automaton Zri,ri+1

over the alphabet E × M. It checks whether there is a conflict or identity edge from the
leave-marked event of process ri to the enter-marked event of process ri+1. Consider the case
of conflicts. The automaton looks for a marked event (ei,mi) with rank(ei) = ri marked
by leave ∈ mi. It remembers the kind and the address of this event. Then, it seeks a
marked event (ei+1,mi+1) with rank(ei+1) = ri+1 marked by enter ∈ mi+1. If both events
are found, they touch the same address, and one of them is a write, the automaton reaches
the accepting state. Since finite automata are closed under intersection, we can define the
finite automaton of cycle type cyc as Zcyc := Zr1,r2 ∩ . . . ∩ Zrk−1,rk ∩ Zrk,r1 .

I Theorem 16. P is robust iff L(Y M(P, N)) ∩ L(Zcyc) = ∅ for all cycle types cyc.

We can now prove Theorem 3. To check whether (P, N) is robust, we go over all cycle
types cyc = r1 . . . rk. This enumeration of cycle types can be done in space that is polynomial
in N . For each such sequence, we check if L(Y M(P, N))∩L(Zcyc) = ∅. By Theorem 16, the
program is robust iff all intersections are empty. By Lemma 10, there is a 4-headed finite
state automatonW with L(W ) = L(Y M(P, N))∩L(Zcyc). Since the size ofW is exponential
in the size of (P, N) and emptiness is in NL by Lemma 11, deciding L(W ) = ∅ can be done
in space that is polynomial in (P, N). This shows robustness is in PSpace.
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cmd = mem[ea]← ev

s
(store,r,(r,êv))−−−−−−−−−→ (st′,m[(r, êa) := êv], fa, fb)

(store)

cmd = r ← e

s
(assign,r,⊥)−−−−−−−→ (st′,m[(r, r) := ê], fa, fb)

(assign)

cmd = assume(e) ê 6= 0

s
(assume,r,⊥)−−−−−−−−→ (st′,m, fa, fb)

(assume)

cmd = read(eloc
a , erem

r , erem
a , eq) fa(r, êq) = α

s
(read,r,⊥)−−−−−−→ (st′,m, fa[(r, êq) := α · (êrem

r , êrem
a , r, êloc

a )], fb)
(read)

Table 3 Transition rules for X(P, N), given q1
cmd−−→ q2 and current state s = (st,m, fa, fb) with

st(r) = q1. We set st′ := st[r := q2] to update st so that process r is at q2. ê denotes the evaluation
of expression e in memory configuration m.

cmd = r ← mem[e]

s
1,(load,r,(r,̂e ))−−−−−−−−−→ s′ m′ := m[(r, r) := m(r, ê)]

(load′)

cmd = mem[ea]← ev

s
1,(store,r,(r,a))−−−−−−−−−→ s′ m′ := m[(r, êa) := êv]

(store′)

cmd = r ← e

s
1,(assign,r,⊥)−−−−−−−−→ s′ m′ := m[(r, r) := ê]

(assign′)

cmd = assume(e) ê 6= 0

s
1,(assume,r,⊥)−−−−−−−−−→ s′

(assume′)

cmd = read(eloc
a , erem

r , erem
a , eq) pa(r, êq) = m pb(r, êq) = n

s
1,(read,r,⊥)−−−−−−−→ saux1

m,(popa,r,(êrem
r ,êrem

a ))
−−−−−−−−−−−−−→ saux2

n,(popb,r,(r,êloc
a ))

−−−−−−−−−−−→ s′ st′ := st[r := q2]
if n = 1 then m′ := m[(r, êloc

a ) := m(êrem
r , êrem

a )]

(read′)

st(r) barrier−−−−−−→ st′(r) for each r ∈ RNK

s
1,(bar,1,⊥)−−−−−−−→ saux1

1,(bar,2,⊥)−−−−−−−→ . . .
1,(bar,N,⊥)−−−−−−−→ (st′,m, pa, pb)

(bar′)

Table 4 Transition rules for Y (P, N), given q1
cmd−−→ q2 and current state s = (st,m, pa, pb) with

st(r) = q1. The target is s′ = (st′,m′, pa′, pb′) where, unless otherwise stated, st′ = st, m′ = m,
pa′ = pa, pb′ = pb. The auxiliary states saux1, saux2 ∈ Saux

Y are unique for each rule application.

A Missing Proofs

For some of the following proofs, we assume that Table 3 and Table 4 associate with each
event e the transition in the program that produced this event: instr(e). Also, for a read,
write, popa, or popb event we write que(e) to denote the id of the queue being modified by
this event e.

Proof of Lemma 8. To relieve the reader from the burden of syntax, we consider the case
when τ \e = τ1 ·τ2. We start with the program order. Let e1, e2 ∈ τ1 with e1 →po e2 in τ and,
consequently, in τ \ e. By definition of σ, we have e1 →po e2 in σ. Since σ ↓ τ1 contains e1
and e2 and does not add events between them, e1 →po e2 holds for σ↓τ1 and, consequently,
τnf. Assume e1 ∈ τ1 and e2 ∈ τ2 with e1 →po e2 in τ and in τ \ e. Then e1 is the rightmost
element in τ1 with its rank that is different from a pop. Similarly, e2 is the leftmost element
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in τ2 with its rank and different from a pop. The same is valid for their positions in σ ↓ τ1
and σ ↓ τ2, which leads to e1 →po e2 in τnf. The case when e1 ∈ τ1 and e2 = e is similar.
Since τ and τnf consist of the same events, the cardinalities of the respective →po relations
are equal, and the above inclusion already means the program orders in both computations
are equal.

Now we consider the conflict relation. Let e1, e2 ∈ τ1 with e1 →cf e2 in τ and hence in
τ \ e. By definition of σ, we have e1 →cf e2 in σ. Since σ ↓ τ1 contains e1 and e2 and does
not add new actions between them, e1 →cf e2 holds for σ↓τ1 and, consequently, for τnf.

Assume e1, e2 ∈ τ1 and e1 6→cf e2 in τ . One option is that e1 and e2 do not access the
same address or both are reads. Then they still will not conflict in τnf. The other option
is that e1 →cf e3 in τ , where e3 is a write to addr(e1) = addr(e2) that is located between e1
and e2 in τ1. Then, as already proven, e1 →cf e3 will hold in τnf. Consequently, e1 →cf e2
will not hold in τnf. The case when e1, e2 ∈ τ2 is similar.

Assume e1 ∈ τ1, e2 ∈ τ2, and e1 →cf e2 in τ . Then, e is not a write to addr(e1) = addr(e2),
and e1 →cf e2 in τ \ e. Note that σ ↓ τ1 does not contain a write to addr(e1) to the right
of e1. Otherwise, τ1 would contain a write e3 to addr(e1), and e1 →+

cf e3, which contradicts
e1 →cf e2 in τ . With a similar argument, σ ↓ τ2 does not contain a write to addr(e1) to the
left of e2. Therefore, e1 →cf e2 in σ↓τ1 · e · σ↓τ2.

Assume e1 ∈ τ1, e2 ∈ τ2, and e1 6→cf e2 in τ . The proof of e1 6→cf e2 in τnf is as in the
case when e1, e2 ∈ τ1.

The case when e1 = e or e2 = e is no harder.
The formal definition of the identity relation takes a computation α and determines the

three projections α↓{write, read}, α↓popa, and α↓popb. The identity relation then relates
the ith elements in these projections. To show that the identity relations in τ and τnf

coincide, one shows that the three projections coincide — using the same technique as for
the program order. Therefore, the identity relations of both computations match. Also note
that for each read or write event sequence e1 ↔ e2 ↔ e3, we have e1 <τnf e2 <τnf e3. This
holds by the fact that e1 <τ e2 <τ e3, and the fact that σ = σ1 · e2 · e2 · e3 · σ2 for some σ1
and σ2.

To prove that τnf ∈ C(P, N), we proceed by contradiction. Let α 6= τnf be the longest
prefix of τnf so that s0X

α−→ s for some state s. Then τnf = α · ẽ · β with s0X
α−→ s

and s 6 ẽ−→. Let s = (st,m, fa, fb). If kind(ẽ) ∈ {popa, popb}, then s 6 ẽ−→ means that the
respective queue fa or fb contains an incorrect topmost element or is empty in s. But this
contradicts to e1 <τnf e2 <τnf e3 and equality of identity relations established above. If
kind(ẽ) 6∈ {popa, popb}, then s 6 ẽ−→ may hold because the transition q1

cmd−−→ q2 of ẽ requires a
different source state, q1 6= st(rank(ẽ)). But since st(rank(ẽ)) is unambiguously determined
by the instr() of→po-predecessor of ẽ, which is the same in τnf and in τ due to the matching
program-order relations, this is not the case. The last opportunity why s 6 ẽ−→ may hold is
because the transition producing ẽ reads different values from registers or memory, e.g. ẽ is
an assertion assume(e) and ê = 0 in s. But since τnf consists of the same events as τ , has
the same program and conflict relations (i.e. reads receive values from the same writes in
both computations), and τ ∈ C(P), this cannot be the case.

Finally, τnf is in normal-form. The condition on the shape of τnf is immediate, (NF)
holds by the definitions of τnf and σ. J

Proof of Lemma 10. Let U = (SU ,Σ,∆U , s0U , FU ) and V = (SV ,Σ,∆V , s0V , FV ). We set
W := (SW ,Σ,∆W , s0W , FW ). Let Ω be the set of functions 1, n → SV . Then, the set of
states is SW := {s0W } ] (SU × Ω × Ω). The set of final states is FW := {(sU , ω1, ω2) |
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sU ∈ FU , ω1(n) ∈ FV , and ω1(k) = ω2(k + 1) for all k ∈ 1, n− 1}. The automaton has the
following transitions:

s0W
ε−→ (s0U , ω, ω) for each ω ∈ Ω with ω(1) = s0V ,

(sU , ω1, ω2) k,a−−→ (s′U , ω′1, ω2) if sU
k,a−−→ s′U , ω1(k) a−→ ω′1(k), and ω1(i) = ω′1(i) for i 6= k,

(sU , ω1, ω2) ε−→ (s′U , ω1, ω2) if sU
ε−→ s′U ,

(sU , ω1, ω2) ε−→ (sU , ω′1, ω2) if ω1(k) ε−→ ω′1(k) and ω1(i) = ω′1(i) for i 6= k.

Consider α = α1 · · ·αn ∈ L(U) ∩ L(V ), where αk is produced by the kth head of U .
By the ε-transition from the initial state, W guesses, for each k, the state ω(k) that the
automaton V will reach after processing the prefix α1 · · ·αk−1 of α. The other transitions
effectively execute the automaton U synchronously with n copies of the automaton V , each
matching its own αk subword of α, starting from the guessed initial state ω(k). The set of
final states FW makes sure that the guess was done correctly, which means the kth copy of
V has reached the initial state of the k+1th copy, and the nth copy has reached a final state
in FV . J

I Lemma 17. Y (P, N) only generates computations of (P, N): L(Y (P, N)) ⊆ C(P, N).

Proof. Consider s0Y
σ−→ sY with sY = (st,m, pa, pb) ∈ SY . Let τ = comp(σ) = τ1 · τ2 · τ3 · τ4

with τi = σ↓ i. We prove the following by induction on the length of the computation.

IS1 s0X
τ−→ sX for some sX ∈ FX . Membership in FX means the queues of sX are empty.

IS2 s0X
τ1−→ (st,m, fa, fb) for some fa, fb, but with the same st, m as in sY above.

IS3 Let pa(r, q) = k. Then no τi with i > k contains an event e with kind(e) = popa,
rank(e) = r, and que(e) = q. A similar statement holds for fb.

IS4 For all e ∈ τ2 · τ3 · τ4 we have kind(e) ∈ {popa, popb}.

In the base case with σ = ε the inductive statement trivially holds.
Assume the statement holds for σ. Consider s0Y

σ′−→ s′Y = (st′,m′, pa′, pb′) which extends
σ with Rule (read′):

σ′ = σ · (1, e1) · (2, e2) · (3, e3) kind(e1) = read, kind(e2) = popa, kind(e3) = popb.

Then m′ = m, pa′ = pa, pb′ = pb, and τ ′ = comp(σ′) = τ ′1 · τ ′2 · τ ′3 · τ ′4, where τ ′i = σ′ ↓ i are
τ ′1 = τ1 · e1, τ ′2 = τ2 · e2, τ ′3 = τ3 · e3, and τ ′4 = τ4. Since IS4 and IS3 hold for σ, they also
hold for σ′ by definition of σ′ and Rule (read′).

It remains to check the behaviour of the state-space automaton. By IS2 from the
induction hypothesis and the Rules (read) and (read’), we have s0X

τ1·e1−−−→ (st′,m, fa′, fb). So
IS2 holds for σ′ as well. To check IS1 for σ′, we consider the content of fa′. According to
Rule (read), we have fa′ := fa[(rank(e1), que(e1)) := fa(rank(e1), que(e1))·(rrem, arem, rloc, aloc)].
By the induction hypothesis, we can generate τ2 from (st,m, fa, fb). In (st′,m, fa′, fb), we
append an action to fa. Since τ2 only consists of popa and popb events, we can still generate
the computation from (st′,m, fa′, fb). This yields s0X

τ1·e1·τ2−−−−−→ s1 for some s1.
We now show that s1

e2−→ s2 for some s2. Let s1 = (st′′,m′′, fa′′, fb′′). When checking IS3
for σ′, we noted that τ3 · τ4 does not contain popa events ẽ with rank rank(ẽ) = rank(e1) and
queue id que(ẽ) = que(e1). Therefore, by IS1 from the induction hypothesis, all elements in
fa(rank(e1), que(e1)) are popped by popa transitions in τ2. As a result, fa′′(rank(e1), que(e1))
contains only the single element added by e1. Comparing Rules (read), (popa), and (read’),
shows s1

e2−→ s2. Note that we need to take the read-rules into account to make sure the
contents of the tuple e2 coincide for Y (P, N) and X(P, N).
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The fact that X(P, N) can accept the rest of computation τ ′ (s2
τ3·e3·τ4−−−−−→ s3 for some s3)

is proven similarly. Emptiness of the queues in s3 follows from Rule (read’) and IS1 for τ .
The argumentation for write events, kind(e1) = write, is the same. For the remaining

kinds of events e1, the proofs are simpler. There, we only need to make use of state and
memory configurations, which coincide in Y (P, N) and X(P, N). J

I Lemma 18. Automaton Y (P, N) generates all normal-form computations of the program:
{τ ∈ C(P, N) | τ is in normal form} ⊆ L(Y (P, N)).

Proof. Consider a normal-form computation τ = τ1 ·τ2 ·τ3 ·τ4 ∈ C(P, N) with s0X
τ1−→ sX for

some sX = (st,m, fa, fb). To prove that Y (P, N) can generate τ , we show the following by
induction on the length of the computation. (Note that by (NF) we can extend normal-form
computations inductively).

IS1 s0Y
σ−→ sY = (st,m, pa, pb) with st and m from sX above.

IS2 We have σ↓ i = τi for all i ∈ 1, 4.
IS3 Let the last e with kind(e) = popa, rank(e) = r, que(e) = q be in τk. Then pa(r, q) = k.

If there is no such event, pa(r, q) = 1. There is a similar requirement for popb events.

Note that computation ε satisfies all the constraints. Assume the constraints hold for
computation τ . We extend τ to a computation τ ′ = τ ′1·τ ′2·τ ′3·τ ′4, and show that it also satisfies
IS1 to IS3. Extending τ adds an event to the first part of the computation, sX

e1−→ s′X . We
do a case distinction based on kind(e1).

Consider the case kind(e1) = read. Let e1 ↔ e2 ↔ e3 with τ ′2 = τ2 · e2 and τ ′3 = τ3 · e3.
Assume e1 was generated by the transition q1

cmd−−→ q2. This means st(rank(e1)) = q1. By IS1
in the induction hypothesis, sX and sY share the same st and m. Therefore, by Rules (read)
and (read’), Y (P, N) can mimic the read in X(P, N). To make sure we append e2 to τ2, we
have to check the requirements on pa. If pa(rank(e2), que(e2)) < 2, we can use Rule (gpa’) to
adapt the counter. If we assume that pa(rank(e2), que(e2)) = k > 2, we derive a contradiction
as follows. By the induction hypothesis, there is an event e′ in τk with rank(e′) = rank(e2),
que(e′) = que(e2), and kind(e′) = kind(e2) = popa. This event has a corresponding event
e↔ e′ in τ1. Summing up, e, e1, e2, e′ are contained in τ in this order. Moreover, the latter
two events are added to the same queue in reverse order: e′ before e2. A contradiction to
the definition of FIFO. We conclude

sY
(1,e1)·(2,e2)·(3,e3)−−−−−−−−−−−→ s′Y .

The requirements IS1 to IS3 are readily checked. The argumentation for write events is
the same. For the remaining kinds of events, the induction step is simpler since st and m
coincide in sX and sY . J

Proof of Lemma 12. The inclusion from left to right is Lemma 18. The inclusion from right
to left holds by Lemma 17 and the observation that Y (P, N) only generates computations
in normal form. J

The following lemma states that Y (P, N) generates events in program order.

I Lemma 19. Consider computation s0Y
σ−→ sY with events (1, e1) <σ (1, e2) so that

kind(e1), kind(e2) /∈ {popa, popb} and rank(e1) = rank(e2). Then e1 →+
po e2 in τ = comp(σ).

Proof. By definition of the transition relation ∆Y and →po. J
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The following lemma states that Y (P, N) generates the events popa and popb immediately
after the corresponding read or write event.

I Lemma 20. Let s0Y
σ−→ sY , τ = comp(σ), and e1, e2, e3 ∈ τ with kind(e1) ∈ {read,write},

kind(e2) = popa, and kind(e3) = popb. Then e1 ↔ e2 ↔ e3 holds in τ if and only if
σ = σ1 · (1, e1) · (m, e2) · (n, e3) · σ2 for some σ1, σ2 and m,n ∈ 1, 4 with m ≤ n.

Proof. By Rules (read) and (write), the preconditions on (gpa) and (gpb), and the definition
of ↔. J

Proof of Lemma 13. Consider an arbitrary cycle. It has the following form:

a1 ↔∗ b1 →∗po c1 ↔∗ d1  . . . an ↔∗ bn →∗po cn ↔∗ dn  a1.

Assume now rank(ai) = . . . = rank(di) = rank(aj) = . . . = rank(dj) for some i < j. Fix
these i and j. Then either bi →∗po cj or bj →∗po ci. In the former case, τ has the following
happens-before cycle:

a1 ↔∗ b1 →∗po c1 ↔∗ d1  . . . ai ↔∗ bi →∗po cj ↔∗ dj  . . .

 an ↔∗ bn →∗po cn ↔∗ dn  a1.

In the latter case, τ has the following cycle:

aj ↔∗ bj →∗po ci ↔∗ di  . . . aj−1 ↔∗ bj−1 →∗po cj−1 ↔∗ dj−1  aj .

Repeating the procedure for the new cycle until there is no i 6= j with rank(ai) = . . . =
rank(di) = rank(aj) = . . . = rank(dj), we get a cycle of the desired form. J

Now we formally define the automaton Y M(P, N), which is an extension of Y (P, N) that
non-deterministically guesses and marks the first and the last event in each process that
contribute to a cycle — if any. We set Y M(P, N) := (SM

Y ,E ×M,∆Y M , s0Y M , FY M), where
events are optionally marked by enter and/or leave from M := 2{enter,leave}. The events
marked by enter are the ai events in (CYC) and those marked by leave are the di events
in (CYC). The set of states SM

Y consists of the states SY extended by information about
which marked events have been issued for each process: SM

Y := SY × {⊥, enter, leave}RNK.
The initial state is s0Y M := (s0Y , µ0) with µ0(r) := ⊥ for each rank. The transition relation
∆Y M is defined as follows:

M1 (s, µ) ε−→ (s′, µ) if s ε−→ s′.
M2 (s, µ) i,(e,∅)−−−−→ (s′, µ) if s i,e−→ s′.
M3 (s, µ) i,(e,{enter})−−−−−−−→ (s′, µ[rank(e) := enter]) if s i,e−→ s′, addr(e) 6= ⊥ or kind(e) = bar, and

µ(rank(e)) = ⊥.
M4 (s, µ) i,(e,{enter,leave})−−−−−−−−−−→ (s′, µ[rank(e) := leave]) if s i,e−→ s′, addr(e) 6= ⊥ or kind(e) = bar,

and µ(rank(e)) = ⊥.
M5 (s, µ) i,(e,{leave})−−−−−−−→ (s, µ[rank(e) := leave]) if s i,e−→ s′, addr(e) 6= ⊥ or kind(e) = bar, and

µ(rank(e)) = enter.
M6 (s, µ) i,(e1,{leave})−−−−−−−−→ saux

j,(e2,{enter})−−−−−−−−→ (s′, µ[rank(e1) := leave]) if s i,e1−−→ saux
j,e2−−→ s′,

kind(e1) = popa, kind(e2) = popb, and µ(rank(e1)) = ⊥.

The set of final states is FY M := {(s, µ) | s ∈ FY and µ(r) ∈ {⊥, leave} for all r ∈ RNK}.
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I Lemma 21. The languages of Y (P, N) and Y M(P, N) match up to the markings:
L(Y (P, N)) = L(Y M(P, N))↓E.

Proof. The inclusion L(Y (P, N)) ⊆ L(Y M(P, N)) ↓E holds due to the Rules M1 and M2
in the definition of ∆Y M . The reverse inclusion L(Y (P, N)) ⊇ L(Y M(P, N))↓E follows from
the fact that (s, µ) i,e,m−−−→ (s′, µ′) requires s i,e−→ s′ (M2-M6). J

I Lemma 22. Consider a marked computation τ ∈ L(Y M(P, N)) and events (a,m1) and
(d,m4) in τ with rank(a) = rank(d) and enter ∈ m1, leave ∈ m4. Then a ↔∗ b →∗po c ↔∗ d
for some (b,m2) and (c,m3) in τ .

Proof. Consider s0Y M
σ−→ sY M and let τ = comp(σ). Let (a,m1) and (d,m4) be two events

in τ with rank(a) = rank(d) and enter ∈ m1, leave ∈ m4. Then, σ contains (i, a,m1) and
(j, d,m4) for some i, j ∈ 1, 4.

If (i, a,m1) >σ (j, d,m2), then a and d were generated by the two transitions defined
by Rule M6. This means σ = σ1 · (1, b, ∅) · (j, d, {leave}) · (i, a, {enter}) · σ2, where
kind(b) ∈ {read,write}, kind(d) = popa, kind(a) = popb. Therefore, b ↔ d ↔ a, which
can be reformulated as a↔∗ b→∗po b↔∗ d.
If (i, a,m1) = (j, d,m4), then m1 = m4 = {enter, leave} and a = d is the event generated
by M4. Clearly, a↔∗ a→∗po d↔∗ d.
If (i, a,m1) <σ (j, d,m4), then a was generated by M3, and d was generated by Rule M5.
Let b ↔∗ a with kind(b) /∈ {popa, popb}, and similarly c ↔∗ d. The fact that b →po c

follows from Lemma 20 and Lemma 19. Altogether, a↔∗ b→∗po c↔∗ d.
J

For the next lemma, consider a normal-form computation τ ∈ C(P, N) and let
{r1 . . . rn} ⊆ RNK be a set of ranks. Moreover, assume that for each rank ri with i ∈ 1, n,
there are ai, bi, ci, di ∈ τ that have this rank, satisfy ai ↔∗ bi →∗po ci ↔∗ di, and where

(addr(ai) 6= ⊥ or kind(ai) = bar) and (addr(di) 6= ⊥ or kind(di) = bar).

I Lemma 23. Under these assumptions, there is a marked computation τ ′ ∈ L(Y M(P, N))
with τ ′ ↓E = τ that contains, for each i ∈ 1, n, a marked event (ai,m1) with enter ∈ m1 and
(di,m4) with leave ∈ m4. All other marked events (e,m) ∈ τ have m = ∅.

Proof. We prove the statement of the lemma by induction on the size n of the set of ranks.
The base case n = 0 is due to Lemma 18 and the Rules M1 and M2: Y M(P, N) can
generate a marked computation τ0 with τ0 ↓E = τ and all markings being ∅. Formally, there
is s0Y M

σ0−→ sY M for some sY M ∈ FY M with τ0 = comp(σ0).
In the induction step, assume the claim holds for sets of ranks of size n− 1 and consider

{r1, . . . , rn} ⊆ RNK. By the hypothesis, there is s0Y M
σn−1−−−→ sY M for some sY M ∈ FY M .

Moreover, for each i ∈ 1, n− 1 it holds that τn−1 = comp(σn−1) contains a marked event
(ai,m1) with enter ∈ m1 and a marked event (di,m4) with leave ∈ m4. All other events
in τn−1 have empty markings. To prove the statement for n, consider the possible mutual
dispositions of (i, an, ∅) and (j, dn, ∅) in σn−1.

If (i, an, ∅) and (j, dn, ∅) are the same event, we have σn−1 = σ′ · (i, an, ∅) · σ′′ and
(i, an, ∅) was generated by Rule M2. This transition can be replaced by M4 and yields
σn = σ′ · (i, an, {enter, leave}) · σ′′.
If (i, an, ∅) <σn−1 (j, dn, ∅), then σn−1 = σ′ · (i, an, ∅) · σ′′ · (j, dn, ∅) · σ′′′, where (i, an, ∅)
and (j, dn, ∅) were generated by M2. These transitions can be replaced by M3 and M5
transitions, resulting in σn = σ′ · (i, an, {enter}) · σ′′ · (j, dn, {leave}) · σ′′′.



G. Calin, E. Derevenetc, R. Majumdar, and R. Meyer 19

Consider (i, an, ∅) >σn−1 (j, dn, ∅). With Lemma 19 and Lemma 20, we get dn ↔ an.
Since barriers are not related by identity, we derive addr(dn) 6= ⊥ 6= addr(an). This gives
kind(an) = popb and kind(dn) = popa. With Lemma 20, σn−1 = σ′ ·(j, dn, ∅)·(i, an, ∅)·σ′′.
The events were generated by M2 transitions. These transitions can be replaced by M6,
which yields σn = σ′ · (j, dn, {leave}) · (i, an, {enter}) · σ′′.

Since σn is obtained from σn−1 by replacing one or two marked events of rank rn, and
generation of the other events does not rely on µ(rn) (all other events of rank rn are not
marked), we have s0Y M

σn−−→ sY M for some sY M ∈ FY M . J

Now we formally define the automaton Zr1,r2 that checks whether there is a conflict edge
from the leave-marked event of process r1 to the enter-marked event of process r2. We define
Zr1,r2 := (SZ ,E×M,∆Z , s0Z , FZ). The set of states SZ := {init, accept}∪ (K×RNK×ADR).
The initial state is s0Z := init. The set of final states is FZ := {accept}. The transition
relation ∆Z is defined as follows:

HB1 init e,m−−→ init with rank(e) 6= r1 or enter 6∈ m.
HB2 init e,m−−→ (kind(e), addr(e)) for kind(e) 6= bar if rank(e) = r and leave ∈ m.
HB3 (k, r, a) e,m−−→ (k, r, a) for k 6= bar if addr(e) 6= (r, a) or kind(e) 6∈ {store, popb}.
HB4 (k, r, a) e,m−−→ (accept) for k 6= bar if addr(e) = (r, a), rank(e) = r2, enter ∈ m, and
{k, kind(e)} ∩ {store, popb} 6= ∅.

HB5 accept e,m−−→ accept for all (e,m) ∈ E×M.
HB6 init e,m−−→ barrier if kind(e) = bar, (rank(e) = r1 and leave ∈ m) or (rank(e) = r2 and

enter ∈ m).
HB7 barrier e,m−−→ barrier if kind(e) = bar, rank(e) 6∈ {r1, r2}.
HB8 barrier e,m−−→ accept if kind(e) = bar, (rank(e) = r1 and leave ∈ m) or (rank(e) = r2 and

enter ∈ m).

I Lemma 24. Consider r1, r2 ∈ RNK and τ ∈ L(Y M(P, N)) that has a single marked
event (ei,mi) with leave ∈ mi and rank(ei) = r1 and a single (ej ,mj) with enter ∈ mj and
rank(ej) = r2. Then τ ∈ L(Zr1,r2) iff ei  ej.

Proof. We give the proof for memory accesses, the argumentation in the case of barriers is
similar. We start with the implication from left to right. In order to reach the accepting
state accept the first time, the automaton must have reached a state (k, r, a) and performed
a transition defined by HB4. This transition had to consume the symbol (ej ,mj) which is,
according to the statement of the lemma, the only marked event in τ with rank(ej) = r2 and
enter ∈ mj . The state (k, r, a) was reached the first time via a transition defined by HB2.
This transition had to consume the symbol (ei,mi) which is, according to the statement of
the lemma, the only marked event in τ with rank(ei) = r1 and leave ∈ mi. According to
HB2, k = kind(e) and (r, a) = addr(e). Therefore, HB4 requires that ei and ej access the
same address and at least one of them is a write. Moreover, according to Rule HB3, the
automaton could not consume a marked event which is a write to (r, a) after reading (ei,mi)
and before reading (ej ,mj). Altogether, by definition of the conflict relation, ei →cf ej .

For the proof from right to left, let τ = τ1 · (ei,mi) · τ2 · (ej ,mj) · τ3. The first part,
τ1, is read by the transitions defined by HB1. Indeed, (ei,mi) is the only marked event
in τ that does not satisfy the requirements of this rule. Then the automaton performs the
transition defined by HB2, reads (ei,mi), and reaches the state (k, r, a) with k = kind(e) and
(r, a) = addr(e). Since ei →cf ej , part τ2 does not contain writes to addr(ei). It is consumed
by the transitions defined by HB3. Finally, the automaton performs the transition defined
by HB4 and reaches the accepting state. There it loops on the symbols from τ3. J
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I Lemma 25. Consider a cycle type cyc and let τ ∈
(
L(Y M(P, N)) ∩ L(Zcyc)

)
↓E. Then τ

is a computation of (P, N) and has a cyle (CYC) of type cyc.

Proof. By Lemma 17 and Lemma 21, τ is a computation of program (P, N). By Lemma 22
and Lemma 24, τ has a dependence chain (CYC) of type cyc. J

I Lemma 26. Consider a cycle type cyc and let τ be a normal-form computation of (P, N)
that has a cycle (CYC) of this type. Then τ ∈

(
L(Y M(P, N)) ∩ L(Zcyc)

)
↓E.

Proof. By Lemma 23, Y M(P, N) can generate τ ′ with τ ′ ↓ E = τ , the events ai, di
from (CYC) marked by enter and leave respectively, and the other events marked by ∅.
By Lemma 24, the automata Zri,ri+1 will accept τ ′, due to di  ai+1. J

Proof of Theorem 16. The statement follows from Theorem 5, Lemma 25, Lemma 13, and
Lemma 26. J
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