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S$1. Boundary induced melting of magnetic order

Capturing the connections between spin and charge dynamics in nickelates
invariably requires a multi-band d-p orbital Hubbard-like model, in which full
degeneracy of the Ni 3d orbitals and the oxygen 2p orbitals, as well as their
hybridization, is taken into account!2. While the precise mechanistic description
of the vibrational excitation involves such material specific calculations, here as a
first step, we explore the generic effects of boundary excitations in a simpler
model Hamiltonian.

Model Hamiltonian

To qualitatively describe the dynamics of the nickelate thin film we consider a

single-band Hubbard model-like Hamiltonian? of the form

Hz—tZ(“ﬁ,‘,“]a+hc)+U2 il l+]ZZZ: 8787
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where & is the creation operator for an electron of spin ¢ on site i, fi;, is the
corresponding number operator and §7 = %(ﬁ” — 7;,) is the spin projection
along the z axis (out-of-plane direction). We denote nearest-neighbor sites in the
lattice as (i, ), t as the hopping amplitude, U as the on-site Coulomb repulsion,
and J,, as an additional Ising spin interaction strength. At half-filling, and in the
strong-coupling limit U/t > 1, the dynamics of the spin sector arising from H is
an XXZ model

Hyxz —]Z(”)(s’“" +§ sy + 43787),
where | = 4t?/U and 4=1+],,/] . Since the nickelate film displays
antiferromagnetic ordering with a well defined orientation we have included the
[sing interaction J,, > 0 which breaks the rotational invariance of the 4 =1

isotropic Heisenberg model. For J,,/] > 1the ground state of the XXZ model



has classical Ising character akin to a simple Neel state TLT - - - LT modified by in-
plane spin-flip fluctuations.

Within this model framework we now investigate how magnetic and electronic
dynamics nucleated at the boundary of the film can propagate through the
system, and the effects their motion has on the magnetic ordering.

Magnetic dynamics

One possibility is that an interfacial quench of the film generates localized spin-
flips of the antiferromagnetic order, which subsequently evolve according to the
XXZ Hamiltonian Hyy,. After performing a Holstein-Primakoff transformation#
and retaining only the lowest order terms an antiferromagnetic spin-wave

(magnon) dispersion relation is obtained as®

- ] -
€(q) = n3v4% = v(@,
where ¢ is the quasi-momentum in a bipartite lattice with coordination number

nand y(q) = %Za e 44 with d being the real space vectors connecting one site
to all its nearest neighbors. In 3D simple cubic lattice with spacing a we have

that y(q) = é[cos(qxa) + cos(qya) + cos(qza)].

Fig.S1: (a) The antiferromagnetic spin-wave dispersion relation €(q, k) for the

XXZ spin model in a 2D square lattice at the isotropic Heisenberg limit = 1. (b)
Diagonal cuts through of the dispersion relation €(q, q) for different values of
4=1



In Fig. S1(a), the dispersion €(q, k) for a 2D square lattice is shown for 4 = 1 and
presents a gapless mode ¢ = (0,0) around which the spectrum is linear e(q)~|q|.
An additional zero mode is present at the Brillouin zone edge ¢ = (m,m),
corresponding to the antiferromagnetic ordering wave-vector, as direct result of
having broken the continuous rotational symmetry. However, the more relevant
situation for the nickelate film is when an anisotropy 4 > 1 is present. As can be
seen in Fig.S1(b), an increasing 4 quickly introduces a gap at all quasi-
momentum ¢ and flattens €(q) leading to a suppression of the spin-wave group
velocity. This reflects the detuning of spin-flip transitions with amplitude
J < J,, which control the motion.

As a result the propagation of localized magnon packet in real space,
corresponding to coherent superposition of all spin-wave momenta, will be
substantially reduced by the anisotropy. Thus, magnetic dynamics nucleated at
the boundary will remain localized there. This is readily confirmed by time-
dependent mean-field calculations. Further to this lack of propagation, for strong
anisotropies, the XXZ model is also known to possess highly excited edge-locked
bound states which pin ferromagnetic regions to open boundaries®.

The purely magnetic process of melting the bulk antiferromagnetic order by
boundary excitations is also not favored energetically. Magnons possess an
energy governed by, and therefore the same order as, the interaction which
stabilizes the order. Assuming that the total excitation energy of the boundary
magnons scales with the interfacial area, this will never be energetically
sufficient to cause the complete melting of the antiferromagnetic order in a

fraction of the bulk.



Charge dynamics

We now consider the consequences of the substrate vibration nucleating charge-
neutral holon (vacancy |0)) and doublon (double occupancy |§)) pairs at the
boundary of the film. Compared with a “magnetic only” picture, this scenario,
where itinerant charge carriers are generated, is also consistent with the
concomitant insulator-metal transition observed in the THz probe experiment.
To describe the dynamics of the system when doped with charge carriers
requires the full Hubbard Hamiltonian # which now involves two new energy
scales U and t not previously exposed in Hyy,. Once U is sufficiently large then
regime t > J,, > 4t?/U is attained where the anisotropy still dominates the
magnetic interactions while hopping exceeds all magnetic energy scales. Since
the kinetic energy of localized holon-doublon pairs is ~t this indicates that, in
contrast to magnons, charge carriers can be energetic enough to both propagate
and significantly excite the magnetic sector.

The motion of holons or doublons in an antiferromagnet can scramble the
antiferromagnetic order creating a paramagnet. At T = 0, this is a long-studied
problem?7.8.9.10_ Key insight is that the motion of charge carriers is greatly
impeded by the presence of antiferromagnetic order. Approximations, such as
Brinkman and Rice’s retraceable path approach’, indicate the motion of charge
carriers is akin to Brownian motion even at T = 0. Moreover, due to the ‘string’
magnetic excitations, which trail behind the trajectory of a charge in an
antiferromagnet, it is expected that their propagation will be confined to a finite
region to account for the loss of kinetic energy to the magnetic sector®10.

We introduce an approximate classical stochastic model to capture these effects

based on a Pauli master equation!!



d . :
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k#j
describing the evolution in time 7 of probability P;(t) of occupying a particular
configuration j of spins and charges in the Hubbard lattice, e.g. [j) = |T{ 3L T
0 Tl :-+). The transition rate W (k — j) from configuration k to j is then defined

as

W, Ej — Epje < €
0, otherwise

Wk ) ={
where w is a constant rate, E; is the energy of configuration j and Ej,;; is the
energy for the initial boundary excited configuration evaluated with the Hubbard
model when hopping t =0, and € is the total excitation energy. Carriers
therefore diffuse through the lattice at a fixed rate w until the energy deposited
into system by moving to a new configuration exceeds &, at which point the rate
abruptly drops to zero. This simple choice enforces a form of energy
conservation which limits the capacity of the holons and doublons to excite the
magnetic sector.

The resulting stochastic evolution starting from an antiferromagnetic
configuration with holon-doublon pairs randomly distributed along the
boundary was simulated using dynamical Monte Carlo'?. A 40x40 2D square
lattice was used with periodic boundaries along the interface x direction and
open boundaries in the film z direction. In Fig. S2(a), we report the staggered
magnetization averaged over the x direction as a function of the d, distance into
the film and time. Specific time slices are also displayed in Fig. S2(b). Together,
these show that initially there is fast evolution of an error-function diffusion

front dictated by the rate w which strongly demagnetizes the lattice behind it.

The specific parameters € and w used (see figure caption) were chosen to best



match the features seen in the experimental data. Consequently after ~3 ps the
diffusion front abruptly stalls, due to the energy limit £, corresponding to when
antiferromagnetic order has been melted in approximately half the film. This
emergence of a gradual boundary between paramagnetic and antiferromagnetic
regions in the film is further highlighted by the dynamical suppression of the
qa = m peak in the static structure factor

F(q) = X;e"UD%757),

shown in Fig. S2(c) as a function of time.
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Fig. S2 (a) The staggered magnetization for a 2D square lattice as a function of
distance from the interface (film depth) and time averaged over the transverse
direction. (b) Slices of plot (a) for given times. (c) The magnetic structure factor F(q),
for the lattice as function of time. To produce results quantitatively resembling the
experimental data these calculations used a total of 32 holon-doublon pairs initiated
with an excitation energy £ equivalent to ~47],, per charge carrier and a diffusion
time constant w~~38 fs. (d) An illustration of how the stochastic motion of a charge
carrier from the boundary (hole in this case) scrambles the antiferromagnetic order
of the system. The dotted line denotes its trajectory and the x’s mark the magnetic
interactions which are now ferromagnetic bonds.



While this model has ad-hoc features it nonetheless illustrates that diffusive
motion of charge carriers is highly effective at scrambling antiferromagnetic
order simply by the shuffling of spins along a trajectory as shown in Fig. S2(d).
The further inclusion of an energy cut-off £ however was essential to capture the
localization effects?10 caused by the loss of kinetic energy of the charge carriers
as they excite the magnetic degrees of freedom, also shown in Fig. S2(d). Both

these effects appear to be qualitatively present in the experimental results.



S2. In-plane magnetization dynamics following mid-IR excitation

Here, we present the mid-IR induced dynamics of the antiferromagnetic in-plane
correlations. Figure S3 shows the transverse rocking curves (theta scans)
measured at three early time delays across the phase transition. The
experimental conditions are identical to those presented in the main paper.
Fitting Gaussian functions to these data sets yields FWHM values of
0.65+0.1 degrees (at -0.5 ps), 0.66+0.1 degrees (at +1.5 ps) and 0.63+0.1 degrees
(at +3 ps). Thus, we conclude the in-plane correlation length remains unchanged.
This effect results from the pump spot size being far larger than the magnetic

domain size along this direction.
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Fig. S3 Rocking curves of the (1/4 1/4 1/4) diffraction peak at selected, early
time delays before and after the mid-infrared excitation. The widths of these
peaks represent the in-plane correlation length. Note, at 3 ps time delay, the
system has undergone the demagnetization process along the out-of-plane

direction, before it starts recovering.
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