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1 Introduction

Recent progress on scattering amplitudes has sought to describe these quantities in a variety

of manners, which highlight different properties and symmetries of a theory, or connections

between different theories. The Bern-Carrasco-Johansson (BCJ) duality between color and

kinematics [1] resulted from exploring the connections between amplitudes in gauge theory

and in gravity. Refs. [1, 2] found that a gauge-theory amplitude can often be expressed

such that its kinematic dependence closely mirrors its color dependence. The kinematic

numerators corresponding to trivalent diagrams are known as BCJ numerators when they

satisfy this “duality” between color and kinematics. Their most remarkable property is

that gravity amplitudes can be obtained in a simple manner from the gauge-theory ones by

substituting color factors for another copy of BCJ numerators. This procedure to construct

gravity amplitudes has led to great advances in the study of the ultraviolet behaviour of

supergravity theories [2–7].

The BCJ duality remains a conjecture at loop level, and the principles at work are

poorly understood. Most loop-level results have followed from an ad hoc approach to the

construction of BCJ numerators, starting with an ansatz and fixing it by unitarity cuts.

The difficulty in extending this approach to higher loops is a major obstacle at present. In

this work, we bring together two lines of research which explore the mathematical structure

underlying the BCJ duality. As a result, we find simple and suggestive expressions for MHV

amplitudes at one loop, in maximally supersymmetric theories.

One line of research on the principles behind BCJ is based on string theory. Amplitudes

of various field theories can be obtained in the infinite tension limit (α′ → 0) of superstring

amplitudes [8]. The meta-structure provided by string theory has already led to many

insights and practical applications in the study of field-theory amplitudes, starting with the

Kawai-Lewellen-Tye (KLT) relations between gauge and gravity amplitudes at tree level [9],

and the BCJ story is no exception. The color-kinematics duality in gauge theory leads to

linear relations between tree-level color-ordered amplitudes, known as BCJ relations [1].

The first proof of these relations was based on the monodromy properties of integrals

appearing in string amplitudes [10, 11]. Moreover, the first explicit local expressions for

BCJ numerators at tree level were derived in ref. [12] from the pure-spinor formulation

of superstring theory [13]. This line of work has been streamlined and generalized in the

framework of multiparticle superfields [14, 15] which has led to important insights on the

BCJ conjecture at loop level [16, 17]. These building blocks also allow one to determine

one-loop amplitudes of the ten-dimensional open superstring [18], or at least their BRST-

invariant subsector which is unaffected by the gauge anomaly [19, 20]. Constraining the

helicities of their four-dimensional reduction to MHV configurations is used as a driving

force to derive the all-multiplicity BCJ numerators presented in this work.

Another line of research on BCJ is based on the direct search for a “kinematic algebra”

which mirrors the color Lie algebra, making the duality between color and kinematics

manifest. Such a kinematic algebra has indeed been found for the self-dual sector of gauge

theory and gravity [21]. At tree level, while amplitudes in the self-dual theories vanish,

this structure is essentially preserved for the closely-related MHV amplitudes. At one

– 2 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
1

loop, the amplitudes in the (non-supersymmetric) self-dual theories do not vanish, and the

kinematic algebra allows for the construction of BCJ numerators for all-plus amplitudes,

and also for the closely related one-minus amplitudes [22]. These are the only two families

of loop-level amplitudes for which explicit BCJ numerators were known for any multiplicity.

Our results add one more all-multiplicity family, that of MHV amplitudes in maximally

supersymmetric gauge theory and gravity. While five-point BCJ numerators [23] and a

procedure to implicitly determine them for higher multiplicities [24] were known, we present

here closed-form and remarkably simple expressions for any multiplicity. A notable feature

of our BCJ numerators is that the only poles appearing in them can be traced back to

reference spinors of polarization vectors; our BCJ numerators (4.20) are manifestly local

after factoring out simple prefactors.

We show that there is a direct connection between one-loop MHV amplitudes ob-

tained from string theory, and the kinematic algebra of the self-dual theories. Our numer-

ators (4.20), provided by the field-theory limit of strings, can be conveniently presented

in terms of kinematic structure constants. We identify a prescription X , which maps the

kinematic structure constants in the self-dual numerators to our BCJ numerators for MHV

amplitudes in maximally supersymmetric theories. This connection is reminiscent of the re-

sult of ref. [25], which gives one-loop all-plus amplitudes in non-supersymmetric gauge the-

ory and gravity (which correspond to the self-dual sector) in terms of a dimension-shifting

rule applied to the integrand of one-loop MHV amplitudes in the maximally supersymmet-

ric theories. The simple deformation rule we found suggests that there is a wider story

to explore, and one might speculate about generalizations to arbitrary helicities, higher

dimensions and even higher loop orders.

This paper is organized as follows: in section 2, we briefly review the BCJ duality and

kinematic structure constants in the self-dual sector. Section 3 contains the construction of

tree-level BCJ numerators, with the example of MHV amplitudes, both from the self-dual

kinematic algebra and from the field-theory limit of string theory. We present the general

results for BCJ numerators for one-loop MHV amplitudes in section 4, highlighting the

connection with self-dual numerators and the relation to the dimensional-shifting formula.

In section 5, we show how these results are derived from string theory at one loop. We end

with conclusions and outlook in section 6.

2 Review

2.1 BCJ duality and double copy

The BCJ duality, or color-kinematics duality, states that the kinematic dependence of a

gauge-theory amplitude can be expressed so that it has the same algebraic properties as

the color dependence [1, 2]. In order to present it precisely, we first write down the N -point

amplitude at a given loop order L in terms of a sum over trivalent diagrams, i.e. diagrams

with cubic vertices,

AL−loop
N =

∑
diagrams Γi

∫ L∏
j=1

dD`j
(2π)D

1

Si

ni(`) ci∏
k Pk,i(`)

. (2.1)
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Figure 1. A diagrammatic representation of color and kinematic Jacobi relations.

For each trivalent diagram Γi, Si is the symmetry factor (to avoid overcounting), and P−1
k,i

are the propagators, which generically depend on loop momenta `j . The color factors ci
can be straightforwardly read off from the graph Γi by dressing each cubic vertex with a

structure constant fabc of the gauge group, and ni are kinematic numerators depending

on polarizations and (internal or external) momenta. It is clearly always possible to write

down the amplitude in this manner, as four-point vertices can be decomposed according

to the color structures and absorbed into the trivalent diagrams by changing ni. In fact,

there is a large ambiguity in the choice of kinematic numerators, since the color factors are

not independent. These originate from the Lie algebra of the gauge group, and thus satisfy

Jacobi identities of the type

ci + cj − ck = 0 .

For instance, at tree level with four particles (N = 4), there are three trivalent diagrams,

and their color factors satisfy the identity: fa1a2bf ba3a4 + fa1a3b f ba4a2 − fa1a4b f ba3a2 = 0,

with indices ai, b in the adjoint representation of the gauge group. The precise statement of

the BCJ duality is that there exists a choice of kinematic numerators that satisfy the same

algebraic identities as the associated color factors for each value of the loop momenta `,

ni(`) + nj(`)− nk(`) = 0 . (2.2)

See figure 1 for a diagrammatic representation of these identities.

The BCJ double copy states that, if such a representation of the gauge-theory ampli-

tude is available, then a gravity amplitude is obtained straightforwardly, substituting the

color factors by another copy of the kinematic numerators [26],

ML−loop
N =

∑
diagrams Γi

∫ L∏
j=1

dD`j
(2π)D

1

Si

ni(`)ñi(`)∏
k Pk,i(`)

= AL−loop
N |ci→ñi(`) . (2.3)

The states involved in the gravity scattering are the direct product of the states involved

in the gauge-theory scattering. For instance, if the numerators ni (ñi) correspond to

gluonic states with polarization vectors εµi (ε̃µi ), then the gravity states correspond to the

polarization tensors εµνi = εµi ε̃
ν
i , which can in general be decomposed into graviton, dilaton

and B-field components.

Both the color-kinematics duality and the double copy are well understood at tree

level [12, 21, 26–31]. The recently developed formalism of the scattering equations has
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brought a new insight into these structures [32–37]. At loop level, examples of amplitudes

which admit a BCJ form have been presented in refs. [2, 3, 5–7, 14, 16, 17, 22–24, 38–44].

While there is all-loop evidence in certain kinematic limits [45, 46], the existence of BCJ

numerators for any multiplicity and loop order remains conjectural. Generalizations of the

BCJ structure have been studied in various contexts, including the introduction of massive

quarks [47] and the application to Chern-Simons theories [48, 49]. An extension of the

perturbative relations between gauge theory and gravity to classical solutions was initiated

in refs. [50, 51]; see also ref. [52]. Ref. [53] provides a recent comprehensive review.

2.2 Self-dual gauge theory and gravity

In four dimensions, both gauge theory and gravity can be truncated to their self-dual

sectors, resulting in much simpler theories. It was shown in ref. [21] that the BCJ structure

can be made completely manifest in the self-dual theories.

Let us focus on the gauge-theory case. We can write down the Feynman rules in light-

cone gauge, with the light-cone defined by the null vector η. In spinor-helicity language [22],

• vertices: ± denote the helicities, and iη ≡ 2 ki · η = 〈η|ki|η] = 〈ηi〉[iη],

(i+, j+, l−) =
lη
iηjη

Xi,j f
aiajal , with Xi,j ≡ 〈η|kikj |η〉 ,

(i−, j−, l+) =
lη
iηjη

Xi,j f
aiajal , with Xi,j ≡ [η|kikj |η] ,

(i+, j+, l−,m−) = i

(
iηlη + jηmη

(iη +mη)2
faiambf bajal +

iηmη + jηlη
(iη + lη)2

faialbf bajam
)
,

(2.4)

• propagators:

i δaiaj/k2 ,

• external state factors:

ê
(+)
i =

[ηi]

〈ηi〉
, ê

(−)
i =

〈ηi〉
[ηi]

.

The quantities X and X defined above using the spinor-helicity formalism are anti-

symmetric in their indices. In fact, they are simple spinor brackets, e.g. Xi,j = −[[i, j]],

where the spinor |i]] ≡ ki|η〉 can be associated to off-shell momenta ki. Gauge invariance

guarantees that all physical quantities are independent of the choice of null vector η. The

Feynman rules above follow from a light-cone action [54]; see ref. [55] for a supersymmetric

extension.

Self-dual gauge theory can be defined as the restriction of the interactions to the

vertex (+,+,−) associated to X. A simple counting argument shows that the only helicity

configurations allowed in the self-dual sector are one-minus (−,+,+, · · · ,+) at tree level,

and all-plus (+,+,+, · · · ,+) at one loop. As it is well-known, the one-minus amplitudes

vanish at tree level (see next subsection). This definition of self-dual gauge theory is

equivalent to the common definition in terms of an equation of motion imposing the self-

duality of the field strength, but has the advantage of extending it beyond tree level. The
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cubic vertex (+,+,−) can be seen as arising from the equation of motion in the light-cone

gauge [56, 57].

Analogous statements are valid in the gravity case. The equation of motion in pure

self-dual gravity is the self-duality of the Riemann tensor, and a gauge choice reduces the

classical problem to a scalar with a cubic interaction [58]. The discussion of helicities above

also holds in the gravity case. Notice, however, that the double copy of self-dual gauge

theory is the self-dual theory of graviton-dilaton-B-field.

2.3 Kinematic structure constants

We will now review how the object X in eq. (2.4) gives rise to a kinematic algebra which

explains the BCJ duality in self-dual gauge theory and gravity [21].

In the self-dual sector, the Feynman rules can be further simplified. In particular,

we can strip off the prefactor lη(iηjη)
−1 from the vertex (+,+,−) in eq. (2.4). These

prefactors cancel along any diagram because each internal line has opposite helicities at its

ends. They require only that the external factors be modified, ê
(±)
i → e

(±)
i . The rules for

self-dual gauge theory are then

(i+, j+, l−)s.d. = Xi,j f
aiajal , e

(+)
i = − 1

〈ηi〉2
, e

(−)
i = −〈ηi〉2 , (2.5)

whereas for self-dual gravity they are1

(i++, j++, l−−)s.d. = X2
i,j , e

(++)
i =

1

〈ηi〉4
, e

(−−)
i = 〈ηi〉4 . (2.6)

The BCJ double copy is direct in the rules above. The reason for this is that the BCJ

duality between color and kinematics is manifest in self-dual gauge theory. First, notice

that Xi,j = −Xj,i = Xi,i+j , so that X is completely antisymmetric in the external legs of

the vertex, {ki, kj ,−ki−kj}, just as faiajal . Moreover, X satisfies the Jacobi-type identity

Xi,jXi+j,l +Xj,lXj+l,i +Xl,iXl+i,j = 0 . (2.7)

In fact, this follows from the Schouten identity, if we think of X as a spinor bracket as in

eq. (2.4). Indeed, X is the structure constant of an area-preserving diffeomorphism algebra

(see ref. [21] for more details). To conclude, there is a kinematic algebra associated to X

which mirrors the color Lie algebra associated to faiajal .

Let us be concrete. At tree level, the self-dual sector corresponds to one-minus ampli-

tudes. The BCJ numerator for the half-ladder topology (see figure 2) is

ntree, s.d.
1+,2+,··· ,r−,··· ,N+ = (−1)N 〈ηr〉4

(
N∏
i=1

1

〈ηi〉2

)
N−1∏
j=2

X1+2+···+(j−1),j , (2.8)

1We write the rules for gravitons only, but the dilaton and B-field can also be external states. In four

dimensions, they correspond to the combinations (+−) ± (−+). A property of graviton scattering at one

loop is that, while these extra states run in the loop, the effect is merely a factor of two with respect to

pure self-dual gravity [22].

– 6 –
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2 3 N − 1

. . . 2

1

3

N

N − 1

. . .

<
`

Figure 2. The master topology is the half-ladder diagram at tree level (left) and the N -gon at one

loop (right).

where “s.d.” denotes the self-dual sector. The half-ladder is the master topology in the sense

that, if its numerator is known, all other numerators can be obtained through Jacobi-type

identities. It is trivial to see that these amplitudes vanish, since we can choose |η〉 = |r〉 in

the numerator (2.8).

At one loop, the self-dual sector corresponds to all-plus amplitudes. The master topol-

ogy for N particles is the N -gon (see figure 2), and its BCJ numerator reads

n1−loop, s.d.
1+|2+|···|N+ = 2 (−1)N

N∏
i=1

1

〈ηi〉2
X`+1+2+···+(i−1),i , (2.9)

where we separate corners of the N -gon by vertical lines, and ` is the loop momentum; the

factor of 2 follows from the two global choices of helicities for the internal lines.

We shall see that this structure is not exclusive to the self-dual sector. It was previously

shown to underlie the BCJ duality for tree-level MHV (two-minus) amplitudes [21], as we

shall see in the next section, and for one-loop one-minus amplitudes; these are the closest

helicity sectors to the ones discussed above (one more ‘minus’ helicity). A generalization

of the object X to any tree-level amplitude, in any number of dimensions, has also been

found [36], based on the scattering equations. In the string-theory approach, the finger-

prints of kinematic structure constants can be found in the OPEs among vertex operators.

In the pure-spinor formalism [13], this leads to the recursive formulae for multiparticle

superfields [14].

3 Tree-level numerators

This section, concerned with tree-level MHV amplitudes, prepares the ground for the one-

loop results, and we check that two distinct procedures to get BCJ numerators give the

same answer. The first, pursued in ref. [12], is based on the field-theory limit of superstring

amplitudes, obtained from the pure-spinor formalism. The second, pursued in ref. [21], is

the use of light-cone Feynman rules, taking advantage of the close relationship between the

MHV sector and the self-dual sector.

We will present the derivation of tree-level MHV numerators from string theory in

appendix A. Here we summarize some conventions: the Mandelstam invariants are given by

sij ≡ 2(ki · kj) = (ki + kj)
2 , si1i2...ip ≡ (ki1 + ki2 + . . .+ kip)

2 . (3.1)

– 7 –
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Upon dimensional reduction to D = 4, we choose the following form for the polarizations,

ε
(+)
i =

|1〉[i|
〈i1〉

, ε
(−)
i =

|i〉[η|
[iη]

, (3.2)

i.e. the reference spinors for positive and negative helicity particles are |1〉 and [η|,
respectively.

3.1 Self-dual type numerators

The MHV tree-level amplitudes are the same in pure Yang-Mills theory and in the gluon

components of the maximally supersymmetric theory. Since at one loop we will be in-

terested in the latter theory, we will use the supersymmetry formalism and leave the he-

licity choice of two negative-helicity gluons generic by working with the superamplitude;

the supermomentum-conservation delta function δ8(Q) becomes 〈rs〉4, if r and s denote

negative-helicity gluons. The BCJ numerators of half-ladder diagrams (see figure 2) have

been obtained in ref. [21], and we present them here in the spinor-helicity formalism:

ntree, MHV
1,2,··· ,N = δ8(Q) (−1)N

(
N∏
i=2

1

〈1i〉2

)
X1,2

[η1]2

N−1∏
j=3

X1+2+···+(j−1),j , with |η〉 = |1〉 . (3.3)

The special role of particle 1 could have been played by any other particle. This result

is determined from the rules (2.4) if particle 1 is taken to have negative helicity (which is

not required in the supersymmetric expression above). First, it can easily be shown by a

counting argument that MHV amplitudes correspond to diagrams with one and only one

non-(+ + −) vertex, which may be a (− − +) vertex or a four-point vertex. Second, by

taking the gauge choice |η〉 → |1〉, all diagrams with a four-point vertex vanish, and in the

remaining diagrams the (− − +) vertex must be attached to particle 1, since X1,i → 0.

We see now that by aligning the light-cone with one of the particles, we import for the

MHV amplitude much of the structure of the self-dual theory. In order to make the

BCJ properties completely transparent, we may also write the numerator only in terms of

X vertices:

ntree, MHV
1,2,··· ,N = δ8(Q)(−1)N

(
N∏
i=2

1

〈1i〉2

)
Xq,2

N−1∏
j=3

X1+2+···+(j−1),j , |η〉 = |1〉 , |η] =
q|1〉
[1η]

,

(3.4)

where the momentum q is defined by the last equation.

The relation between the famous Parke-Taylor formula [59] for MHV amplitudes, and

the cubic-diagram expansion with numerators (3.4), can be seen from the identities

1

〈12〉〈23〉〈31〉
=

−1

〈12〉2〈13〉2
X2,3

s23
,

1

〈12〉〈23〉〈34〉〈41〉
=

−1

〈12〉2〈13〉2〈14〉2

(
X2,3X2+3,4

s23s234
+
X4,3X4+3,2

s34s234

)
(3.5)

– 8 –
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and its all-multiplicity generalization

1

〈12〉〈23〉 . . . 〈p−1, p〉〈p1〉
=

−1

〈12〉2〈13〉2 · · · 〈1p〉2
∑

cubic graphs with
ordering {2,3,...,p}

∏
vertices j with

edges {aj , bj ,−aj − bj}
Xaj ,bj∏

edges k sk
.

(3.6)

The sum over cubic graphs on the right hand side is known as a Berends-Giele current [60]

and designed to build up a color-ordered tree-amplitude, where an additional off-shell leg

completes {2, 3, . . . , p} to a cycle.

4 One-loop numerators

We saw that tree-level MHV numerators are closely related to those in the self-dual theory,

and that the representation which makes this clear can be obtained from string theory. In

this section, we will state our main result — all-multiplicity numerators for one-loop MHV

amplitudes in N = 4 SYM which obey the BCJ duality. Their form in terms of kinematic

structure constants shows that the one-loop MHV numerators in the maximally super-

symmetric theory are also closely related to those in the self-dual theory (all-plus at one

loop). After presenting the results, we will compare our findings to the so-called dimension-

shifting formula [25], which also relates these two families of one-loop amplitudes. These

results were derived from the field-theory limit of superstring amplitudes, restricting to the

four-dimensional MHV case. We will leave the discussion on the string-theory derivation

of the BCJ numerators to the next section.

4.1 Notation and conventions

To simplify notation, we peel off universal prefactors from the numerators and focus on

their non-universal parts n1|A2|A3|...|Am(`) henceforth which we define by

n1−loop, MHV
1|A2|A3|...|Am(`) ≡ δ8(Q)

〈12〉2〈13〉2 . . . 〈1N〉2
n1|A2|A3|...|Am(`) . (4.1)

The vertical bars in their subscripts separate different corners of a cubic m-gon diagram.

Multiparticle labels Aj refer to tree-level subdiagrams whose vertex structure is repre-

sented by bracketings as exemplified in figure 3. The relative factor between numerators

n1−loop, MHV
... and n... on the right hand side of eq. (4.1) is universal to any N -point diagram

and therefore does not alter their BCJ properties. Hence, it is sufficient to show that the

set of n... obeys the kinematic analogues (2.2) of Jacobi relations.

Moreover, we will specialize |η〉 → |1〉 throughout the rest of this work, such that

Xi,j ≡ 〈1|kikj |1〉 , (4.2)

with momenta ki and kj possibly off shell. As a consequence, diagrams with leg 1 attached

to a massive corner (i.e. a tree-level subdiagram involving non-trivial bracketings such

as [1, 2]) have a vanishing numerator; that is why the notation in eq. (4.1) dedicates an

underlined standalone slot 1| . . . to this leg. Also, the choice |η〉 → |1〉 allows us to identify
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`

5

6

1

2

3 4

7

n1|[[2,3],4]|[5,6]|7 ↔

Figure 3. An example for our notation for one-loop numerators.

the ubiquitous denominator in eq. (4.1) involving all the 〈1j〉2 at j 6= 1 with external state

factors as in eq. (2.5).

Furthermore, the loop momentum ` is always defined to reside in the edge preceding

leg 1 in clockwise direction, see e.g. figure 3. We will distinguish integrated single-trace

subamplitudes2 from their integrands I1−loop
1,2,...,N (`), and strip off the universal prefactor for

MHV as in eq. (4.1),

A1−loop(1, 2, . . . , N) ≡
∫

dD`

(2π)D
I1−loop

1,2,...,N (`) ,

I1−loop, MHV
1,2,...,N (`) ≡ δ8(Q)∏N

i=2〈1i〉2
I1,2,...,N (`) . (4.3)

As we will see, I1,2,...,N (`) defined by eq. (4.3) can be entirely written in terms of propagators

and kinematic structure constants (4.2). Since any appearance of ` in the numerators occurs

via X`,..., a shift of ` by the external momentum k1 drops out and ensures the correct

reflection properties of m-gons under 1, 2, 3, . . . ,m → 1,m, . . . , 3, 2. Both the vanishing

numerators with leg 1 in a massive m-gon corner and the convention for the loop momentum

arise naturally in the string-theory setup described in section 5.

4.2 Examples with N = 4, 5, 6

To warm up, we present here some examples of BCJ numerators for a small number of

particles. The particular arrangement of X’s will be better understood when we present

the general rule.

For N = 4, the amplitude is simply a sum over boxes, with an overall coefficient

given by [8]

n1−loop, MHV
1|2|3|4 = −δ8(Q)

[12][34]

〈12〉〈34〉
. (4.4)

Since there are no triangle diagrams in the maximally supersymmetric theory, the BCJ

relations follow from the fact that this coefficient is symmetric for permutations of the

external particles. In the notation of eq. (4.1), we can capture the numerator above by

n1|2|3|4 = X2,4X2,3 . (4.5)

2At one loop, multitrace subamplitudes in SYM are determined from their single-trace counterparts [61].
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The permutation symmetry follows from X2,4 = −X2,3 = −X3,4, due to momentum conser-

vation. This symmetry is no longer manifest, but the benefit is that there is an extension

to arbitrary multiplicity, i.e. with tree-level subdiagrams Aj in the corners of the box:

n1|A2|A3|A4
= XA2,A4XA2,A3

4∏
j=2

X(Aj) . (4.6)

The shorthand X(Aj) comprises a product of structure constants reflecting the vertices

within the external tree-level subdiagram Aj such as X([2,3]) = X2,3 and X([[2,3],4]) =

X2,3X2+3,4. More generally, any tree-level subdiagram can be reduced to the master topol-

ogy of half-ladder trees

X([[...[[2,3],4]...,p−1],p]) =

p−1∏
j=2

X2+3+...+j,j+1 ↔
2

3
4 5

. . .

p

. . . (4.7)

by a sequence of kinematic Jacobi relations which in turn follow from the Schouten iden-

tity (2.7). By symmetry of eq. (4.6) in A2, A3, A4, the BCJ duality is consistent with the

absence of bubbles and triangles [61, 62],

n1|A2|A3
= n1|A2

= 0 . (4.8)

For N = 5, the amplitude contains box and pentagon integrals, and the pentagons are the

master topology in terms of the BCJ duality. The numerators of the pentagons and the

boxes (with a massive corner) are, respectively,

n1|2|3|4|5 = X2,4X2,3X`,5 +X2,5X2,3X2+3,4 +X3,5X`,2X2+3,4 ,

n1|2|3|[4,5] = X2,4+5X2,3X4,5 = n1|2|[4,5]|3 = n1|[4,5]|2|3 . (4.9)

The box numerator ties in with the massive generalization in eq. (4.6), with the factor of

X4,5 representing the tree-subdiagram as in eq. (4.7). One can easily check from eq. (4.9)

that BCJ relations fix the boxes in terms of the pentagons,

n1|2|3|4|5 − n1|2|3|5|4 = n1|2|3|[4,5] . (4.10)

The loop momentum dependence of the pentagon numerators cancels upon antisymmetriza-

tion since X2,4X2,3X`,5 + X3,5X`,2X2+3,4 is permutation invariant in 2, 3, 4, 5. According

to the general rule given below, an m-gon numerator (4 ≤ m ≤ N) will be a polynomial of

order m− 4 in the loop momentum. Similar to the massive box in eq. (4.6), the massless

pentagon numerator in eq. (4.9) generalizes as follows for massive corners:

n1|A2|A3|A4|A5
(4.11)

= (XA2,A4XA2,A3X`,A5 +XA2,A5XA2,A3XA2+A3,A4 +XA3,A5X`,A2XA2+A3,A4)
5∏
j=2

X(Aj) ,

see eq. (4.7) for the contributions from tree-subdiagrams Aj .

– 11 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
1

For N = 6, the amplitude contains box, pentagon and hexagon integrals. The hexagons

furnish the master topology, and we additionally have massive pentagons as well as two

types of massive boxes; see eqs. (4.6) and (4.11). Explicitly,

n1|2|3|4|5|6 = X2,4X2,3X`−6,5X`,6 +X2,5X2,3X2+3,4X`,6 +X2,6X2,3X2+3,4X2+3+4,5

+X3,5X`,2X2+3,4X`,6 +X3,6X`,2X2+3,4X2+3+4,5 +X4,6X`,2X`+2,3X2+3+4,5 ,

n1|2|3|4|[5,6] =
(
X2,4X2,3X`,5+6 +X2,5+6X2,3X2+3,4 +X3,5+6X`,2X2+3,4

)
X5,6 , (4.12)

n1|2|[3,4]|[5,6] = X2,5+6X2,3+4X3,4X5,6 ,

n1|2|3|[4,[5,6]] = X2,4+5+6X2,3X4,5+6X5,6 .

The different types of BCJ relations relating the topologies are

n1|2|3|4|5|6 − n1|2|3|4|6|5 = n1|2|3|4|[5,6] ,

n1|2|3|4|[5,6] − n1|2|4|3|[5,6] = n1|2|[3,4]|[5,6] , (4.13)

n1|2|3|4|[5,6] − n1|2|3|[5,6]|4 = n1|2|3|[4,[5,6]] .

It will be shown in generality that the massive box and pentagon numerators in eqs. (4.6)

and (4.11) are compatible with the BCJ relations.

The resulting integrands (4.3) for single-trace subamplitudes at N = 4 and N = 5 are

given by

I1,2,3,4(`) =
X2,4X2,3

`2(`+ k1)2(`+ k12)2(`+ k123)2
(4.14)

I1,2,3,4,5(`) =
X2,4X2,3X`,5 +X2,5X2,3X2+3,4 +X3,5X`,2X2+3,4

`2(`+ k1)2(`+ k12)2(`+ k123)2(`+ k1234)2

+
X2,3 X2+3,4X2+3,5

s23`2(`+ k1)2(`+ k123)2(`+ k1234)2
+

X3,4 X2,3+4X2,5

s34`2(`+ k1)2(`+ k12)2(`+k1234)2

+
X4,5 X2,3X2,4+5

s45`2(`+ k1)2(`+ k12)2(`+ k123)2
, (4.15)

where the numerators n[1,2]|3|4|5 and n[5,1]|2|3|4 for two of the five massive box diagrams

vanish thanks to X1,2 = X5,1 = 0. The analogous six-point integrand is spelt out in ap-

pendix B. The remaining numerators beyond the canonically ordered single trace 1, 2, . . . , N

can be obtained from eqs. (4.14), (4.15) and (B.1) via permutations in 2, 3, . . . , N . The

resulting gravity amplitudes are discussed in subsection 4.5.

The sets of BCJ numerators presented here differ from those in ref. [23] for N = 5

and in ref. [24] for N = 6. The inverse Gram determinants occurring in the numerators

of those works do not arise in the string-theory setup, and the only non-localities in our

numerators (4.1) stem from polarization vectors, see eq. (2.5). As they are obtained from

linear combinations of SYM tree-level subamplitudes, the numerators in this work provide

closed-form expressions for any multiplicity.

4.3 General result

Our formula for the BCJ numerators of one-loop MHV amplitudes is best understood by

comparison to the one-loop all-plus numerators in eq. (2.9). We introduce a prescription
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X to represent this close relationship which enters the MHV N -gon numerator as follows:

n1−loop, MHV
1|2|···|N = δ8(Q)

(
N∏
i=2

1

〈1i〉2

)
X1


N∏
j=1

X`+1+···+(j−1),j

 . (4.16)

The object acted upon by the operation X is simply the self-dual numerator (2.9), up

to universal prefactors. First, particle 1 was chosen by gauge choice to have a special

role: only diagrams where particle 1 is directly attached to the loop are non-vanishing.

Moreover, X1 enforces |η〉 → |1〉. The non-trivial action of X , however, is to eliminate

four loop momenta from the numerator, such that the leading power is `N−4 rather than

`N , as implied by maximal supersymmetry:

X1


N∏
j=1

X`+1+···+(j−1),j

 =

N∑
1<r<s−1

Xr,s ×

×

(
r−1∏
i=2

X`+1+···+(i−1),i

) s−1∏
j=r+1

X1+···+(j−1),j

( N∏
k=s+1

X`+1+···+(k−1),k

)
. (4.17)

Let us break down the prescription X :

• First, all the X on the right-hand-side are defined as in eq. (4.2) with |η〉 = |1〉.

• Take the N -gon and give it a boundary set by particle 1, deleting the vanishing factor

X`,1.

• Each pair of non-neighbouring corners of the N -gon, labelled by r and s (s > r+ 1),

produces a contribution given by Xr,s times a product of the X factors excluding

X··· ,r and X··· ,s.

• The lowering of the degree in the loop momentum is achieved by deleting ` from the

X’s representing vertices located between r and s.

Going back to the examples presented above, at four points,

X1 {X`,1X`+1,2X`+1+2,3X`,4} = X2,4X2,3 , (4.18)

while at five points,

X1 {X`,1X`+1,2X`+1+2,3X`−5,4X`,5} = X2,5X2,3X4,5+X2,4X2,3X`,5+X3,5X`,2X4,5 , (4.19)

reproducing the expressions in eqs. (4.5) and (4.9).

Since the prescription X does not depend on the corners being massless, it can be

applied directly not only to the N -gon but also to any massive m-gon numerator with

4 ≤ m ≤ N ,

n1|A2|A3|...|Am =

 m∏
p=2

X(Ap)

 m∑
1<r<s−1

XAr,As × (4.20)

×

(
r−1∏
i=2

X`+A2+···+Ai−1,Ai

) s−1∏
j=r+1

XA2+···+Aj−1,Aj

( m∏
k=s+1

X`+A2+···+Ak−1,Ak

)
;
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see eq. (4.7) for the contribution X(Ap) of the tree-level subdiagram Ap. Recall that the

only non-vanishing numerators are the ones with particle 1 attached directly to the loop.

Up to multiplicity N = 10, the string-theory origin of the numerators in eq. (4.20) has

been worked out explicitly, and their validity at higher N is a conjecture supported by

their connection with all-plus amplitudes.

In order to verify that the MHV numerators constructed in this way satisfy the BCJ

duality, three different classes of kinematic Jacobi relations need to be considered:

• Jacobi identities affecting the propagators of tree-level subdiagrams hold by the

Schouten identity (2.7) among the structure constants in eq. (4.7).

• Jacobi identities affecting the m-gon propagators non-adjacent to leg 1 hold by the

property

n1|A2|A3|...|Ai|Ai+1|...|Am − n1|A2|A3|...|Ai+1|Ai|...|Am = n1|A2|A3|...|[Ai,Ai+1]|...|Am (4.21)

of the general numerator in eq. (4.20). The large tree subdiagram [Ai, Ai+1]

on the right-hand side comprises the smaller tree subdiagrams Ai and Ai+1 con-

nected through a cubic vertex; accordingly it contributes the structure constants

X([Ai,Ai+1]) = XAi,Ai+1X
(Ai)X(Ai+1), see eq. (4.7). As a proof of eq. (4.21), we will

demonstrate in appendix D that the prescription X commutes with this class of

Jacobi identities. This remarkable fact is easy to check for certain choices of pairs

{r, s}, and we have already seen the simplest examples at N = 4, 5, 6.

• Jacobi identities affecting the m-gon propagators adjacent to leg 1 hold by the

property

n1|A2|A3|...|Am(`) = n1|A3|A4|...|Am|A2
(`+ kA2) = n1|Am|A2|A3|...|Am−1

(`− kAm) (4.22)

of the general numerator in eq. (4.20). It is crucial to use the same conventions for

loop momenta in the three graphs related by a Jacobi identity. Since the momentum

` in the argument of the numerator n1|A2|A3|...|Am(`) is defined to reside in the m-

gon edge prior to leg 1, the antisymmetrization in corners 1, A2 or 1, Am leads to a

shift as ` 7→ ` + kA2 or ` 7→ ` − kAm , respectively. The would-be third diagram in

this class of Jacobi identities is an (m−1)-gon with massive corner [1, A2] or [1, Am]

whose numerator vanishes by construction. While eq. (4.22) is straightforward to

check analytically at low multiplicity m, we do not give a general proof and rely on

numerical checks. We have checked that eq. (4.22) holds for m ≤ 20.

4.4 Relation to dimension-shifting formula

There is a well-known relation at one loop between the integrand of MHV amplitudes in

the maximally supersymmetric gauge theory and the (integrated) all-plus amplitudes of

the non-supersymmetric theory; there is also a gravity counterpart. This is the dimension-

shifting formula of ref. [25]. It can be expressed as

δ8(Q)A1−loop
all-plus = −2ε(1− ε)(4π)2A1−loop

MHV

∣∣∣
D→D+4

, (4.23)
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MHV numerators

all-plus numerators

prescription X

MHV amplitude

all-plus amplitude

dimension-shifting

Figure 4. Our prescription X versus the dimension-shifting formula of ref. [25].

where D = 4−2ε, and the delta function on the left hand side compensates for the different

amount of supersymmetry preserved by A1−loop
all-plus and A1−loop

MHV , respectively. The dimension

shift D → D + 4 of the MHV amplitude is to be taken before integration, when the

amplitude is expressed in terms of D-dimensional scalar integrals. In the MHV integrand,

the only surviving diagrams after the shift in the limit ε→ 0 are the box integrals.

We saw above that a sort of converse statement is true: the BCJ numerators of all-

plus amplitudes allow us to write down the BCJ numerators of MHV amplitudes. We can

summarize the relationships as in figure 4.

4.5 Supergravity amplitudes

We can obtain one-loop MHV amplitudes in N = 8 supergravity through the double-copy

construction by squaring the numerators of N = 4 super-Yang-Mills (SYM),

M1−loop
N,MHV =

δ16(Q)∏N
i=2〈1i〉4

∫
dD`

(2π)D

N∑
m=4

∑
A2∪A3∪...∪Am

={2,3,...,N}

n2
1|A2|...|Am(`)∏
k Pk;A2,...,Am(`)

, (4.24)

where n1|A2|...|Am(`) is given by eq. (4.20); the sum is over all possible one-loop m-gon

diagrams with sub-trees A2, . . . Am attached to the corners, and the denominator is the

product of all propagators of the diagram. Note that the N = 5 instance of eq. (4.24)

descends from the ten-dimensional supergravity amplitude in ref. [16] upon dimensional

reduction and insertion of helicity wavefunctions.

As discussed in details in ref. [63] (see eqs. (3.4) and (3.6) therein), an alternative

form of the one-loop double-copy is given in terms of master N -gon numerators and full

gauge-theory integrands,

M1−loop
N =

∫
dD`

(2π)D

∑
σ∈SN−1

n1−loop
1|σ(2)|σ(3)|...|σ(N)(`) Ĩ

1−loop
1,σ(2),σ(3),...,σ(N)(`) , (4.25)

where the sum is over all cyclically inequivalent permutations σ, and Ĩ1−loop may in general

be associated with numerators for different states, similarly to the numerators ñ in eq. (2.3).

For MHV in the maximally supersymmetric theories, we can use explicit formulae for

both the numerators, (4.17), and the full integrand (see e.g. eqs. (4.14), (4.15) and (B.1)),

and obtain

M1−loop
N,MHV =

δ16(Q)∏N
i=2〈1i〉4

∫
dD`

(2π)D

∑
σ∈SN−1

n1|σ(2)|σ(3)|...|σ(N)(`) I1,σ(2),σ(3),...,σ(N)(`) . (4.26)
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As shown in ref. [63], an important feature of this representation is that the gauge-theory

integrands Ĩ1−loop do not have to be in BCJ form to give correct supergravity result.

Thus, given any representation for the SYM integrand (or equivalently the stripped version

I), (4.26) and our result (4.17) directly yield a formula for MHV integrands of N = 8

supergravity. More importantly, one can combine the numerators of N = 4 SYM as in

eq. (4.20) with integrands I1−loop
1,σ(2),σ(3),...,σ(N)(`) of less supersymmetric N < 4 gauge theories

to obtain one-loop amplitudes of (4 +N ) supergravities [63].

5 String-theory derivation at one-loop

This section is devoted to a derivation of the BCJ numerators in eq. (4.20) from superstring

theory.

5.1 Schwinger parametrization of Feynman integrals

The appearance of Feynman integrals in the α′ → 0 limit of superstring amplitudes is

particularly transparent in their Schwinger parametrization. For a scalar m-gon integral

in D dimensions, this amounts to a change of variables [64–67],∫
dD`

`2(`+k1)2(`+k12)2 . . . (`+k12...m−1)2
= πm

∫ ∞
0

dt

t
tm−D/2

∫
0≤νi≤νi+1≤1

dν2 . . . dνm e
−πtQm ,

(5.1)

towards worldline length t and proper times νj with the following shorthand in the exponent

Qm ≡
m∑
i<j

(ki · kj)
(
ν2
ij − |νij |

)
, ν1 = 0 , νij ≡ νi − νj . (5.2)

For tensorial Feynman integrals, i.e. in presence of loop momenta Tµ1µ2...µr`
µ1`µ2 . . . `µr in

the numerator, the analogous expressions take a particularly simple form if the accompa-

nying symmetric tensor is traceless, ηµ1µ2Tµ1µ2...µr = 0:∫
dD` Tµ1µ2...µr`

µ1`µ2 . . . `µr

`2 (`+ k1)2 (`+ k12)2 . . . (`+ k12...m−1)2

∣∣∣
traceless

= πm
∫ ∞

0

dt

t
tm−D/2

×
∫

0≤νi≤νi+1≤1

dν2 . . . dνm e
−πtQm Tµ1µ2...µrL

µ1Lµ2 . . . Lµr . (5.3)

The right hand side involves the following shift of loop momentum

Lµ ≡
m∑
i=2

kµi νi . (5.4)

Since any loop momentum in the BCJ numerators (4.20) enters through the kinematic

structure constants, the requirement of having traceless tensors in eq. (5.3) is automatically
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satisfied:3

X`,iX`,j = `µ`ν〈1|σµki|1〉〈1|σνkj |1〉 , ηµν〈1|σµki|1〉〈1|σνkj |1〉 = 0 . (5.5)

Hence, eq. (5.3) translates the r’th power of loop momentum in the numerators (4.20) to

a polynomial of degree r in the proper times νj . Note that eq. (5.3) does not depend on

the external masses and remains valid for off-shell momenta k2
j 6= 0 in case of external

tree-level subdiagrams.

5.2 Feynman integrals from string theory

We will next illustrate how the worldline integrals on the right hand side of eq. (5.3) arise in

the field-theory limit of one-loop superstring amplitudes. For the open string, the worldline

length t descends from the modular parameter τ of the cylindrical worldsheet,4 and the

ordering of the proper times νi ≤ νi+1 is inherited from the arrangement of vertex operators

on the cylinder boundary. In this setting, single-trace one-loop amplitudes among massless

open superstring excitations in D spacetime dimensions take the schematic form

A1−loop(1, 2, . . . , N) =

∫ ∞
0

dτ

τ5
Γ10−D(τ)

∫
0≤Im (zi)≤Im (zi+1)≤τ

dz2 . . . dzN e
−2QN KN . (5.6)

The lattice factor Γ10−D(τ) describes supersymmetry-preserving compactifications of ten-

dimensional Minkowski spacetime on 10−D dimensional tori; their field-theory limit yields

maximally supersymmetric Yang-Mills theories in D < 10 dimensions [8]. The cylinder

punctures zj with Re (zj) = 0 enter through the correlation function of N vertex operators

on a genus-one Riemann surface, where the one-loop instance e−2QN of the Koba-Nielsen

factor
∏
i<j |zi − zj |α

′ki·kj in eq. (A.1) can be factored out and reads

QN ≡
N∑
i<j

ki ·kj G(zi, zj , τ) , G(zi, zj , τ) ≡ −α
′

2
ln
∣∣ θ1(zi−zj , iτ)

∣∣2 +
α′π

τ
[Im (zi−zj)]2 .

(5.7)

The bosonic Green function G(zi, zj , τ) on a genus-one surface involves the odd Jacobi

theta function θ1. The external polarizations enter through the remaining integrand KN in

eq. (5.6) whose representation depends on the formalism chosen. The systematic evaluation

and economic presentation of KN pose one major challenge in the analysis of multiparti-

cle one-loop amplitudes of the open superstring, see e.g. refs. [18, 70–74]. The simplest

nonvanishing instances are

K4 = s23s34A
tree(1, 2, 3, 4) , K5 = ∂G(z2, z3, τ)s23C1|23,4,5 + (2, 3↔ 2, 3, 4, 5) , (5.8)

3In four-dimensional helicity configurations beyond MHV and in the ten-dimensional six-point amplitude

of ref. [16], tensorial numerators are no longer traceless, and eq. (5.3) receives extra terms with LµiLµj →
ηµiµj/(2πt).

4The string amplitude also receives contributions from worldsheets of Möbius strip topology and “non-

planar” cylinders with state insertions on both boundaries [68]. Since the planar cylinder already yields

unique answers for the BCJ numerators, we will neglect the additional worldsheet topologies in the sequel.

From the string-theory perspective, however, their interplay is crucial for the cancellation of infinities [69]

and anomalies [19, 20] for gauge group SO(32).
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with five-point kinematic factors5

C1|23,4,5 ≡ s45

(
s24A

tree(1, 3, 2, 4, 5) − s34A
tree(1, 2, 3, 4, 5)

)
(5.9)

and partial SYM tree-level amplitudes Atree(1, 2, . . . , N). Higher-multiplicity expressions

obtained from the pure-spinor formalism in ref. [18] will be reviewed in the subsequent

subsection.

In order to recover Feynman integrals from the string prescription (5.6), the point-

particle limit α′ → 0 must be accompanied by a degeneration of the cylindrical worldsheet

to a worldline diagram via τ → ∞. Moreover, the combined field-theory limit must be

performed such that the proper time t ≡ α′τ and the proper times νj ≡ Im (zj)
τ stay finite.

The worldsheet Green function in eq. (5.7) then reduces to the worldline Green function Gij ,

G(zi, zj , τ)→ πt

2

(
ν2
ij − |νij |

)
≡ Gij , ∂G(zi, zj , τ)→ π

(
νij − 1

2 sgnij
)
≡ ∂Gij , (5.10)

where sgnij ≡ sgn(νij) is defined to be +1(−1) when νi ≥ νj (νi < νj). As a consequence,

the Koba-Nielsen factor (5.7) behaves as

e−2QN → e−πtQN , (5.11)

reproducing the universal integrand (5.3) in the Schwinger parametrization of Feynman

integrals.

In compactifications of ten-dimensional Minkowski spacetime on a 10−D dimensional

torus, Kaluza-Klein and winding modes decouple when the radii R of the toroidal directions

and the string length
√
α′ vanish according to the following scaling limit [8]:

R → 0 ,
α′

R
→ 0 ⇒ Γ10−D(τ)→ (Rτ)5−D/2 . (5.12)

The resulting scaling of the lattice factor Γ10−D keeps the D-dimensional SYM coupling

finite [8]. Therefore, the field-theory limit α′ → 0 and τ → ∞ maps the string-theory

measure (5.6) to the Schwinger representation of Feynman integrals as in eq. (5.3),∫ ∞
0

dτ

τ5
Γ10−D(τ)

∫
0≤Im (zi)≤Im (zi+1)≤τ

dz2 . . . dzN e
−2QN KN (5.13)

→
∫ ∞

0

dt

t
tN−D/2

∫
0≤νi≤νi+1≤1

dν2 . . . dνN e
−πtQN KN +O(s−1

i1...ip
) ,

see ref. [76] for an extension to higher loops. This degeneration prescription does not

yet take kinematic poles O(s−1
i1...ip

) into account; these originate from singularities of the

worldsheet integrand KN as zi → zj . They are associated with m < N -gon integrals

5In refs. [14, 18, 75], the notation C1|A,B,C refers to BRST-invariant expressions in pure-spinor superspace

which enter kinematic factors through the zero mode bracket 〈C1|A,B,C〉 explained below eq. (A.2). In order

to avoid the ubiquitous appearance of 〈. . .〉, this operation is absorbed into this work’s definition of C1|A,B,C .

Also, the conventions for Mandelstam invariants in eq. (3.1) differ from these references and give rise to

conversion factors of 2.
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in an N -point amplitude and will be discussed separately in subsection 5.5. The N -gon

numerator of the SYM amplitude, i.e. its irreducible piece, can be reliably extracted from

eq. (5.13) by translating the Green functions in the integrands as in eq. (5.10),

KN ≡ KN
∣∣∣
∂G(zi,zj ,τ)→∂Gij

. (5.14)

This defines the worldline counterpart KN of the string-theory integrand KN . Since the

superstring integrands KN of interest to this work will be polynomials in ∂G of degree N−4,

see e.g. eq. (5.8) at N = 4, 5, the worldline integrands KN in eq. (5.14) become polynomials

in proper times νj by (5.10). Hence, they have the right structure to identify the field-theory

limit (5.13) with tensorial N -gon integrals in their Schwinger parametrization (5.3).

5.3 The non-anomalous one-loop correlator

In this subsection, we describe the all-multiplicity structure of the open string integrand KN
in eq. (5.6). The singular factors of G(zi, zj , τ) ∼ (zi− zj)−1 in its five-point instance (5.8)

reflect one OPE among the vertex operators, and we have used integration by parts relations

0 = −
∫

dz2
d

dz2
e−2Q5 (5.15)

=

∫
dz2 e

−2Q5
[
s23∂G(z2, z3, τ) + s24∂G(z2, z4, τ) + s25∂G(z2, z5, τ)− s12∂G(z1, z2, τ)

]
to eliminate the four instances of G(z1, zj , τ) with j = 2, 3, 4, 5. The resulting six basis

integrals over G(zi, zj , τ) with 2 ≤ i < j ≤ 5 are accompanied by BRST-invariant kine-

matic factors (5.9) in pure-spinor superspace. This approach has been extended to higher

multiplicity in ref. [18]: polynomials in G(zi, zj , τ) which are independent under integration

by parts have been matched with BRST-invariant quantities C1|A,B,C built from iterated

OPEs among vertex operators. The shorthand

Yij ≡ sij∂G(zi, zj , τ) (5.16)

simplifies both the integration-by-parts relations (5.15) and the higher-multiplicity inte-

grands KN

K6 =
[
Y23(Y24 + Y34)C1|234,5,6 + Y24(Y23 + Y43)C1|243,5,6 + (234↔ 235, 236, . . . , 456)

]
+
[
Y23Y45C1|23,45,6 + Y24Y35C1|24,35,6 + Y25Y34C1|25,34,6 + (6↔ 5, 4, 3, 2)

]
, (5.17)

K7 = 15 terms
[
Y23(Y24 + Y34)(Y25 + Y35 + Y45)C1|2345,6,7 + perm(3, 4, 5)

]
+ 60 terms

[
Y23(Y24 + Y34)C1|234,56,7 + Y24(Y23 + Y43)C1|243,56,7

]
Y56

+ 15 terms
[
Y23Y45Y67C1|23,45,67

]
. (5.18)

For K7 we simply indicate the number of terms of a given type, and the all-multiplicity

pattern can be found in subsection 5.4 of ref. [18]. Remarkably, the BRST-invariant quan-

tities C1|A,B,C can be expressed in terms of tree-level subamplitudes of ten-dimensional
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SYM [18], as in eq. (5.9) and

C1|234,5,6 = s56

[
s45A

tree(1, 2, 3, 4, 5, 6) + s25A
tree(1, 4, 3, 2, 5, 6)

− s35(Atree(1, 2, 4, 3, 5, 6) +Atree(1, 4, 2, 3, 5, 6))
]

C1|23,45,6 = s46s36A
tree(1, 2, 3, 6, 4, 5)− s56s36A

tree(1, 2, 3, 6, 5, 4) (5.19)

− s46s26A
tree(1, 3, 2, 6, 4, 5) + s56s26A

tree(1, 3, 2, 6, 5, 4) ,

see appendix B of ref. [14] for the general pattern. When reducing to the MHV case in D =

4, the Parke-Taylor formula [59] allows us to obtain compact spinor-helicity expressions, e.g.

C1|23,4,5

∣∣∣
MHV

=
−δ8(Q)[45]2

〈12〉 〈23〉 〈31〉

C1|234,5,6

∣∣∣
MHV

=
−δ8(Q)[56]2

〈12〉 〈23〉 〈34〉 〈41〉
(5.20)

C1|23,45,6

∣∣∣
MHV

=
δ8(Q)〈1| (k2 + k3) |6]2

〈12〉 〈23〉 〈31〉 × 〈14〉 〈45〉 〈51〉
with the following generalization:

C1|23...p,p+1...q,q+1...n

∣∣∣
MHV

=
−δ8(Q) 〈1| (k2 + k3 + . . .+ kp) (kp+1 + . . .+ kq) |1〉2

〈12〉 〈23〉 . . . 〈p1〉
(5.21)

× 1

〈1, p+1〉〈p+1, p+2〉 . . . 〈q1〉 × 〈1, q+1〉〈q+1, q+2〉 . . . 〈n1〉
.

We should emphasize that, due to their origin from pure-spinor superspace, the kinematic

factors C1|A,B,C by themselves comprise ten-dimensional SYM amplitudes, so the expres-

sions in eqs. (5.20) and (5.21) are special cases for lower dimensions and MHV helicity

configurations.

However, there is a major shortcoming to the (N ≥ 6)-point integrands KN obtained in

ref. [18] by imposing BRST invariance: the open superstring is plagued by a hexagon gauge

anomaly unless the gauge group is chosen as SO(32) [19, 20]. The anomaly cancellation

relies on the interplay between different worldsheet topologies, so the full integrand cannot

be gauge invariant for N ≥ 6. In the pure-spinor formalism, the resulting BRST anomaly

at N = 6 has been determined in ref. [77]. The integrand of the underlying anomalous

amplitudes must comprise an extension of the BRST invariant KN in ref. [18], the expres-

sions in eqs. (5.17) and (5.18) cannot capture the complete worldsheet correlation function

at N = 6 and N = 7.

Kinematic factors which carry the fingerprints of the BRST anomaly have been con-

structed in ref. [75]. Their appearance in the six-point SYM amplitude at one loop has

been described in ref. [16], and their embedding into full-fledged superstring integrands will

be explained in upcoming work.6 Six-point and seven-point instances of these anomalous

kinematic factors turn out to vanish for MHV helicity configurations7 upon dimensional

6In the language of ref. [78], the anomalous part of the correlator is captured by worldsheet functions

f (2), f (3), . . . of higher modular weight which for instance arise from the failure of ∂G ≡ −α
′

2
f (1) to satisfy

partial fraction relations,

f (1)(z1 − z2, τ)f (1)(z1 − z3, τ) + cyc(1, 2, 3) = f (2)(z1 − z2, τ) + cyc(1, 2, 3) .

7We would like to thank Carlos Mafra for contributing to these checks.
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reduction to D = 4. Even though the all-multiplicity pattern requires further investigation,

this supports the idea that the non-anomalous integrands of ref. [18] including eqs. (5.17)

and (5.18) give correct MHV amplitudes. As will be detailed in the sequel, the matching of

their worldline limit (5.14) with Feynman integrals (5.3) provides very strong consistency

checks, which have been established up to multiplicity N = 10.

5.4 Irreducible pieces

In this subsection, we illustrate the procedure to construct the N -gon numerator (4.17) of

N -point MHV amplitudes from the above string integrands KN . We start from an ansatz

n1−loop, MHV
1|2|3|...|N (`) = n0

1|2|3|...|N+`µn
µ
1|2|3|...|N + `µ`νn

µν
1|2|3|...|N + . . .+ `µ1`µ2 . . . `µN−4n

µ1...µN−4

1|2|3|...|N
(5.22)

incorporating the admissible powers (≤ N − 4) of the loop momentum and convert this to

a degree N−4 polynomial in proper times using the Schwinger parametrization `µ → Lµ =∑N
i=2 k

µ
i νi; see eq. (5.3). The latter must be compared with the worldline limits (5.14) of

the string integrands, i.e. we impose

n1−loop, MHV
1|2|3|...|N (`→ L) = KN

∣∣∣
MHV

, (5.23)

where the MHV specification of KN translates its kinematic constituents C1|A,B,C to the

expressions (5.21). Each monomial in νj leads to a constraint on the symmetric tensors

n
µ1...µp
1|2|3|...|N with 0 ≤ p ≤ N − 4. Given that the four-dimensional vector indices range over

µj = 0, 1, 2, 3, the number of equations encoded in eq. (5.23) always suffices to determine

all independent tensor components — without any appearances of Gram determinants. In

fact, a naive counting of equations and numerator degrees of freedom raises the possibility

that the equation systems might be overconstrained. Hence, the existence of solutions

which we verified for MHV helicities up to N = 10 can be viewed as a non-trivial con-

sistency check on the underlying string integrands KN . That is why we conjecture the

non-anomalous correlators of ref. [18] to completely capture the MHV sector of superstring

one-loop amplitudes. For NMHV helicities, on the other hand, the BRST-invariant six-

point correlator in eq. (5.17) turns out to be incompatible with numerators in eq. (5.23),

calling for its anomalous completion.

At N = 4, the four-point integrand in eq. (5.8) immediately determines the box nu-

merator,

n0
1|2|3|4 = s23s34A

tree(1, 2, 3, 4)
∣∣∣
MHV

⇒ n1|2|3|4 = X2,3X3,4 , (5.24)

so the simplest dependence on νj occurs at N = 5 with K5 in eq. (5.8). In the decomposi-

tion (5.22) of the pentagon numerator, its scalar part can be straightforwardly read off from

n0
1|2|3|4|5 = K5

∣∣∣νj=0

MHV
=
s23

2
C1|23,4,5 + (23↔ 24, 25, 34, 35, 45)

∣∣∣
MHV

⇒ n1|2|3|4|5

∣∣∣
`0

= X2,3X2,5X4,5 , (5.25)

whereas the vector pentagon is determined by

k2
µn

µ
1|2|3|4|5 = K5

∣∣∣ν2
MHV

=
[
s23C1|23,4,5 + (3↔ 4, 5)

] ∣∣∣
MHV

(5.26)
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and its three independent images under (2↔ 3, 4, 5). As a unique solution, we find

n1|2|3|4|5

∣∣∣
`1

= X`,2X3,5X4,5 +X`,5X2,3X2,4 . (5.27)

Note that the MHV vector pentagon (5.27) descends from a vectorial BRST invariant in

pure-spinor superspace [14, 75] which was identified as the vector pentagon in the five-point

amplitude of ten-dimensional SYM [16].

Assembling eqs. (5.25) and (5.27) reproduces the pentagon numerator in eq. (4.9).

Note that the scalar part (5.25) stems from ∂Gij → 1
2sgnji and depends on the ordering

of the pentagon legs, e.g. the numerator associated with ordering {1, 2, 4, 3, 5} is obtained

from eq. (5.26) by flipping the sign of s34C1|34,2,5. The vector pentagon (5.27) due to

∂Gij → νij , on the other hand, is permutation invariant, i.e. universal to all pentagon

orderings. The analogous derivation of the hexagon numerator (4.12) using K6 in eq. (5.17)

involves relations such as

k2µk2νn
µν
1|2|3|4|5|6 = −

[
s23 s24C1|324,5,6 + (34↔ 35, 36, 45, 46, 56)

] ∣∣∣
MHV

. (5.28)

At the practical level, it proves convenient to convert the tensor numerators in the

ansatz (5.22) to spinorial expressions: given that any `-dependence can be expressed

in terms of structure constants X`,..., the left-handed spinor indices are entirely carried

by λα1 ≡ 〈1|,

n
µ1...µp
1|2|3|...|N = σµ1

α1β̇1
σµ2
α2β̇2

. . . σ
µp

αpβ̇p
n
α1...αp|β̇1...β̇p
1|2|3|...|N , n

α1...αp|β̇1...β̇p
1|2|3|...|N = λα1

1 λα2
1 . . . λ

αp
1 n̂

β̇1...β̇p
1|2|3|...|N ,

(5.29)

where the tensors n
µ1...µp
1|2|3|...|N are defined by analogy with eq. (5.22). Hence, the leftover task

to determine the right-handed part n̂
β̇1...β̇p
1|2|3|...|N involves fewer equations and unknowns.

5.5 Reducible pieces

The above procedure to determine the irreducible part of N -point one-loop amplitudes will

now be complemented by a prescription to adjoin the kinematic poles s−1
i1i2...ip

from external

tree-level subdiagrams; see eq. (3.1) for our conventions for Mandelstam invariants. The

string-theory origin of the propagators (A.3) in tree-level amplitudes can be traced back

to the representation

δ(z) = lim
s→0

szs−1 ↔
∫ a

0
dz f(z) zs−1 =

f(0)

s
+O(s0) , a > 0 (5.30)

of the delta function. Similarly, one-loop amplitudes as in eq. (5.6) develop kinematic poles

from the local behaviour of ∂G(zi, zj , τ)e−2QN ∼ |zi − zj |α
′sij−1 as zi → zj . However, the

factor of |zi − zj |α
′sij−1 can only integrate to a pole in sij if i and j are neighbors in the

cyclic integration domain Im (zi) < Im (zi+1) of the open string. These observations can

be summarized by the following behaviour in the field-theory limit:

∂G(zi, zj , τ)→ ±δi,j∓1 δ(zi − zj)
sij

+ ∂Gij . (5.31)
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The prescription (5.31) yields the following reducible contributions in the five-point inte-

grand (5.8):

K5

∣∣∣
reducible

= δ(z2 − z3)C1|23,4,5 + δ(z3 − z4)C1|34,2,5 + δ(z4 − z5)C1|45,2,3 . (5.32)

As known from refs. [64, 65], it is crucial to identify these reducible parts prior to the

degeneration of the Green functions in eq. (5.10) as the worldline Green function ∂Gij does

not preserve the singularity of the worldsheet Green function ∂G(zi, zj , τ) ∼ (zi − zj)−1.

In the worldline limit of the reducible part (5.32), the delta functions are translated via

δ(zi−zj) = t−1δ(νi−νj). Hence, both the overall power of t and the momentum-dependence

of Q5|νi=νj agree with a box integral (5.1) with momentum ki+kj in a massive corner. The

reducible part of the correlator in eq. (5.32) identifies s45C1|45,2,3 to be the corresponding

box numerator,8 in agreement with eq. (4.9).

Note that by construction of the string integrands KN , integration by parts identities

such as eq. (5.15) have been used to eliminate any instance of ∂G(z1, zj , τ) with j =

2, 3, . . . , N . Hence, z1 will never appear in a delta function in eq. (5.32), and the field-

theory limit cannot comprise any Feynman integrals with leg 1 in a massive corner. This

is the string-theory origin of the selection rule on the BCJ numerators which was earlier

on motivated by the vanishing of the associated kinematic structure constant, X1,j = 0.

We would like to highlight the two-fold role of the worldsheet Green function

∂G(zi, zi+1, τ). On the one hand, by its contribution sgni,i+1 from the worldline limit (5.10),

it controls the antisymmetric part of the N -gon numerator under exchange of legs i, i+ 1.

On the other hand, its reducible contribution (5.31) implies that the antisymmetric part of

the N -gon numerator coincides with the corresponding (N − 1)-gon numerator where legs

i and i+ 1 form an external tree. Generally speaking, this two-fold role of the worldsheet

Green function offers a string-theory understanding of kinematic Jacobi relations between

m-gons and (m− 1)-gons as depicted in figure 5. However, a separate analysis is required

if leg 1 adjacent to the loop momentum is involved in this antisymmetrization, see the

discussion around eq. (4.22).

5.6 Multiparticle pattern of reducible pieces

In presence of N ≥ 6 external legs, multiple factors of worldsheet Green functions allow

for simultaneous kinematic poles such as (s23s45)−1. Their overall number p can vary in

the range 0 ≤ p ≤ N − 4. Iteration of the five-point prescription (5.31) gives rise to the

following pole structure in the field-theory limit:

∂G(z2, z3, τ)∂G(z4, z5, τ)→ δ(z2 − z3)δ(z4 − z5)

s23s45
(5.33)

+
δ(z2 − z3)∂G45

s23
+
∂G23δ(z4 − z5)

s45
+ ∂G23∂G45 .

8The factor of s45 can be understood from an insertion of 1 = s45
s45

into the contribution ∼
C1|45,2,3

`2(`+k1)2(`+k12)2(`+k123)2
of this box diagram to the integrand of the one-loop SYM amplitude.
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Figure 5. Given the impact of worldsheet Green functions on the field-theory limit, antisym-

metrized p-gon numerators agree with (p− 1)-gon numerators as long as leg 1 adjacent to the loop

momentum is not involved in the antisymmetrization.

Nested arguments of the Green functions lead to multiparticle Mandelstam invariants, e.g.

∂G(z2, z3, τ)∂G(z2, z4, τ)→ δ(z2 − z3)δ(z3 − z4)

s234s23
+
δ(z2 − z3)∂G24

s23
+ ∂G23∂G24 . (5.34)

If only a subset of the Green functions refer to a sequence of neighboring particles in the in-

tegration domain zi ≤ zi+1, then the cascade of reducible contributions gets shortened, e.g.

∂G(z2, z3, τ)∂G(z3, z5, τ)→ δ(z2 − z3)∂G35

s23
+ ∂G23∂G35 . (5.35)

The all-multiplicity generalization of the above rules closely follows the pole analysis at

tree level; see in particular section 4 of ref. [79].

The following types of six-point numerators arise from the integrand in eq. (5.17) as

well as the prescriptions (5.33) to (5.35):

• massive pentagons from G(z2, z3, τ)→ δ(z2 − z3)/s23 along with

K6

∣∣∣
∂G(z2,z3,τ)

=
[
Y34C1|234,5,6−Y24C1|324,5,6+(4↔ 5, 6)

]
+
[
Y45C1|23,45,6+(45↔ 46, 56)

]
(5.36)

The numerator is determined by applying the procedure in subsection 5.4 to eq. (5.36)

with z2 = z3 or ν2 = ν3, resulting in the following contribution to the color-ordered

SYM integrand:

δ8(Q)∏6
j=2〈1j〉2

X2+3,5X2+3,4X`,6 +X2+3,6X2+3,4X2+3+4,5 +X4,6X`,2+3X2+3+4,5

`2(`+ k1)2(`+ k123)2(`+ k1234)2(`+ k12345)2

X2,3

s23
.

(5.37)
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• two-mass boxes from Y23Y45C1|23,45,6, Y23Y56C1|23,4,56 and Y34Y56C1|2,34,56, e.g.

C1|23,45,6

`2(`+ k1)2(`+ k123)2(`+ k12345)2

∣∣∣
MHV

=
δ8(Q)∏6
j=2〈1j〉2

X2+3,4+5X4+5,6

`2(`+ k1)2(`+ k123)2(`+ k12345)2

X2,3X4,5

s23s45
(5.38)

• one-mass boxes from Y23(Y24 + Y34)C1|234,5,6 + (3↔ 4) and (234↔ 345, 456), e.g.

C1|234,5,6

`2(`+ k1)2(`+ k1234)2(`+ k12345)2

∣∣∣
MHV

(5.39)

=
δ8(Q)∏6
j=2〈1j〉2

X2+3+4,5X5,6

`2(`+ k1)2(`+ k1234)2(`+ k12345)2

(
X2,3X2+3,4

s23s234
+
X4,3X4+3,2

s34s234

)
The complete color-ordered six-point integrand comprising various permutations of the

above diagrams is spelt out in appendix B. Note that the above box and pentagon nu-

merators descend from the ten-dimensional one-loop SYM amplitude in ref. [16] upon

dimensional reduction to D = 4 and specialization to MHV helicities.

The rewriting of the box contributions in eqs. (5.38) and (5.39) exemplifies the conver-

sion between cubic diagrams and Parke-Taylor-like denominators in eq. (5.21) for C1|A,B,C ,

(3.5) and (3.6). This ensures that the box contribution of the N -point one-loop integrand,∑
2≤p<q≤N−1

C1|23...p,p+1...q,q+1...N

`2(`+ k1)2(`+ k12...p)2(`+ k12...p,p+1...q)2
, (5.40)

comprises all the tree-level subdiagrams admissible in the massive corners of the boxes.

The sum over diagrams in eq. (3.6) ties in with the construction of C1|A,B,C in pure-spinor

superspace, where supersymmetric Berends-Giele currents enter as a key ingredient [14, 18].

Hence, eq. (5.40) is expected to capture the box content of ten-dimensional N -point SYM

amplitudes in pure-spinor superspace, in line with the five- and six-point results in ref. [16].

6 Conclusion and outlook

In this work, we present remarkably compact expressions for BCJ numerators of one-

loop MHV amplitudes in maximally supersymmetric Yang-Mills theory and supergravity.

While the representation for supergravity amplitudes is obtained via the BCJ double-

copy construction [1, 2], that for SYM is derived from the infinite-tension limit of open

superstrings. The main results for SYM numerators are given in eq. (4.20) and can be

produced by a simple operation X acting on the self-dual numerators built from kinematic

structure constants.

The underlying superstring correlators have been partially determined in ref. [18] by

imposing BRST invariance of the superstring. Still, the fingerprints of the hexagon gauge

anomaly remain to be incorporated, presumably by combining the kinematic factors con-

structed in ref. [75] with additional worldsheet functions f (n) with n = 2, 3, . . . described

in ref. [78]. Fortunately, when restricted to the MHV helicity configuration in four dimen-

sions, we find strong evidence that the non-anomalous correlators in ref. [18] appear to

completely capture the BCJ numerators of this work.

– 25 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
1

The natural next step is to extend our one-loop numerators to arbitrary helicity config-

urations and to higher dimensions. Five- and six-point generalizations are already available

in ten-dimensional pure-spinor superspace [16]. It would be interesting to extend these su-

perspace numerators to arbitrary multiplicity and to incorporate the BCJ duality into

this framework beyond five points. Also, it would be desirable to understand the four-

dimensional helicity selection rules associated with the ten-dimensional hexagon anomaly,

i.e. to make the vanishing of anomalous kinematic factors [75] in the MHV helicity sector9

more transparent.

Although the explicit form of the numerators is worked out here only for the MHV

case, we emphasize that the diagrammatic structure of our representation as derived from

string theory is dimension-agnostic: no integral reductions have been performed to elimi-

nate certain m-gon integrals or loop momenta in the numerators, and the structure extends

to arbitrary helicities and higher dimensions. Thus our representation of SYM amplitudes

differs significantly from other forms in four dimensions, e.g. those obtained using gen-

eralized unitarity [61, 62, 80], though it should be possible to show their equivalence by

reductions of higher-gon integrals [81]. It also takes a different form from previous BCJ

representations at five [23] and six points [24]; most notably, the only kinematic poles of

our numerators are introduced by the polarization vectors.

The virtue of these BCJ representations are that one gets supergravity integrands

for free, in particular at one loop it takes the very enlightening form in eq. (4.26) upon

combining the master numerators (4.17) with any representation of the color-ordered SYM

integrand. As discussed in ref. [63], given Yang-Mills integrands with 0 ≤ N ≤ 4 supersym-

metries, our result (4.17) immediately yields a new, explicit representation for supergravity

amplitudes with N + 4 supersymmetries.

The simplicity of our result and its connections to the self-dual sector strongly suggest

that it is possible to assemble MHV numerators at higher loops from the same building

blocks. The superstring could again be a valuable starting point, together with the tech-

niques of ref. [76] to recover Feynman integrals. Pure-spinor superspace techniques provide

BCJ-satisfying two-loop five-point numerators [17], and the choice of building blocks is

inspired by the low-energy analysis of the underlying superstring amplitude [82]. In an

extension to higher multiplicity, one expects significant simplifications in the MHV sector,

and it would be very interesting to find an analogue of the operation X , which maps

self-dual numerators to MHV ones, at higher loops. A two-loop relation found in ref. [83],

similar to the dimension-shifting formula, provides an important clue.

To conclude, we point out an interesting connection. Self-dual gauge theory is known

to be classically integrable, and this property has been one of the main motivations for its

study. We find in this work an intriguing connection between this theory and N = 4 SYM,

a theory which is thought to be quantum integrable in the planar limit (at one loop, the

planar part determines the complete amplitude). Perhaps it is not surprising that we find

the same kinematic structures in both theories. It would be important to understand the

full extent of this connection.

9We would like to thank Carlos Mafra for contributing to these checks.
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A String-theory derivation of tree-level MHV numerators

In this appendix, we derive the tree-level MHV numerators from the field-theory limit

(α′ → 0) of string theory. Supersymmetric gauge theories arise from the massless exci-

tations of open superstrings, and their tree-amplitudes are obtained by integrating over

worldsheets of disk topology.

A.1 The ten-dimensional superstring origin

We recall the representation of the integrand given in ref. [12] to extract BCJ numerators in

ten-dimensional pure-spinor superspace. Up to total derivatives in the integration variables

z2, . . . , zN−2, this is the genus-zero worldsheet correlator 〈〈. . .〉〉 of N (un-)integrated vertex

operators Vi, Ui of the gauge supermultiplet in the pure-spinor formalism [13],

〈〈V1(z1)U2(z2) · · ·UN−2(zN−2)VN−1(zN−1)VN (zN )〉〉 ∼
∏
i<j

|zi − zj |α
′ki·kj (A.1)

×
N−2∑
j=1

〈V12...jVN−1,N−2...j+1VN 〉
(1, 2, 3, . . . , j,N, j + 1, . . . , N − 2, N − 1)

+ perm(2, 3, . . . , N − 2) .

The kinematic building blocks V12...p encompassing several particles 1, 2, . . . , p are known

superfields incorporating gluon polarizations, gluino wave functions and momenta. Repre-

sentations for V12...p were originally obtained from an iterated operator product expansion

of the vertex operators in eq. (A.1)10 [12, 84–86]. Later on, they were embedded into

a more general and computationally efficient formalism of multiparticle superfields [14]

which build up solutions of non-linear field equations of ten-dimensional SYM [15]. Using

the multiparticle version V12...p of the unintegrated vertex operator [14], the final result in

eq. (A.1) for the correlator can be rewritten in terms of (N − 2)! permutations of

(1, 2, . . . , k − 1, k) ≡ (z1 − z2)(z2 − z3) · · · (zk−1 − zk)(zk − z1) , (A.2)

10Note that the precursors of V12...p were denoted by T12...p in these references.
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1

2
3

. . .

j N j + 1

. . .

N − 3

N − 1

N − 2

V12...j VN−1,N−2...j+1

←→ 〈V12...jVN−1,N−2...j+1VN 〉

Figure 6. The mapping between master numerators and expressions in pure-spinor superspace.

after undoing the SL2 fixing of ref. [12]. The bracket 〈. . .〉 in the second line of eq. (A.1)

instructs us to extract the fifth power of the Grassmann variable θ from the enclosed

superfields [13]; see ref. [87] for a computer implementation and ref. [88] for various bosonic

and fermionic components of the resulting SYM amplitudes [85].

The kinematic factors 〈V12...jVN−1,N−2...j+1VN 〉 furnish master numerators under kine-

matic Jacobi relations [1] associated with (N − 2)! cubic half-ladder diagrams, see figure 6.

Their endpoints 1 and N−1 are inherited from the unintegrated vertices at finite positions

(say z1 = 0 and zN−1 = 1), whereas the role of VN is inherited from the SL2 fixing zN →∞.

The propagators of the cubic diagrams emerge in the α′ → 0 limit of the following disk

integrals11 [79, 89],

lim
α′→0

∫
zσ(i)≤zσ(i+1)

dz1 dz2 . . . dzN
vol(SL2)

∏
i<j |zi − zj |α

′ki·kj

(ρ(1), ρ(2), . . . , ρ(N))
= m[σ|ρ] , σ, ρ ∈ SN . (A.3)

The doubly partial amplitude m[σ|ρ] [34] comprises the N −3 simultaneous propagators of

all the cubic diagrams compatible with the cyclic orderings σ and ρ set by the integration

domain and the integrand of the form (A.2), respectively, for instance

m[1, 2, 3, 4 | 1, 2, 3, 4] =
1

s12
+

1

s23
, m[1, 2, 3, 4 | 1, 2, 4, 3] = − 1

s12
(A.4)

m[1, 2, 3, 4, 5 | 2, 1, 4, 3, 5] =
1

s12s34
, m[1, 2, 3, 4, 5 | 1, 3, 5, 2, 4] = 0 . (A.5)

By combining the correlation function (A.1) with the integration prescription (A.3), we

arrive at the following cubic-graph organization of color-ordered tree amplitudes

Atree(1, 2, . . . , N) = lim
α′→0

∫
zi≤zi+1

dz1 dz2 . . . dzN
vol(SL2)

(A.6)

× 〈〈V1(z1)U2(z2) · · ·UN−2(zN−2)VN−1(zN−1)VN (zN )〉〉

=
N−2∑
j=1

∑
ρ∈SN−3

〈V1ρ(2)...ρ(j)VN−1,ρ(N−2)...ρ(j+1)VN 〉

×m[1, 2, . . . , N |1, ρ(2), . . . , ρ(j), N, ρ(j + 1), . . . , ρ(N − 2), N − 1] .

11The SL2 redundancy of a disk worldsheet can be removed by fixing three positions as (zi, zj , zk) →
(0, 1,∞) and adjoining the Jacobian factor (zi − zj)(zi − zk)(zj − zk).
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Once the entire Kleiss-Kuijf basis {Atree(1, σ(2), . . . , σ(N − 1), N), σ ∈ SN−2} of partial

amplitudes has been evaluated via eq. (A.6) with m[1, 2, . . . , N−1, N | . . .]→ m[1, σ(2), . . . ,

σ(N−1), N | . . .], the numerator for any cubic graph can be read off as a linear combination

of the (N − 2)! master numerators 〈V1ρ(2)...ρ(j)VN−1,ρ(N−2)...ρ(j+1)VN 〉. These numerators

solve all the tree-level kinematic Jacobi relations (2.2); see ref. [12] for further details.

A.2 Restriction to four-dimensional MHV kinematics

The tree-level MHV numerators (3.3) in terms of kinematic structure constants can be

reproduced from the expressions in eq. (A.6) for ten-dimensional SYM amplitudes. The

gluonic component of the local superspace numerators 〈V12...jVN−1,N−2...j+1VN 〉 can be

extracted via ref. [87],12 and easily written in spinor-helicity variables for four-dimensional

MHV helicities.

With negative helicities in legs 1 and 2 and positive helicities in the remaining legs, it

is straightforward to obtain the following master numerators:

〈V1V2V3〉
∣∣∣1−2−

MHV
=
〈12〉3[η2]

[η1]〈13〉2
=
〈12〉3

〈23〉〈31〉
, 〈V123V4V5〉

∣∣∣1−2−

MHV
=
〈12〉4[2η][23][45]

[η1]〈13〉〈14〉〈15〉
, (A.7)

〈V12V3V4〉
∣∣∣1−2−

MHV
=
〈12〉3[2η][34]

[η1]〈13〉〈14〉
, 〈V12V43V5〉

∣∣∣1−2−

MHV
=
〈12〉4[2η][25][43]

[η1]〈13〉〈14〉〈15〉
, (A.8)

〈V1V32V4〉
∣∣∣1−2−

MHV
=
〈12〉3[η4][23]

[η1]〈13〉〈14〉
, 〈V1V432V5〉

∣∣∣1−2−

MHV
=
〈12〉3[5η][25][34]

[η1]〈13〉〈14〉
. (A.9)

These expressions are based on the polarization vectors in eq. (3.2), reproduce the numer-

ators in eq. (3.3) and are conjectured to generalize to

〈V12...jVN−1,N−2,...,j+1VN 〉
∣∣∣1−2−
MHV

=



(−1)N 〈12〉2[Nη]〈1N〉
[η1]

∏N
i=3〈1i〉2

(
N−3∏
q=1

X1+N+2+3+...+q,q+1

)
: j = 1 ,

(−1)N 〈12〉3[2η]

[η1]
∏N

i=3〈1i〉2

(
j∏

p=3

X1+2+...+(p−1),p

)
X1+2+...+j,N

×

(
N−j−2∏
q=1

X1+2+...+j+N+(j+1)+...+(j+q−1),j+q

)
: j ≥ 2 ;

(A.10)

see figure 6 for the underlying half-ladder diagram. We have explicitly checked eq. (A.10)

for six-point numerators, and there is no fundamental obstruction to extending the checks

to higher multiplicity.

Given that only N −3 legs enter the master numerators 〈V1ρ(2)...ρ(j)VN−1,ρ(N−2)...ρ(j+1)

VN 〉 in a permutation-agnostic manner, the BCJ numerators determined by eq. (A.6) violate

crossing symmetry, i.e. they treat legs 1, N − 1, N associated with unintegrated vertex

operators on special footing. This amounts to a particular distribution of contact terms

— the fingerprints of the quartic Feynman vertex — among the cubic diagrams. As a

common feature of contact terms, they involve at least two factors of (εi · εj) in terms of

D-dimensional polarization vectors. On the other hand, tensor structures of the schematic

12We are grateful to Carlos Mafra for providing the component expansions.
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form (εi · εj)(εp · kq)N−2 are unambiguously tied to a specific cubic diagram and therefore

furnish a crossing-symmetric subsector of the numerators.

As a consequence of MHV helicity assignment (1−, 2−, 3+, . . . , N+) and the form of

polarizations in eq. (3.2), the only non-vanishing dot-products are (ε
(−)
2 · ε(+)

j ) with j =

3, 4, . . . , N . Hence, all contact terms having at least two factors of (εi · εj) are bound to

vanish, and crossing symmetry of the BCJ numerators is restored in the MHV sector. This

is the reason why a crossing-symmetric expression (3.3) for the numerators w.r.t. 2, 3, . . . , N

emerges from their ancestors in pure-spinor superspace. On these grounds, we expect the

emergence of kinematic structure constants as in eq. (A.10) to extend to any multiplicity,

beyond the explicit checks performed at N ≤ 6 points.

B The one-loop six-point SYM amplitude

The one-loop integrand (see eq. (4.3)) for the six-point MHV single-trace subamplitude is

given by

I1,2,3,4,5,6(`) (B.1)

=
1

`2(`+k1)2

{
n1|2|3|4|5|6

(`+k12)2(`+k123)2(`+k1234)2(`+k12345)2

+
n1|[2,3]|4|5|6

s23(`+k123)2(`+k1234)2(`+k12345)2
+

n1|2|[3,4]|5|6

s34(`+k12)2(`+k1234)2(`+k12345)2

+
n1|2|3|[4,5]|6

s45(`+k12)2(`+k123)2(`+k12345)2
+

n1|2|3|4|[5,6]

s56(`+k12)2(`+k123)2(`+k1234)2

+
(X2,3X2+3,4

s23
+
X4,3X4+3,2

s34

) X2+3+4,5X2+3+4,6

s234(`+ k1234)2(`+k12345)2
+

X2,3X4,5X2+3,4+5X2+3,6

s23s45(`+k123)2(`+k12345)2

+
(X3,4X3+4,5

s34
+
X5,4X5+4,3

s45

) X2,3+4+5X2,6

s345(`+k12)2(`+k12345)2
+

X2,3X5,6X2+3,4X2+3,5+6

s23s56(`+k123)2(`+k1234)2

+
(X4,5X4+5,6

s45
+
X6,5X6+5,4

s56

) X2,3X2,4+5+6

s456(`+k12)2(`+k123)2
+

X3,4X5,6X2,3+4X2,5+6

s34s56(`+k12)2(`+k1234)2

}
,

where the hexagon numerator n1|2|3|4|5|6 is spelt out in eq. (4.12), and the pentagon numer-

ators are

n1|[2,3]|4|5|6 = X2,3(X2+3,5X2+3,4X`,6 +X2+3,6X2+3,4X2+3+4,5 +X4,6X`,2+3X2+3+4,5)

n1|2|[3,4]|5|6 = X3,4(X2,5X2,3+4X`,6 +X2,6X2,3+4X2+3+4,5 +X3+4,6X`,2X2+3+4,5)

n1|2|3|[4,5]|6 = X4,5(X2,4+5X2,3X`,6 +X2,6X2,3X2+3,4+5 +X3,6X`,2X2+3,4+5)

n1|2|3|4|[5,6] = X5,6(X2,4X2,3X`,5+6 +X2,5+6X2,3X2+3,4 +X3,5+6X`,2X2+3,4) . (B.2)

C Checks on quadruple cuts

Here we briefly discuss some checks on quadruple cuts of SYM and supergravity amplitudes

found in this paper. In addition to their string-theory derivation and BCJ duality, these

checks provide more evidence for the validity of our results. To compute quadruple cuts of
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one-loop amplitudes [61, 62, 80], one puts four propagators on shell, i.e. solving four equa-

tions with K1,K2,K3,K4 being sums of external momenta (note K1 +K2 +K3 +K4 = 0):

`2 = 0 , (`+K1)2 = 0 , (`+K1 +K2)2 = 0 , (`+K1 +K2 +K3)2 = 0 . (C.1)

In general there are two solutions to the set of equations, which are denoted as `(1) and `(2),

and their explicit form can be found in ref. [80]. Any cut of one-loop amplitudes evaluated

on either of the solutions, should be equal to products of tree amplitudes summed over

supermultiplets for internal lines. We work on the MHV case where the cuts are particularly

simple: the only non-trivial cuts are two-mass-easy ones (including degenerate one-mass

cases and, for four points, zero-mass), with either K1 = k1, K3 = ka, or K2 = kb, K4 = kc
for some external particles a or b, c. Here the two solutions are parity conjugate to each

other, and the cut is only non-vanishing on one of them, e.g. `(1) (for the parity-conjugate

MHV amplitude, it will be non-vanishing on `(2)).

In practice we multiply the integrands by the four inverse propagators, and then eval-

uate the result on either of the solutions. For definiteness let us focus on the first case

(K1 = k1, K3 = ka). For SYM amplitudes with canonical ordering, K2 = k2+ · · ·+ka−1,

K4 = ka+1+ · · · kN , the cut for `(1) must equal two times the corresponding box coefficient,

which is(̀
2(`+k1)2(`+k1+K2)2(`−K4)2I1−loop, MHV

1,2,...,N

)
|`=`(1) =

δ8(Q)[K2
2K

2
4−(k1+K2)2(k1+K4)2]

〈1 2〉〈2 3〉 · · · 〈N 1〉
,

(C.2)

and for `(2) it must vanish. The cuts for supergravity amplitudes must also vanish for `(2),

and evaluate to two times the box coefficient for `(1). The expressions of the box coefficients

can be found in ref. [90]. The results for the second case (K2 = kb, K4 = kc) follow by

simple relabelings.

We have checked numerically that our SYM results with N = 4, 5, 6, (4.14), (4.15)

and (B.1), reproduce all correct quadruple cuts, and the same is true for supergravity

results with N = 4, 5 as given by eq. (4.26). In addition, we have checked a subset of

quadruple cuts for seven-point SYM and six-point supergravity amplitudes.

A particularly simple case, where the computation can be done analytically, is the one-

mass cut with massless corners K1 = k1 and e.g. K2 = k2, K3 = k3. The two solutions are

`(1) = −|1〉
(

[1|+ 〈2 3〉
〈1 3〉

[2|
)
, `(2) = −

(
|1〉+

[2 3]

[1 3]
|2〉
)

[1| , (C.3)

and for SYM the cuts for the two solutions are given by the tree amplitude times s12s23 and

0, respectively. Note that by eq. (4.17), all `-dependence of our numerators drops out for

the first solution, thus only the scalar part contributes. For the second solution everything

contributes but eq. (4.17) also simplifies a lot. This one-mass cut of SYM has been checked

analytically up to six points, and with some efforts one should be able to show it to all

multiplicities. It would also be interesting to prove the validity of our supergravity results

on this cut.
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Figure 7. Jacobi identity involving a loop propagator.

D Jacobi identities for the MHV numerators

In this appendix, we describe in detail the Jacobi identities satisfied by our one-loop MHV

numerators and give a proof of eq. (4.21). A Jacobi identity involves four lines (internal

or external) connected by a propagator, and the three diagrams in the identity correspond

to the three different channels that the propagator may represent (see figure 1). Now, a

generic one-loop diagram is a p-gon with a tree attached to each corner. As elaborated in

section 4.3, it is helpful to distinguish Jacobi identities which affect propagators in tree-

level subdiagrams from those relating p-gons and (p±1)-gons as in figure 7. For the former

type, the Jacobi identities follow trivially from the fact that X is a spinor bracket, as in

the self-dual theory, since our prescription X preserves the X-structure of the trees. For

the latter type, however, the Jacobi identities are non-trivial because the prescription X

changes the X-structure of the p-gon, and we focus on this type of identity.

As a warm up, let us first consider the one-loop all-plus numerators, which have the

form

n1−loop
all-plus = 2

(
N∏
i=1

1

〈ηi〉2

)
×

(
p∏
a=1

X`+1+···+(a−1),a

)
×

(
p∏
b=1

X(Ab)

)
, (D.1)

where 1, 2, . . . , a denote the momenta entering the corners of the p-gon, rather than the

external particles. There is a factor X for each vertex in the p-gon, while the factors of

X(Ab) defined in eq. (4.7) capture the trees. Defining the p-gon contribution as

xall-plus =

p∏
a=1

X`+1+···+(a−1),a , (D.2)

the Jacobi identity in figure 7 follows from

xall-plus
···|a|b|··· − x

all-plus
···|b|a|··· = · · · (X`+I+z,aX`+I+z+a,b −X`+I+z,bX`+I+z+b,a) · · · =

= · · ·Xa,bX`+I+z,a+b · · · = xall-plus
···|[a,b]|··· . (D.3)

In the MHV case, we consider the much more elaborate object

xMHV = X1

{
p∏
a=1

X`+1+···+(a−1),a

}
= (D.4)

=
∑
r<s−1

Xr,s

(
r−1∏
i=2

X`+1+···+(i−1),i

) s−1∏
j=r+1

X1+···+(j−1),j

( N∏
k=s+1

X`+1+···+(k−1),k

)
,
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where X is now defined with |η〉 = |1〉. The Xr,s factor is ‘non-local’ in the p-gon, involving

non-neighbouring corners, so we have to analyze how the terms with different (r, s) play

out together in a given Jacobi identity. We will use the notation of figure 7. Particle 1 must

be directly attached to the p-gon, and plays the role of its boundary. The set I contains

the corners from particle 1 to z− 1 (Iz contains also z), and the set J contains the corners

from c + 1 to particle 1 (Jc contains also c). The terms in the Jacobi identity of figure 7

then split according to how (r, s) relate to (a, b). Showing how the identity follows, the

simplest cases are:

• r, s ∈ Iz or r, s ∈ Jc

· · · (X`+I+z,aX`+I+z+a,b−X`+I+z,bX`+I+z+b,a) · · · = · · ·Xa,bX`+I+z,a+b · · ·
√

(D.5)

• r ∈ Iz, s ∈ Jc

· · · (XI+z,aXI+z+a,b −XI+z,bXI+z+b,a) · · · = · · ·Xa,bXI+z,a+b · · ·
√

(D.6)

When r and s coincide with either a or b, it gets more complicated, and several terms must

play out together. We now have to distinguish (r1, s1) and (r2, s2), where the label refers

to the first and second diagrams of figure 7.

• (r1, s1) = (a, c), (r2, s2) = (b, c)

· · · (Xa,cXI+z+a,b −Xb,cXI+z+b,a) · · · = · · ·Xa,bXI+z+a+b,c · · · (D.7)

• (r1, s1) = (z, b), (r2, s2) = (z, a)

· · · (Xz,bXI+z,a −Xz,aXI+z,b) · · · = · · ·Xa,bXI,z · · · (D.8)

• r1 ∈ I, s1 = a, r2 ∈ I, s2 = b∑
r∈I
· · · (Xr,aX`+I+z+a,b −Xr,bX`+I+z+b,a) · · · =

∑
r∈I
· · ·Xa,bXr,`+I+z+a+b · · · (D.9)

• r1 ∈ I, s1 = a, r2 ∈ I, s2 = b∑
r∈I
· · · (Xr,aX`+I+z+a,b−Xr,bX`+I+z+b,a) · · · =

∑
r∈I
· · ·Xa,bXr,`+I+z+a+b · · · (D.10)

• r1 ∈ I, s1 = b, r2 ∈ I, s2 = a∑
r∈I
· · · (Xr,bXI+z,a −Xr,aXI+z,b) · · · =

∑
r∈I
· · ·Xa,bXI+z,r · · · (D.11)

• r1 = b, s1 ∈ J , r2 = a, s2 ∈ J∑
s∈J
· · · (Xb,sX`+I+z,a −Xa,sX`+I+z,b) · · · =

∑
s∈J
· · ·Xa,bXs,`+I+z · · · (D.12)
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• r1 = a, s1 ∈ J , r2 = b, s2 ∈ J∑
s∈J
· · · (Xa,sXI+z+a,b −Xb,sXI+z+b,a) · · · =

∑
s∈J
· · ·Xa,bXI+z+a+b,s · · · (D.13)

The trees a and b form a single tree in the third diagram of figure 7, and a small calculation

shows that the Jacobi identity requires

p∑
c=2

X`,c

(
c−1∏
d=2

X`+2+···+(d−1),d

)(
p∏

e=c+1

X2+3+···+(e−1),e

)
=

p∏
c=2

X`+2+···+(c−1),c . (D.14)

This identity can be easily proven by induction.

We have completed the proof of a generic Jacobic identity. There is a more elaborate

special case, where particle 1 is one of the corners involved in the relation (the third

diagram vanishes then, as particle 1 would be directly attached to the loop). We have

made numerical checks for the key identity (4.22) governing this case and will not attempt

to prove it here.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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