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We investigate the possibility to assist the numerically ill-posed calculation of spectral properties of interacting
quantum systems in thermal equilibrium by extending the imaginary-time simulation to a finite Schwinger-
Keldysh contour. The effect of this extension is tested within the standard maximum entropy approach to analytic
continuation. We find that the inclusion of real-time data improves the resolution of structures at high energy,
while the imaginary-time data are needed to correctly reproduce low-frequency features such as quasiparticle
peaks. As a nonequilibrium application, we consider the calculation of time-dependent spectral functions from
retarded Green function data on a finite time interval, and compare the maximum entropy approach to direct
Fourier transformation and a method based on Padé approximants.
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I. INTRODUCTION

A common strategy to circumvent the oscillatory conver-
gence of integrals in interacting quantum field theories is
the Wick rotation to imaginary time. Apart from possible
fermionic sign problems, quantum Monte Carlo (QMC)
simulations are well conditioned on the imaginary-time axis,
and simulations at nonzero temperature using the Matsubara
technique are straightforward. However, extracting dynamical
properties from imaginary-time data of the single-particle
Green function G(−iτ ) = −i〈Tτd

†(−iτ )d(0)〉 is an ill-posed
problem: the singular integral equation

iG(−iτ ) =
∫

dωA(ω)
e−τω

1 + e−βω
(1)

has to be solved for the spectral function A(ω).
If the real-time data for the retarded Green function

Gret(t,t ′) = −i�(t − t ′)〈{d(t),d†(t ′)}〉 (2)

were known on the entire real-time axis, the spectral function
could be obtained from a simple inverse Fourier transform
[in equilibrium, Gret(t,t ′) depends only on the time differ-
ence t − t ′]. The Fourier transform is not ill posed, due to
unitarity. Unfortunately, calculating these real-time data for
an interacting system is difficult. Monte Carlo techniques
can not reach long times, due to a dynamical sign problem
which grows exponentially as a function of the maximum real
time tmax. Nevertheless, as shown in Refs. [1–3], the real-time
Green function up to some finite time tmax can be computed
accurately using continuous-time Monte Carlo algorithms
[4–7] or, in certain parameter regimes, using perturbative
weak- [8] or strong-coupling methods [9], as well as Monte
Carlo sampling around strong-coupling perturbation theory
[10]. This raises the question if the information contained
in the real-time correlators for t,t ′ < tmax can be exploited to
obtain more reliable spectra using a suitably adapted analytical
continuation procedure.

A real need for the “analytical continuation” of real-
time Green functions arises in the study of nonequilibrium

properties of correlated systems, e.g., lattice systems perturbed
by a quench or some field pulse [2,11–13]. In order to
characterize the relaxation of these systems, it is often useful
to define a time-dependent spectral function

A(ω,t) = − 1

π
Im

∫ ∞

t

dt ′eiω(t ′−t)Gret(t ′,t), (3)

where Gret(t ′,t) now depends on both times individually
due to the loss of time-translation invariance. A(ω,t) is not
assured to be positive, but it typically becomes positive a
short time after the perturbation. In particular, A(ω,t) is
positive for any quasistationary state. When A(ω,t) is constant
over a time window of width �t , then it is positive after
averaging over a frequency window of �ω ∝ 1/�t . Under
certain assumptions, A(ω,t) is related to the photoemission
and inverse photoemission signal [14,15]. Furthermore, in an
equilibrium system, Eq. (3) reduces to the familiar spectral
function defined in Eq. (1). The challenges in the evaluation of
A(ω,t) are the same as those for equilibrium spectra mentioned
above: In practice, simulation results will be limited in time,
so direct Fourier transformation will lead to oscillations or a
smearing out of spectral features. Therefore, a second question
which we want to address is whether maximum entropy or
Padé approaches can be used to improve the quality of these
time-dependent spectra.

The paper is structured as follows: In Sec. II, we present
and test the maximum entropy approach for Keldysh Green
functions. In particular, Sec. II B investigates the singular
values of the kernel matrix and their dependence on the choice
of data points, in Sec. II C we test the analytical continuation
procedure for exactly known Green functions, and in Sec. II D
we compare the maximum entropy result to spectra obtained by
Fourier transformation. A generalization of the Padé analytical
continuation procedure to nonequilibrium Green functions is
introduced in Sec. III. In Sec. IV, we apply the maximum
entropy method to real-time simulation data of equilibrium
and nonequilibrium systems, and compare the method to direct
Fourier transformation and the Padé procedure. Section V
gives a summary and conclusion.
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II. MAXIMUM ENTROPY APPROACH

A. Formulation of the problem

In practice, real-time simulations are carried out on the
Keldysh contour C [16,17] illustrated in Fig. 1. The Green
function is a function of two time indices t and t ′, which may
lie on the upper real, the lower real, or the Matsubara branch
of the contour. Using the Keldysh-contour time ordering <C ,
the contour-ordered equilibrium Green function is related to
the spectral function through

iG(z,z′) = 〈TCd(z)d†(z′)〉
=

∫
dωA(ω)e−i(z−z′)ωFz,z′ (ω), (4)

with the contour-ordered Fermi factor

Fz,z′ (ω) :=
{
f (−ω) if z′ <C z,

−f (ω) else,
(5)

and the times z, z′ located on C. Obviously, Eq. (4) is a
generalization of Eq. (1), and extracting A(ω) from any data
set G(zi,zj ) is still an ill-posed problem when the times zi are
restricted to the Matsubara branch, or to times smaller than
some finite tmax.

The essential idea of the maximum entropy (MaxEnt)
approach is to infer a most probable spectral function. This
is explained in great detail in Ref. [18]. In addition, there
exists a vast amount of further literature on the MaxEnt
method, focusing both on theoretical issues and on the practical
procedures for the analytical continuation of QMC data.
An introduction to the MaxEnt method in general can, for
example, be found in Ref. [19]. Historically, the approach
goes back to the connection between information theory and
statistical mechanics as pointed out by Jaynes [20]. The
technical aspects of the approach and its applications to
the analytic continuation of imaginary-time data have been
discussed in a numerous publications, such as Refs. [21–25].

Formally, the problem (4) of analytic continuation can be
expressed as a linear equation

D = KA, (6)

where D represents simulation data, K is a linear operator,
given by the matrix kernel, applied to the unknown spectral
function A. The finite set D can be interpreted as a snapshot
from a Gaussian random variable with covariance C, in the
case of a Monte Carlo simulation [18].

An entropy functional αS[A] is subtracted in order to
regularize the minimization of χ2[D,A] with respect to A,
where

χ2[D,A] := 1
2 (KA − D)T C−1(KA − D). (7)

t

−iβ

C max

FIG. 1. (Color online) The Schwinger-Keldysh contour C. Ar-
rows indicate the direction of time ordering <C .

The most informative scalar α can be determined by a system-
atic application of Bayesian inference (classic MaxEnt), or
can be averaged over the corresponding Bayesian probability
distribution (Bryan’s MaxEnt).

The entropy functional is

S[A] =
∫

dε

[
A(ε) − Adef(ε) − A(ε) ln

A(ε)

Adef(ε)

]
, (8)

where Adef(ε) is the so-called default model, which contains
prior information on the spectrum to be inferred. In this
work, we always use a Gaussian default model Adef(ω) =

1
σ
√

2π
exp[−(ω/σ )2/2] with width σ = 2. It represents a

blurred picture of the true spectral function. Adef(ω) can be
systematically improved, for example, by using appropriately
iterated MaxEnt procedures [25], yielding more accurate
results. This line of improvements is, however, independent
of the structure of the continuation kernel K , which is
investigated in this work.

The standard numerical algorithm for the MaxEnt inference
of spectral functions was developed by Bryan [26]. The kernel
is decomposed via a singular value decomposition

K = V �UT , (9)

where � = diag (σ1,σ2, . . .), σ1 � σ2 � · · · � 0. Through the
matrix products, each singular value σi is associated with a
direction in A space and a direction in D space. The former is
given by one of the “basis functions” for the spectral function
and the latter is represented by an entry of V .

If σi is large, it provides a channel which transports a
comparably large amount of information about A. If σi is small,
not much information can be gained for the corresponding
direction in A space, and the Bayesian approach will not
modify a default spectrum with respect to that direction, due to
a lack of evidence. A small value of σ can only be compensated
by small error bars for the corresponding D direction. Hence,
the shape of the singular value distribution is an important
indicator for the structure of the inverse problem.

B. Singular value distributions

In this section, we analyze the singular value structure of
the integral kernel K in Eq. (6), for various locations of the
data set D on the Keldysh contour (the set A is always given
by some appropriate discretization of the spectral function).
In panel (a) of Fig. 2, the singular value distribution is plotted
for the usual inference from imaginary-time data (solid lines),
for inverse temperature β = 10. In this case, the data set D =
Dimag consists of the values G(−iτj ,0) on N equidistant points
on the imaginary-time branch,

DN,β
imag = {G(−iτj ,0) | τj = βj/N,j = 0, . . . ,N − 1}. (10)

The singular values are seen to decay exponentially.
Next, we define a suitable data set for extracting A(ω) from

pure real-time data. We note that the imaginary-time set of
input data contains real-time information for both positive (for-
ward direction) and negative (backward direction) frequencies.
In the case of real-time data, the situation is different: If only
one time ordering of d,d† is taken into account, the MaxEnt
method only yields information about the positive or negative
frequency range, i.e., the occupied and unoccupied parts of the
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FIG. 2. (Color online) Singular value distributions for β = 10
and indicated number of time points N . (a) Matsubara and real-time
Green functions. (b) Keldysh–off-diagonal Green functions.

spectrum. It is thus important to consider “lesser” and “greater”
(or retarded) Green’s functions. We choose (z,z′) values that
correspond to both electrons propagating forward in time
starting from t ′ = 0, G>(t,0) = −i〈d(t)d†(0)〉, and backward
in time starting from t ′ = tmax along the upper real-time
branch G<(t,tmax) = i〈d†(tmax)d(t)〉, using an equidistant grid
of annihilation times:

D
N,tmax
real ={ReG>(tj ,0),ImG>(tj ,0),ReG<(tj ,tmax),

ImG<(tj ,tmax)|tj =j tmax4/N,j =0, . . . ,N/4 − 1}.
(11)

Due to translational invariance, the d† operator need not be
shifted in time. Since we use both the real and imaginary parts
of G>(t,0) and G<(t,tmax), each time step contributes two real
variables to the inference process, and we always use N for
the the total number of real variables below.

In contrast to the case of imaginary-time input, the kernel
for pure real-time propagators has a distinguished plateau in
its singular value distribution, even for rather small tmax = 2
(dashed line in Fig. 2). As tmax is increased (tmax = 10, dotted
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FIG. 3. (Color online) Dependence of real-time singular value
distributions on the number of input data N in D

N,tmax
real .

line), the plateau broadens, and more, equally dominant A

directions appear. This is because in the limit tmax → ∞, the
(no longer ill-posed) unitary limit σi ≡ 1 is approached.

We next consider singular value distributions for Keldysh–
off-diagonal propagators. For symmetry reasons, we can
restrict ourselves to mixed Green functions from the upper
Keldysh contour to the imaginary branch G
(τ,tcut). We
consider fixed values of tcut. tcut = 0 is equivalent to the usual
kernel for the Matsubara Green function. As tcut is increased,
the singular value distribution is broadened [Fig. 2(b)], but
not as dramatically as in Fig. 2(a). Keeping τ = τcut fixed
yields a structure more similar to the real-time distributions in
Fig. 2(a) (τcut = 0 is exactly the same). However, it appears
that the plateaux in Fig. 2(a) can not be exceeded.

Figure 3 shows the dependence of the real-time singular
value distribution on the number N of time points, for a
Keldysh contour of given length tmax = 2. We find that at low
singular value indices, apart from a finite offset, the same shape
is obtained. In particular, the same number of singular values
is associated with the plateau. Furthermore, the initial descent
from the plateau is also identical. However, the singular value
distribution for N = 100 continues to decrease smoothly,
whereas the corresponding curve for N = 20 abruptly jumps
to the lowest singular value which is of the order of 10−15. A
similar behavior is also found for other correlators within the
Keldysh contour.

We conclude that increasing N does not extend the width
of the plateau (once the latter has been established), but
merely adds further singular values to the rapidly decreasing
tail. Since this decrease is exponential, an increase in N is
only useful if the added singular values are larger than the
order of magnitude ε of the numerical error of the data. This
dependence is indeed observed in the data analysis presented
in the following sections.

C. Tests of equilibrium spectral functions

We will first analyze the behavior of the continuation
procedure, using artificial data sets that correspond to given
spectral functions with sharp peaks or band edges. For this
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purpose, uncorrelated data sets taken from the exact contour
Green function are studied, and we assume a uniform error dis-
tribution ε, i.e., the covariance matrix is taken to be of the form
C = diag (ε2). The performance of the MaxEnt procedures on
more realistic data sets will be investigated in Sec. IV.

1. Rectangular spectrum

As a first test case, we consider the rectangular spectral
function

Arect(ω) := 1

4

{
1 if |ω| < 2,

0 else. (12)

It can be expected that the sharp band edges will be difficult
to infer from any finite data set. It is well known that even
the inverse Fourier transform, i.e., the unitary limit tmax →
∞ converges only slowly, and that the convergence is not
pointwise. Hence, we consider this an interesting test case
for the MaxEnt method. The analytic continuation procedure
is tested for inverse temperature β = 10 and for real-branch
lengths tmax = 2 and 10. The fake variance of all C-contour
correlator estimators is set to ε2 = 6 × 10−14.

Figure 4 compares the exact spectral function to the A(ω)
obtained from the analytical continuation for different data
sets (10) and (11). The total number of real variables is kept
constant at N = 100, i.e., we use either 100 equidistant time
steps on the imaginary axis, or 25 time steps in the real-time set
D

N,tmax
real . [We found that the restriction of real input data to the

real or imaginary parts of G(t,t ′) does not contain sufficient
information for an analytical continuation.]

In Fig. 4, it can be seen that using a broad Gaussian default
model, the width of which has no significant influence on the
results, the MaxEnt solution shows Gibbs ringing artifacts. The
frequency of these oscillations is a measure of the accuracy of
the inferred spectrum. Surprisingly, already the real-time data
from a short Keldysh branch, tmax = 2, yield more accurate
results than the β = 10 Matsubara branch data. As tmax is
increased, the approximation of the spectrum becomes even
better.

-2 0 2
ω

0

0.1

0.2

0.3

A
(ω

)

Matsubara, N=100
Keldysh, tmax=2, N=100
Keldysh, tmax=10, N=100
exact

FIG. 4. (Color online) Comparison of rectangular spectra at β =
10 for N = 100 data points located on the Matsubara contour, or on
the upper Keldysh contour up to time tmax = 2, 10.

Further increasing the number of data points N does not
significantly change the above results. However, lowering
the variance ε2 and then raising N systematically yields
more accurate spectra for both Matsubara and Keldysh
data because in this case the requirements for the identity
theorem of complex analysis which guarantees uniqueness
are approached systematically. However, the convergence is
always exponentially slow, as pointed out in the discussion of
the dependence of the singular value distributions on N .

2. Asymmetric triangle

We next investigate

Atriang(ω) := 1

2

{
ω − 1 if |ω − 2| < 1,

0 else
(13)

as an example for spectra which are not particle-hole sym-
metric and for which the convergence of the inverse Fourier
transform is more rapid than for the rectangular case. The
variance is again set to ε2 = 6 × 10−14. Results for this
scenario are shown in Fig. 5. Judged by the peak position
and the steepness at the discontinuity, even the tmax = 0.2
Keldysh spectrum is already slightly better than the Matsubara
spectrum. This indicates that real-time data are good for
resolving high-energy features since the triangle is shifted to
relatively high energies. As in the case of the rectangular shape,
the spectrum improves as tmax is increased.

3. Multiple peaks

As a next step towards more realistic situations, we turn
to a spectrum with a sharp resonance at ω = 0 and two side
bands. We model this by superimposing Gaussians

Apeak(ω) :=
∑
α=±1

csbgσsb,α
(ω) + cresgσres,0(ω), (14)

with cres = 0.1, csb = 0.45, 
 = 2.0, σsb = 0.5, σres = 0.05;
gσ,X(x) := 1√

2πσ 2
exp(− (x−X)2

2σ 2 ).
As one can see in Fig. 6, real-time data on relatively

short contours (tmax = 2, 10) are not particularly useful, when
sharp low-frequency features such as the given “quasiparticle

1 2 3
ω

0

0.5

1

A
(ω

)

exact
Matsubara N=100
Keldysh t

max
=0.2, N=100

Keldysh t
max

=1, N=100
Keldysh t

max
=5, N=100

FIG. 5. (Color online) Same as Fig. 4 for the triangular spectrum.
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FIG. 6. (Color online) Same as Fig. 4 for the three-peak spectrum.

peak” should be extracted. The Matsubara data and the
short-tmax real-time data yield side bands of similar quality,
while the imaginary-time data produce a comparable or even
better reconstruction of the sharp resonance. Increasing tmax

mainly improves the resolution of smooth high-energy features
(tmax = 10, N = 400). We also observe that using n = N/4 =
5 equidistant time steps on the real contour with tmax = 2
yields a better spectrum than a similar data set on the tmax = 10
contour. This finding is compatible with the earlier suggestion
that as a function of N , a full establishment of the singular value
plateau is crucial. However, increasing N at fixed tmax involves
only a polynomial increase of the computational effort, so we
can always assume that N is sufficiently large for the plateau
to be fully developed.

Considering a broader selection of data points from G
(τ,t),
we did not find an improvement of quality of the spectral
function compared to pure Keldysh Green functions.

D. Comparison to direct inversion

The MaxEnt deconvolution is superior to direct inversion
of the Fourier transform for finite Keldysh branches. To
demonstrate this, we apply the usual rotation in Keldysh space
and consider the retarded Green function defined in Eq. (2). In
contrast to Eq. (4), no Fermi factor appears in the transform
from the spectral function here:

iGret(t − t ′) =
∫ ∞

−∞
dω e−iω(t−t ′)A(ω), t > t ′. (15)

In the limit of a Keldysh contour of infinite length, a Laplace
transform restores the spectral function

A(ω) = −Im
1

π

∫ ∞

0
dt e+iωtGret(t). (16)

For our contour of finite length tmax a straightforward approx-
imation to the deconvolution problem involves a truncation
of the Laplace integral at time tmax. Figure 7 shows spectra
resulting from this method for the rectangular test spectrum
and contour lengths tmax = 2 and 10.

Comparison to the finite-ε MaxEnt results from Keldysh
propagators in Fig. 4 shows that the sharp edge is less
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exact
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t
max

=10
MaxEnt, t

max
=10

FIG. 7. (Color online) Spectra obtained from the retarded Green
function on the Keldysh contour using a truncated Laplace transform
(tmax = 2 and 10) and comparison to the exact result. The tmax = 10
MaxEnt result is included for comparison. See Fig. 4 for a more
detailed comparison with MaxEnt data.

well resolved for the direct Fourier transform. Furthermore,
unphysical regions of negative spectral weight appear in
the case of the truncated Laplace transform, whereas this
is avoided by construction in the MaxEnt approach. The
amplitude of the ringing oscillations seems to be almost the
same as in the MaxEnt case, except near the band edge, where
the truncation involves an arbitrary smoothening of sharp
structures. Different cutoff procedures for the time integral
would yield different smoothenings of the spectrum.

III. PADÉ APPROXIMATION

As a second alternative to the MaxEnt approach, we
consider the Padé method, which in equilibrium situations
is often superior to the MaxEnt method for the analytic
continuation of data without, or with very little, stochastic
noise. In particular, for the analytical continuation of low-
temperature Matsubara data, it is known to be rather precise at
low frequencies [27].

The Padé approximant is constructed as follows: We assume
that the values of the Green function are known on a set of N

points zn in the complex frequency plane. Conventionally, the
zn are given by the Matsubara frequencies iωn [ωn = (2n +
1)π/β]. The Green function is interpolated with a rational
function CN (z) in the form of a continued fraction

CN (z) = a1

1+
a2(z − z1)

1+ · · · aN (z − zN−1)

1
, (17)

where the coefficients ai of the continued fraction are com-
puted using a simple recursion formula [28]. A comprehensive
introduction to Padé approximants in general can be found in
the book by Baker [29].

In this paper, we are in particular interested in the nonequi-
librium situation, i.e., the determination of a time-dependent
spectral function A(t,ω) from the real-time retarded Green
function on some finite time interval [t,t + �t]. For a set
of points zn in the complex plane, we first compute an
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approximation G̃(t,zn) of the Fourier transformed Gret,

G̃(t,zn) :=
∫ t+�t

t

Gret(t ′,t)eizn(t ′−t)dt ′. (18)

This approximation is good if the imaginary part of zn is
sufficiently large (Im zn � 1/�t). One can then construct
a Padé approximant to the function G̃(t,z) which tends to
suppress the artificial oscillatory behavior of spectral functions
obtained from direct Fourier transforms (corresponding to
z → ω + i0+).

For the approximate Padé method, we consider the follow-
ing three variants: the points zn are

(1) “imag”: fermionic Matsubara frequencies zn = iωn =
i(2n + 1)π/β, with some arbitrarily chosen β,

(2) “real”: real frequencies with some imaginary offset iγ ,
i.e., zn = n�ω + iγ ,

(3) “grid”: arranged on a Nreal × Nimag grid, where
znrealnimag = ω(r)

nreal
+ iω(i)

nimag
. The lattice is chosen to be equidis-

tant, with ω(r)
nreal

− ω
(r)
nreal−1 = �ω and ω(i)

nimag
− ω

(i)
nimag−1 =

ω
(i)
1 =: γ .

Figure 8 shows spectra obtained from these different Padé
variants, when applied to the rectangular test spectrum. For
the approximate Padé versions, we always use the Keldysh
contour length tmax = 10, as well as 100 data points as input
for any of the Padé procedures. It is interesting to note that, as
compared to the truncated Laplace transform and the MaxEnt
approach, the amplitude of the oscillations is significantly
smaller for the conventional Padé. However, the resolution of
the jump is clearly limited. As β is decreased for the Matsubara
frequencies, a slight increase of the slope can be observed.

Let us now discuss the approximate Padé method for a time
interval length tmax = 10. By construction, it is closely related
to the truncated Laplace transform, whose results are shown
in Fig. 7. Nevertheless, features of the original Padé approach
are also inherited, depending on how the zn are chosen. In fact,
the “imag” solution is much closer to the conventional Padé
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-2 0 2
ω

0

0.1

0.2

0.3

A
(ω

)

γ=0.5
γ=1.0
γ=2.0

-2 0 2
ω

0

0.1

0.2

0.3

γ=0.5
γ=1.0
γ=2.0

"real" "grid"

FIG. 8. (Color online) Approximation of the rectangular spec-
trum with the Padé approach, either conventional or for tmax = 10.
See Figs. 4 and 7 for comparison with MaxEnt and the truncated
Laplace transform.

solution than to the respective truncated Laplace transform.
The undesirable oscillations have been smoothened at the price
of a reduced resolution at higher frequencies, while some of
the oscillations from the truncated Laplace transform survive.
For γ = 1, the “real” and “grid” solutions are almost identical.
These results are closer to the exact solution than the truncated
Laplace transform, even near the jump, and also exhibit smaller
amplitude oscillations. Unfortunately, as shown in the lower
panels, the rather unsystematic behavior as a function of γ

makes it difficult to determine the optimal value of γ a priori.
We also note that in the “real” variant, the truncated Laplace
solution is recovered for γ = 0.5 since in this case all the zn

are close to the real axis.

IV. APPLICATION TO DYNAMICAL MEAN
FIELD RESULTS

A. Equilibrium spectra

As a realistic application, we analyze data obtained for
the Kondo lattice model (bandwidth 4, β = 50, J = 1.5 or
3.0) within dynamical mean field theory in Ref. [30], using
the noncrossing approximation (NCA) as impurity solver. We
do not want to discuss here the physics of the Kondo lattice
model, and to what extent certain high energy features in the
spectral function may be an artifact of the NCA. We merely
use the results of Ref. [30] as a nontrivial example involving
low-energy quasiparticle peaks and high-energy satellites.

In order to apply the MaxEnt method, we again assume a
uniform error ε and set off-diagonal entries of the covariance to
zero. This seems justified as long as the systematic numerical
error of the simulation data is significantly smaller than ε. In
practice, the value of ε can be rather easily determined by trial
and error: if ε is chosen too small, MaxEnt ceases to converge,
whereas if it is chosen too large, the data lack sufficient
information. In the following calculations, ε is chosen slightly
larger than the value at which the MaxEnt method breaks
down. This moves the systematic numerical errors just into the
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FIG. 9. (Color online) Comparison of Padé and conventional
MaxEnt spectra for a Kondo lattice model (bandwidth 4, inverse
temperature β = 50), in the Fermi-liquid regime (J = 1.5, left) and
Kondo insulating regime (J = 3.0, right).
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ε range of the Gaussian statistical errors which are formally
assumed by the MaxEnt procedure. As input data, we consider
the Matsubara Green’s functions G(−iτ ) and the retarded
(equilibrium) Green functions Gret(t − t ′), as well as data
sets containing information from both Matsubara and retarded
Green functions.

The NCA data considered here are noise-free low tempera-
ture data, and thus ideally suited for the Padé method. In Fig. 9,
we compare MaxEnt, Padé, and exact spectra for a half-filled
Kondo insulator, and a doped heavy Fermi liquid solution. The
“exact” spectra have been obtained from a truncated Laplace
transformation with large tmax ≈ 45. We see that both Padé and
Matsubara MaxEnt reproduce the low-energy features and the
gap edges very well, but the higher-energy structures can not
be accurately resolved.

In Fig. 10, we show in addition to the exact and Matsubara
MaxEnt spectra the results from a MaxEnt analytical con-
tinuation of real-time data with tmax = 10 and of a MaxEnt
continuation involving both the real-time and the imaginary-
time data. The real-time MaxEnt spectra produce the correct
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FIG. 10. (Color online) Comparison of MaxEnt solutions for the
insulating Kondo lattice model (top, J = 1.5 and 3.0) and the doped
heavy Fermi liquid regime (bottom, J = 1.5). A real-time contour
length tmax = 10 is sufficient to extract the relevant features.

high-frequency behavior, and at least qualitatively correct
structures in the lower band of the doped system, but they
fail to reproduce the quasiparticle peaks. By adding also
the imaginary-time data, we can accurately resolve the low-
energy behavior (see insets), in addition to the high-energy
structures. The main challenge in the equilibrium case thus
remains the calculation of spectral features in the intermediate-
energy range, where the convergence to the exact result with
increasing tmax is relatively slow.

B. Time-dependent spectra

To test the ability of the MaxEnt approach to extract time-
dependent spectra, we again consider results from Ref. [30].
These spectra correspond to a perturbed, doped Kondo lattice
model which dissipates energy to a heat bath, and thereby
evolves from the high-temperature local moment regime into
the low-temperature heavy Fermi liquid regime. Again, we are
not interested in the physics here, which has been discussed
in Ref. [30], but just in the quality of the spectral functions
that can be extracted from the retarded Green functions. In
particular, we want to investigate the constraints on tmax for
the extraction of a time-dependent spectral function at time t

(t < tmax) since most computational techniques are limited to
short time contours.

Figure 11 shows the spectral function A(ω,t) at a relatively
short time t = 6 after the perturbation. As can be seen, A(ω,t)
is already positive over the whole relevant frequency range.
The different curves in the figure correspond to different
time windows [t,t + �t] used in the MaxEnt analytical
continuation. The result for the largest �t (pink curve) can be
considered the exact result. We learn from these results that the
high-frequency part converges very quickly with �t , while we
need at least an interval of length �t = 24 to get a reasonably
accurate result at low energies. (Since this calculation is a real
nonequilibrium application, we can not resort to Matsubara
data to fix the low-energy part of the spectral function.)

A relevant question is how the MaxEnt approach performs
compared to direct Fourier transformation on an identical time
interval. While both the MaxEnt method and the direct Fourier
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FIG. 11. (Color online) Convergence of A(ω,t = 6) for different
time intervals [t,t + �t].
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FIG. 12. (Color online) Convergence of nonequilibrium A(ω,t = 6) estimates for different short real-time intervals. In the case of the
“imag” modified Padé, we set β = 20 and used 100 data points. For the “real” modified Padé results, we used 100 equidistant data points for
Re zn on the interval [−10,10].

transformation have difficulties reproducing the correct low-
energy peak, the MaxEnt spectra are slightly closer to the
correct result.

C. Convergence of high-energy features

While the convergence of the MaxEnt result for pure real-
time Green function data as a function of �t is slow for the
quasiparticle peak, it is interesting to see how the higher-energy
features of the nonequilibrium spectral function converge to
the exact result.

Figure 12 shows a comparison of the MaxEnt result to
the direct Fourier transform and the modified Padé method
(discussed in Sec. III) for short time intervals with lengths
�t ∈ [3.9,5.7]. For �t = 5.7, MaxEnt and direct Fourier
transformation produce the correct solution, except for in the
low-energy region −0.5 � ω � 0.5 (left panels), while the
modified Padé method for the imaginary-time interval yields
spurious results (right panels). For shorter interval lengths,
MaxEnt appears to be slightly superior to both direct Fourier
transform (FT) and modified Padé. All qualitative features
of the spectrum, including the double-peak structure in the
lower band, start to become visible in the MaxEnt solution at
�t = 4.5, whereas the emergence of similar structures in the
direct FT spectrum at �t = 5.1 may still be interpreted as part
of the overall oscillatory behavior of that solution. One may
thus argue that MaxEnt reduces the necessary interval length
from �t = 5.7 to �t = 4.5 and thus allows us to compute
time-dependent spectra up so slightly longer times. Depending
on the application, this could save considerable effort since
numerical algorithms typically scale badly (at least as the
third power) with the length of the contour. The effect of the
modified Padé for zn on parallel lines to the real axis can to a
large extent be interpreted as a smoothening procedure for the
direct FT. In particular, the double-peak structure in the direct
FT solution at �t = 5.1 is strongly suppressed, but still slightly
visible. However, the peaks are less pronounced than those of
the MaxEnt solution at �t = 4.5. The behavior of the “grid”

variant is very similar to the “real” variant, except that the
“grid” choice can not resolve the double-peak structure of the
lower band (not shown). When the number of real frequency
points is increased, the “grid” result converges to the “real”
result. Due to numerical instabilities of the Padé procedure,
one is however typically limited to less than 400 grid points.

V. CONCLUSION

We analyzed the usefulness of Keldysh real-time Green
function data for the computation of equilibrium spec-
tral functions of interacting quantum many-body systems.
The ill-posed nature of the inversion that corresponds to
the determination of the spectral function is reflected in the
distribution of singular values of the respective continuation
kernel. The conventional Wick rotation of Matsubara data
yields an exponentially decaying singular value distribution.
We found that including a finite real-time branch to the
imaginary-time contour adds a plateau to this distribution,
which broadens as the length of the real-time contour is
increased. This plateau significantly alleviates the inversion
even for small contour lengths. A further analysis showed that
the main gain is a more precise high-frequency information
of the spectral function. For short contours, the real-time data,
however, provide rather crude results at low frequencies. In
order to obtain more accurate estimates of low-energy features
such as quasiparticle peaks, it is therefore necessary to include
data from the Matsubara branch. With the small frequencies
well covered by the Matsubara branch and the high frequencies
well covered by a short Keldysh branch, the biggest challenge
remains the resolution at intermediate energies.

Our analysis of NCA spectra for the Kondo lattice model
suggests that in order to resolve intermediate energies reason-
ably well, the length of the real-time contour has to be at least
tmax = 10 (in units where the bandwidth is 4). In real-time
Monte Carlo simulations, it is difficult to reach these times,
at least in parameter regimes where low-order perturbation
theory is not reliable. It thus appears that the exponential
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increase in the computational cost with increasing tmax in
real-time Monte Carlo schemes outweighs the benefits from an
alleviated MaxEnt analytical continuation. Nevertheless, the
MaxEnt analytical continuation of Keldysh Green functions
can be a useful and superior alternative to Padé approximants
for semianalytic methods such as higher-order strong-coupling
perturbation theory. These methods are very useful in certain
parameter regimes, such as elevated temperature, or interme-
diate to strong interactions. While their implementation on the
real-frequency axis is challenging, calculations on the Keldysh
contour scale polynomially with tmax and the contour lengths
needed for reliable MaxEnt analytical continuation can be
reached.

In the calculation of nonequilibrium spectra, it is no longer
possible to include the Matsubara branch into the MaxEnt
procedure. As a consequence, the resolution of low-energy fea-
tures of the spectrum worsens dramatically if only short-time
data are available. Nevertheless, a comparison to alternative,
more straightforward techniques, i.e., direct Laplace transform
and the modified Padé approach, showed that MaxEnt yields

slightly more reliable solutions for these spectra. The relevant
structures could be established for somewhat shorter time
intervals than in the case of the extended Padé approaches.

On a conceptual level, the MaxEnt is superior to the
direct Laplace transform and the generalized Padé approach.
In practical applications, however, because the advantage of
a MaxEnt continuation appears to be rather subtle, it will
very much depend on the details of the utilized many-body
approach whether an application of MaxEnt is worth its effort.
In any case, the comparison of different approaches can help
in deciding which features of a nonequilibrium spectrum are
trustworthy.
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[29] George A. Baker, Padé Approximants, 2nd ed. (Cambridge

University Press, Cambridge, UK, 2010).
[30] P. Werner and M. Eckstein, Phys. Rev. B 86, 045119 (2012).

023305-9

http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevB.81.115131
http://dx.doi.org/10.1103/PhysRevB.81.115131
http://dx.doi.org/10.1103/PhysRevB.81.035108
http://dx.doi.org/10.1103/PhysRevB.81.035108
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevLett.97.076405
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevLett.100.176403
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://dx.doi.org/10.1103/PhysRevB.79.035320
http://arXiv.org/abs/1210.0133
http://dx.doi.org/10.1103/PhysRevB.82.115115
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.035122
http://dx.doi.org/10.1103/PhysRevB.85.155124
http://dx.doi.org/10.1103/PhysRevB.85.155124
http://dx.doi.org/10.1103/PhysRevB.86.205101
http://dx.doi.org/10.1103/PhysRevB.86.205101
http://dx.doi.org/10.1103/PhysRevB.78.245113
http://dx.doi.org/10.1103/PhysRevLett.102.136401
http://dx.doi.org/10.1103/PhysRevLett.102.136401
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRevB.41.2380
http://dx.doi.org/10.1103/PhysRevB.41.2380
http://dx.doi.org/10.1088/0953-8984/8/21/013
http://dx.doi.org/10.1088/0953-8984/8/21/013
http://dx.doi.org/10.1103/PhysRevE.81.056701
http://dx.doi.org/10.1103/PhysRevE.81.056701
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1103/PhysRevB.81.155107
http://dx.doi.org/10.1007/BF02427376
http://dx.doi.org/10.1143/JPSJ.76.114707
http://dx.doi.org/10.1143/JPSJ.76.114707
http://dx.doi.org/10.1007/BF00655090
http://dx.doi.org/10.1007/BF00655090
http://dx.doi.org/10.1103/PhysRevB.86.045119



