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Nonequilibrium dynamical mean-field simulation of inhomogeneous systems
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We extend the nonequilibrium dynamical mean field (DMFT) formalism to inhomogeneous systems by
adapting the “real-space” DMFT method to Keldysh Green’s functions. Solving the coupled impurity problems
using strong-coupling perturbation theory, we apply the formalism to homogeneous and inhomogeneous layered
systems with strong local interactions and up to 39 layers. We study the diffusion of doublons and holes created
by photoexcitation in a Mott insulating system, the time-dependent build-up of the polarization and the current
induced by a linear voltage bias across a multilayer structure, and the photoinduced current in a Mott insulator
under bias.
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I. INTRODUCTION

The study of nonequilibrium phenomena in correlated
lattice systems has become an active research field due to
experimental progress on several fronts. In cold atom systems,
the interaction and bandwidth can be controlled via Feshbach
resonances and the depth of the lattice potential, respectively,
while the effect of external fields can be mimicked by shaking
or tilting the optical lattice.1–5 This allows us to investigate
quench dynamics or field-driven effects in systems which
may be viewed as ideal realizations of the simple model
Hamiltonians typically considered in theoretical studies. On
the other hand, advances in ultrafast laser science have made
it possible to perturb a correlated material with a strong
pulse and track the time evolution of the system with the
(femtosecond) time resolution needed to observe intrinsically
electronic processes.6,7 Such experiments can provide new
insights into the nature of correlated states of matter and may
even lead to the discovery of “hidden phases,” i.e., long-lived
transient states that cannot be accessed via a thermal pathway.

Stimulated by these developments, a growing theoretical
effort is aimed at describing and understanding the nonequi-
librium properties of correlated lattice systems. Given the
complexity of the task, much of this work has focused on the
simplest relevant model, the one-band Hubbard model, which
describes electrons that can hop between nearest-neighbor
sites of some lattice with hopping amplitude t , and interact
on-site with a repulsion energy U . A method which is well
suited to capture strong local correlation effects is dynamical
mean-field theory (DMFT),8,9 and this formalism can be
extended to nonequilibrium systems in a rather straightfor-
ward manner.10,11 Over the last few years, nonequilibrium
DMFT has been used in a large number of theoretical
studies of the nonequilibrium dynamics in homogeneous
bulk systems, including interaction quenches,12,13 dc-field
driven dynamics11,14,15 or insulator-to-metal transitions16,17

(and the related phenomenon of dimensional reduction18),
photodoping,19 ac-field induced band flipping,20 and nonequi-
librium phase transitions from antiferromagnetic to param-
agnetic states.21,22 While connecting these results to actual
experiments is difficult because of the idealized setup in the
model calculations, they have provided important insights into
the relaxation dynamics of purely electronic systems, and the
associated time scales and trapping phenomena.

One step towards more realistic model calculations is to
switch from infinitely extended, homogenous systems to a
description which allows for a spatial variation in the model
parameters. In equilibrium, the “real-space” or “inhomo-
geneous” DMFT approach23,24 allows us, for example, to
describe some effect of the trapping potential in cold-atom
experiments,25,26 or correlation effects in artificially designed
heterostructures.23,24,27,28 In a direct generalization of this
real-space DMFT to nonequilibrium, one would have to store
and manipulate Green’s functions Gij (t,t ′) which depend
on two space arguments i,j and on two time arguments.
Decoupling of space and time is no longer possible, neither by
introducing momentum-dependent Green’s functions Gk(t,t ′)
(as in homogeneous nonequilibrium DMFT), nor by using
frequency-dependent Green’s functions Gij (ω) (as in inhomo-
geneous equilibrium DMFT). The fully inhomogeneous setup
would thus require a prohibitively large amount of memory
for most applications. However, the problem turns out to be
numerically tractable for a simpler layered geometry, which
is still relevant for many applications. Here one considers a
system in which the properties can change as a function of the
lattice position in one direction, while being homogeneous in
the d − 1 other dimensions. For example, such an extension
allows us to deal with surface phenomena in condensed matter
systems, such as the propagation of excitations from the
surface of a sample into the bulk (which has been looked
at recently within a time-dependent Gutzwiller approach29).
In this context it is important to mention that pump-probe
experiments often excite only a thin surface layer, such that
interesting phenomena must be inferred by subtracting the
bulk signal, based on some assumptions about the penetration
depth of the pump pulse. The layer description also naturally
lends itself to the study of interfaces and heterostructures.30–32

The latter are at present the subject of extensive research, and
experimental results on ultrafast photoinduced metal-insulator
transitions in heterostructures have recently been published.33

In this paper we discuss and test an implementation of the
nonequilibrium DMFT formalism for inhomogeneous, layered
structures. This formalism is an adaptation of the equilibrium
“real-space” or “inhomogeneous” DMFT method developed
by Potthoff, Nolting, Freericks, and others.23,24 We discuss
the formalism and the techniques used for solving the DMFT
equations in Sec. II, and illustrate the versatility of the approach
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FIG. 1. Illustration of the layer setup with N correlated layers
(full dots), intralayer hopping t , interlayer hopping t⊥, interaction U ,
and chemical potential μ (all these parameters can be layer and time
dependent). The boundary condition is given either by coupling to
some noninteracting equilibrium bath, by a vacuum (no hopping into
the boundary layers), or by repeating the hybridization functions of
the surface layers.

in Sec. III with several test calculations involving electric
field pulse excitations of correlated layers or heterostructures.
Section IV gives a brief conclusion and outlook.

II. MODEL AND METHOD

The approximate DMFT treatment of layered structures
assumes a local self-energy for each layer and maps the
system to an effectively one-dimensional model subject to
a self-consistency condition. An efficient strategy for solving
the DMFT equations, which involves a partial Fourier transfor-
mation of the Green’s functions with respect to the transverse
space directions, has been proposed by Potthoff and Nolting,23

and a detailed description of the equilibrium implementation of
this so-called “inhomogeneous DMFT” can be found in work
by Freericks.24,34 Here we extend this technique to nonequilib-
rium systems in order to describe pulse excitations of surfaces
or heterostructures, as well as transport through correlated thin
films, using the nonequilibrium DMFT formalism.10,11

We consider a Hubbard model with N layers, connected
by an interlayer hopping t⊥, and either “vacuum,” “lead,” or
“bulk” boundary conditions applied to the left (n = 1) and right
(n = N ) surface layers (see Fig. 1). Here “vacuum” means
no hopping to the boundary layer, “lead” means we impose
some equilibrium DMFT solution in the boundary layer, and
“bulk” means that the solution on the surface layer is repeated
periodically. The corresponding Hamiltonian is given by

H =
N∑

n=1

[
−

∑
ijσ

t
‖
n,ij c

†
i,n,σ cj,n,σ + εloc,n

∑
iσ

c
†
i,n,σ ci,n,σ

]

+
N∑

n=1

∑
i

Un c
†
i,n,↑ci,n,↑c

†
i,n,↓ci,n,↓

+
N−1∑
n=1

∑
iσ

(−t⊥n c
†
i,n,σ ci,n+1,σ + H.c.) + b.t., (1)

where c
†
i,n,σ creates an electron on lattice site i in layer n,

Un is the on-site Coulomb interaction in layer n, εloc,n is a
layer-dependent on-site potential, and t‖ and t⊥ denote the
hopping within the layers and between the layers, respectively.
The term “b.t.” stands for the boundary terms as described
above. All parameters can depend both on time and on
the layer index, which will mostly not be shown explicitly
in the following. In the actual implementation, each layer
corresponds to a d-dimensional hypercubic lattice with lattice
spacing a, and we present results for d = 1. This does not
mean that we intend to study specific properties of a two-
dimensional (2D) Hubbard model. The DMFT approximation
always yields the generic behavior of a high-dimensional
layer, even if a one-dimensional (1D) density of states is
used within the self-consistency loop. The advantage of the
1D layer is that calculations in the presence of a time-
dependent electric field become substantially cheaper than
in d > 1, because an explicit integral over the Brillouin
zone must be performed (see below). We will later switch
to the Fourier transformation with respect to the intralayer
coordinate cj,n,σ = 1√

Nk

∑
k eikrj /ack,n,σ . The intralayer hop-

ping Hamiltonian becomes
∑

kσ εn,k c
†
k,n,σ ck,n,σ , with the

dispersion εn,k = −∑
i t

‖
n,ij e

ik(rj −r i )/a .
External electromagnetic fields are included in Eq. (1)

via the Peierls substitution: We consider electric fields E ≡
(E‖

n,E
⊥
n ) that depend only on the layer coordinate, and let E‖

n

and E⊥
n denote the parallel field component in layer n and

the perpendicular field component between layer n and n + 1,
respectively. Units for the fields are taken as [t]/ea for E‖

and [t]/ea⊥ for E⊥, where [t] is the unit of energy, a⊥ is
the spacing between layers, and −e is the electron charge.
In a gauge where also the scalar potential φn and vector
potential A ≡ (A‖

n,A
⊥
n ) depend on the layer only, we then

have E‖
n = −∂t A‖

n and E⊥
n = −∂t A⊥

n − (φn+1 − φn), and the
Peierls substitution gives

εn,k = ε̃n,k+A‖
n
, (2)

t⊥n = t̃⊥n exp(iA⊥
n ), (3)

εloc,n = ε̃loc,n − φn, (4)

where quantities with a tilde correspond to zero field. Also for
fields perpendicular to the layer, it is often convenient to use a
gauge with zero scalar potential.

Nonequilibrium DMFT provides a set of equations for the
space- and time-dependent Green’s functions Gi,n;j,m(t,t ′) =
−i〈TCci,n,σ (t)c†j,m,σ (t ′)〉. Here t and t ′ lie on the L-shaped
Kadanoff-Baym contour C, and TC is the contour-ordering
operator. The notation for contour-ordered Green’s functions
and their inverse operators, as well as for the contour
δ function δC(t,t ′) and integration

∫
C dt , is adopted from

Ref. 13. The functions Gi,n;j,m(t,t ′) are obtained from the
lattice Dyson equation with a local but layer-dependent
self-energy �n(t,t ′), which is computed from an effective
impurity model (see below; for simplicity we omit a possible
dependence of local quantities on spin). Due to the translational
invariance within the layers, one can perform a Fourier
transformation in the transverse directions and introduce
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the momentum-dependent Green’s functions Gk;n,m(t,t ′) =
−i〈TCck,n,σ (t)c†k,m,σ (t ′)〉. The Dyson equation then decouples
for each k, and one has the following matrix expression for
the N × N matrices (Gk)n,m ≡ Gk;n,m:(

G−1
k

)
m,n

(t,t ′) = {δC(t,t ′)[i∂t + μ − εloc,m − εk,m(t)]

−�m(t,t ′)}δm,n − δC(t,t ′){t⊥m (t)δm+1,n

+ [t⊥m−1(t)]∗δm−1,n}, (5)

which is equivalent to the Dyson equation for a one-
dimensional chain with sites m = 1, . . . ,N . Note that the
inverse Green’s function in this equation is an integral-
differential operator, and the Dyson equation for two-time
Keldysh Green’s functions

∫
C dt̄ G−1(t,t̄)G(t̄ ,t ′) = δC(t,t ′) is

essentially equivalent to a set of integral-differential equations
known as the Kadanoff-Baym equations.35 Hence the matrix
structure in Eq. (5) defines an N × N set of coupled integral-
differential equations. The local Green’s function on layer n

is then computed from Gn = 1
Nk

∑
k(Gk)n,n, and hence we

only need the diagonal elements (Gk)n,n of the momentum-
dependent Green’s function. These can be obtained by expres-
sions which are analogous to the following formulas for the
inverse of a tridiagonal matrix:

M−1 =

⎛
⎜⎜⎜⎝

z − a1 b1

b∗
1 z − a2 b2

. . .

. . . bn−1

b∗
n−1 z − an

⎞
⎟⎟⎟⎠ , (6)

M11 = 1

z − a1 − |b1|2
z−a2− |b2 |2

z−a3−···

, (7)

M22 = 1

z − a2 − |b1|2
z−a1

− |b2|2
z−a3− |b3 |2

z−a4−···

, (8)

M33 = 1

z − a3 − |b2|2
z−a2− |b1 |2

z−a1

− |b3|2
z−a4− |b4 |2

z−a5−···

, (9)

. . . .

Explicitly, taking into account the correct order of the time-
dependent factors, one finds

(Gk)n,n = 1

g−1
k,n − 	L

k,n−1 − 	R
k,n+1

, (10)

g−1
k,n = i∂t + μ − εloc,n − εk,n − �n, (11)

where gk,n is the Green’s function corresponding to an isolated
layer, and we have introduced the products

	L
k,n−1(t,t ′) = t⊥∗

n−1(t) G
[n]
k,n−1(t,t ′) t⊥n−1(t ′) (12)

≡ t⊥∗
n−1 ∗ G

[n]
k,n−1 ∗ t⊥n−1, (13)

	R
k,n+1(t,t ′) = t⊥n (t) G

[n]
k,n+1(t,t ′) t⊥∗

n (t ′), (14)

which involve the Green’s functions G
[n]
k for the “chain”

[Eq. (5)] with site n removed. The Green’s functions G
[n]
k

satisfy equations analogous to Eq. (10), such that we obtain

for the hybridizations 	L
k,n and 	R

k,n,

	L
k,n = t⊥∗

n ∗ 1

g−1
k,n − 	L

k,n−1

∗ t⊥n , (15)

	R
k,n = t⊥n−1 ∗ 1

g−1
k,n − 	R

k,n+1

∗ t⊥∗
n−1, (16)

for layers n = 1, . . . ,N . The boundary conditions read 	k,n =
0 (vacuum) or 	k,n = 	k,lead (lead) for n = 0,N + 1. The
bulk boundary condition is 	R

N+1 = 	R
N , 	L

0 = 	L
1 . Once the

	L
k,n−1 and 	R

k,n+1 for a given layer n have been updated,
one computes (Gk)n,n using Eq. (10), and determines the
hybridization function 
n = 
n[Gn] of the impurity model
by solving the impurity Dyson equation,

Gn = 1

Nk

∑
k

(Gk)n,n ≡ 1

i∂t + μ − εloc,n − �n − 
n

. (17)

The solution of the impurity problem [in the present case,
we use the noncrossing approximation (NCA)36,37 as impurity
solver] yields an updated Gn and �n.

A self-consistent solution on all layers can hence be
obtained by the “zipper algorithm”24:

n = 1 ↓ ↑ ↓
n = 2 ↓ ↑ ↓
. . . ↓ 	L

n ↑ 	R
n ,Gn,
n ↓ 	L

n ,Gn,
n

↓ ↑ ↓
n = N ↓ ↑ . . . ,

where we start for example with 
n = 
bulk, �n = �bulk,
for n = 1, . . . ,N , 	L

1 = 	R
N = 0, and then update 	L

n using
Eq. (15) from n = 1 to N . On the way back, we use Eq. (16)
to update 	R

n , from n = N to n = 1, and at the same time
compute Gn, 
n, and �n for each of these n, and so on.

Equations (10)–(17) are integral-differential equations on
the contour C. Following the strategy outlined in Ref. 19, we
can cast these equations in a form that can conveniently be
handled by numerically stable “time-stepping” procedures for
the propagation of Green’s functions in real time. Defining
the variables ξk,n = εk,n + 	L

k,n−1 + 	R
k,n+1 and Zn = [i∂t +

μ − εloc,n − �n]−1, one can write Eqs. (10) and (17) in the
form (dropping for simplicity the index n everywhere)

[Z−1 − ξk] ∗ Gk = I, I = Gk ∗ [Z−1 − ξk], (18)

[Z−1 − 
] ∗ G = I, I = G ∗ [Z−1 − 
]. (19)

By summing Eq. (18) over k and comparing with Eq. (19),
one finds G(1) ≡ ∑

k ξk ∗ Gk = 
 ∗ G and G(1)† ≡ ∑
k Gk ∗

ξk = G ∗ 
. We next take the second of Eqs. (19) and multiply
from the right with Z. This leads to

[I + G ∗ 
] ∗ Z = [I + G(1)†] ∗ Z = G, (20)

which we can solve for Z (after having evaluated G(1)† =
G ∗ 
). Multiplying the first of Eqs. (18) from the left with Z

gives

[I − Z ∗ ξk] ∗ Gk = Z, (21)

which we can solve for Gk. From the first Eq. (19), we
also get [I + 
 ∗ G] ∗ 
 = Z−1 ∗ G ∗ 
 = ∑

k Z−1 ∗ Gk ∗
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ξk. But from the first Eq. (18), Z−1 ∗ Gk = I + ξk ∗ Gk, so

[I + 
 ∗ G] ∗ 
 = [I + G(1)] ∗ 
 = G(2), (22)

where G(2) = ∑
k(ξk + ξk ∗ Gk ∗ ξk). The solution of Eq. (22)

yields 
.
To solve Eqs. (15) and (16), we first compute gk,n [Eq. (11)]

by solving

[I − Zn ∗ εk] ∗ gk,n = Zn. (23)

With the shorthand notation 	̃L
k,n = (G[n+1]

k )n and 	̃R
k,n =

(G[n−1]
k )n, we rewrite Eqs. (15) and (16) as[

I − gk,n ∗ t⊥∗
n−1 ∗ 	̃L

k,n−1 ∗ t⊥n−1

] ∗ 	̃L
k,n = gk,n, (24)[

I − gk,n ∗ t⊥n ∗ 	̃R
k,n+1 ∗ t⊥∗

n

] ∗ 	̃R
k,n = gk,n. (25)

Equations (20)–(25) are all of the form [I + A] ∗ X = B

and have to be solved for X. This is an integral equation of
the Volterra type, which is well behaved and which we solve
using the techniques described in Ref. 13. The solution can
be obtained by successively increasing the maximum time
in a step by step manner, thereby not modifying an already
converged solution at earlier times.

In summary, at a given time step, we perform the following
calculations in layer n:

1. For given 
n, solve impurity problem (NCA equations)
to obtain Gn.

2. Evaluate G(1)
n

† = Gn ∗ 
n, solve Eq. (20) for Zn.
3. For each k point,
(a) solve Eq. (23) for gk,n,
(b) solve equations of the type (25) and (24) to get the new

	̃R
k,n or 	̃L

k,n, and compute 	R
k,n or 	L

k,n from Eqs. (12)
and (14) (depending on the direction of the sweep),

(c) define ξk,n = εk + 	L
k,n−1 + 	R

k,n+1 and solve Eq. (21)
for Gk,n.

4. Having obtained ξk,n and Gk,n for all k points, calculate
G(1)

n and G(2)
n .

5. Solve Eq. (22) to obtain the new 
n.
Then we move to the next layer, where we repeat the same

cycle, zipping back and forth until convergence is reached.
Only a few cycles are needed for convergence, since a very
good starting point is obtained by extrapolating the Green’s
functions from earlier times.

Depending on the application, it may be desirable to include
a dissipation mechanism which allows us to remove energy
injected into the system by a quench or external field. In Ref. 38
we have briefly described how one can locally couple a phonon
bath with given temperature. Let us discuss now how such a
bath can be incorporated into the “zipper algorithm.” In our
approximation, the electronic self-energy on layer n is the sum
of an electronic contribution �U [Gn] and of a bath contribution
�diss[Gn]. As in the case without bath [Eq. (17)], �U [Gn]
is obtained from the solution of the impurity problem with
hybridization 
n: Gn = Gn[
n], with

Gn = 1

i∂t + μ − �U [Gn] − 
n

. (26)

The bath contribution is approximated by the lowest order
Holstein-type electron-phonon diagram:

�diss[Gn] = λ2Gn(t,t ′)D(t,t ′), (27)

 0
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FIG. 2. (Color online) Equilibrium spectral functions for an
infinite system of 1D layers, at β = 5 and indicated values of the
interaction strength. The DMFT solution has been obtained with an
NCA impurity solver, which yields reliable results in the insulating
phase.

with D(t,t ′) = −iTr[TC exp(−i
∫
C dtω0b

†b)b(t)b†(t ′)]/Z the
equilibrium boson propagator for boson frequency ω0 and
coupling strength λ. Therefore, in Eqs. (10) and (11), which
relate the momentum dependent lattice Green’s function to the
self-energy, we have to replace �n by �U [Gn] + �diss[Gn], or
equivalently εk by εk + �diss[Gn].38

In practice, we define Zlatt = [i∂t + μ − εloc,n − �U −
�diss]−1 (dropping the layer-index n), so that Eq. (26) becomes
G = 1/(Z−1

latt − 
latt), with 
latt = 
 − �diss. We may then
repeat the derivation of Eqs. (19)–(22) with the substitution

 → 
latt, Z → Zlatt, i.e., given 
latt and G, Zlatt is computed
from [I + G(1)†] ∗ Zlatt = G (with G(1)† = G ∗ 
latt), then a
new 
latt is obtained from the solution of [I + G(1)] ∗ 
latt =
G(2). Finally, 
 = 
latt + �diss is used as input for the impurity
solver.

III. RESULTS

A. Test of the implementation

In this work we will consider one-dimensional layers, and
use the intralayer hopping t‖ = 1 as the unit of energy. The
equilibrium spectral function for an infinite system of such
1D layers and interlayer hopping t⊥ = 1 (corresponding to
the DMFT solution of the 2D Hubbard model) is shown in
Fig. 2, for inverse temperature β = 5 and indicated values
of U . The impurity problem was solved with NCA on the
Keldysh contour and the spectra were obtained via Fourier
transformation of the retarded Green’s function. Around U =
7, a Mott gap opens in a continuous fashion (crossover). Since
we cannot reliably study the low temperature behavior of
the metallic phase within NCA, we will not investigate this
transition in further detail. In the following, we will mostly
focus on the insulating regime (U > 7).

A good test of the implementation and its accuracy is the
calculation of the total energy. The total energy, normalized
by the number of sites in the transverse direction, has a local
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contribution

Epot =
N∑

m=1

[Umdm + (εloc,m − μ)nm], (28)

where dm is the double occupancy and nm = nm↑ + nm↓ is
the occupation on layer m. In addition there is the intralayer
kinetic energy

Ekin,intra =
N∑

m=1

∑
kσ

εk,mnk,m,σ , (29)

and the interlayer kinetic energy

Ekin,inter = −
N−1∑
m=1

∑
kσ

t⊥m 〈c†k,m,σ ck,m+1,σ 〉 + H. c., (30)

where we have assumed vacuum boundary conditions.
To evaluate Eq. (30) we note that t⊥m 〈c†k,m,σ ck,m+1,σ 〉 =
−it⊥mG<

k,m+1,m(t,t) and t⊥mGk,m+1,m = 	R
k,m+1 ∗ Gk,m. The

latter identity follows from a comparison of the Dyson
equation (5) with Eq. (10).

If an electric field is applied to the system, a current j will
be induced (j is defined as the particle current, not including
the electric charge −1),

j ‖
m =

∑
kσ

(∂kεk,m)nk,m,σ , (31)

j⊥
m = −i

∑
kσ

t⊥m 〈c†k,m,σ ck,m+1,σ 〉 − H.c., (32)

where j
‖
m is the intralayer component, and j⊥

m is the
current from layer m to m + 1. While the electric field
is applied, the total energy will change like dEtot/dt =
−∑

m jm Em (for electrons with charge −1). Here we as-
sume vacuum boundary conditions (and thus j⊥

0 = j⊥
N =

0), because otherwise energy can flow from the system
into the leads. A good check of the numerics is thus to
verify that Etot(t) − Ej (t) is time independent, where Ej (t) =
− ∫ t

0 dt̄[
∑N

m=1 j
‖
m(t̄)E‖

m(t̄) + ∑N−1
m=1 j⊥

m (t̄)E⊥
m(t̄)] is the ab-

sorbed energy. After the pulse, the Hamiltonian of the
system is time independent, and the total energy should thus
also become time independent. In Fig. 3 we plot the time
evolution of the different energy contributions for a nine-layer
system consisting of three metallic layers (U = 4) sandwiched
between Mott insulating layers (U = 15). The perturbation is
an in-plane, few-cycle electric field pulse of frequency � ≈ 12
(see inset), which is applied to all nine layers. (For the time
propagation, we use a time-step 	t = 0.02 in combination
with a fifth order integration scheme, and we have verified that
our results are not affected by the time discretization.)

This strong pulse creates doublon-hole pairs and leads to
a rapid increase in the potential energy. After the pulse, one
observes a redistribution of potential energy into kinetic energy
in such a way that the total energy is conserved. Also, the
change in total energy is equal to the absorbed energy Ej ,
so that Etot − Ej remains zero within the numerical accuracy.
That this result is a nontrivial check follows from the lower
panels, which show the time evolution of the double occupancy
and intralayer kinetic energy in all nine layers. These curves
indicate that doublons and holes move from the insulating re-
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FIG. 3. (Color online) Test of the energy calculation for a
heterostructure composed of nine 1D layers with t⊥ = 1, interaction
U = 15 on layers 1, 2, 3, 7, 8, and 9 and U = 4 on layers 4, 5, and 6,
with vacuum boundary conditions. The electric field pulse shown in
the inset is applied to all the layers.

gions to the metallic region, where they recombine, heat up the
metal, and lead to an increase in the intralayer kinetic energy.

B. Doublon diffusion

As a first application we consider the spreading of pho-
toexcited doublons and holes in a Mott insulator. The system
consists of 39 layers and we employ the “repeated” boundary
condition to minimize boundary effects. The doublons and
holes are created in the central layer (m = 20) by the
application of an in-plane electric field pulse with � ≈ 12,
centered at tpulse = 1.7, which lasts up to t = 3. This setup
may not be realistic from an experimental point of view,
but it allows us to study how artificially created carriers
spread out inside a Mott insulating bulk. On the time scale
of the present simulation, we can ignore the recombination
of doublons and holes. This is consistent with corresponding
DMFT calculations for a homogeneously excited bulk system,
which indicate that the lifetime of these carriers depends
exponentially on the interaction U in the Mott insulating
regime.19 Note that we will always measure and plot the
double occupancy d(t) = 〈n↑(t)n↓(t)〉, which already takes
a small nonzero value in the initial state with no doublons,
due to virtual charge excitations. Because the contribution
of these quantum fluctuations is not changed to first order
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FIG. 4. (Color online) Top panel: Time-dependent distribution of
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t − tpulse, where tpulse ≈ 1.7 is the time corresponding to the center of
the pulse. Dashed lines show results with phonon bath (see text). The
bottom right panel shows the dependence of the diffusion constant D

on the interlayer hopping.

in the excitation density, the terms “double occupancy” and
“number of doublons” differ by a constant only and will be
used interchangeably.

As shown in the top panel of Fig. 4 (results for U = 10),
already a short time after the pulse, the distribution of the
photoexcited doublons (symbols) can be well fitted by a
Gaussian (lines). (Note that there is an identical diffusion
of holes, since the model is particle hole symmetric.) For
interlayer hopping t⊥ = 1, the 39-layer system allows us to
track the motion of the doublons up to t ≈ 20. Extracting the
widths of the Gaussians and plotting them as a function of time
(Fig. 4, lower left panel), we find that the square of the width
grows proportional to t − tpulse, indicating diffusive rather than
ballistic motion. The doublon diffusion satisfies the expected
law d(m,t) − deq(m,t) ∼ exp[−(m − 20)2/(4Dt)] (m = 20 is
the central layer), with diffusion constant D ≈ 1.03t⊥ for

t⊥ = 1. As long as the doublon-holon recombination is slow
enough and the carriers are inserted with large kinetic energy,
the diffusion of doublons and holes is not influenced much by
the interaction strength. Within our numerical accuracy, we
find the same diffusion constant for U = 7, 8, 9 and, 10, even
though U = 7 is already close to the metal-insulator crossover.

On the other hand, a smaller interlayer hopping of course
slows down the diffusion. The lower left panel of Fig. 4 plots
the time evolution of the squared width of the distribution, for
t⊥ ranging from 0.25 to 1.5 (U = 10). (Because of the rapid
spreading of the charge carriers we cannot study much larger
values of t⊥.) The diffusion constant D(t⊥), which is extracted
from linear fits to these curves, grows roughly quadratically
with t⊥ for small t⊥, while the dependence becomes almost
linear for t⊥ � 0.5 (Fig. 4, lower right panel).

In equilibrium, the diffusion constant is related to the
conductivity σdc (with the charge e set to one) and the
compressibility ∂n

∂μ
via the Einstein relation (or fluctuation-

dissipation relation)

D
∂n

∂μ
= σdc. (33)

Truly ballistic transport is thus expected for integrable one-
dimensional systems (see Ref. 39 and references therein),
which can have a perfect conductivity [i.e., a finite Drude
weight σdc ∼ Dδ(ω) for ω → 0] even at temperature T > 0.40

For the Hubbard model in higher dimensions, the rather large
width of the spectral function Akσ (ω) in the Mott insulator
indicates that the scattering time of a single particle excitation
with momentum k is of the order of the inverse hopping, and
hence its mean-free path is not much larger than a few lattice
spacings. Only in a Fermi liquid at T = 0 would one expect
infinite scattering times for electrons at the Fermi surface.

To some extent, the behavior of D(t⊥) shown in the
lower right panel of Fig. 4 is qualitatively consistent with a
quasiequilibrium argument based on the Einstein relation for
large temperature T : Starting from the DMFT expression for
the bulk conductivity,9,41

σαα′ (ω) ∝
∑
kσ

vα
k vα′

k

∫ ∞

−∞
dω′

× Akσ (ω′)Akσ (ω + ω′)[f (ω′) − f (ω + ω′)]
ω

(34)

(α = ⊥,‖), the dc conductivity in the transverse direction and
in the limit of high temperature (T � bandwidth) is given by

σ⊥
dc ∝ 1

4T

∑
kσ

(v⊥
k )2

∫ ∞

−∞
dω Akσ (ω)2, (35)

where v⊥
k = t⊥ sin(k⊥) is the band velocity perpendicular

to the layers. The integral scales like 1/bandwidth, and
the bandwidth is proportional to t‖ for t‖ � t⊥ (almost
independent layers), and proportional to t⊥ for t⊥ � t‖. Thus
σ⊥

dc ∼ t⊥ for t⊥ � t‖ and σ⊥
dc ∼ |t⊥|2/t‖ for t‖ � t⊥. Because

∂n
∂μ

∼ n/4T for large T , the same behavior is found for the

diffusion constant D(t⊥). Physically, the behavior for small t⊥
is consistent with a rate equation picture, where the transfer of
a doublon from one layer to the next is given by Fermi’s golden
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rule � ∼ |t⊥|2N , with a matrix element ∝ t⊥, and a density
of states N ∼ 1/t‖ that scales with the inverse bandwidth.

Although the Einstein relation agrees with the observed
behavior on a qualitative level, such a quasiequilibrium theory
cannot describe the spreading of doublons in detail. First of all,
the initial perturbation of the system is strong, and it is neither
clear on what time scale a local equilibrium description is
valid, nor how well it would apply to a distribution that varies
considerably over only a few lattice spacings. Since doublons
and holes might cool down (lower their kinetic energy) while
they spread in the bulk, equilibration could actually lead to the
formation of Fermi liquid quasiparticles and a corresponding
reconstruction of the electronic density of states, a process
for which the time scale is not known. Examples where
nonequilibrium conditions have a strong influence on the
spreading of particles have been studied recently, for a cloud
of weakly interacting ultracold atoms in an optical lattice
(both fermions and bosons).42–44 For example, when the cloud
expands into an empty lattice, it behaves diffusive in the dense
core, but in the tails the density is too low to equilibrate,
resulting in a ballistic expansion.43,44

More detailed insight into the way in which doublons and
holes spread into the bulk can be obtained from the time- and
layer-dependent distribution function

A<
m(ω,t) = 1

π
Im

∫ ∞

0
ds eiωs G<

m(t + s,t), (36)

which reduces to the “photoemission spectrum” A<(ω,t) =
A(ω)f (ω) in equilibrium and in pump-probe experiments
on quasisteady states,45 and from the corresponding spectral
function Am(ω,t) (with G< replaced by −GR). To study
this quantity we switch to a smaller system, so that longer
simulation times become possible and the integral in Eq. (36)
does not strongly depend on the upper cutoff. In the upper
panel of Fig. 5 we plot the distribution function for a 15-layer
system with U = 10, which is excited with a pulse with
� ≈ 12 on the surface layer L = 1. (A “repeated” boundary
condition is applied at layer 15.) On a given layer L (L = 8
is plotted in the figure), the weight in the upper Hubbard band
grows with time as more doublons arrive. At later times, the
distribution is shifted to lower frequencies, indicating some
kind of cooling of the particles as they move into the bulk.
Still, the distribution is clearly nonthermal at all times, and
its width remains comparable to the width of the Hubbard
band. In such a highly excited system, one cannot expect the
formation of quasiparticle states. Indeed, we only observe
a slight broadening of the spectral function, rather than a
formation of a quasiparticle band.

Although the weight in the distribution function A<
m(ω,t)

appears after an increasing time delay as one moves further
away from the surface, we find that the distribution at the
earliest times (i.e., right after it has achieved some measurable
weight) has a similar shape on different layers (Fig. 5, lower
panel). The distribution resembles the initial photodoped
distribution on layer 1, although the spectral function of the
bulk layers is quite different from that of the surface layer,
especially during the application of the pulse. This might be
related to a coherent tunneling of the fastest carriers.

A detailed understanding of the various propagation effects
at early and later times can be important to interpret the
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FIG. 5. (Color online) Spreading of doublons in a 15-layer system
with U = 10 and pulse excitation with � ≈ 12 on layer 1. The top
panel shows the increase of the occupied part of the spectrum in layer
8, and the relaxation of the carriers towards the bottom of the upper
band. The bottom panel shows the spectral functions on layers 1 and 8
(solid and dashed black lines) and the occupied part of the spectrum in
layers 1, 5, and 8 a short time after the injection of carriers (rescaled
in such a way that the maxima are approximately the same). The
distribution of the fastest carriers remains almost unchanged from
layer 1 to 8.

relaxation of photoexcited carrier distributions in real exper-
iments, since the dynamics is governed by both diffusion and
local relaxation phenomena. In real materials, doublons and
holes can dissipate their energy to other degrees of freedom as
they diffuse into the bulk, e.g., to phonons or spin excitations,
which are not correctly accounted for in the DMFT formalism
for the isolated Hubbard model. To study the consequences
of this dissipation, we have simulated the diffusion in the
presence of a local phonon bath with ω0 = 1 and λ = 1. In this
case the doublons and holes spread more slowly, as shown for
t⊥ = 1 and t⊥ = 0.5 by the dashed lines in Fig. 4. A possible
explanation is that the phonon cloud increases the effective
mass of the carriers and hence reduces their diffusion coeffi-
cient. On the other hand, the curve for t⊥ = 1.0 also reveals
a slight negative curvature, which indicates that the cooling
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of the carriers influences the diffusion behavior in a nonlinear
way.

C. Surface excitation of a heterostructure
and doping by diffusion

An interesting application of the inhomogeneous DMFT
is to study the dynamics in heterostructures. Experimentally,
such artificially designed systems may provide a way to confine
the excitation to a well-defined region of the sample (because,
e.g., the pulse frequency can be tuned to the absorption band in
certain layers), and induce controlled changes in the remaining
layers. For illustration, we consider a heterostructure made of
two different Mott insulators, and excite doublons and holes
in the topmost layer. As illustrated in the top panel of Fig. 6,
the system consists of five Mott insulating surface layers (red
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FIG. 6. (Color online) Top panel: Spectral functions for a het-
erostructure with five small-gap insulating layers (red, U = 10) on
top of a bulk of large-gap insulator (blue, U = 20). The bands are
shifted relative to each other in such a way that doublons can diffuse
from the surface into the bulk, while holons cannot. The spectra are
plotted with horizontal offsets of 0.3 and arbitrary vertical offsets.
The tic marks indicate the position ω = 0 within the Mott gap. Only
four out of ten bulk layers are shown. Bottom panels: Time evolution
of the filling and intralayer kinetic energy after excitation of the
surface layer with a � ≈ 12 field pulse. (Phonon coupling λ = 1,
phonon-frequency ω0 = 1, β = 10.)

spectral functions) on top of a Mott insulating bulk, whose
gap is much larger than the gap of the surface layers (blue
spectral functions). The relative position of the Hubbard bands
is chosen such that doublons can diffuse easily from the surface
layers into the bulk, while the corresponding diffusion of holes
into the bulk is prohibited.

The diffusion of charge carriers leads to a time-dependent
doping of the neighboring layers with electrons and holes,
and the special setup of Fig. 6 allows us to study the possible
time-resolved emergence of a usual metallic state in the bulk
layers, which are doped with electrons only. Explicitly, we
simulated five surface layers with U = 10 on top of ten
bulk layers with U = 20. We choose the vacuum boundary
condition for the surface layer L = 1, and apply the in-plane
electric field to this layer. To mimic dissipation to lattice and
other degrees of freedom, which can accelerate the formation
of a photodoped state with low kinetic energy and less
scattering, we couple the system to local phonon baths, as
described in the methods section and in Ref. 38. The phonon
bath parameters are ω0 = 1 and λ = 1. (The small structures
visible in the spectral functions near the gap edges are a result
of this phonon coupling.)

The electron doping of the bulk and net hole doping of the
surface layers can be seen in the bottom left panel of Fig. 6,
which plots the time evolution of the density for the different
layers. Note that even in the equilibrium system, a charge
transfer occurs at the interface between surface and bulk layers,
so that the first bulk layer is 0.2% electron doped, while the
last surface layer is 0.2% hole doped. Figure 7 shows the time
evolution of the double occupancy and the density on a color
scale (gray scale). Initially the double occupancy is slightly
larger in the surface layers, due to the smaller value of U . We
find that the interface between the two insulating regions does
not slow down the diffusion of doublons into the bulk layers,
while holes stay confined to the surface layers. There is even
an accumulation of doublons on the bulk side of this interface,
which is explained by a small downward shift of the Hubbard
band. The net charge in the surface layers is reduced as time in-
creases due to the holes which diffuse back from the interface.
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FIG. 7. (Color online) The left panel shows the time evolution
of the density, and the right panel the time evolution of the double
occupancy in the setup of Fig. 6.
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As a result of the dissipation, we expect the doublons
and holes, which are created in the Hubbard bands of the
L = 1 layer with a broad energy distribution, to cool down
rapidly while they diffuse into the bulk. The latter effect
should be evident as an accumulation of spectral weight in
the distribution function (36) at the lower edge of the upper
Hubbard band (and symmetrically for the holes). Figure 8
illustrates the time evolution of the occupied spectral function
in the upper Hubbard band, which roughly covers the energy
range 1.5 � ω � 10. The few-cycle pulse with � ≈ 12 creates
doublons with a broad energy distribution centered at ω ≈ 6
(in the middle of the upper band). Such a broad spectrum
is visible in the surface layer at t = 2 (the pulse lasts from
about t = 0.4 to t = 3). Very quickly (second panel, t = 4)
the doublons spread to the neighboring layers, and the cooling
by the phonon bath leads to a shift of spectral weight to lower
energies. Around t = 6, the diffusing doublons reach the bulk
layers (n � 6). They keep diffusing into the bulk, which results
in a net electron doping of the bulk layers. Furthermore, by
t = 10, the phonon bath has removed most of the excess kinetic
energy so that the changes in the spectral function at later times
are mainly due to changes in the carrier density.

The decrease in the total in-plane kinetic energy in the
different layers is also evident in the bottom right panel of
Fig 6. This is consistent with a metallization of the bulk
layers as a result of the doping induced by the diffusion
of doublons. The small quantitative change of the kinetic
energy is explained by the small amount of doping and the
high effective temperature of the doped system. Despite the
strong coupling to the phonon bath with inverse temperature
β = 10, the distribution function A<(ω,t) remains nonthermal
within the accessible time range, and it is much broader than
expected for the effective temperature of the bath. In addition,
no pronounced quasiparticle peak emerges in the spectral
function on these time scales. As in the case of a photodoped
metallic state with electrons and holes,38 it seems that the

purely electron doped state obtained via doublon diffusion
from the surface layer is not a good metal, and that the
formation of a Fermi liquid state similar to an equilibrium
chemically doped Mott insulator is a very slow process.

Finally, we note that in principle one should consider also
the electrostatic energy associated with the (time-dependent)
charge redistribution. This could be done for example by
adding a layer-dependent Hartree potential Vm(t) to the
chemical potential in the DMFT loop. The formulas for this
potential are given, for example, in Refs. 31, 34, 46, and 47:

Vm({n1, . . . ,nm−1},t) = −α

m−1∑
k=1

k∑
l=1

[nl(t) − nbackground],

(37)

where nbackground = 0.5 for half-filling and α is a constant
proportional to the inverse dielectric constant. This potential
would stop the spreading of charge into the bulk and confine
the carriers to a region close to the interface. However, since the
main purpose of the present work is to explain the nonequilib-
rium real-space DMFT method and to illustrate its versatility
with several examples, we will leave the calculation of realistic
time-dependent charge profiles in heterostructures to a future
publication. (The results shown here are representative of
materials with a large dielectric constant.)

D. Multilayer structures under applied bias

Transport through nanoscopic devices is another important
area of physics that involves both nonequilibrium phenom-
ena and strong correlations. The nonlinear current voltage
characteristics of a two-terminal heterostructures has been
studied previously, using an inhomogeneous steady-state
DMFT approach.48 The present formalism allows us to study
the evolution of such systems in real time, and as a first
application, we investigate the time-dependent build-up of
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FIG. 9. (Color online) Top left panel: Current between the different layers of a 15-layer system with U = 10 as a function of time after the
switch-on of a voltage bias v. The black line shows the current which flows into the system, which at the resolution of the plot is indistinguishable
from the current which flows out. Top right panel: Current measured at the leads at t = 10, divided by voltage and plotted as a function of
voltage, showing an exponential increase at low bias. The slope gives the threshold voltage for the dielectric breakdown of the Mott insulator.
Bottom panels: Current and charge distribution at different times.

current and charge distributions across the sample after the
switch-on of a voltage-bias perpendicular to the layers. We
consider a system consisting of L = 15 correlated layers in
the Mott regime (U = 10). In these calculations we do not
attach local heat baths, so that energy dissipation occurs only
in the leads, and may not be relevant on the time scales of
our simulations. Initially, the system is in equilibrium without
applied bias, and at time t = 0, we switch on a bias v across the
whole sample, assuming that the voltage drop is linear, i.e., the
electric field is E⊥ = v/(N + 1). The top left panel of Fig. 9
shows the time evolution of the current j⊥ flowing between the
layers, for three different values of v. After some initial strong
oscillations of the current j⊥, which are related to the build-up
of a polarization perpendicular to the layers, the currents into
layer 1 (j⊥

0 ) and out of layer 15 (j⊥
15) quickly settle to some

v-dependent value which changes only slowly with time (bold
lines). This is in contrast to the currents between layers in the
interior of the sample, which show a slower time evolution
and no relaxation into a quasisteady state up to t = 30. The
almost steady currents into and out of the leads exhibit a
similar threshold behavior as was found in single-site DMFT
calculations,16,17 i.e., an exponential increase at low bias of the
form j⊥ ∝ v exp(−vth/v). This is illustrated in the top right

panel of Fig. 9, which plots the in-going and out-going current
at time t = 10 on a logarithmic scale.

In the bottom left panel of Fig. 9 we show current profiles
within the structure at different times, for v = 26. At short
times, the current is largest near the leads and smallest in
the center. Around t = 27, the current deficit in the center
changes into a current surplus (see also upper left panel), and
we can expect some oscillations, until eventually an almost
flat quasisteady state distribution is established. This current
profile implies a redistribution of charge from the left side of
the multilayer structure to the right side at short times. Indeed,
a similar plot of the density distribution (bottom right panel)
shows a build-up of positive (negative) charge in the left (right)
half of the structure which progresses from the boundaries. At
t = 30 the excess charge peaks at layers 4 and 12, which is
in the middle of the left and right regions. The distribution in
the quasisteady state might look similar. Again, one should in
principle take the electrostatic potential associated with this
charge redistribution into account and compute the potential
profile across the structure self-consistently. However, if we
insert the charge distribution at t = 30 into Eq. (37) we find
that the voltage drop across the sample is modified by ≈0.3α,
so that for α of O(1) the induced Hartree potential is much
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FIG. 10. (Color online) Current induced in a Mott insulating five-
layer system (U = 10) under a voltage bias v = 2, by an in-plane field
pulse acting on the middle layer. The pulse with � ≈ 12 is centered
at tpulse = 9.3. Initially the system is in equilibrium, and the large
current spikes at short times are due to the build-up of a polarization
after the switch-on of the linear bias.

smaller than the applied bias v = 27. In this case, we can
expect that the self-consistent solution is very close to the
result shown in the figure.

Similar time- and layer-dependent redistribution processes
might be observable if they are triggered by a short pulse.
To illustrate this, we finally discuss the current induced in
Mott insulating structures under bias by an applied intralayer
electric field pulse. We consider a five-layer structure with
U = 10. The voltage v = 2 across the insulating sample is
small enough that after the build-up of a polarization, there is
only a very small current flowing through the sample (Fig. 10).
Between t = 8 and t = 11.6 a field pulse with � ≈ 12 is
applied to the middle layer (with polarization in the in-plane
direction). At later times, the doublons and holes created by
the pulse start to diffuse to the leads under the applied bias,
which leads to a net negative current. The decay of this current
is a direct measure for the mobilities. The intralayer current
during the pulse exhibits a peak in the opposite direction to
the expected bias-induced current in the central region, which
indicates that the polarization in the central layers is reduced
in response to the perturbation.

IV. CONCLUSIONS

We have described and tested the nonequilibrium extension
of real-space DMFT, which allows us to study layered systems
with strong electronic correlations. Like single-site DMFT
(and in contrast to cluster extensions of DMFT), the formalism
is based on the assumption of a purely local self-energy. One
thus only has to solve a collection of (coupled) single-site

impurity problems in a self-consistent manner. For a layer
geometry, in which all properties of the system depend on only
one space direction, the computational effort scales linearly
with system size (up to the number of iterations, which may
weakly depend on the system size), and the same is true for
the storage requirement. We have discussed the details of
our implementation based on self-consistent strong-coupling
perturbation theory (NCA) as an impurity solver, but the
formalism can equally be combined with a Monte Carlo,49

or a perturbative weak-coupling solver.13

As an application, we have simulated the diffusion of
photoexcited doublons in a Mott insulator, both inside the
bulk, and from the surface of a heterostructure into the bulk.
The diffusion constant was found to depend mainly on the
intralayer hopping, while it is almost independent of the inter-
action strength. A heterostructure setup allows for a controlled
doping of charge carriers of one type (e.g., doublons) into
a Mott insulator, in contrast to photodoping, where always
both electrons and holes are inserted. In principle, this opens
the possibility to study the formation of quasiparticles in a
metallic system. For the current setup, however, we find that
the time scale for the build-up of such a state is rather long,
such that the doped system behaves more like a bad metal
on the numerically accessible time scales. A more thorough
investigation of this important question will be deferred to a
future study.

The second type of application was the layer- and time-
resolved calculation of the current through a correlated
insulating slab, where we reproduced the threshold behavior
of the current-voltage characteristics known from previous
nonequilibrium DMFT studies, and computed the evolution
of the current and density profile after the switch-on of the
voltage bias. We also considered a Mott insulating slab under
bias (below the threshold for the dielectric breakdown) and
computed the time-dependent redistribution of charge after a
few-cycle laser pulse.

In the future, one should include the effect of the electro-
static potential to obtain a more realistic description of the
diffusion of electrons and holes in a heterostructure. Also, the
extension of our formalism to antiferromagnetically ordered
layers would be useful, because this should allow us to exploit
the cooling effect on the photodoped carriers associated with
demagnetization.21 How, and on which time scale, an almost
thermal metallic state can be induced in a Mott insulator by
diffusion of doublons from neighboring layers is an interesting
topic for further studies.
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B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel,
M. Drescher, U. Kleineberg, P. M. Echenique, R. Kienberger,
F. Krausz, and U. Heinzmann, Nature (London) 449, 1029 (2007).

7S. Wall, D. Brida, S. R. Clark, H. P. Ehrke, D. Jaksch, A. Ardavan,
S. Bonora, H. Uemura, Y. Takahashi, T. Hasegawa, H. Okamoto,
G. Cerullo, and A. Cavalleri, Nat. Phys. 7, 114 (2011).

8W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
9A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod.
Phys. 68, 13 (1996).

10P. Schmidt and H. Monien, arXiv:cond-mat/0202046.
11J. K. Freericks, V. M. Turkowski, and V. Zlatic, Phys. Rev. Lett. 97,

266408 (2006).
12M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. Lett. 103, 056403

(2009).
13M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. B 81, 115131

(2010).
14M. Eckstein and Ph. Werner, Phys. Rev. Lett. 107, 186406

(2011).
15A. Amaricci, C. Weber, M. Capone, and G. Kotliar, Phys. Rev. B

86, 085110 (2012).
16M. Eckstein, T. Oka, and P. Werner, Phys. Rev. Lett. 105, 146404

(2010).
17M. Eckstein and P. Werner, J. Phys.: Conf. Series 427, 012005

(2013).
18C. Aron, G. Kotliar, and C. Weber, Phys. Rev. Lett. 108, 086401

(2012).
19M. Eckstein and P. Werner, Phys. Rev. B 84, 035122 (2011).
20N. Tsuji, T. Oka, P. Werner, and H. Aoki, Phys. Rev. Lett. 106,

236401 (2011).
21P. Werner, N. Tsuji, and M. Eckstein, Phys. Rev. B 86, 205101

(2012).
22N. Tsuji, M. Eckstein, and P. Werner, Phys. Rev. Lett. 110, 136404

(2013).
23M. Potthoff and W. Nolting, Phys. Rev. B 59, 2549 (1999).
24J. K. Freericks, Phys. Rev. B 70, 195342 (2004).
25R. W. Helmes, T. A. Costi, and A. Rosch, Phys. Rev. Lett. 100,

056403 (2008).
26E. V. Gorelik, I. Titvinidze, W. Hofstetter, M. Snoek, and N. Blümer,
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