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Molecular Dynamics Simulations

The systems comprise SPC/E water as solvent and a single hydrophobic sphere fixed in the middle of the simulation
box. The interaction between SPC/E and the model solute is mediated by a shifted Lennard Jones potential ULJ(r′) =
4ε[(σ/r′)12− (σ/r′)6] whereas r′ = r− r0 increases the solute size. The parameters ε = 1.197 kJ/mol and σ = 3.768 Å
are those of a united-atom methane molecule as in Ref.[1]. Ten seperate simulations are performed with shift radii
r0 = 0 Å, 1 Å, 2 Å, 4 Å, 6 Å, 8 Å, 10 Å, 12.5 Å, 15 Å and 17.5 Å. For shift radii r0 ≤ 6 Å the simulation box containes
6000 SPC/E water molecules and for simulations with r0 > 6 Å the number of solute molecules is doubled to 12000
to avoid finite size effects.

To model the corresponding hydrophobic surface without curvature the walls in the x-y-plane of a simulation box
of size 5.67 × 5.67 × 6.54 nm3 are set to interact with water with a 12-6 potential in the z-direction U12−6(z) =
4ε[(σ/z)12 − (σ/z)6] with same interaction parameters ε = 1.197 kJ/mol and σ = 3.768 Å.

Each system is equilibrated in NPT ensemble for 100 ps at ambient conditions, namely T = 300 K and P = 1 bar.
After equilibration the box lengths of the cubic boxes are roughly 5.65 nm and 7.15 nm for the small (6000 SPC/E)
and big (12000 SPC/E) setups respectively. In order to gather enough statistics to probe long-time dynamics within
the thin solvation shell comprised of O(10) to O(102) water molecules subsequent production runs have a length
of 200 ns for the small systems and 100 ns for the big systems with a time step of 2 fs and writing period of 200 fs.
Energy divergence is prevented by simulation in NVT ensemble (T = 300 K) applying the Nosé-Hoover thermostat
with a coupling period of 1 ps. The Nosé-Hoover is implemented by an extra degree of freedom introduced as a heat
bath within the hamiltionian of the simulation and thus has the advantage of creating physically more realistic NVT
ensembles [5, 6].

Additional simulations for the cavities with r0 = 0 Å, 1 Å, 2 Å and 4 Å were performed in order to resolve the
temperature dependence of our observations. Production runs with T = 260 K, 280 K and 320 K were performed up
to 100 ns.

All simulations are performed with the GROMACS 4.5.4 package [4].

Planar Limit

The spatial distribution function in figure 1 of water at planar walls with the interaction parameters mentioned
above does not exhbit a clear first and second minimum. The missing extrema hinder a clear definition of a first and
second solvation shell as it can be observed from the RDFs (main text Fig. 1) for curved surfaces.

One further simulation of a wall interacting with a doubled interaction strength ε = 2.394 kJ/mol was conducted
to generate clear extrema (Fig. 1) and hence definitions for the solvation layers. Clearly, the found borders to the
solvation shells only approximate values that correspond to values that would consistently define hydration layers for
the original interaction parameters.

Another notable difference to simulations of water at curved surfaces arrises from the lack of long-range correction
for the interaction in the planar geometry. This creates smaller water densities and larger mobilities than in bulk [3].

Both discrepancies introduce minor consistency deviations between the simulations with the curved surfaces and
the planar limit but never conflict with our interpretation.

MFPT method and perpendicular diffusivity

In the main text we briefly describe the MFPT method from Hinczewski et al. [2] which takes the free energy profile
F (r) and the spatial derivative of the MFPT curve Tfp(r, rt). Both are obtained equivalently to the application of
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Fig. 1: Normalized water distribution at hydrophobic walls.

pair diffusion of water and methane by Sedlmeier et al. [3]. The integral
∫ r
rmin

dr e−βF (r) is evaluated numerically
starting from the reflective boundary rmin, which we define by the largest distance from the respective solute where
F (rmin) ≥ 10 kBT. The derivative ∂ Tfp(r, rt)/∂r is determined by fitting a linear function to the function values
around r − δr < r < r + δr whereas δr = 0.05 nm. The closest distance r evaluated for the derivative, and hence
diffusivity profile value closest to the solute, is r / RG where statistics of Tfp(r, rt) allow a reasonable fit in the
mentioned range of δr.
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Fig. 1: Normalized water distribution at hydrophobic walls.

pair di↵usion of water and methane by Sedlmeier et al. [3]. The integral
R r

rmin
dr e��F (r) is evaluated numerically

starting from the reflective boundary rmin, which we define by the largest distance from the respective solute where
F (rmin) � 10 kBT. The derivative @ Tfp(r, rt)/@r is determined by fitting a linear function to the function values
around r � �r < r < r + �r whereas �r = 0.05 nm. The closest distance r evaluated for the derivative, and hence
di↵usivity profile value closest to the solute, is r / RG where statistics of Tfp(r, rt) allow a reasonable fit in the
mentioned range of �r.
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Fig. 2: Left panel: Spatially resolved perpendicular di↵usion profile of water at the hydrophobic wall. Right panel: (red,
solid) Average perpendicualr di↵usion constant hD?(r)i (eq. 1) inside the solvation layer of di↵erently sized hydrophobic model
solutes. The red horizontally dashed line is the corresponding value at the planar limit (RG ! 1) for hD?(r)i (green, dashed)
Excess perpendicular di↵usion constant Dexc + 1 (eq. 2) quantifying an average disruption of the di↵usion of water near
hydrophobic solutes. The reference value of bulk di↵usivity is drawn as grey horizontally dashed line as isoline with value 1.

The left panel of Fig.2 plots the di↵usivity profile of water motion perpendicular to the hydrophobic planar model
surface. The di↵usivity right at the surface decreases rapidly from high mobility values to a global minimum proceeding
into a maximum which is located within the hydration water layer. With growing distance to the wall the di↵usivity
then decreases to bulk di↵usion. The minimum at the outer margin of the solvation shell which is visible in each
profile in Fig.4 of the main text almost fully vanishes for the profile of the planar surface here.

The right panel in Fig.2 shows two further measures quantifying the perpendicular di↵usivity in vicinity of the
hydrophobic model solutes. The red curve is an average di↵usivity inside the first solvation shell

hD?(r)i =

Z R1

Rmax

dr gso(r) · D?(r) . (1)

It captures the non-monotonicity from the di↵usivity profiles slightly decreasing below bulk di↵usion near small solutes
and subsequently increases converging towards the value for perpendicular di↵usion at the planar interface.

We also calculate an ”excess” perpendicular di↵usivity Dexc which quantifies an average change of the di↵usivity

Fig. 2: Left panel: Spatially resolved perpendicular diffusion profile of water at the hydrophobic wall. Right panel: (red,
solid) Average perpendicualr diffusion constant 〈D⊥(r)〉 (eq. 1) inside the solvation layer of differently sized hydrophobic model
solutes. The red horizontally dashed line is the corresponding value at the planar limit (RG → ∞) for 〈D⊥(r)〉 (green, dashed)
Excess perpendicular diffusion constant Dexc + 1 (eq. 2) quantifying an average disruption of the diffusion of water near
hydrophobic solutes. The reference value of bulk diffusivity is drawn as grey horizontally dashed line as isoline with value 1.

The left panel of Fig.2 plots the diffusivity profile of water motion perpendicular to the hydrophobic planar model
surface. The diffusivity right at the surface decreases rapidly from high mobility values to a global minimum proceeding
into a maximum which is located within the hydration water layer. With growing distance to the wall the diffusivity
then decreases to bulk diffusion. The minimum at the outer margin of the solvation shell which is visible in each
profile in Fig.4 of the main text almost fully vanishes for the profile of the planar surface here.

The right panel in Fig.2 shows two further measures quantifying the perpendicular diffusivity in vicinity of the
hydrophobic model solutes. The red curve is an average diffusivity inside the first solvation shell

〈D⊥(r)〉 =

∫ R1

Rmax

dr gso(r) ·D⊥(r) . (1)

It captures the non-monotonicity from the diffusivity profiles slightly decreasing below bulk diffusion near small solutes
and subsequently increases converging towards the value for perpendicular diffusion at the planar interface.

We also calculate an ”excess” perpendicular diffusivity Dexc which quantifies an average change of the diffusivity
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constant in the solute’s surrounding water

Dexc =

∫ ∞

Rmax

dr r2gso(r) · [D⊥(r)/Dbulk − 1] . (2)

The plot shows 1+Dexc(RG). Certainly the non-monotonic curvature dependence in the diffusivity profiles is smoothly
captured in this quantity aswell. In general an excess diffusivity constant can be of particular interest in order to
estimate water diffusivity changes in dilute solutions of hydrophobic solutes.
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Fig. 3: Perpendicular diffusion at cavities with r0 = 0 Å, 1 Å, 2 Å and 4 Å with temperatures T = 260 K (upper left), T = 280 K
(upper right), T = 300 K (bottom left) and T = 320 K (bottom right).

Hydrogen Bond Time Correlation

We analyse the autocorrelation function c(t) of the H-bond existence inside the first hydration layer using an in-
house analysis code. It uses a geometric H-bond definition with a minimum donor-acceptor distance dHB ≤ 3.5 Å and
donor-hydrogen-acceptor angle θHB ≥ 150◦.

Fig. 4 plots the correlation functions c(t) for hydrogen bonds inside the first hydration layer. Hydrogen bonds were
selected at time 0 if they were intact and both, acceptor and donor molecules, resided in the first hydration shell.
We evaluate c(t) up to correlation times of 100 ps until when it has decayed to magnitudes of 10−3. Therefore, the
integral over the correlation function in this time window provides a reasonable lower boundary to the actual HB
lifetimes.

In addition the average number of hydrogen bonds per water molecule n within the solvation layer was counted and
presented in the main text. The error of the average number of hydrogen bonds per molecule is estimated by block
averaging. Using a frequency of a 1000 ps the average number of hydrogen bonds within a block of 100 ps length was
calculated, giving 100 uncorrelated block averages nBlock. These were used to approximate the standard deviation
error by δn = [ΣBlocks (n− nBlock)2/100]1/2.
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Fig. 4: Correlation function c(t) of the hydrogen bonding operator h(t) of hydrogen bonds on water molecules inside the first
solvation shell with temperatures T = 260 K (upper left), T = 280 K (upper right), T = 300 K (bottom left) and T = 320 K
(bottom right). Only at T = 300 K all cavity sizes were evalutated. For the rest the analysis was limited to cavities with
r0 = 0 Å, 1 Å, 2 Å and 4 Å.

Temperature dependence of hydrogen bond dynamics

The hydrogen bond correlation function c(t) contains all three time scales of the reaction-diffusion model from
Luzar and Chandler [7] given by

∂

∂t
ρ(~r, t) = D∇2ρ(~r, t) + δ(~r) k̄c(t)− δ(~r) k̄′n(t)

≡ D∇2ρ(~r, t) + k(t)δ~r,

where the rates k̄ and k̄′ are those for breaking and reformation of a hydrogen bond, respectively. n(t) is proportional
to the diffusivity since n(t) ∝ ρ(0, t) [8] (and ρ(r, t) obeying Fick’s law).

Thus, as we used the reactive flux k(t) = −ċ(t) to evaluate the zero frequency part

τ =

∫
c(t) dt =

∫
k(t) + k̄′n(t)

k̄
dt ,

the correlation time τ contains the factor Dk̄′/k̄, which precludes a direct one-to-one connection to the temperature
dependence of the diffusivity. Certainly a direct relation of temperature dependence between hydrogen bond dynamics
and diffusivity is restored if the time scales were extracted separately.
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