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Phonon-enhanced relaxation and excitation in the Holstein-Hubbard model
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We study quenches of the interaction and electron-phonon coupling parameter in the Hubbard-Holstein model,
using nonequilibrium dynamical mean field theory. The calculations are based on a generalized Lang-Firsov
scheme for time-dependent interactions or externally driven phonons, and an approximate strong-coupling
impurity solver. The interaction quench calculations reveal the phonon-assisted decay of excess doublons,
while the quenches of the electron-phonon coupling lead to persistent oscillations of the phonons and to a
phonon-enhanced doublon production.
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I. INTRODUCTION

Pump-probe spectroscopy provides a powerful tool to
explore the nonequilibrium properties of correlated solids
on the relevant time scales for the electron and phonon
dynamics. Many materials of present day interest, such as
high-Tc cuprates and organic superconductors, exhibit strong
electron-electron and sizable electron-phonon couplings, and
in equilibrium it is difficult to disentangle the effect of these
two types of interactions. Time-resolved experiments which
selectively excite either the electrons or phonons can provide
new insights and even lead to metastable states of matter with
interesting properties. For example, in the insulating charge-
density wave compound 1T -TaS2, a purely electronically
driven insulator-to-metal transition has been found in time-
resolved photoemission experiments.1,2 Optical pump-probe
spectroscopy was used to estimate electron-phonon coupling
strengths in high-Tc superconductors.3–5 Squeezed phonon
states, resulting from a pulse-induced softening of certain
phonon modes in bismuth, have been measured with time-
resolved x-ray pump-probe spectroscopy.6 Most interestingly,
the selective excitation of apical oxygen modes in certain
cuprate materials using THz pulses, has been shown to induce
a transient superconducting state above the equilibrium Tc.7,8

Motivated by these experimental developments, several
theoretical works have recently addressed the nonequilibrium
dynamics of electron-phonon coupled systems. For example,
a mapping from a time-dependent Boltzmann equation onto a
Schrödinger type equation was used to predict electron relax-
ation times in metallic systems,9 under the assumption that the
phonons remain in a state of thermal equilibrium. Reference 10
studied the energy transfer from the electronic system to lattice
vibrations in a one-dimensional photoexcited Mott insulator,
based on a numerical integration of the time-dependent
Schrödinger equation and a classical phonon approximation. A
quantum mechanical treatment of the dynamics and nonlinear
transport characteristics of one or two polarons in the Holstein
model was presented in Refs. 11–13. These calculations
employed a time-dependent Lanczos scheme in a variational
Hilbert space.14 Pump excitations of the two-dimensional
Holstein model were investigated using time-dependent lattice
perturbation theory (Migdal approximation),15,16 and a quench
to the noninteracting system has recently been simulated using
an exact Monte Carlo technique.17

Few methods exist which can handle lattice models in
d > 1 and in the particularly challenging regime of strong
electron-electron and electron-phonon interaction. The two-
temperature model,18 which assumes that the electronic relax-
ation is fast compared to the time scale of phonons, is certainly
inadequate in this case, since it has been demonstrated that the
relaxation time in purely electronic systems with a gap can
be much longer than typical phonon oscillation times.19,20 It is
therefore important to develop a formalism which can describe
the feedback of the quantum phonons on the electronic
relaxation process and the effect of the nonequilibrium state
of the electrons on the evolution of the phonons.

In equilibrium, the Holstein-Hubbard model, which de-
scribes a coupling to local (Einstein) phonons, has been
widely used to study the interplay of electron-electron and
electron-phonon interactions.21–26 It captures a variety of
physics, including the Mott metal-insulator transition and
phonon-driven polaron and bipolaron formation, but cannot be
solved exactly in the general case. A numerical investigation
in the high-dimensional limit is possible within the dynamical
mean field (DMFT) framework,27 and this formalism can
also be applied, with rather straightforward generalizations,
to nonequilibrium situations.28,29 Over the last few years,
nonequilibrium DMFT has been used to study relaxation
phenomena,30,31 band renormalizations,32 photodoping,33 and
symmetry-breaking transitions34,35 in the Hubbard model.
Here we extend the nonequilibrium DMFT method to the
Holstein-Hubbard model, to explore interaction quenches and
phonon-coupling quenches in the regime of strong electron-
electron and electron-phonon coupling.

The outline of this paper is as follows. In Sec. II we
discuss the model and its solution based on a strong-coupling
(hybridization expansion) approach, as well as approximate
strong-coupling impurity solvers. In Sec. III we apply the
formalism to interaction and phonon-coupling quenches and
explore the time evolution of the double occupancy and
spectral function. Section IV is a summary and conclusion.

II. MODEL AND METHOD

A. Hybridization expansion for the Holstein-Hubbard model

A simple model for strongly correlated materials is the
Hubbard model, which describes the hopping of electrons
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between neighboring lattice sites and an on-site repulsion
between electrons of opposite spin. A local coupling to
dispersionless phonons can be included along the lines pro-
posed by Holstein,36 leading to the so-called Holstein-Hubbard
model,

H (t) = −
∑
i,δ,σ

vc
†
i+δ,σ ci,σ + ω0(t)

∑
i

b
†
i bi

+
∑

i

[U (t)ni,↑ni,↓ − μ(t)(ni,↑ + ni,↓)]

+
∑

i

[g(t)(ni,↑ + ni,↓ − 1) + ω0(t)F (t)](b†i + bi).

(1)

Here U denotes the on-site repulsion, μ is the chemical
potential of the electrons with creation operators c†σ and density
operators nσ , b† is the creation operator for Einstein phonons
of frequency ω0, and the electron-phonon coupling is g. The
hopping matrix element is denoted by v. Because we will
consider only situations where no external electromagnetic
field is coupled directly to the electrons, the only property
of the hopping which is relevant in the DMFT calculation is
the density of states D(ω) = ∑

k δ(ω − εk), where the energy
dispersion εk is defined as the Fourier transform of the hopping
matrix. Initially, at time t = 0, the system is assumed to
be in an equilibrium state corresponding to the interaction
parameters U (0) and g(0), and phonon frequency ω0(0). A
nontrivial time evolution may then be triggered either by an
interaction quench [rapid change of U (t)], a phonon-coupling
quench [rapid change of g(t)], or a phonon-frequency quench
[rapid change of ω0(t)]. To describe the external driving of
the phonons via a dipole coupling to a time-dependent electric
field, we also added the term proportional to F (t) [assuming
F (0) = 0]. A coupling of the external electromagnetic field
to the electrons will not be considered in this work. However,
the extension of the formalism is straightforward, because one
only has to modify the DMFT self-consistency, in the same
way as it is done in the Hubbard model without phonons.29

We compute the time evolution of model (1) using the
single-site dynamical mean field (DMFT) approximation,27

which reduces the problem to the solution of a quantum
impurity model (one interacting site coupled to a bath of
noninteracting conduction electrons) combined with a self-
consistency condition. The DMFT formalism can be applied to
nonequilibrium problems28,29 by extending the imaginary-time
interval to an L-shaped Kadanoff-Baym contour C (see Fig. 1).

The quantum impurity model which must be solved in
DMFT calculations of the Holstein-Hubbard model can be
specified by the Hamiltonian

HQI(t) = Hloc(t) + Hhyb(t) + Hbath(t), (2)

where the local term is

Hloc(t) = U (t)n↑n↓ − μ(t)(n↑ + n↓)

+ [g(t)(n↑ + n↓ − 1) + ω0(t)F (t)](b† + b)

+ω0(t)b†b, (3)

−i

t0

β

FIG. 1. (Color online) Illustration of a strong-coupling diagram
on the Kadanoff-Baym contour C (perturbation order n = 2). The
dashed lines are the retarded interactions between creation (full
dots) and annihilation (empty dots) operators, which arise from the
coupling to the phonons. The effect of the driving is represented by
terms (red boxes), which act locally at the positions of the operators
which lie on the real-time branches of the contour.

and the impurity-bath mixing and bath Hamiltonians are

Hhyb(t) =
∑
p,σ

[Vp,σ (t)c†σ ap,σ + h.c.], (4)

Hbath(t) =
∑
p,σ

εp(t)a†
p,σ ap,σ . (5)

The parameters Vp,σ and εp are in general time dependent
and determined by the DMFT self-consistency equation.
They enter the DMFT formalism only via the hybridization
function �σ , which in the case of a semicircular density of
states D(ω) = 1

2πv2

√
4v2 − ω2 can be obtained directly from

the impurity Green’s function Gσ (t,t ′), as explained below
[Eq. (7)].

A numerically exact solution of the impurity model is
possible, in principle, using the continuous-time Monte Carlo
technique.37,38 For the equilibrium Holstein-Hubbard model,
the hybridization expansion approach,39 combined with a
Lang-Firsov decoupling of the electron-phonon term,24,40

allows very efficient simulations. Here we will explain how this
exact approach can be extended to time-dependent couplings
and forces. For the actual simulations, we will then resort to
an approximate strong-coupling impurity solver based on the
noncrossing approximation.41,42

The hybridization expansion on the Kadanoff-Baym con-
tour C is based on a perturbation expansion in Hhyb defined in
Eq. (4). After tracing out the bath states ap,σ , the complex
weight of a Monte Carlo configuration corresponding to
a perturbation order n [n creation operators c†σ (τσ ) and n

annihilation operators cσ (τ ′
σ )] can be expressed as24,38,39

w({Oi(ti)}) = Trc,b[TCe
−i

∫
C dtHloc(t)O2n(t2n) · · ·

· · ·O1(t1)](−i)2ndt1 · · · dt2n

∏
σ

(
det M−1

σ

)
,

(6)

where the Oi(ti) are the creation and annihilation operators
for spin up and spin down electrons on the impurity site and
the ti are times on the contour C (the dti contain factors +1,
−1, or −i, depending on the position of ti on the contour).
The matrix elements M−1

σ (i,j ) = �σ (t ′σ,i ,tσ,j ) are given by
the hybridization function �σ (which itself is determined
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by the time-dependent parameters Vp,σ and εp). In practice,
�σ is obtained directly from the impurity Green’s function
Gσ (t,t ′). In the simple case of a semicircular density of states
of bandwidth 4v, which will be considered in this work, the
relation reads

�σ (t,t ′) = v2Gσ (t,t ′). (7)

The procedure for a general lattice involves an explicit sum
over the momenta in the first Brillouin zone and has been
explained in the Appendix of Ref. 19.

The time evolution operator in the trace is given by Hloc,
which includes a time-dependent electron-phonon coupling.
Our goal is to evaluate the trace over the phonon states
analytically, and in order to do this, we must decouple the
electrons and phonons using a suitable unitary transformation.
The procedure in equilibrium has been detailed in Ref. 24
and employs the standard Lang-Firsov transformation.40 In
the presence of time-dependent couplings, a more general
transformation is needed, and depending on the type of
perturbation, we obtain different variants of the hybridization
expansion algorithm. In the following subsections, we explic-
itly discuss the algorithms for externally driven phonons, or
an arbitrary time dependence of the interaction, the electron-
phonon coupling, and the phonon frequency.

B. Externally driven phonons

1. Exact formalism

We start by considering an impurity Hamiltonian of
the form (3), but with constant U (t) = U , g(t) = g, and
ω0(t) = ω0. Defining the operators X = (b† + b)/

√
2 and P =

i(b† − b)/
√

2 satisfying [X,P ] = i, the unitary transformation
Õ(t) = W †(t)OW (t) specified by

W (t) = eiPX0(t), (8)

X0(t) = √
2g(n↑ + n↓ − 1)/ω0 + √

2F (t), (9)

shifts X to X − X0(t), so that the transformed Hamiltonian at
time t ,

H̃loc(t) = W †(t)HlocW (t)

= −μ̃(t)(ñ↑ + ñ↓) + Ũ ñ↑ñ↓ + ω0

2
(X2 + P 2), (10)

has no explicit electron-phonon coupling. H̃loc is the local
Hamiltonian with chemical potential and interaction strength
shifted as

μ̃(t) = μ − g2/ω0 + 2gF (t), (11)

Ũ = U − 2g2/ω0. (12)

In principle, there is also a time-dependent constant term
−[g/ω0 − F (t)]2ω0, but this should not have any effect on
the nonequilibrium dynamics (except on the total energy).

The transformed electron creation and annihilation opera-
tors are

c̃†σ = W †(t)c†σW (t) = e
g

ω0
(b†−b)

c†σ , (13)

c̃σ = W †(t)cσW (t) = e
− g

ω0
(b†−b)

cσ . (14)

To investigate the effect of the time dependence of the
Lang-Firsov transformation, let us discretize the path integral
in Eq. (6) with small time steps 
t and insert identity
operators I = W (t)W †(t) at each time step. The zero-order
expression becomes a product of time-evolution operators
· · · e−i
tHloc(t+
t)e−i
tHloc(t) · · ·, which after the insertion of the
identity operators can be regrouped as

· · · e−i
tHloc(t+
t)W (t + 
t)]

× [W †(t + 
t)W (t)W †(t)e−i
tHloc(t)W (t)]

× [W †(t)W (t − 
t)W †(t − 
t) · · · . (15)

Since W †(t + 
t)W (t) = e−iPX0(t+
t)eiPX0(t) = e−iPX′
0(t)
t

and X′
0(t) = √

2F ′(t) we obtain, in addition to the Lang-Firsov
transformed H̃loc(t), a term PX′

0(t) = P
√

2F ′(t).
After separating the bosonic from the fermionic operators,

the weight (6) can thus be written as a product

w({Oi(ti)}) = wb({Oi(ti)})w̃Hubbard({Oi(ti)}), (16)

where w̃Hubbard is the weight of a corresponding configuration
for the Hubbard (Anderson) impurity model with parameters
modified according to Eqs. (11) and (12), and wb is the bosonic
expectation value

wb = 1

Zb

Trb
[
TCe

−i
∫
C dtHb(t)Ob

2n(t2n) · · ·Ob
1 (t1)

]
. (17)

Here Ob(t) = e±(g/ω0)[b†(t)−b(t)] [plus (minus) sign for time
arguments associated with fermionic creation (annihilation)
operators] and the time-dependent Hamiltonian is

Hb(t) = ω0b
†(t)b(t) +

√
2F ′(t)i

b†(t) − b(t)√
2

= ω0

2
[X2(t) + P 2(t)] +

√
2F ′(t)P (t). (18)

To evaluate wb we solve the Heisenberg equations

X′(t) = i[Hb(t),X(t)] = +ω0P (t) +
√

2F ′(t), (19)

P ′(t) = i[Hb(t),P (t)] = −ω0X(t), (20)

which gives

X(t) = X(0) cos(ω0t) + P (0) sin(ω0t)

+
∫ t

0
dt̄ cos[ω0(t − t̄)]

√
2F ′(t̄), (21)

P (t) = P (0) cos(ω0t) − X(0) sin(ω0t)

−
∫ t

0
dt̄ sin[ω0(t − t̄)]

√
2F ′(t̄), (22)

with X(0) = (b† + b)/
√

2, P (0) = i(b† − b)/
√

2, and thus

b†(t) = X(t) − iP (t)√
2

= b†eiω0t +
∫ t

0
dt̄F ′(t̄)eiω0(t−t̄), (23)

b(t) = X(t) + iP (t)√
2

= be−iω0t +
∫ t

0
dt̄F ′(t̄)e−iω0(t−t̄). (24)

Introducing the variable s = ± g

ω0
, we can write the operator

Ob(t) as

Ob(t) = es[b†(t)−b(t)]

= es(b†eiω0 t−be−iω0 t )e2is
∫ t

0 dt̄F ′(t̄) sin[ω0(t−t̄)]

= Ob
F=0(t)e2iω0s

∫ t

0 dt̄F (t̄) cos[ω0(t−t̄)], (25)
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where in the last step we used the fact that F (t = 0) = 0 to
reexpress the integral. Ob

F=0(t) = es(b†eiω0 t−be−iω0 t ) is the oper-
ator in the absence of external driving. It follows immediately
that the bosonic factor wb is of the form

wb = wF=0
b wext

b , (26)

where

wext
b = exp

{
2iω0

2n∑
k=1

sk

∫ tk

0
dt̄F (t̄) cos[ω0(tk − t̄)]

}
(27)

and wF=0
b is given by the same expression as in the equilibrium

Holstein-Hubbard formalism24

wF=0
b = exp

[
− 1

sinh(βω0/2)

( ∑
n

s2
n

2
cosh(βω0/2)

+
∑
n>m

snsm cosh{[β/2 − i(tn − tm)]ω0}
)]

. (28)

In Eq. (28) it is assumed that the times t1 < t2 < · · · < t2n are
ordered along the contour C. For the total weight (16) we thus
obtain the expression

w({Oi(ti)}) = wF=0
b ({Oi(ti)})wext

b ({Oi(ti)})
× w̃Hubbard({Oi(ti)}). (29)

A strong-coupling diagram may thus be represented as
sketched in Fig. 1 (example for perturbation order n = 2). The
locations of the hybridization operators are marked by empty
(creation operators) and full (annihilation operators) circles on
the contour C, which runs from 0 to t along the real axis, and
back to 0 and then to −iβ along the imaginary time axis. The
weight wF=0

b ({Oi(ti)}) can be interpreted as originating from
“interaction lines” between all pairs of operators, with weight

wline = exp

[
− s<s>

sinh(βω0/2)

(
cosh{[β/2 − i(t> − t<)]ω0}

− cosh(βω0/2)
)]

(30)

(dashed lines in the figure), while the weight wext
b ({Oi(ti)})

can be taken into account by assigning an additional weight

wbox = exp

{
2isω0

∫ t

0
dt̄F (t̄) cos[(t − t̄)ω0]

}
(31)

to each operator on the real-time branches of the contour
(red boxes in the figure). In these formulas, the greater
(lesser) signs in the exponent refer to the operator with larger
(smaller) time argument on the contour. Pairs of creation
and annihilation operators are linked by hybridization lines
(solid lines with arrows in the figure). The n! possible
ways of connecting creation and annihilations operators by
hybridization lines are summed up in the factor det M−1

contained in w̃Hubbard [see Eq. (6) and Refs. 24 and 39].

2. Self-consistency

The external force appears only in the weight factor wext
b

(boxes in Fig. 1), while wF=0
b (dashed lines) corresponds

to the phonon weight for F = 0. One can show that in a
homogeneous system, the “box” contributions cancel. An easy

way to see this is to consider the self-consistency for the
semicircular density of states, � = v2G. The diagrams for
the Green’s function G also have box terms attached to the
operators c† and c, but they are complex conjugate to the terms
attached to � [because G(t,t ′) ∝ ∂/∂�(t ′,t), where  is the
grand potential]. Hence, we can simply ignore wext

b , perform
the DMFT calculation for F = 0, and multiply the converged
G with the appropriate wbox factors. This however means that
the external driving has no effect on local quantities, such as
the double occupancy, and that the effect on nonlocal quantities
such as Green’s functions is trivial in the sense that it does not
propagate into the self-consistent calculation.

More generally, we can understand the rather trivial effect
of a site-independent driving term in a homogeneous system as
follows: Suppose that we expand the path integral expressions
for the time-dependent double occupancy or Green’s function
of the lattice model in the hopping terms vij c

†
i cj . After the

decoupling of the electron-phonon interaction on each site
by a Lang-Firsov transformation of the forms (8) and (9),
each fermionic operator in these hopping terms gets multiplied
by a factor which is identical to Eq. (25), apart from a site
index. Now, since s = ± g

ω0
for creation/annihilation operators,

and F (t) is supposed to be site independent, the F -dependent
exponential factors will cancel for each hopping term. In the
case of a local observable, such as the double occupancy, the
remaining expression is identical to the expansion one would
get for the system with F = 0, apart from a trivial shift in the
total energy which comes from the F -dependent shift of the
Lang-Firsov transformed chemical potential. In the case of a
Green’s function, the measured c† and c operators will retain
a factor identical to wbox.

In an inhomogeneous or symmetry-broken state, the effect
of the driving field may be nontrivial, because the force may
depend on the position or on the sublattice.

C. Time-dependent Hubbard interaction

We next consider an interaction quench, where U (t) and
μ(t) in Eq. (3) are time dependent, g and ω0 are constant, and
F = 0. In this case, the Lang-Firsov transformation defined by
Eqs. (8) and (9) becomes time independent and the only time
dependence appears in w̃Hubbard, since the shifted chemical po-
tential and interaction parameters are Ũ (t) = U (t) − 2g2/ω0

and μ̃(t) = U (t) − g2/ω0. To formulate the algorithm, we
can simply set F = F ′ = 0 in the equations of the previous
subsection, which in particular means that the box terms in
the weight and in Fig. 1 disappear. The interaction quench
calculation is therefore a straightforward generalization of the
equilibrium algorithm24 to the Kadanoff-Baym contour.

D. Time-dependent phonon coupling

A more complicated situation arises if the electron-phonon
coupling strength g is time dependent:

Hloc(t) = Un↑n↓ − μ(n↑ + n↓)

+ g(t)(n↑ + n↓ − 1)(b† + b) + ω0b
†b. (32)

In this case, the standard Lang-Firsov transformation (8)
simply replaces the electron-phonon coupling term g(t)Xn

by another one of the type −g′(t)Pn. We hence apply a
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generalized unitary transformation of the form

W (t) = ei[PX0(t)+XP0(t)], (33)

which implies, as usual,

W †(t)XW (t) = X − X0(t), (34)

W †(t)PW (t) = P + P0(t). (35)

The nontrivial relation is

W †(t + 
t)W (t) = e−iX(t)P ′
0(t)
te−iP (t)X′

0(t)
t

× e
i
2 [P ′

0(t)X0(t)−X′
0(t)P0(t)]
t . (36)

After the transformation, the terms ω0
2 (X2 + P 2) +√

2g(t)(n↑ + n↓ − 1)X in Eq. (32) plus the time-dependent
basis change yield

ω0

2
[(X − X0)2 + (P + P0)2]

+
√

2g(t)(n↑ + n↓ − 1)(X − X0)

+XP ′
0 + PX′

0 − 1

2
(P ′

0X0 − X′
0P0)

= ω0

2
(X2 + P 2) + ω0

2

(
X2

0 + P 2
0

)
− 1

2
(P ′

0X0 − X′
0P0) −

√
2g(n↑ + n↓ − 1)X0

+ [−ω0X0 + P ′
0 +

√
2g(n↑ + n↓ − 1)]X

+ (ω0P0 + X′
0)P. (37)

To eliminate the electron-phonon coupling, we have to set the
last two terms to zero:

X′
0(t) = −ω0P0(t), (38)

P ′
0(t) = ω0X0(t) − f (t), (39)

where we have introduced the abbreviation

f (t) = √
2g(t)(n↑ + n↓ − 1). (40)

First of all, we note that if g is time independent, the solution
of Eqs. (38) and (39) consistent with the initial condition is
P0 = 0, X0 = 1

ω0
f = √

2 g

ω0
(n↑ + n↓ − 1), in agreement with

Eq. (9). In the general case, where g is time dependent, the
solution becomes

X0(t) = f (0)

ω0
cos(ω0t) +

∫ t

0
dt̄ sin[ω0(t − t̄)]f (t̄), (41)

P0(t) = f (0)

ω0
sin(ω0t) −

∫ t

0
dt̄ cos[ω0(t − t̄)]f (t̄). (42)

Plugging Eqs. (38), (39), (41), and (42) into Eq. (37), we find,
besides a decoupled phonon term ω0

2 (X2 + P 2), an electronic
term

ω0

2

(
X2

0 + P 2
0

) + 1

2

( − ω0X
2
0 + f X0 − ω0P

2
0

) − f X0

= −1

2
f X0 ≡ −1

2
[1 + 2n↑n↓ − (n↑ + n↓)]λ(t), (43)

λ(t) = 2
g(t)g(0)

ω0
cos(ω0t) + 2g(t)

∫ t

0
dt̄g(t̄) sin[ω0(t − t̄)].

(44)

This means that the interaction and chemical potential are
shifted as

U → Ũ (t) = U − λ(t), (45)

μ → μ̃(t) = μ − λ(t)/2. (46)

For the shift at t = 0, λ(0) = 2 g(0)2

ω0
, one recovers the well-

known formulas for the transformed Holstein-Hubbard model
with time-independent couplings Ũ = U − 2g(0)2

ω0
and μ̃ =

μ − g(0)2

ω0
.

Because the operator nσ is time independent in the
transformation, we have

W (t) = ei[PX0(t)+XP0(t)]

= ei[PX̃0(t)+XP̃0(t)]
√

2(n↑+n↓−1), (47)

X̃0(t) = g(0)

ω0
cos(ω0t) +

∫ t

0
dt̄ sin[ω0(t − t̄)]g(t̄), (48)

P̃0(t) = g(0)

ω0
sin(ω0t) −

∫ t

0
dt̄ cos[ω0(t − t̄)]g(t̄). (49)

We use these expressions to find the transformation of the
fermionic creation and annihilation operators:

c̃σ = W †(t)cσW (t) = ei[PX̃0(t)+XP̃0(t)]
√

2cσ

= e−[(b†−b)X̃0(t)−i(b†+b)P̃0(t)]cσ ≡ e−[γ (t)b†−γ ∗(t)b]cσ , (50)

with

γ (t) = X̃0(t) − iP̃0(t)

= g(0)

ω0
e−iω0t + i

∫ t

0
dt̄e−iω0(t−t̄)g(t̄). (51)

Similarly,

c̃†σ = W †(t)c†σW (t) = e+[γ (t)b†−γ ∗(t)b]c†σ . (52)

After the separation of the electron and phonon contributions
we must therefore evaluate a trace over a sequence of
phonon-operators Ob = e±[γ (t)b†−γ ∗(t)b] with the time evolu-
tion between operators given by Hb = ω0

2 (X2 + P 2) = ω0b
†b.

In an interaction representation, this trace factor becomes
Tr[e−βHbT Ob(t2n) · · · Ob(t1)], where the operators in the in-
teraction representation are

Ob(t) = e±[γ (t)b†(t)−γ ∗(t)b(t)], (53)

b†(t) = eiω0t b†, b(t) = e−iω0t b. (54)

Splitting γ (t) into a modulus and a phase γ (t) ≡ r(t)eiφ(t)

we can write wb in a form analogous to Eq. (28), with the
substitutions

t̃n = tn + 1

ω0
φ(tn), (55)

s̃n = snr(tn), (56)
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and sn = ±1. After some straightforward algebra, this leads to
the expression

wb = exp

(
−1

sinh
(

βω0

2

) ∑
n>m

snsm

2

{
γ ∗(tn)γ (tm)

× e[ β

2 −i(tn−tm)]ω0 + γ (tn)γ ∗(tm)e−[ β

2 −i(tn−tm)]ω0

− [γ (tn)γ ∗(tn) + γ (tm)γ ∗(tm)] cosh

(
βω0

2

)})
. (57)

There are no box terms in the bosonic weight, and we can
directly read off the “line” weights from Eq. (57).

As a first example, we consider a quench of the phonon
coupling from g1 (at t = 0) to g2 (at t > 0). In this case, one

finds λ(0) = 2 g2
1

ω0
, γ (0) = g1

ω0
, and for t > 0,

λ(t) = 2
g2

2

ω0
+ 2

g2(g1 − g2)

ω0
cos(ω0t), (58)

γ (t) = g1 − g2

ω0
e−iω0t + g2

ω0
, (59)

which means that λ(t) and hence Ũ (t) = U − λ(t) oscillate
forever, except for g2 = 0. Note that this does not necessarily
imply that the system will not relax, due to the effect of the
nonlocal couplings in time (wline).

In our calculations we will consider an exponential
switching from g1 to g2 on a time scale controlled by the
parameter κ:

g(t) = g2 + (g1 − g2)e−κt . (60)

In this case, the behavior of g(t) is qualitatively different in the
regimes κ 
 ω0 and κ � ω0, as illustrated in Fig. 2. A fast
switching to a nonzero g leads to large-amplitude oscillations
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FIG. 2. (Color online) Time evolution of the phonon coupling g(t)
and of the change in the effective instantaneous interaction λ(t) for
the exponential switching (60) and indicated values of κ (ω0 = 1).
Left panels: Ramping the phonon coupling up from 0 to 2. Right
panels: Ramping the phonon coupling down from 2 to 0.

in λ(t), similar to the case of the quench, while in a slow
switching process, the oscillations are suppressed and λ(t)
approaches the value expected in the final equilibrium state
(2g2

2/ω0) more or less smoothly (see Fig. 2).

E. Time-dependent phonon frequency

Finally, let us discuss the situation where the phonon-
coupling ω0(t) is time dependent, while g and U are fixed and
F = 0. To decouple the electrons and phonons in this case,
we may proceed as in the phonon-coupling quench section.
Instead of Eqs. (38) and (39) we obtain

X′
0(t) = −ω0(t)P0(t), (61)

P ′
0(t) = ω0(t)X0(t) − f, (62)

with f = √
g(n↑ + n↓ − 1) time independent. By introducing

the integral

w(t) =
∫ t

0
ω0(t ′)dt ′, (63)

we can write the solution of Eqs. (61) and (62) as

X0(t) = f

ω0(0)
cos[w(t)] +

∫ t

0
dt̄ sin[w(t) − w(t̄)]f, (64)

P0(t) = f

ω0(0)
sin[w(t)] −

∫ t

0
dt̄ cos[w(t) − w(t̄)]f, (65)

which leads to the time-dependent shifted parameters

U → Ũ (t) = U − λ(t), (66)

μ → μ̃(t) = μ − λ(t)/2, (67)

λ(t) = 2
g2

ω0(0)
cos[w(t)] + 2g2

∫ t

0
dt̄ sin[w(t) − w(t̄)].

(68)

The fermionic and bosonic creation and annihilation operators
transform as

c̃†σ = e+[γ (t)b†−γ ∗(t)b]c†σ , (69)

c̃σ = e−[γ (t)b†−γ ∗(t)b]cσ , (70)

b†(t) = eiw(t)b†, (71)

b(t) = e−iw(t)b, (72)

with

γ (t) = g

ω0(0)
e−iw(t) + ig

∫ t

0
dt̄e−i[w(t)−w(t̄)]. (73)

Splitting γ (t) into a modulus and a phase, γ (t) ≡ r(t)eiφ(t),
and using the analogy to Eq. (28) we find the weight

wb = exp

(
−1

sinh
(

βω0(0)
2

) ∑
n>m

snsm

2

×
{

γ ∗(tn)γ (tm)e{ β

2 ω0(0)−i[w(tn)−w(tm)]}

+ γ (tn)γ ∗(tm)e−{ β

2 ω0(0)−i[w(tn)−w(tm)]}

− [γ (tn)γ ∗(tn) + γ (tm)γ ∗(tm)] cosh

(
βω0(0)

2

)})
,

(74)
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from which one can read off the weight of a boson line in the
strong-coupling diagrams.

As a simple example, let us consider a quench from
ω0(t = 0) = ω1 to ω0(t > 0) = ω2. In this case we find

λ(t) = 2
g2

ω2
− 2

(
g2

ω2
− g2

ω1

)
cos(ω2t), (75)

which for ω2 �= ω1 again leads to a persistent modulation of
the shifted interaction and chemical potential, similar to the
case of the phonon-coupling quench.

F. Approximate solution of the impurity problem

The stochastic sampling of all the diagrams of the type
illustrated in Fig. 1 via some Monte Carlo procedure in
principle allows us to obtain a numerically exact solution
of the nonequilibrium DMFT equations. However, since the
weights are in general complex, such a simulation suffers from
a phase problem which becomes more and more severe as
one increases the length (t) of the Kadanoff-Baym contour.38

This limits the Monte Carlo approach to rather short times.
In order to reach longer times, it is useful to consider
approximate impurity solvers based on self-consistent strong-
coupling expansions.41,43 These solvers have been shown to
give qualitatively correct solutions for the nonequilibrium
dynamics of the Hubbard model in the strong correlation
regime.42 Here we adapt the strong-coupling perturbation
theory to the Holstein-Hubbard model, where the strong-
coupling diagrams—in addition to fermionic creation and
annihilation operators linked by hybridization lines—contain
phonon lines between all pairs of operators.

The simplest approximation is to multiply the hybridization
function �(t,t ′) by the weight of the phonon line �̃(t,t ′) =
�(t,t ′)wline(t,t ′), and to use this modified hybridization
function in the lowest order strong-coupling perturbation
theory [noncrossing approximation (NCA), see upper panel of
Fig. 3 for an illustration of the pseudoparticle self-energy]. In
this approximation, only a relatively small number of phonon
lines is retained. However, because of sign cancellations
between the different phonon-line contributions [due to the
factor snsm in Eqs. (28), (57), and (74)] this approximation
is less severe than it may seem. (For example, the weight
of two phonon lines connecting a given operator to a distant
creation/annihilation operator pair, whose separation on the
contour is not too large, will almost cancel.) While it is unclear
if increasing the number of phonon lines at a given perturbation
order in � yields better results, one possible strategy would
be to multiply the pseudoparticle propagators gα (bare) and
Gα (bold) by the weight of the phonon line: g̃α(t,t ′) =
gα(t,t ′)wline(t,t ′), G̃α(t,t ′) = Gα(t,t ′)wline(t,t ′), and to use
these propagators within the usual NCA.

In the one-crossing approximation (OCA), the simplest
scheme is represented by the self-energy sketched in the
lower panel of Fig. 3. Here one could also capture more
phonon lines by dressing the bare and bold pseudoparticle
Green’s function, as well as the hybridization lines and
the self-energy itself, by phonon lines. Table I compares
the double occupancies obtained from the simplest NCA and
OCA schemes to the exact Monte Carlo result. The results are
for U = 10, ω0 = 0.2, 1.0, and increasing electron-phonon

line

Λ

G
wbox

w

FIG. 3. (Color online) Illustration of a diagram for the NCA
pseudoparticle self-energy (top) and for the OCA pseudoparticle
self-energy (bottom) in the simplest approximation. Solid lines
represent hybridization functions, dashed lines correspond to phonon
mediated interactions, and the dotted arrows are boldified pseu-
doparticle Green’s functions. The gray dots are either fermionic
creation or annihilation operators (depending on the orientation of
the hybridization lines).

coupling strength g (in the Mott insulating phase, approaching
the transition to the bipolaronic phase). As one can see, the
OCA approximation reproduces the exact results rather well
and correctly captures the interplay and competition between
the electron-electron and electron-phonon interactions. The
NCA approximation overestimates the interaction effects and
leads to a shift of the phase boundary to the metallic phase.
However, it still provides a qualitatively correct description of

TABLE I. Comparison of the double occupancy for β = 5, U =
10, and ω0 = 0.2 (top), ω0 = 1 (bottom). To a good approximation,
the phase transition from the Mott insulator to the bipolaronic
insulator occurs when Ũ = U − 2g2/ω0 changes sign, and hence
where the double occupancy crosses the noninteracting value of 0.25.

g QMC Simple OCA Simple NCA

0 0.0051711 0.0051438 0.0050026
0.2 0.0052004 0.0051599 0.0050145
0.4 0.0052899 0.0052165 0.0050582
0.6 0.0054545 0.0053333 0.0051527
0.8 0.0058096 0.0056223 0.0054071
0.9 0.010767 0.010476 0.010236
0.95 0.047731 0.047292 0.047096
0.975 0.11869 0.11831 0.11827
1 0.24982 0.24982 0.25000
1.1 0.49446 0.49451 0.49459

0 0.0051715 0.0051585 0.0049969
0.4 0.0052190 0.0051944 0.0050320
0.8 0.0053715 0.0053112 0.0051453
1.2 0.0056623 0.0055381 0.0053634
1.6 0.0061809 0.0059470 0.0057525
2 0.011291 0.010664 0.010401
2.1 0.034717 0.033681 0.033400
2.15 0.075718 0.074567 0.074379
2.2 0.16077 0.16013 0.16021
2.25 0.29053 0.28643 0.28673
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the strongly correlated (insulating) phases (for a systematic
study in the Hubbard model context, see Ref. 42) and
we will thus use this particularly efficient approximation
to investigate the real-time dynamics. We note that in the
following nonequilibrium calculations, we are not interested in
the very low-temperature/low-energy properties of the model.
Apart from a systematic overestimation of the gap, the initial
states are thus reasonably well described within the NCA.

III. RESULTS

We will now illustrate the strong-coupling DMFT formal-
ism and the simple NCA impurity solver with calculations
of the time evolution of the double occupancy and spectral
function after a rapid parameter change. As we have men-
tioned, the application of external forces in a homogeneous
system has no effect on local observables, such as the double
occupancy, and only a trivial effect on nonlocal quantities (the
DMFT result obtained in the absence of a force is multiplied
by a force-dependent phase factor). We have also seen that
the formalisms for a time-dependent phonon coupling and
time-dependent phonon frequency are very similar. Hence,
we will concentrate here on two setups: (i) a U pulse,
which produces doublons and holes (similar to a photodoping
experiment) and allows us to study the relaxation of doublons
in the presence of an electron-phonon coupling, and (ii) a
g quench, which induces coherent phonon oscillations and
allows us to investigate the phonon-enhanced production of
doublons (similar to the case of “modulation spectroscopy”44).

The calculations are done for a semicircular density of states
of bandwidth 4v [self-consistency equation (7)] and we use v

[v−1] as the unit of energy [time]. The phonon frequency will
be fixed at ω0 = 1, which depending on the class of materials
may seem rather high, but we are interested here only in
qualitative aspects of electron-phonon coupled systems. We
furthermore restrict our attention to the symmetric phases of
the model.

A. U pulse: Phonon enhanced doublon relaxation

As a first application, we study the effect of phonons on
the relaxation of artificially created doublons. In the Hubbard
model, it is known45 that the relaxation time in the Mott
insulating phase depends exponentially on the interaction U ,
and this dependence is clearly seen in DMFT calculations
based on NCA or OCA solvers.19 The reason for the exponen-
tially long doublon lifetime in the strong-correlation regime
is that the doublon-hole recombination releases an energy of
order U , which in the limit where U is much larger than the
kinetic energy can only be absorbed by high-order scattering
processes. In the presence of phonons, there are additional
relaxation channels, which involve a transfer of multiples of
the phonon energy ω0 from the electronic system to the lattice.
Here we investigate how this affects the doublon lifetime.

To orient ourselves, we plot in Fig. 4 the equilibrium
spectral functions for inverse temperature β = 5, g = 0 and
1, and different values of U . In both the model with and
without coupling to phonons, a gap opens around U ≈ 3.25.
The Hubbard bands in the paramagnetic calculation without
phonons are relatively featureless and approach a semicircle
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FIG. 4. (Color online) Equilibrium spectral functions for g = 0
(top) and g = 1 (bottom) for indicated values of U . The inverse
temperature is β = 5.

deep in the Mott insulating phase. (In the antiferromagnetic
phase, the spectra would feature spin-polaron peaks.34,46) The
phonon coupling leads to the formation of phonon peaks with
an energy separation of ω0. The gap size in the calculation with
g = 0 is very similar to that for g = 1, which is a coincidence.
However, in the model with phonon coupling, some spectral
weight remains at the Fermi energy, even at U = 5, because
of the overlapping phonon sidebands.

For the analysis of the data, it will be useful to define the
gap size in the Holstein-Hubbard spectrum by the peak-to-peak
separation between the first prominent sidebands (measured at
the maxima). In this case one finds (for g = 1) that the gap is
approximately ω0 for U ≈ 3.5, 2ω0 for U ≈ 4.5, and 3ω0 for
U ≈ 5.5.

In order to excite doublons, we apply an interaction pulse
to the model with g = 1: The interaction U (t) jumps from
U (0) = U to U (0+) = Up = 20, and rapidly switches back to
U at t = tp (see inset in the lower panel of Fig. 5). We use a
smooth switching at t = tp in order to improve the stability of
the time-propagation scheme,31 so that we can use a time-step

t = 0.01. The time evolution of the double occupancy after a
pulse of duration tp = 2 is shown in Fig. 5. The first quench to
Up = 20 suppresses the double occupancy and leads to rapid
1/Up oscillations. After switching back to the initial U at
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FIG. 5. (Color online) Top panel: Time evolution of the double
occupancy after an interaction pulse of duration tp = 2 for different
values of U (initial inverse temperature β = 5, g = 1). Bottom
panel: Same data with dth (the value reached in the long-time limit)
subtracted. The inset shows the form of the U pulse for U = 5.

time t ≈ tp, the double occupancy shoots up to a value which
is substantially larger than in the initial state (pulse-induced
doublon-holon production) and then starts to relax towards the
new thermal value. We fit the relaxation by an exponential
function d(t) = dth + a exp(−t/τ ) in the range 15 � t � 50
to extract the long-time limit dth and the relaxation time τ .
Close inspection of the top panel shows that the relaxation
time is not a simple increasing function of U , as it is the case
in the Hubbard model. This becomes even more evident when
we subtract the fitted long-time value dth (lower panel). Here
one can see that the relaxation for U = 3.5 is substantially
faster than for U = 3, while the relaxation times for U = 4
and 4.5 are similar. Figure 6 plots the relaxation time τ and its
inverse as a function of U , and clearly shows that the doublons
relax fast for U = 3.5, 4.5, 5.5, . . . , i.e., whenever the gap
size in the equilibrium spectrum is a multiple of the phonon
frequency. In this case, the emission of phonons provides an
efficient relaxation pathway.

A comparison to the relaxation time in the Hubbard model
shows that the coupling to phonons leads to a substantially
faster relaxation of doublons and to a much slower increase
of the relaxation time with U , at least for interactions up to
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FIG. 6. (Color online) Relaxation time (top) and inverse relax-
ation time (bottom) of the double occupancy after an interaction
pulse of duration tp for different values of U . The results for g = 1
are compared to those obtained in the Hubbard model (g = 0, blue
line). The initial inverse temperature is β = 5. The values of U for
which the gap size in the equilibrium and time-dependent spectral
function becomes a multiple of ω0 are indicated by arrows.

U ≈ 7. The doublon relaxation time in the Hubbard model can
be well fitted with the expected form45 τ = A exp[αU log U ],
with αg=0 = 0.69 (dashed line in the upper panel of Fig. 6).
If we apply the same fit to the Holstein-Hubbard case, α is
reduced to αg=1 ≈ 0.15, but it is obvious that the fit does not
reproduce the resonance phenomena in the regime where the
gap size is comparable to the phonon frequency. The much
slower increase of the relaxation time with U is due to the
larger phase space for relaxation processes (combination of
higher-order scattering processes and phonon emissions) and
to the existence of a small density of states at the Fermi
energy. At even larger U , when this density of states becomes
exponentially small, and the doublon-holon recombination
energy is much larger than the phonon energy, we do expect, as
in the Hubbard case, an exponential dependence of τ on U , as
described in Ref. 45. However, for U > 7 it becomes difficult
to measure a relaxation time, because the slow decrease of d(t)
is almost linear up to the longest accessible times.

Figure 6 shows data for two different pulse lengths (tp =
0.64 and 2), and thus for different excitation densities. For
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FIG. 7. (Color online) Time evolution of the double occupancy
after a U pulse of tp = 2 in the Mott insulator with g = 2 and indicated
values of U . Dashed lines are plotted at the value corresponding to
the first plateau after the pulse.

example, for U = 5, the double occupancy in the initial state
is 0.0256, while the maximum double occupancy after the
perturbation is 0.0813 for tp = 0.64 and 0.0623 for tp = 2
(a similar ratio between excitation densities is found at other
values of U ). Apparently, the relaxation time is not strongly
dependent on the number of doublon-holon pairs produced
by the excitation, and the observed resonance phenomena are
independent of the excitation density.

Finally, we show in Fig. 7 the time evolution of the double
occupancy after a U pulse of tp = 2 in the Mott insulator
with strong electron-phonon coupling g = 2 and different
values of U . In this case, the transition to the bipolaronic
insulator occurs near U = 8 and the separation between the
first prominent phonon side peaks is approximately ω0 for
U = 9, and 2ω0 for U = 10. Indeed we see that a relaxation
of the double occupancy occurs on the time scale of the plot
for these two values of U , while no relaxation is evident for
U = 9.5 and U = 10.5. A comparison with Fig. 6 however
shows that the relaxation is much slower than in the more
weakly correlated case with g = 1. For U = 9.5, the double
occupancy is essentially stuck, even though the effective
interaction [Ũ = 1.5, Eq. (12)] is small. Despite the strong
screening of the interaction in equilibrium, the large “bare U”
seems to prevent a rapid relaxation of the doublons. Instead of
a relaxation, the double occupancy exhibits “echoes” of the U -
pulse perturbation, which are separated in time by one phonon
oscillation period 2π/ω0 = 6.28. In the interaction regime
where a phonon-enhanced relaxation is possible, the double-
occupancy changes in a steplike manner after each echo event
and it is not really possible to extract a relaxation time.

B. g quench: Phonon enhanced doublon production

As a second example, we study the time evolution after
a rapid change in the electron-phonon coupling g. We will
consider the exponential switching (60) from g1 = 0 to g2 > 0
with time-constant κ = 1. This is a fast switching (“quench”)
in the sense that it leads to large-amplitude oscillations of λ(t)
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FIG. 8. (Color online) Evolution of the double occupancy after a
switch from g = 0 to 2 (κ = 1) for different values of U . The initial
inverse temperature is β = 5. The straight lines are guides to the eye.

around 2g2
2/ω0, and thus to a strong periodic modulation of

the effective interaction Ũ with frequency ω0.
The time evolution of the double occupancy after a quench

to g2 = 2 is shown in Fig. 8 for several values of U . In
equilibrium, the transition to the bipolaronic insulator occurs
near Ũ = U − 2g2

2/ω0 = 0, i.e., U ≈ 8. Hence, the curves
plotted in Fig. 8 are for quenches within the Mott insulating
phase, but the smallest U value is getting close to the
bipolaronic phase boundary.

In the Hubbard model, an interaction quench from U = 12
to 4 would lead to a relatively fast exponential relaxation
of the double occupancy (see blue curve in Fig. 6 for
the relaxation time in the Hubbard model after a different
type of perturbation). However, in the Holstein-Hubbard
case, where Ũ = 4 means that the very strong instantaneous
repulsion U = 12 is to a large extent compensated by a strong
phonon-induced attraction −2g2

2/ω0 = −8, the relaxation of
the double occupancy towards the higher thermal value is seen
to be very slow, which is a clear indication that these systems
are more strongly correlated than a static description with
interaction Ũ would suggest. This observation is consistent
with the finding of Ref. 47, which showed that in equilibrium
and at low enough temperature, the proper static description for
the Holstein-Hubbard model involves the interaction Ũ and a
reduced bandwidth. For g = 2 the bandwidth reduction factor
is exp(−g2/ω0) = 0.02. While the effective static description
is not accurate in the present case of ω0 = 1, strong electron-
phonon coupling, and strong excitation of the phonons, it
nevertheless provides some insight into the observed slow
dynamics. It is also important to note that after the quench, Ũ

will oscillate between 12 − 13.6 = −1.6 and 12 − 2.4 = 9.6
(see Fig. 2, bottom left panel), so that the instantaneous
interaction periodically switches from strongly repulsive to
attractive. In such a situation, the interpretation of the dynamics
in terms of an equilibrium model seems difficult.

It is also evident from Fig. 8 that the relaxation of the
double occupancy, at least in the time interval which is
plotted, is not exponential. Rather, the double occupancy
increases roughly linearly, with superimposed oscillations
that are almost undamped. These oscillations are due to the
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FIG. 9. (Color online) Top panel: Doublon production rate [slope
of a linear fit of d(t)] as a function of U for quenches from g = 0
to 2. The initial inverse temperature is β = 5 and ω0 = 1. Bottom
panel: Doublon production rate as a function of the gap in the
(nonequilibrium) spectral function.

periodic modulation of the Lang-Firsov shifted interaction
strength Ũ (t). A similar roughly linear increase in the double
occupancy was found in nonequilibrium DMFT simulations
of the Hubbard model with a periodically modulated U .42 The
slopes of such curves are measured in modulation spectroscopy
experiments on cold atom systems to determine the Mott phase
and the Mott gap (interaction strength U ).44,48 In the present
case the coherent excitation of phonons by the g quench leads
to a periodic oscillation of Ũ with frequency ω0, which in turn
may enhance the production of doublons if the gap size is a
multiple of the phonon frequency.

As can be seen in Fig. 8, the slope of a linear fit to the
doublon curves (doublon production rate) exhibits a nontrivial
dependence on U and hence on the gap size. For example, the
production rate is substantially larger for U = 10.25 than for
U = 9.75, even though the gap in the latter case is smaller.
The slopes are plotted as a function of U in the top panel of
Fig. 9. The doublon production is enhanced for U ≈ 9.25,
10.25, and 11.25 and strongly suppressed for U ≈ 9.75, 10.75,
and 11.75. To understand this behavior and relate it to the gap
size, we now analyze the spectral functions.
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FIG. 10. (Color online) Top left panel: Time-averaged spectral
functions after a quench from g = 0 to 2 (averaged over one phonon
oscillation period and measured at t = 30). The time average quickly
approaches a quasisteady result. The initial inverse temperature is
β = 5. Top right panel: Equilibrium spectral functions for g = 2
and β = 5. Bottom panel: Comparison of the U = 12 time-averaged
nonequilibrium spectral function (black line) to thermal spectral
functions at elevated temperatures.

Because of the periodic driving, the time-dependent spectral
function obtained from the Fourier transform of the retarded
Green’s function is oscillating and not necessarily positive.
However, the time-averaged spectral function (averaged over
one phonon oscillation period) rapidly converges to the
positive function shown (for t = 30) in the top left panel of
Fig. 10. The overall shape is similar to the thermal spectral
function at g = 2 (top right panel), but there are important
differences. In particular, the time-averaged nonequilibrium
spectral function cannot be reproduced by increasing the
temperature of the thermal spectrum, as is illustrated for
U = 12 in the lower panel of the figure. While raising the
temperature leads to a broadening of the peaks, similar to
what is seen in the nonequilibrium result, the heating leads to
a filling-in of the gap by more and more prominent sidebands.
The time-averaged nonequilibrium spectral function, on the
other hand, contains even less weight in the gap region
than the original β = 5 thermal spectrum. Therefore, the
nonequilibrium spectral function is not similar to that of a
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FIG. 11. (Color online) Top panel: Time evolution of the double
occupancy with time average (over one phonon oscillation period)
subtracted, d(t) − dav(t), after a quench from g = 0 to 2. Bottom
panels: Fourier transforms of d(t) − dav(t) computed on the time-
interval 40 � t � 80.

thermal state at higher temperature, but rather resembles a
broadened version of the spectral function of the initial state.

Extracting the gap size from the peak-to-peak distance
between the first prominent side peaks in the time-averaged
spectrum, we find that U = 9.25 and 10.25 correspond to a gap
of approximately ω0 and 2ω0. A plot of the doublon production
rate as a function of gap size (lower panel of Fig. 9) shows that
the production of doublons is enhanced whenever the gap size
is a multiple of the phonon frequency.

Finally, let us take a closer look at the shape of the double
occupancy d(t) plotted in Fig. 8. The zigzag shape of some
of the curves indicates that many Fourier modes are excited.
In the top panel of Fig. 11 we subtract the time average

of d(t) over one period, dav(t) = ω0
2π

∫ t+ π
ω0

t− π
ω0

dt̄d(t̄), to extract

the superimposed modulations. The Fourier transformation of
d(t) − dav(t) on the time-interval 40 � t � 80 gives the spec-
tra shown in the lower panel of the figure. These spectra show
that the modulations are a superposition of modes with ω =
nω0, n = ±1,2, . . . , and that the curve for U = 9.25 (corre-
sponding to phonon-enhanced doublon production) has larger
contributions from higher frequency modes than the curve for
U = 8.75 (which corresponds to a minimum in the doublon
production rate). A similar result is found if we compare the
spectra for U = 10.25 (maximum in the doublon production
rate) and U = 9.75 (minimum in the doublon production rate).

IV. SUMMARY

We have developed a formalism to treat electron-phonon
couplings of the Holstein type within nonequilibrium DMFT.
A generalized Lang-Firsov transformation, based on a si-
multaneous (time-dependent) shift of the phonon coordinate
and momentum, allows us to decouple the electrons and
phonons and to evaluate the phonon contribution in a strong-
coupling (hybridization) expansion on the Kadanoff-Baym
contour. While the resulting formalism is exact, an efficient
nonequilibrium DMFT calculation requires some approximate
impurity solver. We proposed approximate schemes based on
the noncrossing and one-crossing approximation, and tested
them against the exact results in equilibrium. These tests
suggest that even the simplest noncrossing approximation
allows a qualitatively correct description of the competition
between the instantaneous Coulomb repulsion and the phonon-
mediated attractive interaction in the Mott insulating phase,
and of the transition to the bipolaronic insulating phase.

The formalism for externally driven phonons showed
that in a homogeneous bulk system, the perturbation does
not propagate into the DMFT self-consistency, so that the
effect of the external driving is essentially trivial. Interesting
effects may show up in an inhomogeneous setup49 or in a
two-sublattice system with a sublattice-dependent force. The
investigation of these effects is left for a future project. Here
we focused on the evolution of doublons in the Mott insulating
Holstein-Hubbard model, after an interaction pulse and after a
rapid increase in the electron-phonon coupling. The interaction
pulse provides a convenient way to excite electrons across
the Mott gap (production of doublon-holon pairs in a broad
spectral range) and we studied the decay of these nonthermal
doublons as a function of the interaction strength. We showed
that the relaxation time decreases whenever the gap in the
spectral function is a multiple of the phonon frequency. In
this case doublons and holons can efficiently recombine by
transferring their energy to the lattice.

A rapid increase of the electron-phonon coupling leads to
a decrease in the effective instantaneous interaction and thus
to an increase of the equilibrium density of doublons. In this
case one finds an enhancement of the doublon production rate
whenever the gap size is a multiple of the phonon frequency.
The dynamics is also strongly influenced by the excitation of
the phonons during the quench, which leads to a persistent
(weakly damped) oscillation in the effective electron-electron
interaction and a periodic flow of energy between the electronic
system and the lattice. This periodic driving leads to an
essentially linear increase in the number of doublons, similar
to what is observed in a Hubbard model with periodically
modulated interaction.

An interesting problem, which we have not addressed in
this work, is the effect of an external electric field acting on
the electrons. Such an electric field enters in the DMFT self-
consistency equations in the form of a time-dependent shift
of the momenta (Peierls substitution).29 The solution of the
impurity problem is however not affected by the field, and thus
one may use the formalism of Sec. II B1 [with F (t) = 0] for
such calculations. The field driven Hubbard-Holstein model is
expected to exhibit a variety of interesting phenomena, whose
analysis is deferred to a separate publication.
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