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We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a
single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by
exact diagonalization. The representability of the nonequilibrium DMFT action by a SIAM is established as a
rather general property of nonequilibrium Green functions. We also obtain the nonequilibrium DMFT equations
using the cavity method alone. We show how to numerically obtain the SIAM parameters using Cholesky
or eigenvector matrix decompositions. As an application, we use a Krylov-based time propagation method to
investigate the Hubbard model in which the hopping is switched on, starting from the atomic limit. Possible
future developments are discussed.
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I. INTRODUCTION

Experiments on strongly correlated quantum many-body
systems out of equilibrium have reached a high level of
precision and control. One can excite complex materials
with femtosecond laser pulses and record their subsequent
time evolution on the timescale of the electronic motion.1,2

In systems of ultracold atoms in optical lattices, on the
other hand, interaction and bandwidth can be controlled as
a function of time via Feshbach resonances and the depth
of the lattice potential, respectively, and external fields can
be mimicked by shaking or tilting the optical lattice.3–5 The
understanding of relaxation pathways in correlated systems
touches upon fundamental questions of statistical mechanics,6

it can provide insights into the nature of correlated states,
which is not possible with conventional frequency-domain
techniques, and it may lead to the discovery of “hidden phases,”
i.e., long-lived transient states that are inaccessible via any
thermal pathway.7,8

Stimulated by these developments, a growing theoretical
effort is aimed at advancing the microscopic description
of correlated lattice models out of equilibrium. A method
that is well suited to capture strong local correlation ef-
fects in higher-dimensional systems is the nonequilibrium
formulation9–11 of dynamical mean-field theory (DMFT).12

Over the past few years, nonequilibrium DMFT has been used
in a large number of theoretical studies, including interaction
quenches,13,14 dc-field driven systems,10,15–18 photoexcitation
of Mott insulators,19–22 and nonequilibrium phase transitions
from antiferromagnetic to paramagnetic states.23,24

Within DMFT, a lattice model such as the Hubbard model is
mapped onto an effective impurity model, which consists of a
single site of the lattice coupled to a “noninteracting medium”
with which it can exchange particles. A big challenge for
the advance of nonequilibrium DMFT is the development of
appropriate methods for the solution of this single-impurity
problem out of equilibrium. Continuous-time quantum Monte
Carlo (CTQMC) on the Keldysh contour25,26 can provide
numerically exact DMFT results for short times,13 but the
effort increases exponentially with time due to the phase
problem. Several DMFT studies have instead used second- and

third-order perturbation theory,16–18,24 which works in the
weakly interacting regime, but can give unphysical results
for larger values of the interaction due to its nonconserving
nature.14,27 Strong-coupling perturbation theory,28 on the other
hand, is suitable for the Mott insulator, but cannot address
correlated metallic states at low temperatures. Finally, a
numerically tractable impurity model is obtained for the
Falicov-Kimball model, where a solution is possible via a
closed set of equations of motion.10,15 However, because only
particles with one spin flavor can hop on the lattice in the
Falicov-Kimball model, its dynamics is rather peculiar, which
is reflected in the absence of thermalization of single-particle
quantities.29

Impurity models are of interest also in their own right, apart
from their importance for DMFT, e.g., for the description of
quantum dots or Kondo impurities. Recently, sophisticated
techniques such as diagrammatic (“bold-line”) CTQMC30

and influence functional approaches31,32 have been developed
to study nonequilibrium dynamics motivated by transport
experiments through quantum dots. While these techniques
can address longer times than direct CTQMC simulations,
they have not yet been used within DMFT, partly because
the measurement of time-nonlocal correlation functions is
technically challenging. Hence there is a clear need for the
development of novel impurity solvers for DMFT.

In equilibrium DMFT, a whole class of impurity solvers
are based on a mapping of the impurity model to a suit-
able Hamiltonian representation; the effective medium of
DMFT is approximated by a finite number of bath orbitals,
and the resulting single-impurity Anderson model (SIAM)
is solved using exact diagonalization,12 numerical renor-
malization group (NRG),33 density-matrix renormalization
group (DMRG),34 or (restricted active-space) configuration-
interaction approaches.35 Mapping the DMFT impurity prob-
lem to a finite SIAM seems rather attractive for nonequilibrium
studies, since it is not a priori restricted to either interaction or
hopping being small, and it can thus work also at intermediate
coupling. Moreover, it may even serve as a starting point for
a diagrammatic expansion using the dual-fermion approach.36

However, the mapping procedure itself turns out to be more
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difficult for nonequilibrium situations than it is for equilibrium.
In equilibrium (cluster) DMFT, the mapping of the effective
medium to a single (multiple) set(s) of bath orbitals can be
performed by fitting the spectral function of the bath,12 while
in nonequilibrium, when time-translational invariance is lost, a
single spectral function is not enough to characterize a system.
The situation is somewhat simpler in a steady state, which
can be characterized by a spectral function and an occupation
function (which is then different from the Fermi function). A
representation of the impurity problem using a SIAM with
dissipative (Markovian) terms has been discussed for this
case.37

In the present paper, we address the mapping problem for
general time-evolving states. We prove that the nonequilibrium
DMFT action for the Hubbard model in the limit of infinite
dimensions can be represented by a SIAM, and we discuss
methods to construct such a representation either exactly
or approximately. In particular, we clarify how to separate
the initial state correlations (which are represented by bath
orbitals that are coupled to the impurity already before any
perturbation), and additional correlations that are built up
at later times. First numerical tests for a quench in the
Hubbard model from zero to finite hopping between the
sites allow us to address a parameter regime of interactions
which is not accessible with the presently available weak and
strong-coupling solvers.

The outline of the paper is as follows. In Sec. II, we give
a brief overview on the DMFT equations and the notation
used for nonequilibrium Green functions. We then define the
mapping problem (Sec. II C), and discuss the representability
of the nonequilibrium DMFT action by a SIAM on general
grounds (Sec. II D). A derivation of nonequilibrium DMFT
using the cavity method for contour Green functions is given in
Sec. III, with further details in Appendices B and C. In Sec. IV,
we explain how to construct a Hamiltonian bath representation
of the DMFT action. In Sec. V, we show how to do this in
practice, and we present numerical results for the Hubbard
model in nonequilibrium in Sec. VI. Section VII contains a
summary.

II. NONEQUILIBRIUM DMFT AND THE
MAPPING PROBLEM

A. Nonequilibrium Green functions

Nonequilibrium DMFT is based upon the Keldysh
formalism38 for contour-ordered Green functions. In the
following subsection, we briefly overview the basic concepts
of the approach and define the relevant quantities for our
subsequent analysis. A comprehensive introduction to the
nonequilibrium many-body formalism itself can be found in
a number of textbooks and review articles, e.g., the book
by Kamenev for a general introduction,39 and Ref. 40 for a
detailed description of the formalism based onto the L-shaped
time contour, which will be used below.

From a general perspective, we would like to describe the
real-time evolution of a quantum many-body system that is
initially in thermal equilibrium at temperature T = 1/β (the
initial state density matrix is e−βH (0)/Z) and evolves unitarily
under a time-dependent Hamiltonian H (t) for times t > 0.
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t
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FIG. 1. The L-shaped time contour C consists of three parts. The
integration runs along C1 from tmin to tmax on the real axis. It then goes
back along C2, and follows C3 into the complex plane to tmin − iβ,
where β is the inverse temperature. In the sense of the contour, the
time t ∈ C2 is therefore larger than t ′ ∈ C1 in this example, i.e.,
t >C t ′. For simplicity, we set tmin = 0 throughout this work.

In specific applications, we consider the single-band Hubbard
model

HHub(t) =
∑
ijσ

tij (t) c
†
iσ cjσ + U (t)

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

(1)

where ciσ and c
†
iσ are annihilation and creation operators for

an electron with spin σ on site i of a crystal lattice, tij is
the hopping matrix element between sites i and j , and U

is the local Coulomb repulsion. Within the nonequilibrium
Green functions technique, this problem is solved using time-
dependent correlation functions with time arguments on the
L-shaped time contour C that runs from 0 to tmax (the maximum
time of interest) along the real axis, back to time 0, and to
−iβ along the imaginary axis (see Fig. 1). The expectation
value 〈A(t)〉 = tr[e−βH (0)U (t,0)†AU (t,0)]/Z of an observ-
able A, with the unitary time-evolution operator U (t,0) =
Tte

−i
∫ t

0 dsH (s), can then be recast into the form of a contour-
ordered expression 〈A(t)〉S ≡ tr{TC[exp(S)A(t)]}/ZS , where
the action is given by S = −i

∫
C

dtH (t),56
∫
C

dt denotes the
integral along the contour, ZS = tr{TC[exp(S)]} is the partition
function, and TC[...] is the contour-ordering operator, which
orders operators according to their relative position on C,

TC[A(t)B(t ′)] =
{

AB if t >C t ′,

(±)BA if t <C t ′.
(2)

The negative sign applies when both A and B contain an odd
number of fermionic annihilation or creation operators.

Green functions for a more general action S are defined as
similar contour-ordered expectation values,

Gαα′ (t,t ′) = −i〈cα(t)c†α′(t ′)〉S
≡ −i

ZS

tr{TC[exp(S)cα(t)c†α′(t ′)]}, (3)

where subscripts α and α′ label spin and orbital quantum
numbers. Depending on the time arguments, the entries
of the contour-ordered Green function in Eq. (3) have a
different physical meaning. Letting a superscript a,b = 1,2,3
of Gab(t,t ′) indicate whether a time argument is on the upper
(1), lower (2), or imaginary (3) part of the contour, we define
the following components (the subscripts for spin and orbital
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degrees of freedom are omitted for simplicity),

G<(t,t ′) = G12(t,t ′) = i〈c†(t ′)c(t)〉S, (4a)

G>(t,t ′) = G21(t,t ′) = −i〈c(t)c†(t ′)〉S, (4b)

G¬ (t,τ ) = G13(t,τ ) = i〈c†(τ )c(t)〉S, (4c)

G ¬(τ,t) = G31(τ,t) = −i〈c(τ )c†(t)〉S, (4d)

GM (τ ) = −iG33(τ,0) = −〈c(τ )c†(0)〉S. (4e)

The first two functions, “lesser” and “greater,” are related to
photoemission and inverse photoemission, respectively.41 The
mixed functions G¬ and G ¬encode correlations between the
time-evolving state and the initial thermal equilibrium state,
while the 33-component is the Matsubara Green function of
the initial thermal equilibrium state (in the definition of GM ,
we have taken into account time-translational invariance of
this function).

The five components (4) fully parametrize the Green
function (3), and all other entries can be restored by noting
that the largest real-time argument can be shifted from the
upper to the lower contour (because the time evolution on the
forward and backward branch cancels). Other commonly used
parametrizations involve the retarded and advanced functions,
Gret(t,t ′) = �(t − t ′)[G>(t,t ′) − G<(t,t ′)] and Gadv(t,t ′) =
�(t ′ − t)[G<(t,t ′) − G>(t,t ′)], where �(t) denotes the Heav-
iside step function, but for this work we will only use the
components defined in (4). Finally, we note the Hermitian
symmetry relation for the components,

G<,>(t,t ′)∗ = −G<,>(t ′,t), (5a)

G¬ (t,τ )∗ = G ¬(β − τ,t), (5b)

which will be important below.
For illustration and later reference, we give an analytic

expression for the Green function of an isolated bath-orbital
with time-dependent energy ε(t),

g(t,t ′) = −i
tr
{
TC

[
e−i

∫
C

ds(ε(s)−μ)c†cc(t)c†(t ′)
]}

tr
{
TC

[
e−i

∫
C

ds(ε(s)−μ)c†c
]} . (6)

Using Heisenberg equations of motion for the operators c(t),
one can see that

g(t,t ′) = −i[�C(t,t ′) − f (ε(0) − μ)]E(t)E(t ′)−1, (7)

where f (ε) = 1/(eβε + 1) is the Fermi function,

E(t) =
{

e−i
∫ t

0 ds[ε(s)−μ] for real t

e−τ [ε(0)−μ] for t = −iτ
, (8)

and �C(t,t ′) is the contour analog of the Heaviside step
function, i.e.,

�C(t,t ′) =
{

1 for t �C t ′

0 else
. (9)

The Green function for a single site with time-independent
orbital energy ε(t) ≡ ε will be denoted by

g(ε,t,t ′) ≡ −i[�C(t,t ′) − f (ε)]e−iε(t−t ′). (10)

B. Nonequilibrium DMFT

In DMFT, the Hubbard Hamiltonian (1) is mapped onto
an effective impurity model from which all local correlation
functions12 can be obtained. The key step in DMFT is to
compute the local Green function

Gσ (t,t ′) = −i〈cσ (t)c†σ (t ′)〉Sloc (11)

from a single-site model, which is defined by the action

Sloc = −i

∫
C

dt

[
U (t)

(
n↑(t) − 1

2

)(
n↓(t) − 1

2

)
− μ

∑
σ

nσ (t)

]

− i

∫
C

∫
C

dt1dt2
∑

σ

�σ (t1,t2)c†σ (t1)cσ (t2). (12)

Here, the first part contains the Hamiltonian of an isolated
site of the original Hubbard Hamiltonian, while � is the
hybridization of that site with a noninteracting environment,
which must be determined self-consistently. In Sec. VI, we
study the Bethe lattice with nearest-neighbor hopping tij =
v/

√
Z in the limit of infinite coordination number Z ,42

corresponding to a semielliptical density of states,

ρ(ε) =
√

4v2 − ε2

2πv2
. (13)

The DMFT self-consistency for the Bethe lattice with time-
dependent v can be written in closed form,43–45

�σ (t,t ′) = v(t)Gσ (t,t ′)v(t ′). (14)

For a general lattice in the limit of infinite dimensions,42

where DMFT becomes exact, a formal expression for the
hybridization function at a given site 0 can be given in terms
of the cavity Green function G(0), i.e., the Green function of
the original Hubbard Hamiltonian from which site 0 has been
removed,

�σ (t,t ′) =
∑
i,j

t0i(t)G
(0)
ijσ (t,t ′)tj0(t ′). (15)

The derivation of this expression for the effective nonequilib-
rium DMFT action via the cavity method largely parallels the
corresponding formulation for Matsubara Green functions12

and is presented separately in Sec. III.
In general, the evaluation of the DMFT self-consistency

depends on the lattice structure and on external fields, and
Eq. (15) cannot be recast in closed form like Eq. (14). However,
the precise form of the implicit functional relation � = �[G]
is not important for the exact-diagonalization-based impurity
solver developed in this paper, and we thus refer to the
literature10,19 and Appendix C for detailed descriptions of the
nonequilibrium DMFT equations.

C. The mapping problem

Because of the interaction U (t), it is a complicated problem
to calculate Gσ (t,t ′) for a given �σ (t,t ′) from the action (12).
For the corresponding equilibrium action a mapping to an
appropriate single-impurity Anderson model (SIAM) is very
successful,12 because this allows the use of Hamiltonian-based
solvers for the calculation of the local Green function. The
“mapping problem,” which we address in the following refers
to a similar construction for nonequilibrium problems.
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The SIAM Hamiltonian is given by an impurity Himp that is
coupled to a surrounding bath Hbath by the hybridization Hhyb,

HSIAM = Himp + Hbath + Hhyb, (16)

Himp = −μ
∑

σ

n0σ + U (t)

(
n0↑ − 1

2

)(
n0↓ − 1

2

)
, (17)

Hhyb =
∑

p>0,σ

[
V σ

0p(t)a†
0σ apσ + H.c.

]
, (18)

Hbath =
∑

p>0,σ

[εpσ (t) − μ]a†
pσ apσ . (19)

Here, the operator apσ (a†
pσ ) annihilates (creates) an electron

with spin σ at bath site p for p > 0, and at the impurity for
p = 0.

A mapping of the action (12) to the Hamiltonian (16)
requires that all impurity correlation functions are the same
in the two models:

trc{TC[exp(Sloc)O(t1)...]}
trc{TC[exp(Sloc)]}

!= tra
{
TC

[
exp

(−i
∫
C

dtHSIAM(t)
)
O(t1)...

]}
tra
{
TC

[
exp

(−i
∫
C

dtHSIAM(t)
)]} . (20)

Since the bath orbitals are noninteracting, the trace over the
bath degrees of freedom can be performed analytically. The
right-hand side of (20) then becomes

tra0{TC[exp(SSIAM)O(t1)...]}
tra0{TC[exp(SSIAM)]} , (21)

where

SSIAM = −i

∫
C

dtHimp(t) − i

∫
C

∫
C

dt1dt2

×
∑

σ

�SIAM
σ (t1,t2)a†

0σ (t1)a0σ (t2), (22)

with the discrete-bath hybridization function

�SIAM
σ (t,t ′) =

∑
p

V σ
0p(t)gpσ (t,t ′)V σ

p0(t ′), (23)

and gpσ (t,t ′) is the Green function of an isolated bath site with
energy εpσ (t),

gpσ (t,t ′) = −i
tr
{
TC

[
e−i

∫
C

ds(εpσ (s)−μ)a†aa(t)a†(t ′)
]}

tr
{
TC

[
e−i

∫
C

ds(εpσ (s)−μ)a†a
]} , (24)

which evaluates to the result given by Eq. (7). The effective
action (22) can be derived using coherent state path integrals,
or equations of motions.43 Because it is also a special case of
the cavity expression (15), we shift the derivation to Sec. III.
In equilibrium, when all parameters of the impurity model
are time-independent, Eq. (23) reduces to the well-known
expression12

− 1

π
Im �SIAM

σ (ω + i0) =
∑

p

∣∣V σ
0p

∣∣2δ(ω + μ − εpσ ) (25)

for the spectral function of the bath.
We summarize this section by stating that the Hamilto-

nian (16) is a valid representation of the DMFT action with

hybridization function �σ (t,t ′) if parameters V σ
0p(t) and εpσ (t)

can be chosen such that

�SIAM
σ (t,t ′) = �σ (t,t ′) (26)

on the entire contour C, i.e., for each of the five components
given in Eq. (4), including the mixed components � ¬and
�¬ that describe the correlations with the initial state. Due
to the two time arguments, it is not immediately clear under
which conditions a function �σ (t,t ′) can be represented in
the form (23) at all. We will thus first discuss the question of
representability from a general perspective, before we attempt
an explicit determination of the parameters V and ε in Sec. IV.

In passing we note that we have restricted ourselves to
a starlike layout of the impurity problem (16), i.e., there is
no hopping between the bath orbitals. However, this is no
limitation, since any bath with a more complicated geometry
can always be mapped to a star geometry with the same
effective action SSIAM by a suitable time-dependent unitary
transformation (cf. Appendix A).

D. Representability

Not every contour function with the symmetries (5) and the
usual antiperiodic boundary conditions can be decomposed in
the form (23). For equilibrium, the representation (23) implies
a positive spectral weight [cf. Eq. (25)], i.e., it relies on further
analytic properties of the Green functions. The specification
of analytical properties is less clear for nonequilibrium Green
functions. In the following, we assert that representability in
the form (23) is nevertheless a general property of nonequi-
librium Green functions. It follows for any (orbital-diagonal)
Green function Gii(t,t ′) of a quantum system that evolves
under the action of an arbitrary time-dependent Hamiltonian
H (t). To see this, we expand G(t,t ′) using eigenstates |n〉
and eigenenergies En of the initial state Hamiltonian H (0)
(Lehmann representation). After some algebra, we get

Gii(t,t
′) =

∑
nm

e−βEn + e−βEm

Z

×Wnm(t)W ∗
nm(t ′)g(Emn,t,t

′), (27)

where Emn = Em − En, g(Emn,t,t
′) is of the form (10), and

(operators with a hat are to be interpreted in the Heisenberg
picture)

Wnm(t) =
{

eiEmnt 〈n|ĉi(t)|m〉 for real t

〈n|ĉi(0)|m〉 for t = −iτ
. (28)

This yields the representation (23) with one bath orbital for
each of the pairs mn (the number of which is exponentially
large in the system size), with time-independent orbital en-
ergy εmn = Emn + μ and hybridization V0,mn(t) = V ∗

mn,0(t) =
Wnm(t)

√
(e−βEn + e−βEm )/Z.

Similarly, it follows from the cavity expression (15) that the
DMFT action is representable by a SIAM. To this end, we let
|n〉 and En denote eigenstates and eigenenergies of the cavity
Hamiltonian H (0)(t) (i.e., the Hubbard Hamiltonian without
lattice site 0). Using a Lehmann representation of G

(0)
ijσ (t,t ′),

we again obtain a representation of the DMFT action by a
SIAM with time-independent orbital energy Emn + μ, and
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hybridization matrix elements

V0,mn(t) =
√

e−βEn + e−βEm

Z
eiEmnt

∑
j

t0j (t)〈n|ĉj (t)|m〉.

(29)

This concludes the proof that the DMFT action is repre-
sentable by a SIAM. Of course, we have not shown that when
DMFT is used as an approximation for finite-dimensional sys-
tems, all solutions of the equations have a SIAM-representable
DMFT bath. However, since representability relies on very
general properties of physical Green functions as derived from
the Lehmann representation, we will assume the existence of
such a representation in the following (i.e., we look only for
DMFT solutions with this general property).

III. THE CAVITY METHOD FOR NONEQUILIBRIUM
GREEN FUNCTIONS

Nonequilibrium DMFT equations and the effective impu-
rity action can be derived using the cavity method, by restating
the arguments used for equilibrium DMFT.12 In order to have
a self-contained text, we now summarize the main steps, with
technical details in Appendices B and C. In equilibrium,
the cavity method is typically formulated using Grassmann
variables (e.g., Ref. 46). However, in line with the notation used
in the remainder of this paper, we keep using the equivalent
language of contour-ordered expectation values.

We start from the grand-canonical partition function for a
Hamiltonian H (t), which can be either HHub(t) or HSIAM(t),

Z = tr

{
TC

[
exp

(
−i

∫
C

H (t)dt

)]}
. (30)

The idea of the cavity method is to pick out one single site
and trace out the remaining lattice (for the SIAM, the isolated
site will be the impurity). We therefore separate the action into
three parts,

S = −i

∫
C

dt H (t) = S0 + 
S + S(0), (31)

with

S0 = −i

∫
C

dt

[
U (t)

(
n0↑(t) − 1

2

)(
n0↓(t) − 1

2

)

−μ
∑

σ

n0σ (t)

]
, (32)


S = −i

∫
C

dt

⎡
⎣∑

i �=0,σ

tσi0(t)c†iσ (t)c0σ (t) + H.c.

⎤
⎦ ,

S(0) = −i

∫
C

dt H (0)(t), (33)

where H (0) is the Hamiltonian H (t) of the system [HHub(t) or
HSIAM(t)] with site 0 removed. The Fock space of our system is
given by the tensor product F = Frest ⊗ F0 with F0 being the
Fock space of the isolated site and Frest being the Fock space
of the remaining sites. Corresponding to these subspaces the

partial traces are

trrest (O) =
∑

{niσ ,i �=0}
〈{niσ ,i �= 0}|O|{niσ ,i �= 0}〉,

(34)
tr0(O) =

∑
{n0σ }

〈n0σ |O|n0σ 〉,

where |{niσ }〉 represents a state in the occupation number basis.
We rewrite the partition function as

Z = tr0({TCexp(S0)trrest[exp(
S + S(0))]})
= ZS(0) tr0{TC[exp(S0 + S̃)]}, (35)

where we defined

exp(S̃) =
∞∑

n=0

1

n!
〈(
S)n〉S(0) , (36)

〈O(t)〉S(0) ≡ 1

ZS(0)
trrest(TC[exp(S(0))O(t)]),

(37)
ZS(0) = trrest{TC[exp(S(0))]}.

Note that for exp(S̃) there is still a contour ordering to be
performed [cf. Eq. (35)], but one can perform the contour
ordering on each subspace independently because the creation
(annihilation) operators that act on Frest anticommute with
those acting on F0. It is thus possible to calculate the trace
over Frest separately as long as one keeps track of the correct
sign. This is done in Appendix B. The result is

S̃ = −i

∞∑
n=1

∑
σ1...σ ′

n

∫
C

dt1 . . .

∫
C

dt ′n�σ1...σ ′
n
(t1, . . . ,t

′
n)

× c†σ1
(t1) . . . cσ ′

n
(t ′n), (38)

where we defined the nth-order hybridization functions (with
2n time arguments)

�σ1...σ ′
n
(t1, . . . ,t

′
n) ≡ (−i)n−1

n!2

∑
i1,...,jn

t0i1 (t1) · · · tjn0(t ′n)

×G
(0),c
(i1σ1),...,(jnσ ′

n)(t1, . . . ,t
′
n), (39)

which involve connected cavity Green functions G(0),c (ob-
tained with S(0) only). The effective action is thus given by

Seff = S0 + S̃, Zeff = Z

ZS(0)
= tr0{TC[exp(Seff)]}. (40)

So far, no approximation has been made, and the result is valid
in general. However, it involves the higher-order hybridization
functions (39). The latter are hard to compute in general, but
they simplify for the Hubbard model in d → ∞ and for the
SIAM. In these cases, the effective action is again of the local
form (12) with a noninteracting bath.

In the limit of infinite dimensions, with the quantum
scaling42 tij ∝ d−Zij /2 (Zij is the number of sites connected
by hopping tij ) one can one-to-one repeat the power counting
arguments of the equilibrium formalism to show that the
higher-order terms vanish, so that one is left with the quadratic
bath part given by Eq. (15) (cf. Appendix C).

For a Bethe lattice with Z nearest neighbors, Eq. (15) can
be evaluated immediately. For neighboring sites i,j of site 0,

235106-5



GRAMSCH, BALZER, ECKSTEIN, AND KOLLAR PHYSICAL REVIEW B 88, 235106 (2013)

we have G
(0)
ij (t,t ′) ∝ δij since there is no path that connects

two distinct sites; such a path would involve site 0, which
has been removed. In the limit Z → ∞, we can further
identify G

(0)
iσ (t,t ′) = Gσ (t,t ′). The quantum scaling ensures

that the summation over all nearest neighbors of 0 stays finite.
This yields the action (12) with the hybridization (14) (setting
tij (t) = v(t)/

√
Z for nearest neighbors i,j ), as previously

derived in Refs. 43–45.
For a general lattice, one must formally express the cavity

Green function in Eq. (15) in terms of the full lattice Green
function in order to obtain an implicit relation of the form
� = �[G], which can be achieved by utilizing the locality
of the self-energy. It is interesting to note that the DMFT
equations also follow directly from the cavity method, if the
latter is applied to a generating functional of lattice Green
functions. The locality of the self-energy then need not be
established by separate arguments, but it follows from the
cavity formalism itself. Because the precise form of the DMFT
equations is not central to the mapping problem, we present
this self-contained derivation of the DMFT equations from the
cavity method in Appendix C.

One can also use the cavity argument to derive the effective
action (22) of a SIAM. For a SIAM, the cavity Hamiltonian
H (0) is noninteracting, so that all connected Green functions
G

(0),c
i1...jn

(t1, . . . ,t ′n) vanish for n � 2. Thus only the first-order
contribution remains in Eq. (39). It takes the form (23), with
G(0)

pp(t,t ′) = g(εp − μ,t,t ′) [cf. Eq. (10)]. The Hubbard model
on an infinite-dimensional lattice and the SIAM thus have
the same local action, provided their hybridization functions
are the same [cf. (26)]. The bath parameters of the SIAM
for a given hybridization function are determined in the next
section.

IV. CONSTRUCTION OF THE SIAM REPRESENTATION
FOR NONEQUILIBRIUM GREEN FUNCTIONS

According to Sec. II D, we may assume that the hy-
bridization function �σ (t,t ′) has a valid representation in
the form (23). In this section, we explicitly construct the
parameters V σ

0p(t) and εpσ for a given �σ (t,t ′). In the course
of this, we will introduce two distinct baths, denoted first
(−) and second (+), which take care of the fact that in
nonequilibrium initial correlations and the dynamic built-up
of correlations must be represented differently. While the first
bath involves sites that are coupled to the system already at
t = 0 and usually vanishes as time proceeds, the second one
couples additional sites for t > 0 and typically exists even in
the final (steady) state for t → ∞. Note that a multiple-bath
representation is also used in equilibrium cluster DMFT. In
this case, one independent bath is attributed to each irreducible
representation of the cluster’s point group.47

A. Memory of the initial state (the first bath)

To determine the free parameters of the SIAM explicitly,
we follow Ref. 43 and assume that the bath states can be
characterized by a continuous energy band with density of
states ρ−(ε) = ∑

p δ(ε − εp(0)) and hybridization V−(ε,t) (for
simplicity we drop the spin index; the subscript “−” adverts to
the “first bath”). We also assume that the site energies εp are

time-independent, but this is no restriction because a SIAM
with time-dependent εp(t) and V0p(t) has the same effective
action (22) like one with time-independent energies ε′

p = εp(0)

and modified hoppings V ′
0p(t) = V0p(t) exp{−i

∫ t

0 ds[εp(s) −
εp(0)]} [cf. (7) and (23)]. We thus require a representation of
�(t,t ′) in the form

�−(t,t ′) =
∫ ∞

−∞
dε ρ−(ε)V−(ε,t)g(ε − μ,t,t ′)V−(ε,t ′)∗.

(41)

In the following, also ρ−(ε) is absorbed in the hybridization
matrix elements, i.e., the bath density of states is chosen to be
constant.

It is important to recall that V−(ε,t) must be constant on
the imaginary time branch, i.e., V−(ε,−iτ ) = V−(ε,0), since
it will be used as hopping parameter in the effective SIAM.
To determine its time dependence, we consider the mixed
components [cf. Eq. (10)],

�¬
− (t,τ )

= i

∫ ∞

−∞
dεV−(ε,t)f (ε − μ)e−i(ε−μ)(t−iτ )V−(ε,0)∗ (42)

!= �¬ (t,τ ). (43)

To solve (43) for the parameters V−(ε,t), we make use of
the analytical properties of the mixed Green functions (see
Appendix D); In analogy to the Matsubara Green function,
one can introduce a Fourier series with respect to Matsubara
frequencies, and continue the result to a function �¬ (t,z),
which is analytic on the upper and lower complex frequency
planes; �¬ (t,τ ) is then uniquely determined by the general-
ized spectral function [cf. (D13)]

C¬ (t,ε) = 1

2π
[�¬ (t,ε + i0) − �¬ (t,ε − i0)]. (44)

For time t = 0, the spectral function coincides with the real
and positive equilibrium spectral function

C(ε) = i

2π
[�M (ε + i0) − �M (ε − i0)], (45)

see Appendix D for details.
When we Fourier transform both sides of (42) to Matsub-

ara frequencies and analytically continue the result to real
frequencies, we obtain

C¬ (t,ε) = exp (−iεt) V−(ε + μ,0)∗V−(ε + μ,t). (46)

This allows us to obtain an explicit expression for the hopping
matrix elements,

V−(ε + μ,0) =
√

C(ε), (47)

V−(ε + μ,t) = exp (iεt) C¬ (t,ε)

V−(ε + μ,0)∗
. (48)

Note that a phase factor of V−(ε + μ,0) can be chosen freely,
without changing the resulting action.

The mixed component therefore already fixes all free
parameters V−(ε,t), and thus also �−(t,t ′) on the entire
contour C. If t or t ′ is an imaginary time, �−(t,t ′) coincides
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with �(t,t ′) by construction. However, for real times t and t ′,
the difference

�+(t,t ′) ≡ �(t,t ′) − �−(t,t ′) (49)

is, in general, not equal to zero. For a system out of equilibrium
the correlations between the initial state and states at t =
∞ usually vanish, i.e., �¬ (t,τ )

t→∞→ 0. Hence one would
expect (48) to vanish (which is also found numerically). For
the final state to be nontrivial, �+(t,t ′) therefore has to be
nonzero. The bath V−(t) is thus not sufficient to represent �.
For this reason, we introduce a “second bath” with hoppings
V+(t), which represent the contribution �+(t,t ′). The Weiss
field �−(t,t ′) can then be understood to describe the fading
memory of the initial state, while �+(t,t ′) is building up to
describe the steady state for t = ∞.

In passing, we note that it is usually an ill-conditioned prob-
lem to determine the generalized spectral function C¬ (t,ε)
for a given �(t,t ′). However, when one solves the DMFT equa-
tions using the exact time propagation of the SIAM Hamilto-
nian, one has direct access to the real-frequency representation
of all impurity Green functions via the Lehmann expressions
given in Appendix D. Because also the Keldysh-Kadanoff-
Baym equations for a general DMFT self-consistency can be
formulated in terms of the time-dependent spectral functions
instead of imaginary-time quantities, as described in detail in
Ref. 14, analytical continuation is no problem.

B. The equilibrium case

It is assuring to verify that for a system in equilibrium the
second bath contribution indeed vanishes, such that the system
is completely described by the first Weiss field �−(t,t ′) or the
first bath V−(ε,t) respectively. In equilibrium, � is entirely
determined by its spectral function

�(t,t ′) = i

∫ ∞

−∞
dε C(ε)[f (ε) − �C(t,t ′)]e−iε(t−t ′). (50)

On the other hand, we have C¬ (t,ε) = exp (−iεt) C(ε)
[cf. (D15)] and thus find a time-independent coupling V−(ε +
μ,t) = √

C(ε) from Eq. (48). When this is reinserted in (41),
we recover (50).

C. The second bath

The construction of a hybridization for the second Weiss
field,

�+(t,t ′) !=
∑

p

V +
0p(t)gpσ (t,t ′)V +

p0(t ′), (51)

is quite different to the previous discussion for �−(t,t ′). From
its definition, Eq. (49), it follows that the imaginary-time
components �M

+ , �¬
+ , and � ¬

+ vanish, and thus we set V +
0p(t =

0) = 0 for all bath sites p representing �+. Furthermore, it is
convenient to choose a simple time dependence for the bath
energies εp(t), which will take a value εp(0) in the initial
state, and a different but time-independent value εp(∞) for
times t > 0. As discussed above (41), the value of εp(t) can
be chosen freely for t > 0, because any time dependence can
be absorbed in the time dependence of the hoppings V +

0p. The
initial-state value εp(0), on the other hand, enters (51) only via

the occupation functions f (εp − μ) (in �<
+) and f (−εp + μ)

(in �>
+). Hence we make a simple choice and take f (εp − μ)

to be either 0 or 1. In summary, we attempt to represent �+
by a bath with two sets of orbitals Bocc and Bempty, such that

−i�<
+(t,t ′) =

∑
p∈Bocc

V +
0p(t)V +

0p(t ′)∗, (52a)

i�>
+(t,t ′) =

∑
p∈Bempty

V +
0p(t)V +

0p(t ′)∗. (52b)

In contrast to Eq. (43) for the first bath, these equations
have the form of a standard matrix decomposition. When the
system is particle-hole symmetric, i.e., μ = 0 for the Hubbard
model (1), we have �<

+(t,t ′) = �>
+(t,t ′)∗, which is satisfied

when occupied and unoccupied bath orbitals come in pairs with
complex conjugate hoppings. It is then sufficient to solve one
of the two equations. Note that the form of the decomposition
(52) requires −i�<

+ and i�>
+ to be positive definite matrices.

In Appendix E, we establish this property under the general
assumption that the original � is representable by a SIAM.

For a numerical implementation of Eq. (52), we discretize
the time t . With tn ≡ n × 
t ∈ [0,N × 
t = tmax], we have

(−i�<
+)nn′ ≡ −i�<

+(tn,tn′) =
∑

p

V +
0p(tn)V +

0p(tn′)∗, (53)

where p � 1 runs over the initially occupied bath sites in Bocc

(the equation for �>
+ is treated analogously). To solve the

equation, one may use an eigenvector decomposition of the
matrix (−i�<

+),

(−i�<
+)nn′ =

N∑
p=1

Unp ap U ∗
n′p (54)

with a unitary matrix Unp and, since −i�<
+ is positive

definite, only positive eigenvalues ap. We can thus identify
time-dependent hopping matrix elements

V +
0p(tn) ≡ Unp

√
ap. (55)

We emphasize that, in general, the number of bath sites needed
for the representation equals the number of time steps in the
discretization.

Although this approach is rather straightforward, it has a
slight conceptual disadvantage; when the hoppings Vp(tn) are
recomputed for a larger maximum time tmax, their value will
be modified on all previous times. Thus the eigenvector de-
composition cannot be used within a time-propagation scheme
in which the DMFT solution is computed by successively ex-
tending tmax time step by time step. Instead, one would have to
perform a DMFT iteration as indicated in Fig. 2(a), i.e., starting
from a suitable guess for G and in turn for �, (i) one computes
the parameters V0p(tn) for all times t � tmax, (ii) computes the
Green function (11) for all times t,t ′ � tmax, and (iii) solves
the DMFT self-consistency to get � for all times, then
one iterates steps (i)–(iii) until convergence. Compared to a
time-propagation scheme, which updates the functions only on
one time slice14 when going from tmax to tmax + 
t , an iterative
scheme thus requires considerably more computing resources.

To resolve this problem we employ a Cholesky decompo-
sition, which has the property that parameters V (tn) can be
determined independently of the parameters V (t) for t > tn.
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(a)

DMFT
iteration

G(t, t )

V0p(t) Λ(t, t )

ED Solver.
Compute G(t, t )

Self-consistency
Λ(t, t ) =

V (t)G(t, t )V (t )

Decomposition of
Λ(t, t )

(EV or CH)

Start

(b)

DMFT iteration
on time step N

G(N ; t, t )

V0p(tN) Λ(N ; t, t )

Self-consistency
Λ(N ; t, t ) =

V (t)G(N ; t, t )V (t )

Decomposition of
Λ(N ; t, t )
(only CH)

ED Solver.
Compute G(N ; t, t )

Start

Extrapolate V0p to tN+1

N
→

N
+

1

FIG. 2. Possible time-evolution schemes. (a) DMFT iteration
involving all times t,t ′ � tmax simultaneously, (b) progressive time-
propagation scheme for which the DMFT self-consistency needs to
be established only on the current timestep N at a time. In (b), the
notation G(N ; t,t ′) indicates that t and t ′ belong to the time slice N ,
i.e., one time (either t or t ′) is identical to N × 
t and the other is
smaller or equal to N × 
t .

Explicitly, the Cholesky decomposition of the N × N positive
definite Hermitian matrix

( −i�< ) =

⎛
⎜⎜⎜⎜⎝

V00

V10 V11

...
...

. . .

VN0 VN1 · · · VNN

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

V ∗
00 V ∗

10 · · · V ∗
N0

V ∗
11 · · · V ∗

N1

. . .
...

V ∗
NN

⎞
⎟⎟⎟⎟⎠ (56)

in terms of triangular matrices V and V † is given by

Vnn′ = 1

Vn′n′

[
(−i�<

+)nn′ −
n′−1∑
m=1

VnmV ∗
n′m

]
, (n′ < n),

Vnn =
√√√√(−i�<+)nn −

n∑
m=1

|Vnm|2, (57)

and Vnn′ = 0 for n′ > n. We then choose

Vnp = V +
0p(tn), (58)

i.e., the pth column of V yields the time-dependent hybridiza-
tion to bath orbital p. The triangular structure of V in Eq. (56)
implies that a new bath orbital is coupled to the system at each
time step, and it allows for the recursive determination of V

in (57), which works line-by-line, i.e., by time step by time
step. The associated time-propagation scheme is sketched in
Fig. 2(b). Here, the two-time quantities G and � are updated
not as a whole but on the time slice N only (in the figure
the notation G(N ; t,t ′) indicates that either t or t ′ is equal
to the current maximum time tmax = N × 
t). Furthermore,
the extrapolation of the hopping matrix elements V0p(t) with
t � N × 
t to the next time step N + 1 ensures, together with
a small 
t , that the DMFT self-consistency is reached within a
few (typically one to three) cycles. It is this fact, which makes
the time-propagation scheme more efficient than the DMFT
iteration scheme [cf. Fig. 2(a)].

V. APPROXIMATE REPRESENTATIONS

It is clear that a meaningful approximate solution to Eq. (53)
is required in practice since a numerical treatment of HSIAM(t)
is limited to a small number of sites. In this section, we
will develop approximation schemes to the Cholesky and the
eigenvector decomposition that yield a decomposition of the
form

(−i�<
+)nn′ ≈

L∑
p=1

VnpV ∗
n′p, (59)

(and similar for i�>
+), where the fixed number L can be chosen

typically much smaller than N ; L determines the rank of V

and thus the rank of the approximate −i�<
+,approx = V V †. To

represent �+ by a finite number of sites Lbath, we need to find
low-rank approximations for −i�<

+ and i�>
+. We discuss this

in detail only for −i�<
+.

A. Low-rank Cholesky approximation

A finite rank L for the hybridization matrix Vnp = V +
0p(tn)

can be realized with the ansatz

V ch =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V ch
11 0 . . . . . . . . .

...
. . . 0 . . . . . .

V ch
L1 . . . V ch

LL 0 . . .

V ch
L+1,1 . . . V ch

L+1,L 0 . . .

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎝

(Qs)† 0 . . .

(�qs+1)† 0 . . .

(�qs+2)† 0 . . .

...
...

...

⎞
⎟⎟⎟⎟⎟⎠, (60)

for s � L, where we introduce abbreviations Qs
ij = V ch

ji

∗
for

j � L, i � s and �qs+n = (V ch
s+n,1, . . . ,V

ch
s+n,L)†. We further
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FIG. 3. (Color online) Comparison of low-rank Cholesky [(−i�<
+)ch] and eigenvector [(−i�<

+)ev] approximation. The top panel on the left
shows the real part of an typical input Weiss field −i�<

+ (obtained from a calculation with six bath sites, i.e., Lbath = 2L = 6 according to the
setup described in Sec. VI with U = 2). The Weiss field in the top panel of the second (third) column displays the an approximate hybridization
V ch

np with rank L = 2 (L = 3) that was calculated with the low-rank Cholesky approach. In the lower panel of the second (third) column, an
approximate Weiss field obtained from a rank L = 2 (L = 3) eigenvector decomposition is shown. The bottom left panel compares the stepwise
error of both approximations as defined in (67).

define the corresponding approximate Weiss field as

(−i�<
+)ch

nn′ ≡
L∑

p=1

V ch
np

(
V ch

n′p
)∗ !≈ (−i�<

+)nn′ . (61)

During the first L time steps we have enough free parameters
V ch

np for an exact matrix decomposition of −i�<
+ and can

thus rely on the Cholesky decomposition to fill up the matrix
QL. After that, we have to perform approximate updates of
the hybridization. Let us assume that we already performed
s � L steps and found the approximation Qs . We denote the
corresponding exact second Weiss field with (−i�<

+)s . In the
next time step, the matrix (−i�<

+)s gets updated by one line
and column �as+1 ≡ ((−i�<

+)s+1,1, . . . ,(−i�<
+)s+1,s)†. To find

an approximation for the second bath, we have to minimize
the error of(

(Qs)† 0

(�qs+1)† 0

)(
Qs �qs+1

0 0

)
=
(

(Qs)†Qs (Qs)† �qs+1

(�qs+1)†Qs (�qs+1)† �qs+1

)

≈
(

(−i�<
+)s �as+1

�a†
s+1 (−i�<

+)s+1,s+1

)
.

(62)

Since we know that (Qs)†Qs ≈ (−i�<
+)s is a good ap-

proximation, we only update the new components by
minimizing

minF (�qs+1) = 2||Q�qs+1 − �as+1||2
+ |(�qs+1)† �qs+1 − (−i�<

+)s+1,s+1|2, (63)

with respect to �qs+1. “|| · ||” is the usual Euclidean norm. The
optimal �qs+1 can then be used as approximate update for the
hybridization matrix and the same procedure can be repeated.
We emphasize that an update of the Weiss field tmax → tmax +

t , i.e., s → s + 1, leaves all previously calculated entries of
V ch unaltered. Furthermore, for n,p � L, the matrix V ch

np is
equal to the exact Cholesky decomposition.

In Fig. 3, we show typical results for the low-rank Cholesky
approximation. The corresponding input Weiss field is given
for 100 time steps with 
t = 0.04 and is shown in the top left
panel. While an exact Cholesky decomposition would thus
require a rank L = 100 hybridization, the low-rank approach
gives a reasonable approximation with a much smaller rank.
For L = 2, the approximate Weiss field (−i�<

+)ch shows a
good agreement with the input data up to times t = 1.5, while
the L = 3 approximation allows to describe times up to t =
2.5. Note, however, that the quality of the approximation also
depends on the exact form of the input Weiss field.

For larger times, we find that the approximate Weiss field
becomes less and less accurate. This is readily understood by
viewing

(−i�<
+)ch(t,t ′) =

∑
p

V ch
0p (t)V ch

0p (t ′)∗ ≡ �v(t ′)†�v(t) (64)

as a scalar product with [�v(t)]p = V ch
0p (t) in an L-dimensional

vector space. Since the off-diagonal elements of −i�<
+

are small, we need �v(t ′)†�v(t) ≈ 0 for t � t ′. However, our
approximation relies on a fixed dimension L, and it thus runs
out of orthogonal vectors after some time. The only remaining
way to approximate small off-diagonal values of −i�<

+ is
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FIG. 4. (Color online) Time evolution of the hybridization V +
0p(t).

Both panels show a rank L = 3 approximation that corresponds to
the input Weiss field −i�<

+ displayed in Fig. 3. To obtain V ch
0p (t), in

the top panel, we used the low-rank Cholesky approach. In the lower
panel, we plot the hybridization V ev

0p (t), which was calculated using
the low-rank eigenvector approximation. The inset shows the decay
of the eigenvalues ap of −i�<

+.

to reduce ||�v(t)||2 = −i�<
+(t,t). However, this automatically

leads to a decay of the diagonal elements, as observed in Fig. 3.
For completeness we also show results for the hybridization

V ch
0p (t) in the top panel of Fig. 4. As an important property,

we note that the Cholesky approach yields a hybridization
that is a continuous function of time, which is an important
requirement for it to be used as hopping parameter in the SIAM
Hamiltonian. Because of �+(0,t) = �+(t,0) = 0, we obtain
V ch

0p (0) = 0.

B. Low-rank eigenvector decomposition

A different approach to find an optimal low-rank approxi-
mation for a given rank L uses an eigenvector decomposition.
We assume that the eigenvalues ap in the following decompo-
sition are ordered in magnitude, so that the largest eigenvalue
is given by a1 and the smallest one by aN . Then

(−i�<
+)nn′ =

N∑
p=1

UnpapU ∗
n′p ≈

L∑
p=1

(Unp

√
ap)(

√
apU ∗

n′p)

=
L∑

p=1

V ev
np (V ev

n′p)∗ ≡ (−i�<
+)ev

nn′ , (65)

where V ev
np ≡ Unp

√
ap. This approximation minimizes the

error with respect to the spectral norm, i.e.,

||�<
+ − (�<

+)ev||mat ≡ max
||�x||=1

|| [�<
+ − (�<

+)ev] �x ||, (66)

where �x is a vector in the corresponding vector space and || · ||
the Euclidean norm. For our approximation, the norm yields
aL+1.

The approximation is best suited for matrices with an
eigenvalue spectrum that drops off rapidly. As an example,
we consider again the input data shown in Fig. 3. Indeed, we
find that the eigenvalues ap of −i�<

+ decrease fast, cf. the inset
in the lower panel of Fig. 4. In the lower panel of the second
(third) column of Fig. 3 the corresponding rank L = 2 (rank
L = 3) approximation of −i�<

+ is shown. In contrast to the
Cholesky approach, we find that no special attention is paid
to small times. This is due to the fact that many eigenvectors
are discarded, which affects the whole matrix. As an important
consequence, the error is spread over the resulting approximate
matrix, as discussed in the next section.

Similarly to the Cholesky approach, the eigenvector ap-
proximation yields a continuous hybridization, cf. the lower
panel in Fig. 4. We again find V ev

0p(0) = 0 as required by
�+(0,t) = �+(t,0) = 0.

C. Comparison of Cholesky and eigenvector approximation

We investigate how the error of both approximations is
spread over the resulting Weiss field. This is most easily
understood by looking at the stepwise error at time τ , which
we define as

errstep(A,τ ) =
√√√√ N∑

n=1

(2 − δnN )|(�<+)nN − AnN |2, (67)

with N = τ/
t . Numerical results for the input Weiss field
−i�<

+ shown in Fig. 3 are plotted in the bottom left panel of
the same figure. As expected we find a monotonic increase of
the error, which is very small for short times, for the Cholesky
approach. For the eigenvector approximation, on the other
hand, the error is spread almost equally over the whole matrix.
This allows for a better approximation of −i�<

+ as a whole,
e.g., err[(�<

+)ev] = 0.09 compared to err[(�<
+)ch] = 0.17 for

the rank L = 3 approximation of the input data in Fig. 3, with

err[A] ≡ ||�<
+ − A||

||�<+|| , ||A|| ≡
√∑

nn′
|Ann′ |2. (68)

However, the maximum time that can be represented ac-
curately using the eigenvector decomposition is not known
beforehand, which can pose a problem if we use it within the
DMFT self-consistency cycle (cf. following Section).

VI. NUMERICAL RESULTS

A. Setup

In this part, we apply the method developed in Sec. III–V
to a simple test system. We study the time evolution for a
Hubbard model on the Bethe lattice in the limit of infinite
coordination number Z with time-dependent nearest-neighbor
hopping tij = v(t)/

√
Z and constant on-site interaction U [cf.

Eq. (1)]. We start from the atomic limit (v = 0) and smoothly
but rapidly turn on the hopping up to a final value of v = v0 ≡ 1
at time tq > 0. All quantities below are thus measured in units
of v0. For the ramp of the hopping, we choose a cosine-shaped
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time dependence,

v(t) =
{

1
2 [1 − cos(ω0t)] for t < tq,ω0 = π

tq

1 for t � tq
. (69)

The initial state is assumed to be at zero temperature
in the paramagnetic phase at half filling. The paramagnetic
DMFT solution for U > 0, v = 0, and T = 0 corresponds
to a spin-disordered state with entropy ln(2) per lattice site
(|↑〉i and |↓〉i are degenerate on each lattice site i), which
is equivalent of taking the limit v → 0 and T → 0 such that
the temperature is always larger than the Neel temperature
TNeel ∝ v2/U . The particle density is 〈n〉 = 1 since we have
〈niσ 〉 = 1

2 for all lattice sites. We further have zero double
occupation independent of the (positive) value of U .

For our numerical calculation, we approximately map the
DMFT action onto a SIAM with a finite number Lbath of
bath sites. Since we start from the atomic limit, there are no
impurity-bath correlations in the initial state. Consequently,
the first bath vanishes, i.e., �− = 0, and we have � = �+.
Additionally, � is spin symmetric (�↑ = �↓ = �) in the
paramagnetic phase, and particle-hole symmetric, such that we
set up the SIAM symmetric as explained below Eq. (52), with
pairs of initially occupied and unoccupied bath orbitals: the
number of bath sites is Lbath = 2L, where L is the rank of the
approximate representations of i�> and −i�<, as introduced
in Sec. V. The initial ground state of the SIAM is sketched
in Fig. 5 and contains an equal number of empty and doubly
occupied bath sites with energies εp = 0 and a singly occupied
impurity. (For a system that is not particle-hole symmetric,
it might be optimal to choose a different number of initially
occupied and empty bath orbitals.) In practice, we average over
two Green functions Gα and Gβ , where the impurity of system
α (β) is populated initially by a single up-spin (down-spin)
electron, i.e., the lattice Green function is given by

Gσ (t,t ′) = 1
2

[
Gα

0σ (t,t ′) + G
β

0σ (t,t ′)
]
. (70)

Taking the average restores particle-hole symmetry, which is
not given for Gα or Gβ alone.

The self-consistency condition for the Weiss field �σ is
given by Eq. (14). Because we will compare results from
both eigenvector and Cholesky decomposition of �, we use
a DMFT iteration scheme with fixed maximum time tmax [cf.
Fig. 2(a)] (see also Fig. 6). To this end, we initialize �n in

FIG. 5. Atomic limit: SIAM representation of the DMFT initial
state for the paramagnetic phase of the Bethe lattice and Lbath = 6.
While the full dot denotes the impurity site with on-site Coulomb
repulsion U , the open dots mark the bath with V0p(0) = 0 in the
initial state (1 � p � Lbath).

Λn(t, t ) V
[ev,ch],n
0p (t) Λ[ev,ch]

n (t, t )

Gn(t, t )Λn+1(t, t ) dn(t)
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Λn+1 = V (t)Gn(t, t )V (t )
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Λn = V n(V n)†
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FIG. 6. DMFT iteration scheme for a fixed maximal time, i.e.,
t,t ′ � tmax. The initial input Weiss field �1(t,t ′) is given by (71).
dn(t) denotes the double occupation after the nth iteration.

iteration n = 1 as

�1(t,t ′) = v(t)g0(t,t ′)v(t ′), t,t ′ � tmax, (71)

where g0 is a suitable initial Green function, e.g., the equilib-
rium Green function of the noninteracting Bethe lattice which
is known analytically. After each decomposition of the Weiss
field into hopping parameters V0p(t) we compute the real-time
impurity Green functions Gs

0σ (t,t ′) = �C(t,t ′)Gs,>
0σ (t,t ′) +

�C(t ′,t)Gs,<
0σ (t,t ′) with respect to the SIAMs s = α and s = β

by exact diagonalization (ED) techniques,

G
s,>
0σ (t,t ′) = −i

〈
ψs

0

∣∣U (0,t)c0σU (t,t ′)c†0σU (t ′,0)
∣∣ψs

0

〉
,

G
s,<
0σ (t,t ′) = i

〈
ψs

0

∣∣U (0,t ′)c†0σU (t ′,t)c0σ U (t,0)
∣∣ψs

0

〉
,

U (t,t ′) = Tt

{
exp

(
−i

∫ t

t ′
ds H (s)

)}
, (72)

where Tt denotes the usual time-ordering operator. Due to
the exponential growth of the Hilbert space [its dimension
scales as ( 2L + 1

L )( 2L + 1
L + 1 )], we use the Krylov method48,49 and

a commutator-free exponential time-propagation scheme50 to
evolve the initial states |ψs

0〉 along the contour C. Also,
we implemented fast updates for the time-dependent, sparse
Hamiltonian matrices and parallelize matrix-vector multipli-
cations.

From the lattice Green function, we can finally
obtain the system’s kinetic energy 〈Ekin(t)〉 =
−i

∑
σ

∫
C

ds�(t,s)Gσ (s,t ′)|<t=t ′ as well as the density
〈n(t)〉 = −i

∑
σ G<

σ (t,t), which is a conserved quantity.
Furthermore, the double occupation in the lattice is computed
similarly to the Green function as the time-local impurity
correlation function 〈d(t)〉 = 〈n0↑(t)n0↓(t)〉 averaged over
SIAMs α and β. The double occupation also gives access to
the interaction energy, 〈Eint(t)〉 = U (〈d(t)〉 − 1

4 ).

B. Comparison of eigenvector and Cholesky approximation

In Sec. V C, we emphasized that eigenvector and Cholesky
approximation spread the error quite differently over the
resulting approximate Weiss field. This has important conse-
quences when we use them within the DMFT self-consistency
cycle explained in Fig. 2(a) and in detail in Fig. 6. First,
differences between both approaches can be found by looking
at intermediate results of the numerical calculation. In Fig. 7,
we show results for the double occupation dn(t) after the nth
DMFT iteration. For the calculation, we fixed tmax = 4 and
used Lbath = 4 bath sites for the SIAM. The curves in the
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FIG. 7. (Color online) From every iteration we obtain a time
evolution for the double occupation dn(t), represented by a single line
in this plot. We used tmax = 4, Lbath = 4, U = 5, and v(t) as defined
in Eq. (69) with tq = 0.25 (vertical dotted line), cf. Fig. 10 for its
profile. Seven iterations were performed. (Top) Results obtained using
the eigenvector approximation. (Bottom) Results obtained using the
Cholesky approximation.

top panel were calculated using the eigenvector approach.
In each step, one finds 
ev

n (t) ≡ dev
n+1(t) − dev

n (t) �= 0, except
for very small times. This can be understood by recalling
that the approximation �ev of the input Weiss field �n at
DMFT iteration n is calculated by discarding most of �n’s
eigenvectors. There are thus differences between �n(t,t ′) and
its low rank approximation for all times t,t ′ and consequently
dn(t) is affected as a whole.

Corresponding results for the Cholesky approach are
plotted in the lower panel and reveal a causal nature. For
each iteration, one can find a time tn so that 
ch

n (t) ≈ 0 for
t < tn (a converged calculation thus requires tn = tmax). This
can be understood as follows. Assume that the input Weiss field
fulfills �n(t,t ′) = �n+1(t,t ′) for t,t ′ < tn. Due to the stepwise
construction, this leads to �ch

n (t,t ′) = �ch
n+1(t,t ′) for t,t ′ < tn

for the Cholesky approximation. The time evolution in a
physical system is causal and therefore ensures �n+1(t,t ′) =
�n+2(t,t ′) for t,t ′ < tn. This restricts all changes to t,t ′ > tn.

From these observations, we conclude that the maximum
time has to be chosen carefully if we work with the eigenvector
approach. If Lbath is chosen too small compared to the
maximum time tmax, then we have to expect convergence
against wrong results. Indeed we find such behavior as plotted
in the upper panel of Fig. 8. The number of bath sites Lbath = 4
turns out to be small if we consider tmax = 4 and the resulting
double occupation d(t) (green dashed line) differs largely from
the correct result (red solid line).

The causal and stepwise construction of the Cholesky
decomposition, on the other hand, ensures that one obtains
correct results from the self-consistency cycle up to some given
time t∗. As shown in Fig. 8 (lower panel), t∗ increases with
the number of available bath sites Lbath, and due to the causal
property of the Cholesky decomposition the convergence of
the results before t∗ is not spoiled by increasing the maximum
propagation time tmax (provided that the size 
t of the time

FIG. 8. (Color online) Converged DMFT results obtained using
eigenvector and Cholesky approximation. Calculations were per-
formed for U = 5 and v(t) as defined in Eq. (69), with tq = 0.25
(vertical dotted line). Each line displays the final result for the double
occupation d(t), which depends on the maximal time tmax and on
the number of bath sites Lbath. (Top) Eigenvector approximation.
(Bottom) Cholesky approximation. The size of the time step was
fixed to δt = 0.04.

step is kept fixed). In practice, the Cholesky approach appears
to be preferable and was used for the calculation of all further
results.

C. Time evolution of energies and double occupation

Initially, in the atomic limit for times t � 0, the electrons
cannot hop between the lattice sites, there is no double
occupation, and the system has a total energy of −U/4 per
site. Figure 9 shows the change of the kinetic, interaction and
total energies during and after the switch-on of the hopping
for two selected values of the on-site interaction, U = 2 and
U = 4. Also, we compare results for different Lbath in the
SIAM representation.

The onset of the dynamics is characterized by a steady
increase (decrease) of the absolute value of 〈Ekin〉 (〈Eint〉).
Note that the tiny energy transfer during the ramp does
not imply that the system is in its ground state after the
ramp. The excitation energy in the system after the ramp
(which would enter an estimate of its effective temperature)
is measured with respect to the new ground state energy.
For example, for a noninteracting system (U = 0+) we have
〈nkσ (t)〉 = 〈nkσ (0)〉 = 1

2 and thus Etot(t) = 0, but the ground
state of the final Hamiltonian is the Fermi sea with energy
〈H (tq)〉FS = − 8

3π
< 0, so that the excitation energy is given by


E = 〈H (tq)〉 − 〈H (tq)〉FS = 8
3π

[for finite U the value − 8
3π

can serve as an upper bound for the ground-state energy of the
final Hamiltonian H (tq) because 〈(n↑ − 1

2 )(n↓ − 1
2 )〉FS = 0].

As an important check of the numerical results, we note that
the total energy is conserved after the switch-on is completed,
including (for sufficiently large Lbath > 6) the whole timescale
on which the energies saturate and approach a final value.
On the other hand, we observe that the long-time dynamics
for t � 3.0 is not accurately described (in particular for
larger U ) because, instead of diverging results, we expect all
energies to become constant. Clearly, in this regime, the SIAM
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FIG. 9. (Color online) Test of energy conservation. Numerical
results for the time-dependent energies 〈Ekin〉 (green), 〈Eint〉 (blue)
and 〈Etot〉 (red) for U = 2 (solid lines) and U = 4 (dashed lines). The
thick curves correspond to the SIAM representation with Lbath = 8,
the thinner curves to Lbath = 6 and 4, respectively. All data were
obtained with the Cholesky decomposition. The vertical dotted
line indicates the time tq at the end of the ramp, after which the
Hamiltonian is time-independent.

representation with few bath sites is inadequate and must be
adjusted by increasing Lbath.

In Fig. 9, the saturation of the time-dependent energies
〈Ekin〉 and 〈Eint〉 indicates the relaxation to a final steady state.
An important quantity of this state is its double occupation.
Figure 10 shows how d(t) builds up as function of time for
different values of U . In the case of no interactions, U = 0, we
observe that the double occupation monotonically approaches

FIG. 10. (Color online) Time dependence of the double occupa-
tion d(t) in the Bethe lattice for the approximate SIAM representation
with Lbath = 4, 6, and 8 (using the Cholesky decomposition) and for
different U ranging from zero and small to large Coulomb interaction.
The ramp of the hopping parameter (orange curve) is as in Fig. 9.

a value of dfinal = 1/4, which corresponds to the thermal state
of the paramagnetic phase in the presence of finite hopping
v0. Note that the total energy is zero [due to our choice
of the zero of energy in Eq. (1)], 〈Etot〉(t) = 〈Ekin〉(t) = 0
for all times. Nevertheless, the system is in an excited state
because its energy is larger than the ground-state energy of
the Hamiltonian after the ramp. For increasing U , the final
double occupation gets more and more suppressed. However,
on the intermediate time scale, a pronounced switch-on
behavior is formed resembling damped collapse and revival
oscillations with approximate period 1/U .

Regarding the calculations with different numbers of bath
sites, we conclude from Fig. 10 that for U � 2, a SIAM
representation with Lbath = 8 is sufficient to correctly resolve
the dynamics up to t � 3. On the other hand, the maximum
accessible time decreases with U , cf. the curves for U =
4, 6, and 8. We attribute this to the initial atomic limit
state, for which the off-diagonal elements of the Green
functions G<,>(t,t ′) [and hence eventually the hybridizations
�<,>(t,t ′)] vary on a time scale proportional to 1/U , i.e., more
rapidly for large U , thus requiring more bath sites to capture
hybridizations with higher rank (cf. Sec. V). From a different
perspective, the switches at larger U yield a smaller amount of
excitation energy, so that the time evolution involves smaller
energy differences and longer timescales, the description of
which should be expected to require more bath sites.

D. Comparison to perturbation theory

An essential advantage of using a Hamiltonian-based
impurity solver in nonequilibrium DMFT is that results can
be obtained independently of the strength of the Coulomb
interaction. In the present case, where the initial state is simple,
the ED results can be considered as exact in the sense that
they are converged with the number of bath orbitals for small
enough times. In Fig. 11, we compare the ED calculations
of Sec. VI C to perturbative results based on a hybridization
expansion, which is most accurate when U is much larger
than the bandwidth. The perturbative hybridization expansion
uses a diagrammatic (“strong-coupling”) skeleton expansion
of the impurity-bath hybridization around the atomic limit.
The so-called noncrossing approximation (NCA) denotes
the lowest-order variant of this conserving expansion, and
corrections to the NCA are obtained on the level of the
one-crossing approximation (OCA). In Fig. 11, in addition
to the NCA and OCA we include calculations, which sum the
skeleton series up to third order; for details see Ref. 28.

The general observation in our case is that the NCA fails
(as expected) for small U but has also difficulties in describing
the dynamics of d(t) for interaction strengths as large as U =
10. On the other hand, we find from Fig. 11(b), that low-
order corrections to the NCA produce adequate results for
U > 6. The double occupation obtained from the OCA (and
the expansion of third order which practically produces the
same results) is in excellent agreement with the SIAM-based
ED results for Lbath = 8 up to times for which the latter are
reliable.

In the regime of moderate coupling [see the curves for
U = 4 and 6 in Fig. 11(b)], the OCA data start to deviate
from the exact results such that the third-order approximation
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FIG. 11. (Color online) Comparison of the SIAM-based results
for Lbath = 8 (violet curves) to the noncrossing approximation (NCA),
the one-crossing approximation (OCA) and the corresponding third-
order approximation of the hybridization expansion. While (a) covers
small to moderate interactions and (b) addresses moderate to strong
couplings. The ramp v(t) (orange curve) is as in Figs. 9 and 10.

becomes indispensable to get convergent results. This trend
intensifies if U is further decreased. For small U , we find
that even the third-order approximation cannot reproduce the
ED curves. Note that the numerical effort for evaluating the
third-order diagrams is already quite substantial, as it involves
multiple integrations over the contour C and thus scales like
O(N5) with the number of time-discretization steps.28 Weak-
coupling methods such as CTQMC, on the other hand, cannot
be used easily because they cannot describe the atomic limit
initial state.

VII. SUMMARY AND OUTLOOK

In this paper we have addressed the problem of rep-
resenting the nonequilibrium DMFT action by a time-
dependent Hamiltonian, i.e., a single-impurity Anderson
model (SIAM). The solution of this “mapping problem”
makes it possible to adopt powerful wave-function based
numerical time-propagation algorithms, such as Krylov-space
methods or DMRG, as impurity solvers for nonequilibrium
DMFT.

To solve the mapping problem, we determined a SIAM with
time-dependent impurity-bath hopping parameters V0p(t),
which has the same hybridization function �(t,t ′) as the
DMFT action. In equilibrium, � is uniquely determined by
a positive definite spectral function to which the parameters of
the Hamiltonian can be fitted. By contrast, for a nonequilibrium
Green function with two time arguments t and t ′ on the

Keldysh contour and no time-translational invariance, even
the representability by a SIAM is not obvious. In this paper,
we have used a Lehmann representation to prove that the
representability is a rather general property of nonequilibrium
Green functions, and we have presented an explicit procedure
to construct the parameters of the SIAM.

Using this scheme, we found that the number of bath
degrees of freedom that are needed for an accurate repre-
sentation of a given � typically increases with the maximum
evolution time, beginning with the representation of the initial
equilibrium state. The bath orbitals belong to two different
classes (denoted as first and second bath in this paper),
which differ both in their physical meaning and in the way
in which the respective SIAM parameters are determined.
The first bath is coupled to the impurity already in the
initial state at time t = 0, and it is determined by fitting a
generalized time- and frequency-dependent spectral function
related to the mixed imaginary-time/real-time sector of the
hybridization function, i.e., these parameters account for
correlations between the initial state at t � 0, and times t > 0.
In a general nonequilibrium situation, we find that the first
bath must gradually decouple from the impurity in order to
correctly represent the fading memory of the initial state in
the DMFT action. The second bath, on the other hand, is
gradually coupled to the impurity at times t > 0 and describes
correlations which are build up at later times. Numerically,
we determine it using a matrix decomposition (eigenvector or
Cholesky decomposition) in real time.

Both the Cholesky and the eigenvector decomposition allow
us to find an approximate bath representations by minimizing
the difference between the exact � and the representation
based on a finite number of bath orbitals only. The Cholesky
decomposition has the advantage that the optimal SIAM at a
given time can be determined uniquely from the solution at
previous times (and for the initial equilibrium state), such that
the resulting impurity solver can be embedded into a stepwise
time propagation scheme. Furthermore, this fact ensures that
even with a small number of bath sites we can obtain converged
results for not too large times. In a first numerical test of the
approach, we have studied the time evolution after a ramp of the
hopping in the Hubbard model, starting from the atomic limit.
This setup, which is in principle easy to realize with cold atoms,
is hard to solve both with weak-coupling perturbation theory
or weak-coupling CTQMC (which cannot describe the initial
state), and with strong-coupling perturbation theory (which is
no longer accurate when U becomes smaller than the hopping).
On the other hand, the dynamics starting from the atomic limit
is particularly interesting for experiments with atoms in optical
lattices, where ramp protocols starting from isolated sites have
recently been proposed as a way to prepare interesting phases
such as the quantum antiferrimagnet.51

There are several open questions and future research
directions. First of all, it would be interesting to analyze
how the number of bath orbitals that are needed for a given
accuracy scales with the maximum evolution time. We have
not investigated this question systematically, because the
maximum number of bath sites that can be dealt within
exact diagonalization techniques is rather limited anyway.
For conceptual reasons, however, and for the use of different
solvers, this question is certainly relevant.
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Moreover, based on our proof of the representability of the
DMFT action by a SIAM, various other procedures of finding
the actual SIAM appear worthwhile to study. For example,
instead of minimizing the difference between the impurity
hybridization function and a hybridization function in the
DMFT action, one may minimize the difference between the
DMFT Green function Glat (computed from the lattice Dyson
equation with the impurity self-energy) and the impurity
Green function GSIAM. The difference between Glat and
GSIAM might actually be a better error measure than the
corresponding difference between the hybridization functions
� and �SIAM: GSIAM(t,t ′) is a superposition of exponentially
many oscillating components whose dephasing leads to a
rapid decay of the function at large time differences t − t ′.
It is thus typically already closer to the Green function of
an infinite system (Glat) than �SIAM is to �. However, the
numerical implementation will be more complicated because
the approximation error is computed between two quantities
that are both determined numerically.

Finally, any method that relies on an ad-hoc truncation of
the bath can potentially violate conservation laws of energy
or particle number. There are two possible ways to cure this
problem (apart from increasing the number of bath sites); first
of all, a systematic perturbation theory around the truncated
impurity model can be formulated in the language of dual
fermions.36 The approach can be made conserving and it
can also potentially alleviate other finite-bath size effects,
but the evaluation of the corresponding diagrams requires
considerable numerical effort. Another very interesting di-
rection is the nonequilibrium generalization of self-energy
functional theory,52,53 where the parameters of the impurity
model are not determined ad hoc, but from the stationary
point of the dynamical Luttinger-Ward variational principle.
Although the numerical implementation of the approach is
slightly more challenging, it is a worthwhile endeavor because
spin and particle number conservation would be satisfied in
such an approach with a suitable choice of the variational
space.54

As a next step, it would certainly be worthwhile to combine
the mapping procedure with efficient numerical schemes such
as DMRG, which might be able to reach timescales that are
not accessible with any of the currently available solvers. The
use of Hamiltonian-based solvers for nonequilibrium DMFT
has only just begun, and based on the theoretical foundations
presented here, several interesting topics can be expected to
be explored soon.
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APPENDIX A: ROLE OF THE BATH GEOMETRY

In the following discussion, we consider a bath with
arbitrary geometry and show that one can always find a
SIAM with the same number of sites and a simple star
geometry, which has the same effective action. For simplicity,
we suppress the spin index. The associated bath Hamiltonian

is given by

Hbath =
∑

p,p′>0

[Vpp′(t) − μδpp′ ]a†
pap′ . (A1)

Vpp′ (t) is a Hermitian matrix and can be diagonalized at every
time t . For t = 0, we call the necessary unitary transform O,
so that

V (0) = O DO† with Dpp′ = δpp′dp. (A2)

The noninteracting one-particle Green function for the bath
Hamiltonian is given by [Sbath ≡ −i

∫
C

dtHbath(t); cf. (3) for
the definition of the expectation value]

gpp′ (t,t ′) ≡ −i〈ap(t)a†
p′(t ′)〉Sbath

= i[U(t,0)(f [V (0) − μ] − �C(t,t ′))U†(t ′,0)]pp′ ,

(A3)

where (for t > t ′)

U(t,t ′) = T

{
exp

[
−i

∫ t

t ′
(V (t1) − μ) dt1

]}
. (A4)

The expression f [V (0) − μ] refers to the matrix Fermi
distribution, i.e.,

f [V (0) − μ] = f [O(D(0) − μ)O†] = Of [D(0) − μ]O†,

f [D(0) − μ]pp′ = δpp′f (dp − μ). (A5)

f (ε) is the Fermi function. For the following consideration,
we assume that Vpp′ (t) are chosen to fulfill

�(t,t ′) =
∑

p,p′>0

V0p(t)gpp′(t,t ′)V ∗
0p′ (t ′), (A6)

i.e., the bath Hamiltonian describes a valid mapping. To show
the equivalence of the arbitrary geometry with a star structure
we search for a diagonal bath Hamiltonian with constant
eigenenergies that also reproduces the Weiss field �(t,t ′).

We define the quantity

vp(t) ≡ ei(dp−μ)t
∑

p̃,p′>0

V0p̃(t)Up̃p′ (t,0)Op′p, (A7)

which ensures vp(−iτ ) = vp(0) for every τ . This can be seen
from the propagator U(−iτ,0), which can be written as

U(−iτ,0) = exp

[
−i

∫ −iτ

0
(V (t1) − μ) dt1

]
= O exp [−(D − μ)τ ] O†. (A8)

Note that V (−iτ ) = V (0) follows from definition of V
as hopping matrix of the bath Hamiltonian. Inserting this
into (A7) cancels the unitary transformation O on the right,
and one finds

vp(−iτ ) = e(dp−μ)τ
∑

p̃,p′>0

V0p̃(0)Op̃p′exp [−(D − μ)τ ]p′p

=
∑
p̃>0

V0p̃(0)Op̃p = vp(0). (A9)

It is therefore possible to use vp(t) as the hopping parameter
for a new geometry, but first we notice that our definition leads
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to the following diagonal form for �(t,t ′), i.e.,

�(t,t ′) =
∑
p>0

vp(t)hp(t,t ′)vp(t ′)∗. (A10)

hp(t,t ′) is the Green function of the time-independent diagonal
bath [V (t) → D(0)] describing a noninteracting equilibrium
situation:

hp(t,t ′) = i[f (dp − μ) − �C(t,t ′)]e−i(dp−μ)(t−t ′). (A11)

We find the exact same expression for �(t,t ′) if we start from
the following bath and hybridization matrices:

H star
bath =

∑
p>0

(dp − μ)a†
pap, H star

hyb =
∑
p>0

(vp(t)a†
0ap + H.c.).

(A12)

These results suggest that there is no advantage in choosing
a different, more complicated bath geometry. The Green
function gpp′(t,t ′) can be stated analytically only for the star
structure, where it is diagonal. For an arbitrary geometry, one
has to deal with the U(t,t ′) which can only be calculated
numerically from Vpp′ (t) and vice versa. We also emphasize
that the star-structured bath Hamiltonian involves the same
amount of lattice sites. This results from the construction of
vp(t) by a unitary transform. Therefore, if we are approximate
�(t,t ′) using a finite number of sites, e.g., in a numerical
calculation, there is no advantage in choosing a complicated
geometry.

APPENDIX B: CAVITY METHOD FOR THE
EFFECTIVE ACTION

Here, we obtain the action (38), i.e., we evaluate the
definition (36) of S̃:

exp(S̃) =
∞∑

n=0

1

n!
〈(
S)n〉S(0) . (B1)

Keeping in mind that the contour ordering for operators
acting on F0 still has to be performed, cf. (35), we will
treat the operators c

†
0σ ,c0σ as (anticommuting) constants when

evaluating the expectation value. From the definition of 
S, we
conclude that only terms with an equal number of c

†
iσ ,cjσ with

i,j �= 0 are nonzero and thus only terms which are of an even
power of 
S contribute. For easier notation, we will suppress
the spin index for creation (annihilation) operators acting on
Frest and the hopping in the following (it can be reinserted
using cin → cinσn

,c
†
jm

→ c
†
jmσ ′

m
,tij → tσij ). For the operators at

site 0, we drop the site index, i.e., c0σ → cσ . We define the
n-particle contour-ordered Green function as

G
(0)
i1...in,j1,...,jn

(t1, . . . ,t
′
n) ≡ (−i)n

〈
ci1 (t1) . . . c

†
jn

(t ′n)
〉
S(0) . (B2)

The contour ordering is again contained in the definition of the
expectation value, cf. (37).

To evaluate (B1) let us consider which terms are generated
by (
S)(2n). From the definition of 
S, we can see that only
product terms where n operators ci are multiplied with n

operators c
†
j are not equal to zero. Each term can be constructed

by choosing n creation operators c
†
j out of the 2n possibilities.

This fixes the annihilation operators one has to choose exactly,

so that (2n)!/n!2 n-particle Green function contribute. When
we order those operators to match the definition of an n-particle
Green function, we also reorder the operators at site 0, so that
the sequence of time variables is the same. For instance, a term
in lowest order takes the form

c
†
j (t)cσ (t)c†σ ′(t ′)ci(t

′) = ci(t
′)c†j (t)c†σ ′(t ′)cσ (t). (B3)

Terms of higher order can be thought of as a product of n

such terms and one readily realizes that the total sign is not
affected by the reordering. The definition of the Green function
consumes a factor (−i)n so the same factor is left [from (
S)2n,
we got a (−i)2n]. In the end, we find

exp(S̃) =
∞∑

n=0

1

(2n)!
〈(
S)2n〉S(0)

=
∞∑

n=0

∫
C

dt1 . . .

∫
C

dt ′n
∑

i1,...,jn

(−i)n
t0i1 (t1) . . . tjn0(t ′n)

n!n!

×G
(0)
i1,...,jn

(t1, . . . ,t
′
n)c†σ1

(t1) . . . cσ ′
n
(t ′n). (B4)

We proceed to reexponentiate the right-hand side of (B4)
using connected [with respect to the interaction in H (0)(t),
cf. (33)] contour-ordered Green functions. For an easier
notation, we define

Gn ≡
∫

C

dt1 . . .

∫
C

dt ′n
∑

i1,...,jn

t0i1 . . . tjn0

×G
(0)
i1,...,jn

(t1, . . . ,t
′
n)c†σ1

(t1) . . . cσ ′
n
(t ′n). (B5)

and in an analogous way Gc
n, i.e., G(0) → G(0),c, so that

exp(S̃) =
∞∑

n=0

(−i)nGn

n!n!
. (B6)

An n-particle Green function can be written entirely in terms
of connected m-particle (with m � n) Green functions. We
consider first one single contributing term of s connected
mk-particle Green functions (of course,

∑s
k=1 mk = n has to

hold for such a summand). The n-particle Green function
consists of n creation and n annihilation operators. This implies

that there are ( n
m1

)2 possibilities to construct a m1-particle
connected Green function out of it. For the next there are only
n − m1 creation (annihilation) operators left, so that there are

( n−m1
m2

)2 possibilities to create the m2-particle connected Green
function. Using this scheme, we find the following contribution
to Gn:(

n

m1

)2 (n − m1

m2

)2

. . .

(
n − m1 − · · · − ms−1

ms

)2 s∏
k=1

Gc
mk

= n!n!
s∏

k=1

Gc
mk

mk!mk!
. (B7)

The definition of Gn and Gc
n ensures that we do not have to

think about sign issues here. An operator reordering might
be necessary to match the definition of a connected Green
function but we also have to reorder the operators at site 0 in
the exact same way, so that the total sign does not change.
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As the next step, we generate all the other summands. We
start from terms that are a product of s = 1 connected Green
functions to terms which consist of s = n connected Green
functions. This way we find

Gn = n!n!
n∑

s=1

1

s!

∞∑
m1=1

· · ·
∞∑

ms=1

s∏
k=1

Gc
mk

mk!mk!
δ∑s

k=1 mk,n, (B8)

where the Kronecker delta δ∑
k mk,n selects all the contributions

which fulfill the condition
∑s

k=1 mk = n. The factor 1
s! takes

care of the fact that the order of the factors does not matter
(e.g., Gc

1G
c
2 = Gc

2G
c
1). We can now plug this result into (B6):

exp(S̃) = 1 +
∞∑

n=1

n∑
s=1

1

s!

×
∞∑

m1=1

· · ·
∞∑

ms=1

s∏
k=1

(−i)mkGc
mk

mk!mk!
δ∑s

k=1 mk,n. (B9)

To get the final result, we have to regroup the summands in
this expression by the number of factors they consist of. This
is easily done by extending the s summation to infinity, which
does not introduce extra terms because of the Kronecker δ.
The n summation is now readily calculated, and one finds the
desired result:

exp(S̃) = 1 +
∞∑

s=1

1

s!

∞∑
m1=1

· · ·
∞∑

ms=1

s∏
k=1

(−i)mkGc
mk

mk!mk!

=
∞∑

s=0

1

s!

( ∞∑
m=1

(−i)mGc
m

m!m!

)s

= exp

( ∞∑
m=1

(−i)mGc
m

m!m!

)
, (B10)

completing the derivation of (38) and (39).

APPENDIX C: THE LIMIT OF INFINITE LATTICE
DIMENSION AND LOCALITY OF THE SELF-ENERGY

In this appendix, we apply the limit of infinite lattice-
dimension to simplify the effective local action (38). This will
lead us to the DMFT action Sloc, cf. Eq. (11). Based on the
cavity formalism, we will then show that the lattice self-energy
is local and establish the DMFT self-consistency condition.

1. DMFT action for an infinite-dimensional lattice

As in the equilibrium case,12 the hybridization func-
tions (39) simplify drastically in the limit of infinite lattice
dimension, d → ∞. Applying the quantum scaling42 tij ∝
d−Zij (Zij is the number of sites connected by hopping tij ), it
can be shown by counting powers of d that only first-order
terms (i.e., one-particle Green functions) contribute to the
effective action. We now show this for the special case
of nearest-neighbor hopping on a hypercubic lattice, using
standard arguments.12,42

We consider the contributions to (39) from Green functions
of nth order, for which the lattice summations yield a total
factor d2n. We have t0i ∝ d−1/2 for the nearest neighbors of
site 0 and thus the product of 2n such quantities contributes

a factor d−n. The Green functions in (39) only contain
connected diagrams. Because all the sites it connects are
nearest neighbors of 0 the shortest path between them is of
length 2 (using the metric || �R|| = ∑

i |Ri |). To connect 2n

sites, we need at least 2n − 1 such paths and thus the largest
terms are of order (

√
d)2(2n−1) = d2n−1 if all sites are different.

Using these results on (39), leads to

�σ1...σ ′
n
(t1, . . . ,t

′
n)

∝
∑

i1,...,jn︸ ︷︷ ︸
∝ d2n

t0i1 (t1) . . . tjn0(t ′n)︸ ︷︷ ︸
∝(

√
d)−2n

G
(0),c
(i1σ1),...,(jnσ ′

n)(t1, . . . ,t
′
n)︸ ︷︷ ︸

∝(
√

d)−2(2n−1)

∝ 1

dn−1
. (C1)

If only 2n − m sites are different, the order reduces to
2(2n − m − 1). However, this constraint also reduces the
factor given by the summation to d2n−m. In total, we always
find �σ1...σ ′

n
∝ dn−1, which proves that only first-order terms

(n = 1) contribute. We further have �σσ ′(t,t) = δσσ ′�σ (t,t ′)
since the Hubbard Hamiltonian does not involve spin flips.
In the limit d → ∞ the effective action thus reduces to (12)
with hybridization (15). The partition function is given by
Zloc = tr0{TC[exp(Sloc)]} and describes an impurity that is
coupled to the Weiss field �σ (t,t). This Weiss field represents
the influence of all other lattice sites.

2. Local self-energy and self-consistency condition
for an arbitrary lattice

Here, we use the cavity formalism to establish that the
self-energy is local for an arbitrary lattice in the limit of infinite
dimensions and derive the corresponding self-consistency
condition. We begin by replacing

ti0(t)c(t) → ηi(t), t0i(t)c
†(t) → η

†
i (t), (C2)

in (31), with {ηi(t),cj } = {ηi(t),c
†
j } = 0 for i,j �= 0. We

further assume that, within a contour-ordered expression, all
ηi(t) anticommute pairwise with each other and with c,c†.
They thus operate on the impurity site (i = 0; we recall the
definition c ≡ c0). One easily verifies that all steps of the
derivation in Appendix B remain valid (even the limit d →
∞) and we conclude

F [•,η,η†] ≡ TC[• exp(Sloc[η,η†])]

= 1

Z(0)
TC[ • trrest(exp(S[η,η†]))]

≡ Flat[•,η,η†], (C3)

where “•” represents an arbitrary product of time-dependent
operators acting on site 0. We recall that S[η,η†] = S0 + S(0) +

S[η,η†] and


S[η,η†] = −i

∫
C

dt

⎡
⎣∑

i �=0

(c†i (t)ηi(t) + η
†
i (t)ci(t))

⎤
⎦ ,

Sloc[η,η†] = −i

∫
C

dt

∫
C

dt ′
∑
ij �=0

G
(0)
ij (t,t ′)η†

i (t)ηj (t ′) + S0.
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As for Grassmann variables, a functional derivative with the
common rules (chain rule, product rule, etc.) and ξ ∈ {η,η†}:
{

δ

δξi(t)
,cj

}
=
{

δ

δξi(t)
,c

†
j

}
= 0,

δξi(t)

δξj (t ′)
= δC(t,t ′)δij ,

(C4)

with the contour delta function δC(t,t ′) ≡ ∂t�C(t,t ′), can
now be defined as follows. Note that it is not allowed
to choose δηj (t) proportional to the unit matrix, as this
would violate the anticommutation requirement. However,
it is possible to define an “anticommuting unit matrix” by
introducing an additional dummy site with corresponding
creation (annihilation) operators f † (f ). For a functional F [ξ ],
with ξ ∈ {η,η†}, we then set

δF [ξ ]

δξj (t)
≡ trf

{
f † lim

ε→0

F [ξ + εδC(·,t)δ·,j f ] − F [ξ ]

ε

}
,

δξj (t) ≡ εδC(·,t)δ·,j f. (C5)

No dummy time variable for f is needed since it anticommutes
with every other involved creation (annihilation) operator
except f †. Here, trf traces over the subspace of the dummy site.
The differential operator δ

δξj (t) indeed anticommutes with every
other fermionic creation (annihilation) operator [cf. (C4)].

Since the functionals F [•,η,η†] and Flat[•,η,η†] coincide
everywhere, any functional derivative of them is equal. Note
also that both functionals contain only operators that act on
the impurity site. It is now straightforward to verify that (for
i,j �= 0)

Gij (t,t ′) = −i

Zloc
tr0

(
δ2Flat[1,η,η†]

δη
†
i (t)δηj (t ′)

)∣∣∣∣∣ ηk (t) = tk0(t)c(t)
η
†
l (t) = t0l (t)c†(t)

= −i

Zloc
tr0

(
δ2F [1,η,η†]

δη
†
i (t)δηj (t ′)

)∣∣∣∣∣ ηk(t) = tk0(t)c(t)
η
†
l (t) = t0l (t)c†(t)

= G
(0)
ij (t,t ′) +

∫
C

dt1

∫
C

dt2
∑
kl

G
(0)
ik (t,t1)tk0(t1)

×G(t1,t2)t0l(t2)G(0)
lj (t2,t

′). (C6)

In this context, Gij (t,t ′) = −i〈ci(t)c
†
j (t ′)〉S is the lattice Green

function [cf. (31)] and G(t,t ′) = G00(t,t ′) the Green function
at the impurity. We arrive at the equation

∑
ij

t0i(t)Gij (t,t ′)tj0(t ′)

= �(t,t ′) +
∫

C

dt1

∫
C

dt2 �(t,t1)G(t1,t2)�(t2,t
′). (C7)

To close the self-consistency for a given �(t,t ′), we need an
expression for the lattice Green function Gij (t,t ′). To derive

it, we consider

G0j (t,t ′) = 1

Zloc
tr0

(
δF [c(t),η,η†]

δηj (t ′)

)∣∣∣∣ ηk(t) = tk0(t)c(t)
η
†
l (t) = t0l (t)c†(t)

= 1

Zloc
tr0

(
δFlat[c(t),η,η†]

δηj (t ′)

)∣∣∣∣ ηk (t) = tk0(t)c(t)
η
†
l (t) = t0l (t)c†(t)

.

The evaluation yields (j �= 0)

G0j (t,t ′) =
∫

C

dt1
∑

i

G(t,t1)t0i(t1)G(0)
ij (t1,t

′). (C8)

A similar conjugated equation can be derived for Gi0(t,t ′),
which gives after summation∑

i

t0i(t)Gi0(t,t ′) =
∫

C

dt1�(t,t1)G(t1,t
′). (C9)

Insertion of (C8) into (C6) leads to

G
(0)
ij (t,t ′) = Gij (t,t ′) −

∫
C

dt1

∫
C

dt2Gi0(t,t1)

×G−1(t1,t2)G0j (t2,t
′), (C10)

where the (matrix) inverse (with respect to time arguments)
G−1(t,t ′) is defined by the impurity Dyson equation∫

C

dt1G
−1(t,t1)G(t1,t

′) = δC(t,t ′). (C11)

Note that (C10) is the analog of the equilibrium rela-
tion G

(0)
ij (iωn) = Gij (iωn) − Gi0(iωn)G0j (iωn)/G(iωn), i.e.,

Eq. (36) in Ref. 12.
The inverse G−1(t,t ′) of the impurity Green function G(t,t ′)

is connected to the impurity self-energy �(t,t ′) by

G−1(t,t ′) = (i∂t + μ)δC(t,t ′) − �(t,t ′) − �(t,t ′), (C12)

and allows one to rewrite (C8), with j �= 0, as∫
C

dt1G
−1(t,t1)G0j (t1,t

′) =
∑

i

t0i(t)G
(0)
ij (t,t ′). (C13)

By multiplying (C10) with t0i(t) and summing over i, we find∑
i

t0i(t)Gij (t,t ′)

=
∫

C

dt1[G−1(t,t1) + �(t,t1)]G0j (t1,t
′) (C14)

for j �= 0, where we used (C9) and (C13). Now the inverse
lattice Green function G−1

lat (t,t ′) is defined by the lattice Dyson
equation∑

k

∫
C

dt1
(
G−1

lat

)
ik

(t,t1)Gkj (t1,t
′) = δij δC(t,t ′), (C15)

and thus is connected to the lattice self-energy �lat(t,t ′) via(
G−1

lat

)
ij

(t,t ′) ≡ [δij (i∂t + μ) − tij (t)]δC(t,t ′)

− (�lat)ij (t,t ′). (C16)

Note that here the inverse with respect to both the time
arguments and the lattice indices appears.
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Now we can show that (�lat)ij (t,t ′) = δij�loc(t,t ′), i.e., the
lattice self-energy is local and given by the self-energy of the
impurity model. We have

δ0j δC(t,t ′) =
∑

k

∫
C

dt1
(
G−1

lat

)
0k

(t,t1)Gkj (t1,t
′)

= (i∂t + μ)G0j (t,t ′) −
∑

k

t0k(t)Gkj (t,t ′)

−
∫

C

dt1
∑

k

(�lat)0k(t,t1)Gkj (t1,t
′) (C17)

and by using (C9) and (C14) we identify (for arbitrary j )∫
C

dt1�(t,t1)G0j (t1,t
′) =

∫
C

dt1
∑

k

(�lat)0k(t,t1)Gkj (t1,t
′).

(C18)

Since we consider a translationally invariant system, the same
result has to hold for an arbitrary site i, i.e.,∫

C

dt1�(t,t1)Gij (t1,t
′) =

∫
C

dt1
∑

k

(�lat)ik(t,t1)Gkj (t1,t
′).

(C19)

Applying the inverse of the lattice Green function from the
right-hand side, we find the desired result:

(�lat)ij (t,t ′) = δij�(t,t ′). (C20)

This result can be used to calculate Gij (t,t ′) from the lattice
Dyson equation and thus closes the self-consistency condition.
We note that the same argument is valid in case of a system
that is not translationally invariant. In this case, one has to
calculate a local action (Sloc)i for each site i. This allows one
to derive expression (C18) for each site separately, and one
finds the more general result

(�lat)ij (t,t ′) = δij�i(t,t
′). (C21)

For completeness, we express the self-consistency
condition by means of the impurity Dyson equation,∫

C

dt1 [(i∂t + μ)δC(t,t1) − �(t,t1) − �(t,t1)]G(t1,t
′)

= δC(t,t ′). (C22)

the lattice Dyson equation,∫
C

dt1
∑

k

[[δik(i∂t + μ) − tik(t)]δC(t,t1) − �(t,t1)]Gkj (t1,t
′)

= δij δC(t,t ′), (C23)

with G00 = G. For given hybridization � and G (with G

calculated from the SIAM, see next subsection), one can obtain
� from (C22), and use (C23) to obtain a new G, and thus a
new � from (C22). In practice, one Fourier transforms (C23) to
momentum space. Eqs. (C22) and (C23) are known, e.g., from
Refs. 10 and 19, where their numerical evaluation is discussed.

APPENDIX D: ANALYTICAL PROPERTIES
OF NONEQUILIBRIUM GREEN FUNCTIONS

In this section, we summarize the analytical properties of
the Matsubara and mixed components (4c) and (4d) of the

contour-ordered Green functions (3), following Ref. 14. For
simplicity of notation, we assume that the time evolution is
determined by a time-dependent Hamiltonian, i.e., the action
is S = −i

∫
C

dsH (s). Note that this includes the general case
in which the time-nonlocal part of the action is representable
by a SIAM. We will use the convention that operators with a
hat are in the Heisenberg picture,

ĉi(t) = U (0,t)ĉiU (t,0), ĉi ≡ ĉi(0) = ci . (D1)

where U (t,t ′) is the propagator associated with the system.
Since we consider thermal initial states, their analytical
properties are very similar to those of equilibrium Green
functions (see, e.g., Ref. 55).

We start by recalling the properties of the Matsubara Green
function (4e). It can be Fourier transformed using fermionic
Matsubara frequencies ωn = (2n+1)π

β
,

GM
ij (τ − τ ′) = 1

β

∑
n

e−iωn(τ−τ ′)gM
ij (iωn), (D2)

with gM
ij (iωn) =

∫ β

0
dτ eiωnτGM

ij (τ ). (D3)

The Fourier components gM
ij (iωn) can be analytically con-

tinued into the upper or lower complex frequency plane.

By the requirement gM
ij (z)

z→∞∝ 1
|z| , it is ensured that this

continuation is equal to the Laplace transform of the retarded
[for Im(z) > 0] or advanced [for Im(z) < 0] Green function.55

By expanding GM(τ ) using the eigenbasis |n〉 with En as the
corresponding eigenenergy of the initial Hamiltonian H (0)
one obtains the Lehmann representation for this function,

gM
ij (z) =

∑
m,n

e−βEn + e−βEm

Z

〈n|ĉ†i |m〉〈m|ĉj |n〉
z − (Em − En)

. (D4)

The function gM(z) has a branch cut at the real axis, which is
purely imaginary and related to the spectral function Aij (ω),

Aij (ω) ≡ i

2π

[
gM

ij (ω + i0) − gM
ij (ω − i0)

]
=
∑
mn

e−βEn + e−βEm

Z

×〈n|ĉ†i |m〉〈m|ĉj |n〉δ(ω − (Em − En)). (D5)

In turn, GM is uniquely determined by its spectrum,

gM
ij (z) =

∫ ∞

−∞
dω

Aij (ω)

z − ω
, (D6)

GM
ij (τ ) =

∫ ∞

−∞
dω Aij (ω) [f (ω) − �(τ )] e−ωτ , (D7)

where �(τ ) denotes the Heaviside step function.
The generalization for the mixed components is straight-

forward. We introduce a partial Fourier series,

G ¬(iωn,t) =
∫ β

0
dτ G ¬(τ,t)eiωnτ , (D8)

G¬(t,iωn) =
∫ β

0
dτ G¬(t,τ )e−iωnτ , (D9)

G ¬(τ,t) = 1

β

∑
n

G ¬(iωn,t)e
−iωnτ , (D10)

G¬ (t,τ ) = 1

β

∑
n

G¬ (t,iωn)eiωnτ . (D11)
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Both can be analytically continued in the lower and upper
complex plane. We restrict the discussion to G ¬

ij (z,t ′): using
the same scheme as for (D4), we obtain

G ¬
ij (z,t ′) = i

∑
m,n

e−βEn + e−βEm

Z

〈n|ĉ†i |m〉〈m|ĉj (t ′)|n〉
z − (Em − En)

.

(D12)

A time-dependent generalization to the spectral function is
given by the branch cut of this function along the real axis,

A ¬
ij (ω,t) ≡ 1

2π
[G ¬

ij (ω + i0,t ′) − G ¬
ij (ω − i0,t)]

= 1

Z

∑
mn

[exp(−βEn) + exp(−βEm)]

×〈n|ĉ†i |m〉〈m|ĉj (t)|n〉δ(ω − (Em − En)).

(D13)

To ensure A ¬
ij (ω,0) = Aij (ω), we have omitted the factor i in

this definition. The corresponding relations for G¬
ij (t,z) and

A¬
ij (t,ω) can be determined from G¬

ij (t,z) = (G ¬
ji (z∗,t))∗

and its consequence A¬
ij (t,ω) = (A ¬

ji(ω,t))∗. Although

A ¬
ij (ω,t) is not a real and positive function, it uniquely

determines the mixed components:

G¬ (t,τ ′) = i

∫ ∞

−∞
dω A¬ (t,ω)f (ω)exp(ωτ ′),

G ¬(τ,t ′) = i

∫ ∞

−∞
dω A ¬(ω,t ′)[f (ω) − 1]exp (−ωτ ) .

(D14)

For a time-independent Hamiltonian, the generalization of
the spectral function is trivial. The additional time dependence
just yields a phase factor

A ¬
ij (ω,t ′) = exp(iωt ′)Aij (ω). (D15)

For the investigation of the mapping problem, the analytical
properties of the Weiss field �σ (t,t ′) are of importance.
From the cavity representation (15), one can see that the
hybridization function has the same analytical properties as
any Green function.

APPENDIX E: POSITIVE DEFINITENESS
OF −i�<

+ AND i�>
+

According to Sec. IV C, the construction of the second bath
V +

0p(t) comes down to a matrix decomposition which requires
−i�<

+ and i�>
+ to be positive definite. We will show that the

assumption that � is representable by a SIAM ensures the
positive definiteness of −i�<

+ and i�>
+.

For simplicity, we suppress the spin index. We start
from (23) and define the density of states:

ρ(ε) = 1

L

∑
p

δ(ε − εp), with L =
∫ ∞

−∞
dε
∑

p

δ(ε − εp).

(E1)

To a given energy ε, we define the hybridization func-
tion vk(ε,t) ≡ √

L V0pk (ε)(t), where the sequence pk(ε) runs
through all p with εp = ε. This way (23) can be written as

�(t,t ′) =
∑

k

∫ ∞

−∞
dερ(ε)vk(ε,t)g(ε − μ,t,t ′)v∗

k (ε,t ′). (E2)

We interpret vk(ε,t) as the kth component of a vector �v(ε,t),
so that [�v(ε,t)]k = vk(ε,t). (E2) thus takes the form

�(t,t ′) =
∫ ∞

−∞
dερ(ε)�v†(ε,t ′)�v(ε,t)g(ε − μ,t,t ′). (E3)

Following the steps (42)–(48) of Sec. IV A, we find

C¬ (t,ε) = exp (−iεt) ρ(ε)�v†(ε + μ,0)�v(ε + μ,t) (E4)

and conclude that �−(t,t ′) is of the form

�−(t,t ′) = i

∫ ∞

−∞
dερ(ε) �v†(ε,t ′)P−�v(ε,t)g(ε − μ,t,t ′),

P− = �v(ε,0) �v†(ε,0)

|�v(ε,0)|2 . (E5)

The operator P− projects onto the subspace spanned by �v(ε,0).
We define a corresponding operator P+ that projects onto the
orthogonal complement space:

P+ = 1 − P−. (E6)

This way we find

�+(t,t ′) = i

∫ ∞

−∞
dερ(ε) �v†(ε,t ′)P+�v(ε,t)g(ε − μ,t,t ′). (E7)

It is now easy to verify that −i�<
+ and i�>

+ are indeed positive
definite.
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