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The nonequilibrium Dyson (or Kadanoff-Baym) equation, which is an equation of motion with a long-range
memory kernel for real-time Green functions, underlies many numerical approaches based on the Keldysh
formalism. In this paper we map the problem of solving the Dyson equation in real time onto a noninteracting
auxiliary Hamiltonian with additional bath degrees of freedom. The solution of the auxiliary model does not
require the evaluation of a memory kernel and can thus be implemented in a very memory efficient way. The
mapping is derived for a self-energy which is local in space and is thus directly applicable within nonequilibrium
dynamical mean-field theory (DMFT). We apply the method to study the interaction quench in the Hubbard model
for an optical lattice with a narrow confinement, using inhomogeneous DMFT in combination with second-order
weak-coupling perturbation theory. We find that, although the quench excites pronounced density oscillations,
signatures of the two-stage relaxation similar to the homogeneous system can be observed by looking at the
time-dependent occupations of natural orbitals.
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I. INTRODUCTION

The field of strongly correlated materials out of equilibrium
is a rapidly growing research area. On the one hand, this is
due to ultrafast pump-probe experiments which allow one to
coherently control and manipulate solids in a time-resolved
fashion by external laser fields. Examples in this direction
include quantum interference effects in photoexcited Mott
insulators [1], light-induced superconductivity in cuprates [2],
and experiments on ultrafast magnetism [3]. On the other
hand, ultracold atomic gases confined in optical lattices [4]
allow one to study fundamental condensed-matter models for
strongly correlated quantum systems in great detail, e.g., [5],
and independently of any lattice imperfections. In theory, the
investigation of correlated systems out of equilibrium has re-
vealed novel relaxation phenomena such as doublon decay [6],
prethermalization [7–10], and dynamical transitions [10–13].

The microscopic description of correlated systems out of
equilibrium requires appropriate quantum statistical methods.
A promising approach is provided by nonequilibrium dynam-
ical mean-field theory (DMFT) [14,15], which works well for
higher-dimensional systems and becomes exact in the limit
of infinite dimensions. Other approaches include, e.g., cluster
perturbation theory [17], linked cluster expansions [16], the
nonequilibrium dual fermion approach [18], and nonequilib-
rium self-energy functional theory [19]. All these methods are
based on the Keldysh formalism [20] and involve a Dyson
equation which describes the time evolution of a quantum
many-body system in terms of the one-particle nonequilibrium
Green function and a corresponding self-energy [21]. In
general, the self-energy introduces time retardation effects,
which render the numerical solution of the Dyson equation in
nonequilibrium a complicated task in itself. Therefore, when
translational invariance is lost, the solution is restricted to
either short times or to a small number of orbitals (or bands).
Only with a massively parallelized time evolution comprising
distributed memory [22] or with further approximations such
as the generalized Kadanoff-Baym ansatz [23] have these
limitations been overcome so far.

The idea of the present paper is to develop an alternative
method to solve the Dyson equation, which can be efficient
and computationally less demanding when the self-energy
is sufficiently local in space. The approach builds on recent
work [24] where it was shown that the action of nonequilibrium
DMFT can be mapped onto a single-impurity Anderson
model by fitting the hybridization function of the DMFT
bath. The present paper discusses how a similar decompo-
sition of the self-energy defines a noninteracting auxiliary
Hamiltonian which, on the one hand, couples to additional
bath orbitals but, on the other hand, leads to the same
one-particle nonequilibrium Green function as the interacting
many-body problem we start from. The key to an efficient
time propagation algorithm lies in the fact that the auxiliary
system involves no interactions, such that the corresponding
Green function is subject to simple Markovian dynamics
and can be determined by exact diagonalization techniques.
Furthermore, the decomposition of the self-energy is causal
(i.e., the time-dependent parameters of the auxiliary problem
depend only on the self-energy at earlier times), such that
the mapping can easily be incorporated into approaches like
nonequilibrium DMFT, where the self-energy is given as a
functional of the Green function itself.

The paper is organized as follows. In Secs. II A and II B,
we describe the theoretical framework, elucidate the Dyson
equation for the study of nonequilibrium situations, define
the auxiliary Hamiltonian, and formulate the conditions for
a valid mapping. Section II C illustrates the mapping within
the Hubbard-I approximation, and Sec. II D explains in detail
the decomposition of the self-energy and the determination
of the parameters in the auxiliary system. Section II E then
gives details on the computation of the Green function of the
auxiliary model (see also Appendixes A and B). Thereafter,
in Sec. III, we test the matrix decomposition of the self-
energy for small Hubbard clusters (Sec. III A), illustrate the
time propagation of the auxiliary system (Sec. III A) and
investigate the scalability of the method to long times. Finally,
Sec. IV contains our main application. Here, we study the
relaxation dynamics of the Fermi-Hubbard model following
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an interaction quench, with a particular focus on the effects of
an optical trap. A summary is presented in Sec. V.

II. THEORY

A. Nonequilibrium Dyson equation

Our main objective is to describe the time evolution of an
interacting quantum many-body system which is initially (at
time t = 0) in thermodynamic equilibrium at temperature T =
β−1 and evolves unitarily under a time-dependent Hamiltonian
H (t) for times t > 0. As prototype we consider the single-band
Hubbard model

H (t) =
∑
ijσ

Jij (t)c†iσ cjσ +
∑
iσ

[Vi(t) − μ]niσ

+U (t)
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c
†
iσ (ciσ ) are creation (annihilation) operators for an

electron with spin σ on site i of the lattice, Jij denotes the
hopping amplitude between sites i and j , Vi is an external
potential, μ the chemical potential, niσ = c

†
iσ ciσ is the density,

and U is the local Coulomb interaction.
Using nonequilibrium Green-function techniques, the time

evolution of the Hubbard model (1) is determined by the Dyson
equation

G(t,t ′) = G0(t,t ′) +
∫
C
ds

∫
C
ds̄ G0(t,s)�(s,s̄)G(s̄,t ′), (2)

where the matrix elements of G are the one-particle nonequi-
librium Green functions of system (1) defined on the L-shaped
Keldysh time contour C,

Gijσ (t,t ′) = −i〈TCciσ (t)c†jσ (t ′)〉

= −i
tr[TC{exp(S)ciσ (t)c†jσ (t ′)}]

tr[TC{exp(S)}] , (3)

with action S = −i
∫
C dt H (t) and contour-ordering operator

TC (see, e.g., [15,21,25,26] for an introduction into the Keldysh
technique; our notation for contour functions, integrals, and
differentials follows [15]). Similarly, G0 denotes the nonin-
teracting Green functions G0,ijσ (t,t ′) = −i〈TCciσ (t)c†jσ (t ′)〉0,
evaluated from Eq. (3) with U = 0, and � denotes the
self-energy with elements �ijσ (t,t ′).

The self-energy is typically determined by the Green
function in a self-consistent way. Within DMFT, for example,
�(t,t ′) is obtained from the solution of a single-impurity
Anderson model with a bath that is determined by the
lattice Green function. In perturbation theory, the self-energy
� is given by a series of Feynman diagrams and appears
as a functional of G and the interaction U . Important
conservation laws such as density, energy, and momentum
conservation are in particular obeyed for any truncation of
the derivative �ijσ (t,t ′) = δ�/δGjiσ (t ′,t), where �[G,U ]
denotes the Luttinger-Ward functional [27]. Simple examples
are the Hartree-Fock or second Born approximation which are
of first and second order in the interaction, respectively.

For a given self-energy, the numerical solution of Eq. (2) can
be performed in different ways. One possibility is to discretize

all quantities on the time contour C and to apply standard
matrix inversion techniques to determine G [28]. More fre-
quently Eq. (2) is transformed into a set of integrodifferential
equations (the Kadanoff-Baym equations [21]) which are then
solved within a time propagation scheme; see [22,29–33]. The
transformation of Eq. (2) to differential form is achieved by
using the equation of motion for G0,∑

r

[δir (i∂t + μ) − hir (t)]G0,rjσ (t,t ′) = δij δC(t,t ′), (4)

where hij defines the single-particle part of the Hamiltonian,
i.e., the quadratic part of Eq. (1) is given by H0(t) =∑

ijσ (hij (t) − μ)c†iσ cjσ . In combination with (2), Eq. (4) gives

∑
r

{
[δir (i∂t + μ) − hir (t)]Grjσ (t,t ′)

−
∫
C
ds �irσ (t,s)Grjσ (s,t ′)

}
= δij δC(t,t ′). (5)

This equation clearly reveals the non-Markovian structure
inherent to the Dyson equation: The differential ∂tG(t,t ′)
depends on the value of G at different times, and � takes the
role of a memory kernel. For a self-consistent determination
of � and G, the time propagation of G with Eq. (5) and the
determination of � from G can be iterated until convergence
successively on each time step. A severe restriction for the
numerical solution of this equation is the memory needed to
store the functions Gijσ (t,t ′) for all times on the contour.

B. Auxiliary Hamiltonian

The central idea of the present paper is to avoid a memory
kernel in the time propagation scheme for the nonequilibrium
Green functions. To this end, we will map the interacting
system (1) onto a larger auxiliary system [denoted Haux(t)]
which is noninteracting and the Green function of which con-
sequently obeys simple Markovian dynamics. The auxiliary
system must be constructed such that its single-particle Green
functions exactly equal the solutions of the Dyson equation (2)
with a given self-energy. For the derivation below we assume
that the self-energy � is local in space,

�ijσ (t,t ′) = δij�iσ (t,t ′), (6)

which is true for DMFT and thus of wide range of applicability.
The generalization of the formalism to nonlocal self-energies
is briefly discussed in the conclusion.

In order to construct the auxiliary Hamiltonian Haux(t) we
connect each individual site i ≡ i0 of the crystal lattice to a
set of additional sites Bi = {i1,i2,i3, . . .}; see Fig. 1. We will
refer to Bi as the bath (but note that it is different from the bath
of the effective single-site problem in DMFT). The additional
dynamics between the bath and lattice sites are supposed to
mimic the retardation effects of the self-energy �. We will see
that this is achieved with an auxiliary Hamiltonian that has a
quadratic form,

Haux(t) = H0(t) +
∑
iσ

∑
l>0

(εilσ (t) − μ)a†
ilσ

ailσ

+
∑
iσ

∑
l>0

(
J σ

i0il
(t)a†

ilσ
ci0σ + H.c.

)
, (7)
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FIG. 1. (Color online) Under the assumption of a spatially local
self-energy �i [compare with Eq. (6)], the lattice problem (1) can be
mapped onto a noninteracting auxiliary system (right panel) where
each lattice site i is coupled to a set of bath orbitals i1, i2, i3, etc. While
the large dots in the left-hand panel indicate an on-site interaction U ,
the small dots in the right-hand panel refer to sites without a local
Coulomb interaction; J and V denote the hopping and the external
potential which remain the same in the auxiliary system; cf. Eq. (7).

where

H0(t) =
∑
ijσ

Jij (t)c†iσ cjσ +
∑
iσ

[Vi(t) − μ]niσ

≡
∑
ijσ

(hij (t) − μ)c†iσ cjσ (8)

is the noninteracting part of Eq. (1), the operator a
†
ilσ

(ailσ )
creates (annihilates) an electron of spin σ on the bath site il
for l > 0, εilσ (t) are on-site energies of the bath orbitals, and
J σ

i0il
(t) are the additional hopping matrix elements between site

i and bath orbitals il which may depend on the spin.
The time-dependent parameters J σ

i0il
(t) and εilσ (t) must

now be chosen such that the Green functions Gaux
i0j0σ

(t,t ′) of
the noninteracting model defined by Haux(t) exactly equal the
solution of the Dyson equation (2), i.e.,

Gijσ (t,t ′) = Gaux
i0j0σ

(t,t ′). (9)

For this purpose, we consider the equations of motion for the
Green functions Gaux

i0j0σ
(t,t ′),

[i∂t + μ]Gaux
i0j0σ

(t,t ′) −
∑
r0

hi0r0 (t)Gaux
r0j0σ

(t,t ′)

= δi0j0δC(t,t ′) +
∑
l>0

J σ
i0il

(t)Gaux
il j0σ

(t,t ′), (10)

where hr0j0 (t) ≡ hrj (t) is defined by Eq. (8). Similarly, we can
derive an equation of motion for the mixed bath-lattice term
which enters the right-hand side of this equation (l > 0),

[i∂t + μ − εilσ (t)]Gaux
il j0σ

(t,t ′) = J σ
il i0

(t)Gaux
i0j0σ

(t,t ′). (11)

This equation can be solved by using the Green function
g(εilσ ; t,t ′) for an isolated bath orbital with on-site energy εilσ ,
which satisfies

[i∂t + μ − εilσ (t)]g
(
εilσ ; t,t ′

) = δC(t,t ′), (12)

and has the explicit form

g(ε; t,t ′) = i[fβ(ε(0) − μ) − θC(t,t ′)]ei
∫ t ′
t

ds[ε(s)−μ]. (13)

Here, fβ(ε) = 1/(eβε + 1) denotes the Fermi-Dirac distribu-
tion, and θC is the Heaviside step function on the contour. By
convoluting Eq. (11) from the left with g(εilσ ; t,t ′) one obtains

Gaux
il j0σ

(t,t ′) =
∫
C
ds g

(
εilσ ; t,s

)
J σ

il i0
(s)Gaux

i0j0σ
(s,t ′). (14)

This result can be inserted into Eq. (10), which shows that
Gaux

i0j0σ
(t,t ′) satisfies the equation of motion

∑
r0

[δi0r0 (i∂t + μ) − hi0r0 (t)]Gaux
r0j0σ

(t,t ′)

−
∫
C
ds 
aux

i0σ
(t,s)Gaux

i0j0σ
(s,t ′) = δi0j0δC(t,t ′), (15)

with


aux
i0σ

(t,t ′) =
∑
l>0

J σ
i0il

(t)g(εilσ ; t,t ′)J σ
il i0

(t ′). (16)

By comparing Eq. (15) with the differential form (5) of the
Dyson equation (2), we see that the relation (9) is satisfied,
provided we can find parameters J σ

i0il
(t) and εilσ (t) such that


aux
i0σ

(t,t ′) = �iσ (t,t ′) (17)

for all times t and t ′ located on the time contour C. We note
that condition (17) must hold only for contributions of the
self-energy which are beyond the mean-field level while any
Hartree contribution can be absorbed in an effective potential,

Viσ (t) = Vi(t) + U (t)
(〈niσ̄ 〉 − 1

2

)
. (18)

With Eqs. (16) and (17), the problem of determining the
parameters of each independent bath Bi becomes identical
to that of representing a nonequilibrium DMFT action by a
single-impurity Anderson model; see [24]. The only difference
is that instead of the hybridization function of the DMFT bath
we here fit the self-energy. In [24], the existence of solutions
and an explicit construction of a solution has been discussed.

A short way of summarizing the derivation along the lines
of Eqs. (11)–(15) is to say that the effective action obtained
from the auxiliary model (by integrating out the bath sites) is
given by

Saux = S0 − i
∑
i0σ

∫
C
dt

∫
C
dt ′ 
aux

i0σ
(t,t ′)c†i0σ

(t)ci0σ (t ′), (19)

where S0 = −i
∫
C dt H0(t) [24]. The single-particle Green

functions of this quadratic action satisfy the Dyson equa-
tion (2), provided that Eq. (17) is satisfied.

C. Application to time-dependent Hubbard I

In this section we illustrate the approach within the Hubbard
I approximation, for which the representation (17) of the self-
energy can be derived analytically. Within the (nonvariational)
Hubbard-I approximation, the self-energy of the lattice is
approximated by the self-energy of an isolated Hubbard
site with Hamiltonian Hat(t) = U (t)n↑n↓ + ∑

σ εσ nσ . The
approximation is the simplest variant of the nonequilibrium
cluster perturbation theory [17], in which the self-energy is
computed from a small cluster of the lattice.

For simplicity we consider the case in which the model
is driven out of equilibrium only by external fields, while
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the Hubbard interaction is time independent. The Hubbard-I
self-energy can then be computed from an isolated site in
equilibrium. The corresponding Matsubara Green function
Gat

σ (iωn) for the Hamiltonian Hat is given by

Gat
σ (iωn) = 1 − 〈nσ̄ 〉at

iωn − εσ

+ 〈nσ̄ 〉at

iωn − U − εσ

, (20)

and the self-energy is obtained from inverting Gat
σ (iωn) =

[iωn − εσ − �at
σ (iωn)]−1. We find

�at
σ (iωn) = U 〈nσ̄ 〉at + a2

σ

iωn − Eσ

, (21)

with

a2
σ = U 2〈nσ̄ 〉at〈1 − nσ̄ 〉at, Eσ = U 〈1 − nσ̄ 〉at + εσ . (22)

The analytical continuation of �at
σ (iωn) to the Keldysh contour

gives

�at
σ (t,t ′) = U 〈nσ̄ 〉atδC(t,t ′) + a2

σ g(Eσ ; t,t ′), (23)

where g(Eσ ; t,t ′) is given by Eq. (13).
The time-nonlocal part of the self-energy (23) is precisely of

the form (16). As a result, solving the Dyson equation with the
self-energy �at

σ (t,t ′) at each lattice site is equivalent to solving
the noninteracting lattice problem with only one additional
bath orbital per lattice site i which is characterized by an on-site
energy εσ

i1
= Eσ and a time-independent hopping J σ

i0i1
= aσ .

The numerical solution of this single-particle problem involves
no memory integrals, and it can thus be carried out to arbitrarily
large times without any restriction on the memory. A similar
exact representation of the self-energy with finitely many
bath orbitals is possible in general when the (time-dependent)
Lehmann representation of � has finitely many terms. This
might be useful for certain applications of nonequilibrium
cluster perturbation theory with small clusters.

D. Decomposition of the self-energy

In general, the representation of the self-energy defined
by Eqs. (16) and (17) is not known analytically. To solve
Eqs. (16) and (17) for the bath parameters, we separately
consider the various analytical components of the self-energy.
In general, each contour function can be parametrized in terms
of five components according to different locations of the time
arguments on C. For the one-particle Green function, we have
exemplarily

G<
ijσ (t,t ′) = i〈c†jσ (t ′)ciσ (t)〉, (24a)

G>
ijσ (t ′,t) = −i〈ciσ (t ′)c†jσ (t)〉, (24b)

G¬
ijσ (t,τ ) = −i〈c†jσ (τ )ciσ (t)〉, (24c)

G−
ijσ (τ,t) = −i〈ciσ (τ )c†jσ (t)〉, (24d)

GM
ijσ (τ ) = −〈ciσ (τ )c†jσ (0)〉, (24e)

where the argument t (t ′) is here situated on the upper (lower)
real branch of the contour and τ refers to a time on the
imaginary track. In addition, we have the Hermitian symmetry

relations

X
≷
ijσ (t,t ′) = −[X≷

jiσ (t ′,t)]∗,
(25)

X¬
ijσ (t,τ ) = X−

jiσ (β − τ,t)∗

for the components of the Green function (X = G) and the
self-energy (X = �).

While the construction of bath parameters for arbitrary
initial states is discussed in detail in [24], we start in Secs. III
and IV from an uncorrelated initial state, i.e., U (t) = 0
for times t � 0. In this case, the Matsubara and mixed
components of the self-energy vanish, �M = �− = �¬ = 0,
and the remaining components of the self-energy are the
lesser and greater functions �< and �> which have real
time arguments. Following [24], we can fit them separately
by taking the energies of the bath sites entering Eq. (13) to be
time independent, i.e., εilσ (t) = μ for t > 0, and by choosing
the initial energies εilσ (0) such that f (εilσ (0) − μ) is either
0 or 1. This leads to a representation of the self-energy with
two sets of bath orbitals, B<

i and B>
i , where all sites in B<

i

(B>
i ) are initially occupied (empty) and Bi = B<

i ∪ B>
i . More

precisely, we have

− i�<
iσ (t,t ′) =

∑
l∈B<

i

J σ
i0il

(t)
[
J σ

il i0
(t ′)

]∗
, (26)

and

i�>
iσ (t,t ′) =

∑
l∈B>

i

J σ
i0il

(t)
[
J σ

il i0
(t ′)

]∗
. (27)

In the case of particle-hole symmetry, i.e., for μ = 0 in Eq. (1),
one of the two equations is redundant because the greater
and lesser functions are then related through �<

iσ (t,t ′) =
�>

iσ (t,t ′)∗. If we discretize the times t and t ′ according to
t = tn = n
t and t ′ = tn′ = n′
t with n,n′ ∈ {0,1,2, . . . ,N},
Eqs. (26) and (27) have the form of standard matrix decompo-
sitions. Thus we can obtain an exact representation of �iσ on
the given time mesh using in total Li = 2(N + 1) bath orbitals.

More interesting is the possibility to find an approximate
but still accurate representation using fewer bath orbitals
by applying a suitable low-rank approximation to Eqs. (26)
and (27),

(−i�<
iσ )nn′ ≈

L<
i∑

l=1

J σ
i0il

(tn)
[
J σ

i0il
(tn′)

]∗
, (28)

where L<
i is a fixed finite number of bath sites which is smaller

than the number of time steps N [similarly for (i�>
iσ )]. In the

following, we will apply the low-rank Cholesky decomposition
to (26) and (27) in order to obtain the hopping parameters
J σ

i0il
(t) on the discretized time mesh t = tn, which has the

advantage of being causal, i.e., the parameters at time t =
m
t only depend on the values (±i�

≷
iσ )nn′ with n,n′ � m. For

technical details concerning the low-rank approximation (28)
we refer the reader to [24].

If L
≷
i � N , Eq. (28) enables a very compact representation

of the self-energy where instead of (N + 1)2 elements per
component �iσ only a small number of Li(N + 1) elements,
namely Li = L>

i + L<
i hopping matrix elements for N + 1

times, are required to define the time dependence of the
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self-energy. In practice, the numbers L>
i and L<

i act as
convergence parameters, and their minimum value depends
on the maximum evolution time, cf. Sec. III.

E. Propagation schemes

Since the auxiliary model (7) is a noninteracting problem,
Green functions can be determined by closed equations of
motion, cf. (10). In short, we may write

{
i∂t + μ − hσ

aux(t)
}
Gaux

σ (t,t ′) = δC(t,t ′), (29a){− i∂t ′ + μ − hσ
aux(t ′)

}
Gaux

σ (t,t ′) = δC(t,t ′), (29b)

where hσ
aux(t) is the single-particle Hamiltonian of the auxiliary

problem, and all quantities are viewed as matrices with space
and bath orbital indices. If we label the sites of the crystal
lattice with i = 0, 1, 2, 3, etc. and let L = L<

i + L>
i denote

the number of bath orbitals attached to each lattice site (for
notational simplicity we assume all local self-energies to be
represented with the same number of bath orbitals), we can
cast the single-particle Hamiltonian hσ

aux(t) into the following
block matrix form (time arguments are omitted),

hσ
aux(t) =

⎛
⎜⎜⎜⎜⎜⎝

a00σ b01 b02 . . .

b10 a11σ b12 . . .

b20 b21 a22σ

. . .
...

...
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

(t), (30)

where all a and b blocks are of dimension (L + 1) × (L + 1).
While the a blocks in Eq. (30) include the hopping to the
bath and the effective potential Viσ (t), the b blocks involve the
hopping terms which connect different lattice sites, i.e., (note
that by definition i0 = i and j0 = j ),

aiiσ (t) =

⎛
⎜⎜⎜⎜⎝

Vi0σ (t) J σ
i0i1

(t) . . . J σ
i0iL

(t)
J σ

i1i0
(t) 0 . . . 0

...
...

. . .
...

J σ
iLi0

(t) 0 . . . 0

⎞
⎟⎟⎟⎟⎠ , (31)

bij (t) =

⎛
⎜⎜⎜⎝

Ji0j0 (t) 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞
⎟⎟⎟⎠ . (32)

Note that in the case of nearest-neighbor hopping most of the
entries in the off-diagonal blocks b vanish, and the Hamiltonian
hσ

aux becomes extremely sparse.
If the initial state at time t = 0 is described by the

one-particle density matrix ρaux
il ikσ

(0) = 〈c†ikσ (0)cilσ (0)〉aux, the
solution of Eqs. (29a) and (29b) for the lesser and greater
components of the auxiliary Green function gives

[
Gaux

σ

]≷
(t,t ′) = ∓iUσ (t,0)R≷

σ U †
σ (t ′,0), (33)

where R>
σ = 1 − ρaux

σ (0), R<
σ = ρaux

σ (0), and

Uσ (t ′,t) = Tt exp

(
−i

∫ t ′

t

ds hσ
aux(s)

)
(34)

is the single-particle propagator. In Appendix A, the time
propagation is explained in detail.

In general, the self-energy is a functional of the Green
function (e.g., through the DMFT self-consistency and the
solution of the impurity problem, or through a self-consistent
diagrammatic expansion). In Eqs. (29a) and (29b), the self-
consistency condition is rather hidden in the dependence of
the one-particle Hamiltonian hσ

aux = hσ
aux[Gaux,�] on the aux-

iliary Green function Gaux [through the Hartree contribution,
Eq. (18)], and the time nonlocal part of the self-energy �. In
principle, there are two possibilities to obtain self-consistent
solutions. On the one hand, we can determine the auxiliary
Green function for a fixed self-energy for all times and then
iterate Eqs. (29a) and (29b) by updating the self-energy [and
in turn haux

σ (t)] on the whole time mesh. This is easy to
implement, but can require a large number of iterations. On
the other hand, we can directly exploit the causality of the
Cholesky decomposition of the self-energy [recall discussion
below Eq. (28)] and set up a time propagation scheme
where the self-consistency is established on each time slice n

separately [24]. In combination with an appropriate (typically
higher-than-linear order) extrapolation of the hopping matrix
elements J σ

i0il
(t) for times t � tn onto the subsequent time slice

n + 1, this guarantees a small number of local iterations which
is very advantageous. In Appendix B, we describe how one
further can apply the Krylov method [39] to evaluate the action
of the unitary time evolution operator Uσ (t ′,t) in Eq. (33)
and how the time stepping algorithm is straightforwardly
parallelized.

Finally, we mention that the auxiliary bath approach is
beneficial also in terms of memory consumption. Usually,
the numerical solution of the Kadanoff-Baym equations is
limited by the available computer memory because the total
Green function Gijσ (t,t ′) is stored in order to evaluate the
memory kernel on each time slice [32]. Long simulations
with many orbital degrees of freedom require for this reason
massive parallelization and a suitable distribution of memory
over several compute nodes, e.g., [22,34]. In the auxiliary
bath formalism, on the contrary, it is sufficient to store
the parameters of the local Hamiltonian (30). The number
of nonzero parameters is thus determined by the memory
needed to store the self-energy �iσ (t,t ′) which requires by
definition considerably less memory than the Green function
if � is sufficiently local in space, and if it can be represented
accurately within a suitable low-rank approximation, cf.
Eq. (28).

III. SCALING BEHAVIOR

In the following, we test the low-rank decomposition of
the self-energy [Eq. (28)] and illustrate the time propagation
of the auxiliary system for two simple cases. We will first
analyze how well a given self-energy �(t,t ′) on a time window
t,t ′ � tmax can be represented with a fixed number L of bath
orbitals. Subsequently, we will assess how the solution of the
resulting auxiliary problem converges against the full solution
of the Dyson equation with increasing L.

To analyze these questions we will use a test self-energy
that is generated by solving the Hubbard model (1) on a small
cluster within self-consistent second-order perturbation theory,
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FIG. 2. (Color online) (a) Self-consistent Green function G<
iσ and

local self-energy �<
iσ of the 2 × 2 cluster as obtained in second

Born approximation from the Dyson equation (2). The parameters
are β = 10, μ = 0, J = J0, tq = 2.5, and Uf = 1.0. (b) Error of
the approximate self-energy evaluated with Eq. (28) for various
lengths tmax of the time evolution and different sizes L of the bath.
(c) Dependence of the accessible maximum time tmax on L for a given
maximum permitted error errN (�) in the self-energy.

i.e., within the second Born approximation. To be precise, the
time nonlocal part of the self-energy is taken to be

�
≷
iσ (t,t ′) = U (t)U (t ′)[G≷

iσ (t,t ′)]2G
≶
iσ (t ′,t), (35)

where G are the self-consistent solutions of the Dyson
equation (2). We solve Eqs. (35) and (2) either for a single
isolated lattice site or for a cluster of 2 × 2 lattice sites with
time-independent nearest-neighbor hopping J0. To drive the
system out of equilibrium, we modify the interaction as a
function of time,

U (t) = Uf ×
{ 1

2 [1 − cos(πt/tq)], t � tq,

1, t > tq,
(36)

with ramp time tq = 2.5, starting from an uncorrelated state
at temperature β = 10 and half filling (μ = 0). In Figs. 2(a)
and 3(a), we show self-consistent reference data for the Green
functions and the self-energies for the single-site and four-site
cluster, respectively. Below, all energies (times) are measured
in units of the (inverse) hopping J0 (J−1

0 ).
Note that we use second-order perturbation theory as an

easy way to generate a self-energy with the correct analytical
properties and a functional form that is similar to self-
energies obtained within DMFT for large systems: �<(t,t ′)
and �>(t,t ′) fall off as a function of t − t ′, but have both
nontrivial structure as a function of average time (t + t ′)/2
(due to the interaction ramp) and as a function of t − t ′; see
Figs. 2(a) and 3(a). The true self-energy of a single-site cluster
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FIG. 3. (Color online) (a) Time evolution of the lesser Green
function and the lesser self-energy as obtained from Eq. (2) in second
Born approximation for Uf = 1.0, tq = 2.5, β = 10, and μ = 0.
(b) Low-rank Cholesky decomposition of the test self-energy in the
interval [0,tmax] = [0,10] for different parameters Uf . Displayed is
the error errN (�) as defined in Eq. (37) with N = 400 time steps as
function of the number of bath orbitals L used in Eq. (28). (c) Scaling
of the number of bath sites L with Uf for fixed errors errN (�).

is of course different and not well described by second-order
perturbation theory.

A. Representation of the self-energy

To analyze the representation of the self-energy, we com-
pare the given input self-energy to the low-rank approximation
�approx which is obtained from the matrix decomposition (28).
For the time discretization introduced in Sec. II D (i.e., tn =
n
t and tn′ = n′
t with n,n′ ∈ {0,1,2, . . . ,N}), we define the
corresponding error as

errN (�) =
∑
n,n′

∑
α∈{>,<}

∣∣�α(tn,tn′) − �α
approx(tn,tn′)

∣∣
2(N + 1)2

. (37)

Figure 2(a) displays the input Green function and self-
energy for Uf = 1.0 for the self-energy of the four-site cluster.
In Fig. 2(b), we plot the error errN (�) of the self-energy
decomposition (28) as a function of the number of bath orbitals
L for different lengths tmax of the time propagation. The size
of the time step is thereby fixed to 
t = 0.025, such that
N = 80 for tmax = 2 and N = 560 for tmax = 14. Independent
of the value of tmax, we find an exponentially small error
for a sufficiently large number of bath sites [the plateaus for
errN (�) < 10−6 can be attributed to a small number λ > 0
(typically λ = 10−8) which we add to the diagonal matrix
elements �(t,t) of the self-energy in order to guarantee that the
matrices (−i�<) and (i�>) are positive definite]. On the other
hand, we observe that an accordingly larger bath is required
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in order to reach longer simulation times with the same global
error errN (�).

The maximum time which is accessible under a fixed error
errN (�) depends linearly on the number of bath orbitals, see
Fig. 2(c). Quantitatively, we find that it is sufficient to choose
L considerably smaller than the total number of time steps
N . For example, with 40 bath sites at tmax = 10, an error less
than 10−3 is achieved. On the other hand, L = 40 bath sites
correspond to an effective time step size of 
t = 10/40 =
0.25 which would be too large to obtain numerically converged
results in a solution of the integral equation (2). Hence the low-
rank decomposition has allowed us to effectively compress the
information stored in the self-energy �(t,t ′).

The quality of the representation depends on the functional
form of the self-energy. We can study this dependence
systematically for the test self-energy obtained for the isolated
site, which has a particularly simple shape: It is characterized
by a monotonous decay as a function of the difference time
t − t ′ [see Fig. 3(a)], where the decay time decreases with
increasing Uf . Figure 3(b) shows the error errN (�) for different
values of Uf as a function of the total number of bath sites L

used in the low-rank Cholesky decomposition. As observed for
the four-site self-energy, the error decreases exponentially with
increasing number of bath sites, and L can be chosen smaller
than the number of time steps. However, the representation of
the self-energy for larger Uf requires a larger bath to reach the
same level of accuracy. Figure 3(c) indicates a linear scaling
between the size of the bath and the strength of the Coulomb
interaction for a given maximum error. Taking into account
the functional form of �, this indicates that the representation
of a self-energy which is localized close to the time diagonal
needs more bath orbitals, which can be understood at least
qualitatively: If the self-energy decays to zero for |t − t ′| larger
than some “memory time” tc, this can be incorporated into the
representation (28) if each bath site is coupled at most for a
time period 2tc. Thereafter, new bath sites must be coupled to
the system.

B. Solution of the Dyson equation with a low-rank
approximation

As the next step, we demonstrate that the auxiliary bath
formalism is able to reproduce the same Green function
Gijσ (t,t ′) as the direct solution of Eq. (2). To this end, we
propagate the auxiliary system (7) in time and, following the
scheme described in Sec. II E, extract the self-consistent Green
function for different but fixed sizes of the bath. Figure 4 shows
the results for L = 4, 8, 16, and 32 bath orbitals and Uf = 2.0
for the single-site cluster (again we use N = 400 time steps).
If the size of the bath is too small, we observe that the time
evolution of the Green function develops artifacts in form of
additional oscillations as function of t and t ′. For larger values
of L, these artifacts shift to later times and finally disappear,
such that the exact solution is well recovered to longer and
longer times. The Green function for L = 32 is (by eye) barely
distinguishable from the exact one. This is consistent with an
error of errN (�) < 10−2 which we find for the self-energy in
Fig. 3(b); see the black arrow.

The convergence of the low-rank approximation with the
number of bath sites can be seen even more directly from
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FIG. 4. Fully self-consistent results for the imaginary part of the
Green function G<

0σ (t,t ′) for the single-site cluster as obtained in
second Born approximation from the time propagation of the auxiliary
system for different numbers of bath orbitals L. The interaction
strength for times t � tq is Uf = 2.0. All other parameters are as
in Fig. 3, in particular tmax = 10 and N = 400.

the time evolution of single-time observables. In Fig. 5, we
exemplarily show results for the local double occupation in
the four-site cluster for different L. The double occupation,
which is proportional to the interaction energy, is obtained
from the convolution

〈d〉(t) =
∑

i

〈di〉(t)

= − i

U (t)

∑
i

{∫
C
ds �iσ (t,s)Gaux

i0i0σ
(s,t ′)

}
t ′=t+

. (38)

The maximum time up to which the solution is converged
increases with the number of bath orbitals. As observed for
the representation of the self-energy, the number L of bath
sites required to reach a given accuracy is smaller than the
number of time slices needed in the conventional solution of
the Dyson equation.
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FIG. 5. (Color online) Time evolution of the local double occu-
pation 〈di〉(t) in the four-site cluster for Uf = 1.0 in the second-order
Born approximation (black open dots and black solid line). The
colored curves show the results for different sizes of the bath.
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IV. 2D OPTICAL LATTICE IN A HARMONIC TRAP

In this section, we apply the auxiliary Hamiltonian approach
to investigate the interaction quench in the Hubbard model. We
particularly focus on the effect of the confinement potential,
which is present for experiments with ultracold atoms. Interac-
tion quenches in Bose- and Fermi-Hubbard models have been
extensively studied in homogeneous systems [8,10,11,35,36].
After a quench from U = 0 to the weakly interacting regime,
the system rapidly evolves to a state in which kinetic
energy and potential energy are almost thermalized, while the
momentum distribution function n(k) is still far from its final
value. In this prethermalized state [9] rapid thermalization is
inhibited by an infinite number of almost conserved quantities
which exist due to the vicinity of the noninteracting state [37].
Thermalization at longer times and weak coupling is then
captured by kinetic equations [7,8].

Typically, the nonthermal nature of the intermediate state
is most clearly evidenced by a discontinuity of n(k) across
the Fermi surface, which would be absent at any temperature
T > 0 [8,10,11]. In the presence of a confinement potential,
however, sharp features like the discontinuity in the momen-
tum occupation are expected to be blurred, and, moreover, the
interaction quench in a trap might excite collective density
oscillations of the atom cloud (e.g., a breathing mode), which
are superimposed to the relaxation dynamics. The possible
observation of prethermalization in experiment thus requires a
good understanding of effects caused by the trapping potential.
Below, we will investigate signatures of a two-stage relaxation
for a system with a rather narrow confinement, where density
oscillations after the quench become very pronounced.

A. Setup

We study the Hubbard model (1) with nearest-neighbor
hopping Jij = δ〈ij〉J0 on a square lattice with 10 × 10 sites.
The optical trap is modeled by a parabolic confinement
potential Vi characterized by two frequencies, ω1 and ω2,

Vi(t) = ω2
1(Ri â1)2 + ω2

2(Ri â2)2. (39)

Here, âj are the unit vectors along the principle axes of the
trap, and the vector Ri is pointing from the trap center to the
lattice site i (the lattice spacing is set to 1). In the following we
compare results for a rotationally symmetric trap with ω2

1 =
ω2

2 = 0.5J0 [referred to as system A; see Fig. 6(a)] with those
for an elongated trap with ω2

1 = 0.5J0 and ω2
2 = J0 which is

rotated by 30◦ with respect to the lattice [system B; Fig. 6(b)].
The inverse temperature is β = 10, and we fix the average
particle number in the trap to 〈N〉 = 〈N↑〉 + 〈N↓〉 = 40 by
tuning the chemical potential μ of the initial state. The hopping
J0 and the inverse hopping J−1

0 define the units for energy
and time, respectively. The system is excited by an almost
sudden ramp of the electron-electron interaction starting from
the noninteracting state. The time dependence of the quench
follows Eq. (36) with tq = 0.5. In all calculations we use the
DMFT approximation and evaluate the local self-energy in the
second-order Born approximation [cf. Eq. (35)].

Before discussing the results, it is interesting to look at the
reduction in computational resource requirements achieved
by the auxiliary bath scheme for the current problem. For
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FIG. 6. (Color online) Density profiles nσ (Ri) = 〈niσ 〉 for the
noninteracting initial states at β = 10 in the rotationally symmetric
trap A (a) and the elongated trap B (b). In both cases, the total
particle number per spin is 〈Nσ 〉 = 20 (μA = 3.146 and μB = 4.515).
The violet contour lines denote equipotential curves of the time-
independent harmonic confinement Vi .

the time grid we choose N = 200 time steps on the time
interval [0,tmax] = [0,10]. Within the auxiliary bath scheme,
convergence is obtained with L = 64 bath orbitals at each site
of the 10 × 10 lattice, i.e., the dimension of the associated
single-particle Hilbert space is D = 102(1 + 64) = 6500. An
efficient time stepping requires the storage of the auxiliary
Hamiltonian in sparse matrix form [Eqs. (31) and (32)] on
all time steps, i.e., approximately 6600 × 200 = 1 320 000
complex numbers. In contrast, the conventional solution of the
Dyson equation would require storing the full Green function
for 100 inequivalent sites and 200 time steps, which amounts
to 1002 × 2002 = 400 000 000 complex numbers, taking into
account all Hermitian symmetries of Eq. (25).

B. Time evolution of the density profile and double occupation

For times t � 0, i.e., before the switch-on of any interac-
tions, the systems A and B are characterized by equilibrium
density matrices of the form

ρjiσ (0) = 〈c†iσ (0)cjσ (0)〉
=

∑
α

〈iσ |α〉〈α|jσ 〉fβ (εα − μ), (40)

where εα and 〈iσ |α〉 denote the eigenvalues and eigenvectors
of the associated single-particle Hamiltonian [i.e., the matrix
elements of Eq. (1) for U = 0], and fβ is the Fermi-Dirac
distribution. In Fig. 6, we show the resulting density profiles
nσ (Ri) = 〈niσ 〉 = ρiiσ (0), which are centrally symmetric. The
density of system A is in addition invariant under rotations of
angle π/2 due to the equal transverse confinements.

For t > 0, the ramp of the Hubbard interaction U drives
the electrons in the traps A and B out of equilibrium.
After the quench, i.e., when U (t) has reached the stationary
value Uf , both systems evolve unitarily under a new and
time-independent Hamiltonian H ′ = H (tq). In the course of
this, they start to redistribute density and double occupation.
Figures 7 and 8 show the time evolution of the local densities
〈niσ 〉(t) at all sites [see panels (a)] as well as the total double
occupation 〈d〉(t) = 1

〈Nσ 〉
∑

i〈di〉(t) [see panels (b)], obtained
for traps A and B at Uf = 2.0. In addition, in panels (c) we
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FIG. 7. (Color online) Time-dependent observables for the rota-
tionally symmetric trap (system A) and Uf = 2.0. (a) site occupations
〈niσ 〉(t), (b) total double occupation 〈d〉(t), and (c) radius 〈Rσ 〉(t) of
the density profile. The black solid (dashed) lines show the result
of the second Born (Hartree) approximation. The colored curves
indicate the convergence of the results with the size L of the bath
in the auxiliary model (7). In panel (c), the violet dotted line refers
to the radius 〈Rσ 〉th of an associated thermal equilibrium state (cf.
Sec. IV B for discussion).

plot the time-dependent radius of the density profile 〈Rσ 〉(t)
which is defined by

〈Rσ 〉2(t) = 1

〈Nσ 〉
∑

i

〈niσ 〉(t)R2
i . (41)

In Fig. 7(a) we can see (for system A) that immediately
after the quench the atom cloud spreads out; sites of initially
high density close to the trap center are depopulated and sites
of initially low density at the boundary are populated, while
densities closer to half filling exhibit comparatively smaller
changes (open dots). Thereafter, the dynamics becomes os-
cillatory with clearly more than one frequency, which shows
that the system is in a highly excited state after the interaction
quench. In Fig. 8(a), we identify a similar behavior for the
system B. In comparison to system A, some of the degeneracies
are lifted such that the dynamics of the individual densities
〈niσ 〉(t) becomes more diverse. In addition, the increased
confinement strength in the direction of ω2 leads to faster
oscillations [compare also 〈Rσ 〉(t) and 〈d〉(t) in Figs. 7 and 8]
and to a nonuniform redistribution of density. The broadening
of the density distribution and the subsequent collective
oscillation are also well described by the time-dependent
radius 〈Rσ 〉(t); see panels (c) in Figs. 7 and 8. Along with
the initial expansion of the density, the double occupation
decreases in both systems, cf. Figs. 7(b) and 8(b).

In Figs. 7 and 8 we have also included results obtained
within the mean-field (Hartree) approximation (black dashed
lines). The differences between the Hartree and the second
Born approximation are more pronounced in 〈d〉(t) than in
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FIG. 8. (Color online) Same as Fig. 7 but for the elongated trap
(system B). The final interaction strength is Uf = 2.0.

〈niσ 〉(t), while both approximations lead to similar oscillations
in the double occupation for times t > 2.0.

In summary, the fast initial change and subsequent oscil-
lations of all observables show that both systems A and B
are not rapidly thermalizing. However, persistent oscillations
make it hard to identify a prethermalization behavior, and it
would be useful to find observables that can show signatures of
a possible two-stage relaxation in a more clear-cut way, even
for a small and confined system.

C. Signatures of prethermalization in orbital occupations

In a homogeneous system, the momentum occupations n(k)
provide the clearest evidence of prethermalization, through the
discontinuity at the Fermi energy. Yet, for a small system with
harmonic confinement, the momentum occupations follow
a similar diverse and oscillating behavior as the real-space
densities shown in Figs. 7 and 8, and a discontinuity in
n(k) is absent in the spatially inhomogeneous system even
at temperature T = 0. Therefore, a similar analysis of the
two-stage relaxation as for the homogeneous case is rather
difficult for the present systems. On the other hand, regarding
the initial state of the system at U = 0, one would still
have a discontinuity in the occupations of the single-particle
eigenfunctions |α〉 of the trapped system [cf. Eq. (40)]. This
fact motivates us to study the relaxation in terms of quantities
that are more closely related to these natural orbitals of the
system.

From the nonequilibrium Green function Gijσ (t,t ′) of the
system, the time-dependent distribution function of any given
orbital |α〉 is accessible by

fα(t) = −i
∑
ij

〈α|iσ 〉G<
ijσ (t,t)〈jσ |α〉. (42)

In the following, we compare two different natural choices
for |α〉, which we refer to as the “initial-state basis” and
the “final-state basis”. The former is simply given by the

035148-9



KARSTEN BALZER AND MARTIN ECKSTEIN PHYSICAL REVIEW B 89, 035148 (2014)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

f α
(t

)

t
0 2 4 6 8 10

t
2 4 6 8 10

t

(a)
(b)

(c)

Initial state basis

Hartree
2nd Born

Final state basis

FIG. 9. (Color online) Time-dependent occupations fα(t) for the
“initial-state basis” (a) and the “final-state basis” (b) for the rot-
ationally symmetric trap A and Uf = 2.0. Panel (c) shows the time
evolution of fα(t) for the final-state basis obtained within the Hartree
approximation (see main text).

eigenfunctions of the noninteracting (initial) single-particle
Hamiltonian hij = δ〈ij〉J0 + (Vi − μ)δij . The final-state basis
will be defined by the eigenbasis of the mean-field Hamil-
tonian (hσ

th)ij = hij + Uf(〈niσ̄ 〉 + 1
2 )δij , where the effective

mean-field temperature βth is computed from the thermal
equilibrium Hartree solution which has the same energy
and particle number as the final state defined by the Green
function Gijσ (t,t ′) for t,t ′ � tq. The corresponding effective
temperatures are βth = 3.20 and βth = 4.05 for the quench
to Uf = 2.0 in systems A and B, respectively (the adjusted
chemical potentials are given in Figs. 10 and 11). Our choice of
the single-particle states above is simply motivated by analogy
to the homogeneous case, where both choices correspond to
the plane-wave momentum states |k〉 which well characterize
the prethermalization behavior.

We first analyze the dynamics of the occupations for the rot-
ationally symmetric trap A. Figures 9(a) and 9(b) show the
time-dependent occupations of the initial-state basis and the
final-state basis, respectively. As expected, most occupations
correspond to orbitals |α〉 that are either fully occupied
(fα = 1) or almost empty (fα = 0) in the initial state. The
most pronounced time-dependent changes are observed for
orbitals close to the Fermi energy (bold colored curves). We
find that the occupations of the initial-state basis still reflect
the density oscillations shown in Figs. 7(a) and 7(c). The
occupations of the finial-state basis, on the other hand, quite
clearly reveal the two-stage relaxation: A rapid change of all
time-dependent occupations fα(t) on the time scale of a few
inverse hoppings [see Fig. 9(b) for times t � 2.0] is followed
by an almost monotonous drift at longer times [for the form of
the prethermal distribution as function of the orbital energy;
see Fig. 10(c)].

It would now be interesting to see whether the drift at
long times corresponds to a true thermalization of the system.
To this end, we in principle would need to compute the
(final) interacting equilibrium state with the same amount of
excitation energy. For an inhomogeneous system this is quite
cumbersome, because multiple calculations are needed to find

0

0.2

0.4

0.6

0.8

1

-2 0 2

f α
(t

)
εα −μth

-2 0 2
εα −μth

-2 0 2
εα −μth

(b)

t =0

(c)

t =3

(d)

t =10

0
2

4
6

8
10

2

0

−2

0.5

1

fα (t)

(a) Uf =2.0
b)

c)

d)

t
εα−μth

fα (t)

fβ
fβth

fα (t)

FIG. 10. (Color online) Relaxation dynamics in the rotationally
symmetric trap A for a final Coulomb interaction of Uf = 2.0.
(a) Time evolution of the distribution fα(t) for the final-state basis
(blue lines and dots) where βth = 3.20 and μth = −0.1093. Panels
(b)–(d) show cuts through the distribution of panel (a) at times t = 0,
3.0, and 10. In all panels, the green dashed line shows the Fermi
distribution fβth (εth

α ) in the final-state basis. As a guide for the eye, we
also plot the Fermi distribution fβ with temperature β = 10 which
characterizes the initial state at time t = 0 (red dash-dotted curve).

the effective temperature βth at the correct chemical potential.
On the other hand, for small values of Uf , a mean-field
description is usually still quite accurate for equilibrium states,
even though higher-order scattering terms are of course crucial
to correctly describe the actual relaxation dynamics to the
thermalized state (this is in line with a description by kinetic
equations, which reveals thermalization to a thermal state of
the noninteracting system [7]). For this reason, it is worthwhile
to compare the long-time behavior of the orbital occupations
fα to their values in the thermalized mean-field state, which by
construction follow a Fermi distribution fβth (εth

α ) at effective
temperature 1/βth. Figures 10(a)–10(d) plot the occupations in
the final-state basis against time and the orbital energy εth

α . One
can see that the drift of the occupations fα(t) for times t � 3.0
corresponds to a relaxation towards a thermalized state [see
in particular the change of the occupations close to the Fermi
energy from Fig. 10(c) (black arrows) to Fig. 10(d)]. This
second relaxation process is harder to infer from observables
discussed in Sec. IV B, even taking into account observables
that involve averaging over the full trap. If we compare, e.g.,
the time evolution of the radius 〈Rσ 〉(t) in the system A to
the thermal value 〈Rσ 〉th [see the dotted lines in Fig. 7(c)], we
observe an oscillation about this value but no clear evidence
of damping.

For the elongated trap (system B), we find a very similar
time dependence of the distribution function fα(t); see Fig. 11.
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FIG. 11. (Color online) Same as in Fig. 10(a) but for the elon-
gated trap B at Uf = 2.0. The effective temperature and the chemical
potential in the final state basis are βth = 4.05 and μth = −0.0026,
respectively.

Although there happen to be no single-particle energy levels
εα very close to the Fermi edge, we can identify again an
intermediate state which the system approaches on a similarly
fast time scale, and further relaxation towards fβth at longer
times.

In conclusion, we interpret the presence of the intermediate
distributions fα in the final-state basis around t = 3.0 as
a signature that the finite systems A and B prethermalize
before they actually start to thermalize on a much longer
time scale. That this prethermalization is mostly driven by
correlations is demonstrated in Fig. 9(c) where we plot fα(t)
for the system A at Uf = 2.0 in Hartree approximation. In
contrast to the calculation performed in the second-order
approximation, the mean-field calculation leads to an almost
stationary distribution fα(t), even though the redistribution
of the density 〈niσ 〉(t) as discussed in Sec. IV B is very
similar in the Hartree and second Born approximation on the
considered time interval [cf. Figs. 7(a) and 7(c)]. Finally, we
mention that the two-stage relaxation is also obtained from
the time-dependent eigenvalues of the density matrix ρijσ (t).
The corresponding orbitals are the true natural orbitals of the
system and interpolate between the initial- and final-state basis.

V. SUMMARY

In the present paper, we have formulated a method for solv-
ing the Dyson equation for an interacting quantum many-body
system far from equilibrium [Eq. (2)] which avoids explicit
memory integrations (or inversions of real time matrices).
Instead, the approach maps local correlations to an auxiliary
bath with finitely many orbitals. The problem of computing
the Green function for the interacting many-body system is
thereby reduced to an effective single-particle problem or,
in other words, to an auxiliary Dyson equation which obeys
purely Markovian instead of non-Markovian dynamics.

In Sec. II, we have presented the formalism in detail for
self-energies which are local in space (single-site DMFT). The
computational benefits of the method are however expected
to carry over for a generalization to self-energies in cluster
DMFT [38] or cluster perturbation theory [17]. In order to
represent a nonlocal self-energy, the additional bath orbitals
would be coupled to more than one site of the lattice, but

the resulting Hamiltonian can still have a simple structure
provided that the self-energy is sufficiently local in space.
Furthermore, we note that although we have presented only
calculations which start from noninteracting thermal states,
the approach can easily be generalized to correlated initial
states. The fundamentals of such an extension are formulated
in [24] and lead to the inclusion of further sets of bath orbitals
in Hamiltonian (7) which then mimic the decay of initial-state
correlations.

In the context of DMFT, the auxiliary bath approach
is most beneficial for lattice systems which are strongly
inhomogeneous in space. In particular, it has enabled us to
study an interaction quench for Fermions in an optical lattice,
using inhomogeneous DMFT with second-order perturbation
theory as an impurity solver (without a massive paralleliza-
tion). We found that signatures of a two stage relaxation
(prethermalization followed by slow thermalization) can be
identified in the time-dependent occupations of single-particle
orbitals which characterize the corresponding thermodynamic
equilibrium state, although other observables like the local
densities exhibits pronounced density oscillations after the
quench. As an obvious extension of this work, one could
further substantiate these results with more accurate impurity
solvers, and study similar questions in the strong-coupling
regime.

From the computational point of view, the efficiency of
the auxiliary bath approach partially relies on the fact that
self-energy decomposition can be more compact than the
conventional representation on an equidistant time mesh. More
precisely, our analysis in Sec. III has shown that the number
of bath sites can typically be chosen smaller than the number
of time steps which are propagated. Together with the fact
that the auxiliary Hamiltonian is anyway very sparse when
the self-energy is local, the compact representation of the
self-energy leads over to a tremendous saving of computer
memory when instead of the full Green function only the
time-dependent parameters of the auxiliary model are stored.

Future applications of the method may consider more
complicated self-energies (e.g., the T matrix) or the usage
of a strong-coupling impurity solver. Furthermore, it will
be interesting to investigate decomposition schemes different
from the Cholesky decomposition, in order to optimize the rep-
resentation of the self-energy. In this sense, the auxiliary bath
provides a starting point to address the issue of systematically
truncating memory effects in the Dyson equation.
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APPENDIX A: TIME PROPAGATION OF THE AUXILIARY
GREEN FUNCTION

For the second-quantized quadratic auxiliary Hamiltonian
Haux(t) = ∑

ijσ hσ
aux,ij (t)c†iσ cjσ , where hσ

aux,ij (t) is given by
Eq. (30) and the indices i,j ∈ {1, . . . ,D} run over lattice and
bath sites [this is in contrast to the notation in Eq. (7) where
we explicitly distinguish between bath and lattice creation and
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annihilation operators], we need to compute the lesser and
greater components of the nonequilibrium Green function,

Gaux
ijσ (t,t ′) = −i〈TCciσ (t)c†jσ (t ′)〉aux. (A1)

To derive an appropriate time-stepping algorithm, we start
from the Heisenberg equations of motion for the creation and
annihilation operators,

i∂t ciσ (t) = [ciσ (t),Haux(t)]−,
(A2)

i∂t c
†
iσ (t) = [c†iσ (t),Haux(t)]−,

which in matrix form have the formal solutions

Cσ (t) = Uσ (t,0)Cσ (0), C†
σ (t) = C†

σ (0)U †
σ (t,0). (A3)

Here, the quantities Cσ and C†
σ are row and column vec-

tors of the form Cσ (t) = [c1σ (t), . . . ,cDσ (t)] and C†
σ (t) =

[c†1σ (t), . . . ,c†Dσ (t)], and Uσ denotes the unitary time evolution
operator

Uσ (t ′,t) = Tt exp

(
−i

∫ t ′

t

ds hσ
aux(s)

)
, (A4)

with the usual time-ordering operator Tt. If the initial state
at time t = 0 is described by the one-particle density matrix
ρaux

σ (0) = 〈C†
σ (0)Cσ (0)〉aux which is symmetric, the lesser and

greater components of the auxiliary Green function can be
computed from

[
Gaux

σ

]≷
(t,t ′) = ∓iUσ (t,0)R≷

σ U †
σ (t ′,0), (A5)

where R>
σ = 1 − ρaux

σ (0) and R<
σ = ρaux

σ (0) (note that 1 indi-
cates the identity matrix here). Using the propagator property
of Uσ , we can rewrite Eq. (A5) as

[
Gaux

σ

]≷
(t,t ′) = ∓iUσ (t,0)R≷

σ U †
σ (s,0)U †

σ (t ′,s)

= [
Gaux

σ

]≷
(t,s)U †

σ (t ′,s) (A6)

or [
Gaux

σ

]≷
(t,t ′) = ∓iUσ (t,s)Uσ (s,0)R≷

σ U †
σ (t ′,0)

= Uσ (t,s)[Gaux
σ ]≷(s,t ′). (A7)

Hence, if we choose to propagate the greater correlations
function G>

σ (tn,tn′ ) for times tn > tn′ (we omit the index “aux”
for simplicity) and the lesser correlation functions G<

σ (tn,tn′ )
for times tn � tn′ , where n,n′ ∈ {0,1,2, . . . ,N} and t0 = 0, the
algorithm involves the following steps on each time slice n

(m � n) [32]:

G>
σ (tn+1,tm) = Uσ (tn+1,tn)G>

σ (tn,tm), (A8a)

G<
σ (tm,tn+1) = G<

σ (tm,tn)U †
σ (tn+1,tn), (A8b)

G<
σ (tn+1,tn+1) = Uσ (tn+1,tn)G<

σ (tn,tn)U †
σ (tn+1,tn). (A8c)

Note that on the time diagonal it is G>
σ (tn,tn) = −i +

G<
σ (tn,tn). To establish the self-consistency directly on the

time slice n, we further update the time evolution operator
Uσ (tn+1,tn) a few times by recalculating the single-particle
Hamiltonian hσ

aux at the intermediate time tn + 
t
2 . This of

course requires a few (low-rank) Cholesky decompositions of
the self-energy.

APPENDIX B: KRYLOV METHOD

In order to adopt a Krylov-based time propagation
scheme [39] to Eqs. (A8a), (A8b), and (A8c), we split the
matrix multiplications UσG>

σ and G<
σ U † = [Uσ (G<

σ )†]† into
sets of matrix-vector multiplications of the form

UσGσ = Uσ (G1σ , . . . ,GDσ ), (B1)

where Giσ denotes the ith column of the matrix Gσ which
is either G>

σ or (G<
σ )†. For a small time step 
t � 1, each

product Uσ (t + 
t,t)Giσ can then be evaluated by applying
the Krylov method [40],

Uσ (t + 
t,t)Giσ = |Giσ | exp

{
−ihσ

aux

(
t + 
t

2

)

t

}
Giσ

|Giσ |
≈ |Giσ |V (M)

σ exp
{−iH (M)

σ 
t
}
e

(M)
1 , (B2)

where it is essential to first normalize the vectors Giσ . In the
last line of Eq. (B2), the matrix V (M)

σ = (V1σ , . . . ,VMσ ) is of
dimension D × M and contains an orthonormal basis of the
Krylov space,

K(M) = span
(
v,hσ v,h2

σ v, . . . ,hM−1
σ v

)
, (B3)

where v = Gσi and hσ = hσ
aux(t + 
t

2 ). Further,

H (M)
σ = [

V (M)
σ

]∗
hσV (M)

σ (B4)

is a tridiagonal matrix of dimension M × M which can easily
be diagonalized, and e

(M)
1 denotes the first unit vector in RM .

In all practical calculations, a sufficient accuracy is obtained
for M � D.

Finally, we emphasize that the solution of the original lattice
problem (1) requires the computation of the auxiliary Green
function Gaux

ijσ (t,t ′) only for indices i,j which are lattice (and
not bath) indices; see Eq. (9). This can be exploited to further
simplify the time propagation. More precisely, it allows one
to evolve [Gaux

σ ]< ([Gaux
σ ]>) away from the time diagonal

only for those rows (columns) which involve lattice indices,
cf. Eqs. (A8a) and (A8b). Along the time diagonal, such a
simplification is inhibited by the specific structure of Eq. (A8c)
which requires the knowledge of all matrix elements of the
Green function. Furthermore, the time propagation is easily
parallelized by performing the independent matrix-vector
multiplications in Eq. (B1) simultaneously on many CPUs.
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