
Supplementary information to
Big Data meets Quantum Chemistry Approximations: The ∆-Machine Learning

Approach

Raghunathan Ramakrishnan1, Pavlo O. Dral2,3, Matthias Rupp1, and O. Anatole von Lilienfeld1,4∗
1 Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials,

, Department of Chemistry, University of Basel,
Klingelbergstrasse 80, CH-4056 Basel, Switzerland

2 Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
3 Computer-Chemie-Centrum, University of Erlangen-Nuremberg,

Nägelsbachstr. 25, 91052 Erlangen, Germany and
4 Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA

(Dated: January 30, 2015)

I. MACHINE LEARNING

Machine learning (ML) [1–5] is a subfield of artifi-
cial intelligence that studies algorithms whose perfor-
mance improves with data (inductive “learning from ex-
perience”). [1] Its main concerns are the systematic identi-
fication and exploitation of regularity (non-randomness)
in data, e.g., for prediction or analysis. It has been
successfully applied in a wide variety of fields, includ-
ing brain-computer interfaces, recommender systems,
robotics, and, chemistry [6, 7].

A. Kernel ridge regression

Here, we use kernel ridge regression (KRR) [5] models
for regression. KRR is a nonlinear version of ordinary
regression with regularization to prevent overfitting.1 Let
x1, . . . ,xN ∈ Rd denote a set of N training samples, e.g.,
vectorial representations of molecules, and let y1, . . . , yN
denote corresponding labels, e.g., energies, or, differences
in energies. Our KRR models take the form

f(x) =

N∑
i=1

αik(x,xi), (1)

where k : Rd × Rd → R is a positive semi-definite func-
tion, called a kernel, that measures similarity between
samples. The αi ∈ R are regression coefficients, obtained

∗anatole.vonlilienfeld@unibas.ch
1 Fitting data points too closely leads to unwanted behavior when
interpolating between them (“over-fitting”). This is often re-
flected in large regression coefficients of opposite sign that cancel
each other only on the training data. Regularization prevents
this by penalizing large coefficients. Note that this particularly
affects noisy data such as outcomes of experimental measure-
ments as the model’s flexibility is misused to adapt to noise. For
noise-free data such as results of computational procedures this
is much less so, although other factors like wrong choice of model
class can cause noise-like effects.

as the solution to the optimization problem

min
α∈RN

N∑
i=1

(
f(xi)− yi

)2
+ λαTKα, (2)

whereKi,j = k(xi,xj) is the kernel matrix of the training
data, and λ ∈ R is a regularization constant that controls
the trade-off between minimizing the squared error and
a penalty term for large regression coefficients. Setting
the derivative of Eq. (2) to zero yields the closed-form
solution

α =
(
K + λI

)−1
y. (3)

Note that the resulting predictions are formally equiva-
lent to those of Gaussian process regression. [8] KRR is
a non-parametric form of regression: Each training sam-
ple adds another regression coefficient (effectively, a basis
function).

In this work, we use the Laplacian kernel

k(x, z) = exp

(
−||x− z||1

σ

)
, (4)

where ||x||1 =
∑

i |xi| denotes the 1-norm. σ ∈ R≥ 0 is a
free parameter related to the length scale of the problem.

The length scales in Eq. (4), together with the reg-
ularization constant λ, are free hyperparameters of the
method, not determined by Eq. (2) but rather dialed in
by the user. We optimize them using the Nelder-Mead
method [9, 10] in combination with cross-validated (see
below) mean absolute error as the target function. For
performance estimation, this is done in an inner loop of
cross-validation.

B. Cross-validation

The simplest approach to model validation is to set
aside part of the data as a hold-out set, train the model on
the remaining data, then evaluate its performance on the
hold-out set. The disadvantage of this approach is that it
requires many data points. Cross-validation [11] is a sta-
tistical validation method for efficient utilization of lim-
ited available reference data. In k-fold cross-validation,

mailto:anatole.vonlilienfeld@unibas.ch

2

set 1 set 2 set 3 set 4 set 5

step 5

step 4

step 3

step 2

step 1

pred.

FIG. 1. Schematic for 5-fold cross-validation. Solid boxes
represent training data, dashed boxes represent predicted test
data.

the data is split into k parts, each of which serves as test
(hold-out) set in turn, while the others jointly serve as
training set. This results in one prediction for each da-
tum, made by a model that was not trained using this
datum (Fig. 1). The following pseudocode summarizes
the procedure:

1. Randomly partition the data set into k subsets of
(almost) equal size.

2. For i = 1, . . . , k,

(a) Train model on data from sets {1, . . . , k}\{i}
(b) Use model to predict set i

Cross-validation can be used to estimate the perfor-
mance of a model on a given data set. Frequently
used measures for this are the mean absolute error
(MAE) 1

N

∑N
i=1 |f(xi) − yi|, the root mean squared er-

ror (RMSE)
(

1
N

∑N
i=1 |f(xi) − yi|2

)1/2, and the squared
Pearson product-moment correlation coefficient R2 for

R =

∑N
i=1

(
f(xi)− f(x)

)(
yi − ȳ

)√∑N
i=1

(
f(xi)− f(x)

)2√∑N
i=1(yi − ȳ)2

, (5)

where f(x) and ȳ denote the respective means. Cross-
validated performance can be used to select hyperpa-
rameters. If both is done at the same time, nested
cross-validation must be used to avoid erroneously over-
optimistic performance estimates. This is done by using
an outer loop of cross-validation for the performance esti-
mation. For each predicted fold, the training set (consist-
ing of all other folds) is subjected to a new (inner) loop
of cross-validation to select hyperparameters. A model is
then built on the (outer loop’s) training data using these
hyperparameters, and the (outer loop’s) test data fold is
predicted. See ref. [12] for further details and a related
application.

C. Representation

We numerically represent molecules, given by atomic
numbers and coordinates {Zi,Ri}, using the Coulomb
matrix [13]

Mi,j =

{
0.5Z2.4

i i = j
ZiZj

||Ri−Rj ||2 i 6= j
. (6)

This symmetric matrix representation, based on internal
distances, is invariant with respect to all translational
and rotational degrees of freedom. Invariance with re-
spect to indexing of atoms is enforced by sorting the atom
index according to 2-norm (Euclidean) of an atom’s row
and column (simultaneously swapping them). 2 Two
matrices are compared via their 1-norm (Manhattan),

||M−M′||1 =

m∑
i=1

m∑
j=1

|Mi,j −M′i,j |. (7)

For matrices of different size (i.e., molecules with different
numbers of atoms), the smaller matrix is extended with
zeros.

II. ELIMINATING SYSTEMATIC ERRORS

Evaluating the performance of a model using mean ab-
solute error MAE, |Ppred. − Pref.|, is often not conveneint
if the model introduces a systematic shift in the prop-
erty w.r.t. the reference property values. For example
the method B3LYP has been shown to introduce errors
that grow with increasing system size [14]. In such cases,
one can eliminate the systematic error using the gener-
alized MAE, |Ppred. − Pref. + η|. In the main paper, we
used this formula to calculate the MAE of different base-
line/targetline combinations.

2 Invariance with respect to translation, rotation, and atom in-
dexing is important because otherwise the model would have to
explicitly learn these, leading to a combinatorial blow-up of re-
quired training set size.

3

TABLE I. Shifts [kcal/mol] used in the calculation of MAE
for estimating the internal energy of atomization at T = 0
K (U0) (Fig. 1 in the paper) and enthalpy of atomization at
298.15 K (Table 1 in the paper) at G4MP2 level of theory
using various baseline theories.

base target
U0 - G4MP2 H - G4MP2

Hf - PM7 22.0 0.1
Ee- PBE 177.8 155.5
Ee- B3LYP 95.3 73.0

TABLE II. Shifts [kcal/mol] used in the calculation of MAE
for estimating atomization energies for various combinations
of increasingly correlated post Hartree-Fock methods as tar-
get and baseline methods (Fig. 3 in the paper).

base target
MP2 CCSD CCSD(T)

HF -439.9 -375.8 -399.5
MP2 64.0 40.4
CCSD -23.7

[1] T. M. Mitchell, Machine Learning (McGraw Hill, 1997).
[2] R. Duda, P. Hart, and D. Stork, Pattern Classification,

2nd ed. (Wiley, New York, 2001).
[3] D. MacKay, Information theory, Inference, and Learn-

ing Algorithms (Cambridge University Press, Cambridge,
2005).

[4] C. Bishop, Pattern Recognition and Machine Learning
(Springer, Berlin, 2006).

[5] T. Hastie, R. Tibshirani, and J. Friedman, The Elements
of Statistical Learning. Data Mining, Inference, and Pre-
diction, 2nd ed. (Springer, New York, 2009).

[6] O. Ivanciuc, in Reviews in Computational Chemistry,
Vol. 23, edited by K. Lipkowitz and T. Cundari (Wiley,
Hoboken, 2007) Chap. 6, pp. 291–400.

[7] A. Varnek and I. Baskin, J. Chem. Inf. Model. 52, 1413
(2012).

[8] C. Rasmussen and C. Williams, Gaussian Processes for
Machine Learning (MIT Press, Cambridge, 2006).

[9] J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).
[10] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,

Numerical Recipes. The Art of Scientific Computing, 3rd
ed. (Cambridge University Press, Cambridge, 2007).

[11] G. Cawley and N. Talbot, J. Mach. Learn. Res. 11, 2079
(2010).

[12] K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp,
M. Scheffler, O. A. von Lilienfeld, A. Tkatchenko, and
K.-R. Müller, J. Chem. Theor. Comput. 9, 3543 (2013).

[13] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von
Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012).

[14] M. D. Wodrich, C. Corminboeuf, P. R. Schreiner, A. A.
Fokin, and P. v. R. Schleyer, Org. Lett. 9, 1851 (2007).

http://dx.doi.org/10.1021/ci200409x
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1021/ct400195d
http://dx.doi.org/10.1103/PhysRevLett.108.058301

