
Nonequilibrium Dynamical Mean-Field Theory for Bosonic Lattice Models

Hugo U. R. Strand,1,* Martin Eckstein,2 and Philipp Werner1,†
1Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland

2Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL,
22761 Hamburg, Germany

(Received 27 May 2014; revised manuscript received 30 June 2014; published 30 March 2015)

We develop the nonequilibrium extension of bosonic dynamical mean-field theory and a Nambu
real-time strong-coupling perturbative impurity solver. In contrast to Gutzwiller mean-field theory and
strong-coupling perturbative approaches, nonequilibrium bosonic dynamical mean-field theory captures
not only dynamical transitions but also damping and thermalization effects at finite temperature. We apply
the formalism to quenches in the Bose-Hubbard model, starting from both the normal and the Bose-
condensed phases. Depending on the parameter regime, one observes qualitatively different dynamical
properties, such as rapid thermalization, trapping in metastable superfluid or normal states, as well as
long-lived or strongly damped amplitude oscillations. We summarize our results in nonequilibrium “phase
diagrams” that map out the different dynamical regimes.
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I. INTRODUCTION

Cold atomic gases trapped in an optical lattice provide a
unique playground for exploring equilibrium and non-
equilibrium properties of interacting many-particle systems
[1,2]. They enable an almost ideal realization of the low-
energy effective Hamiltonians (the fermionic and bosonic
Hubbard models [3,4]), which have been studied in the
condensed matter context for a long time, and whose
properties are still not yet fully understood. A big advantage
of cold atoms, as compared to condensed matter systems, is
that interaction parameters can be tuned almost arbitrarily,
and that the lattice spacings and characteristic time scales
are much larger [5]. For bosonic atoms, the Mott insulating
and superfluid regime can easily be accessed [1] and the
experimental control is so precise that the use of cold atoms
as “quantum simulators” becomes a realistic option [6] (for
a recent review, see Ref. [7]).
A particularly interesting aspect of cold-atom experiments

is the possibility to study the time evolution of interacting
many-body systems [8–16]. This was beautifully demon-
strated in the seminal work by Greiner et al. [8], who
measured the condensate collapse-and-revival oscillations
after a quench in a Bose-Hubbard system from the superfluid
to the Mott regime. In contrast to equilibrium, where the

phase diagram and correlation functions of the Bose-
Hubbard model [17] can be computed accurately using
Monte Carlo simulations [18], the real-time evolution of
interacting bosonic lattice systems is a big computational
challenge.
In one dimension, density-matrix renormalization group

(DMRG) methods [19] can be used to simulate the time
evolution after a quench on relatively large lattices, but a
rapid entanglement growth limits the accessible time scale
[15]. Still, DMRG calculations have provided important
insights into the short-time dynamics, as measured in 1D
optical lattices [14–16]. Kollath et al. [20] used nonlocal
correlators to study relaxation and thermalization. They
showed that an initially superfluid system is trapped in a
nonthermal steady state after quenching the interaction
deep into the Mott regime, while thermalization occurs
after quenches to intermediate interactions. Additionally,
the eigenstate thermalization hypothesis has been explored
[21,22] and debated [23,24] in this context. A more recent
development is the time-dependent variational Monte Carlo
approach that shows good agreement with DMRG in 1D
without being limited in time [25]. It has also been applied
to 2D systems and is not inherently limited to any
dimensionality [26]. While the time-dependent variational
Monte Carlo approach is well suited for studying the spread
of correlations, it is a method that treats finite systems,
which complicates the study of thermalization [27].
In three dimensions, perturbation theory [28–31] and

Gutzwiller mean-field (MF) [32–37] calculations have been
performed. Both work in specific regions of the phase
diagram, but generally fail to describe finite-temperature
relaxation and thermalization phenomena. Hence, while

*hugo.strand@unifr.ch
†philipp.werner@unifr.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 5, 011038 (2015)

2160-3308=15=5(1)=011038(18) 011038-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.5.011038
http://dx.doi.org/10.1103/PhysRevX.5.011038
http://dx.doi.org/10.1103/PhysRevX.5.011038
http://dx.doi.org/10.1103/PhysRevX.5.011038
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


being accessible experimentally [16], out-of-equilibrium
phenomena in the three-dimensional Bose-Hubbard model
remain largely unexplored [14–16] from the theoretical
point of view. Describing the generic relaxation phenomena
and nonthermal transient states, as well as mapping out the
different dynamical regimes of this model, is fundamental
to our understanding of nonequilibrium lattice bosons.
A clear picture of the nonequilibrium properties of the
homogeneous bulk system is also important for the
interpretation of more complicated experimental setups.
For example, one open question is whether damped super-
fluid collapse-and-revival oscillations are a dynamical
feature of the homogeneous system or an effect of the
trapping potential or other processes not considered in the
Bose-Hubbard description [8,10].
A computationally tractable and promising scheme,

which allows us to address such issues, is the nonequili-
brium generalization of bosonic dynamical mean-field
theory (BDMFT). This method is formulated in the
thermodynamical limit, and thus enables the study of
relaxation and thermalization phenomena in infinite sys-
tems [38]. The equilibrium version of BDMFT [39–42]
produces phase diagrams, condensate fractions, and corre-
lation functions with remarkable accuracy [42]. While the
extension of this formalism to nonequilibrium situations is
analogous to the fermionic case [38], and essentially
involves the replacement of the imaginary-time interval
by a Kadanoff-Baym contour, there are a number of
practical challenges. The most important one is the devel-
opment of a suitable bosonic impurity solver. The exact
continuous-time quantumMonte Carlo (CTQMC) impurity
solver of Ref. [41] cannot easily be applied to nonequili-
brium problems, because of a dynamical sign problem [43],
while exact-diagonalization-based solvers are even more
limited than in the fermionic case [44], due to the larger
local Hilbert space. Weak-coupling perturbation theory is
not an option if one is interested in Mott physics. Instead,
we develop and benchmark an impurity solver based on
the lowest order strong-coupling perturbation theory, i.e., the
noncrossing approximation (NCA) [45]. As a first applica-
tion of this new scheme, we map out the different dynamical
regimes of both the symmetric and the symmetry-broken
states, searching for thermalization and trapping phenomena
after a quench of the interaction parameter.
This paper is organized as follows: In Sec. II, we give an

overview of the Bose-Hubbard model, the nonequilibrium
generalization of BDMFT (Sec. II A), the NCA impurity
solver (Sec. II B), the energy calculations (Sec. II C), and
our numerical implementation (Sec. II D). In Sec. III, we
first present benchmark calculations showing density and
energy conservation and discuss the lowest-order spectral
moments (Sec. III A). The dynamical regimes in the normal
phase are mapped out in Sec. III B. In Sec. III C, we
consider superfluid initial states, and after an overview
of the relaxation regimes in Sec. III C 1, we study the

dynamics for short times in Sec. III C 2 and long times in
Sec. III C 3. The findings are summarized in Sec. III C 4 in
the form of a nonequilibrium “phase diagram.” Section IV
is devoted to conclusions. We also provide a derivation of
nonequilibrium BDMFT in Appendix A and discuss the
details of the Nambu generalization of NCA in
Appendix B.

II. THEORY

We consider the simplest model for bosonic atoms in an
optical lattice, namely, the Bose-Hubbard model [4,5],

H ¼ −J
X
hi;ji

ðb†i bj þ b†jbiÞ þ
U
2

X
i

n̂iðn̂i − 1Þ − μ
X
i

n̂i;

ð1Þ
where b†i (bi) and n̂i are the bosonic creation (annihilation)
and number operators acting on site i, μ is the chemical
potential, and U the local pair interaction that competes
with the nearest-neighbor hopping J that we take as our unit
of energy.

A. Nonequilibrium bosonic dynamical
mean-field theory

By extending equilibrium BDMFT [41,42] to the three-
branch Kadanoff-Baym contour C (0→ tmax→0→−iβ)
[38,46], we obtain the bosonic impurity action

Simp ¼
Z
C
dt

�
−μðtÞn̂ðtÞ þ U

2
n̂ðtÞ(n̂ðtÞ − 1)

�

−
Z
C
dtΦ†

effðtÞbðtÞ

þ 1

2

Z Z
C
dtdt0 b†ðtÞΔðt; t0Þbðt0Þ; ð2Þ

where b† is the Nambu spinor b† ¼ ðb†; bÞ, Δðt; t0Þ the
hybridization function, and Φ†

eff the effective symmetry-
breaking field, which is defined in terms of Δ, the local
condensate fraction Φ† ¼ ðϕ�;ϕÞ, and the lattice
coordination number z as

Φ†
effðtÞ ¼ zJΦ†ðtÞ þ

Z
C
dt0Φ†ðt0ÞΔðt0; tÞ: ð3Þ

For a detailed derivation of this action, see Appendix A.
Note that the single-particle fluctuations [the Δ term in
Eqs. (2) and (3)] enter as a correction to the mean-field
action [47], which would be obtained by taking the infinite
dimensional limit z → ∞ at fixed zJ (or analogously
Δ → 0) [42].
The solution of the impurity model yields the connected

impurity Green’s function

Gðt; t0Þ ¼ −ihTCbðtÞb†ðt0Þi þ iΦðtÞΦ†ðt0Þ;
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where TC is the time-ordering operator on the contour C,
and the local condensate fraction is

ΦðtÞ ¼ hbðtÞi:

The BDMFT self-consistency loop is closed by computing
the lattice Green’s functionGk fromG, and then expressing
the hybridization function Δ in terms of the local lattice
Green’s function GL ¼ ð1=NkÞ

P
kGk (at self-consistency

GL ¼ G) [38]. In the present study, we employ the
simplified self-consistency relation

Δðt; t0Þ ¼ ð3JÞ2Gðt; t0Þ

and set z ¼ 6, which corresponds to a noninteracting
semicircular DOS with the same bandwidth W ¼ 12J
and lattice coordination number z as the 3D cubic lattice
with nearest-neighbor hopping J.

B. Noncrossing approximation impurity solver

The previous BDMFT equilibrium studies employed a
hybridization expansion CTQMC impurity solver [41,42].
However, the extension of this technique to the contour
action in Eq. (2) does not look promising, because the
dynamical sign problem from the expansion along the real-
time branches [48] will add to the inherent sign problem of
the hybridization expansion (in the superfluid regime). We,
therefore, solve the BDMFTeffective impurity action using
the first-order self-consistent strong-coupling expansion.
The generalization of strong-coupling expansions to real-
time impurity problems was presented in Ref. [49]. To treat
the BDMFT effective action, in Eq. (2) we generalize the
formalism to systems with symmetry breaking, as dis-
cussed in Appendix B.
In short, we follow the standard procedure and introduce

pseudoparticle second quantization operators pΓ and p†
Γ

for each local occupation number many-body state jΓi.
This maps the local Hamiltonian to a quadratic termP

ΓΓ0 ĤðtÞΓΓ0p†
ΓpΓ0 , while the hybridization Δ turns into

a pseudoparticle interaction. Expanding to first order
in Δ gives the NCA of Ref. [49] generalized to Nambu
formalism.
The corresponding NCA pseudoparticle self-energy

Σ̂ ¼ Σ̂ΓΓ0 consists of the two shell diagrams with a directed
hybridization line (see Fig. 1 and Appendix B 1)

Σ̂ðt; t0Þ ¼ i
2

X
γν

ðΔγνðt; t0Þ½b†
γ Ĝðt; t0Þbν�

þ Δνγðt0; tÞ½bγĜðt; t0Þb†
ν�Þ; ð4Þ

where Ĝ ¼ ĜΓΓ0 is the pseudoparticle Green’s function, γ
and ν are Nambu indices, and bγ is the tensor ðbγÞΓΓ0 ¼
hΓjbγjΓ0i (operator products are implicit matrix products).
The pseudoparticle Dyson equation takes the form

where ĤðtÞ is the nonretarded part in Eq. (2),
ĤðtÞ ¼ UðtÞðn̂2 − n̂Þ=2 − μðtÞn̂ −Φ†

effðtÞb, and
denotes the cyclic convolution on C,

[49].

Within NCA, Ĝ and Σ̂ are calculated self-consistently,
and local observables are determined from the reduced
local-density matrix ρ̂ðtÞ ¼ iĜ<ðt; tÞ, yielding the local
condensate as

ΦγðtÞ ¼ hbγðtÞi ¼ TrΓ½bγρ̂ðtÞ�;

while response functions must be determined diagrammati-
cally. In particular, the connected single-particle impurity
Green’s function G is obtained from the bubble diagram
without hybridization insertions (see Fig. 1 and
Appendix B 2):

Gγνðt; t0Þ ¼ iTrΓ½Ĝðt0; tÞbγĜðt; t0Þb†
ν� þ iΦγðtÞΦ†

νðt0Þ:
ð5Þ

C. Total energy components

The total energy Et of the system is the sum of the
(connected) kinetic energy Ek, the condensate energy (or
disconnected kinetic energy) Ec, and the local interaction
energy Ei, Et ¼ Ek þ Ec þ Ei. Using G and Δ, Ek is given
by [38]

EkðtÞ ¼
i
2
Tr½ðΔ �GÞ<ðt; tÞ�;

Ec depends on ϕðtÞ ¼ hbðtÞi ¼ TrΓ½bρ̂ðtÞ� as

EcðtÞ ¼ −zJðtÞjϕðtÞj2;

and Ei can be written in terms of hn̂2iðtÞ ¼ TrΓ½n̂2ρ̂ðtÞ� and
hn̂iðtÞ ¼ TrΓ½n̂ ρ̂ðtÞ� as

EiðtÞ ¼ UðtÞ½hn̂2iðtÞ − hn̂iðtÞ�=2:

(a)

(b)

FIG. 1. NCA diagram representations of (a) the pseudoparticle
self-energy Σ̂ and (b) the single-particle Green’s function Gγν.
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D. Numerical implementation

We solve the pseudoparticle Dyson equation using
a fifth-order multistep method [49,50] on a uniformly
discretized time grid. To ensure negligible real-time dis-
cretization errors, we monitor the total energy and density,
which both are constants of motion of the conserving
NCA [49] [the gauge property μ → μþ δμðtÞ ⇒ b →

be−i
R

t

0
dt̄δμðt̄Þ ensures ∂thn̂i ¼ 0]. In principle, the local

Fock space is unbounded, but for U > 0, it can safely be
truncated, keeping only Nmax states. The cutoff error is
controlled by monitoring the drift in TrΓ½ρ̂� away from
unity. Close to the hn̂i ¼ 1 superfluid transition at U ≳ J,
the results are converged for Nmax ¼ 5–11.
The computational limitations of our real-time

BDMFTþ NCA implementation are very similar to the
real-time fermionic DMFTþ NCA case [49]. Memory
is the limiting factor when working with two-time
response functions, whose storage size scales quadrati-
cally with the number of time steps. The local Fock space
in the bosonic case adds 1 or 2 orders of magnitude in
memory usage, compared to the single-band fermionic
case. A further limitation is the quadratic energy depend-
ence of the local occupation number states jΓi, scaling
with EΓ ∼ hΓjUn̂2jΓi ¼ Un2Γ. This induces a pseudo-
particle time dependence ĜΓΓðt; t0Þ ∼ e−iUn2Γðt−t0Þ, which
means that including higher occupation number states,
by increasing Nmax, also requires a finer time
discretization.

III. RESULTS

A. Benchmark calculations

Even though BDMFT neglects spatial fluctuations, the
equilibrium results for the 3D Bose-Hubbard model are in
good quantitative agreement [41,42] with high-precision
lattice QMC calculations [17] and high-order perturbation
theory [51], for both the phase diagram and local corre-
lation functions. For example, the critical couplings at the
hn̂i ¼ 1 superfluid-Mott transition are ðJ=UÞc ¼ 0.0345�
0.0004 (BDMFT at T ¼ 0.5) and ðJ=UÞc ¼ 0.03408ð2Þ
(lattice QMC); see Ref. [42] for an explicit comparison of
phase diagrams.
To assess the validity of the NCA approximation, we

compare its superfluid phase boundary for the 3D cubic
lattice with the (within BDMFT) exact CTQMC result; see
Fig. 2. It is evident that already this lowest-order strong-
coupling expansion provides a very good approximation
with ðJ=UÞc ≈ 0.0340 (at T ¼ 1.5), as expected, consid-
ering the success of the linked cluster expansion [52].
The simplified self-consistency based on the semicircular
DOS leads to a shift in the phase boundaries (Fig. 2) with
ðJ=UÞc ≈ 0.0378, but we expect that the qualitative fea-
tures of the solution, both in and out of equilibrium, remain
unchanged.

Note that the Mott phase is only present at integer
fillings. Hence, in order to study quenches between the
superfluid and Mott insulator, we limit our calculations to
hn̂i ¼ 1. Strictly speaking, the Mott insulator exists only at
zero temperature, with a smooth crossover to the normal
phase; see Fig. 2. However, we follow Ref. [17] and define

FIG. 2. BDMFT superfluid phase boundary for CTQMC [42]
(blue) and NCA (red) on the 3D cubic lattice (3DC), NCAwith a
semicircular DOS (SC) (green), and mean-field theory (MF)
(black). (a) (J=U, μ=U) plane at T ¼ 1.5, (b) (U, T) plane
for hn̂i ¼ 1.

FIG. 3. Time evolution of energies and observables (lines) and
thermal values (thin lines) for the superfluid-to-normal phase
quench from Ui ¼ 6 (Ti ¼ 4.5) to Uf ¼ 21 (Teff ≈ 9.81) (left-
hand panel) and time-discretization-induced drifts Δn ¼ hn̂ðtÞi −
hn̂ð0Þi and ΔEtðtÞ ¼ EtðtÞ − Etð0Þ (right-hand panel).
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the Mott regime as the whole region U > UcðT ¼ 0Þ,
where the low-temperature superfluid phase is absent.
For instantaneous interaction quenches, the final total

energy EðfÞ
t is given by the initial equilibrium total energy

EðiÞ
t and an additional interaction energy contribution

EðfÞ
t ¼ EðiÞ

t þ ðUf=Ui − 1ÞEðiÞ
i (due to the sudden change

of U from Ui to Uf at t ¼ 0). Given EðfÞ
t and Uf, the

effective temperature Teff of the system after thermal-
ization can be determined using separate equilibrium
calculations. The resulting nonequilibrium ðUf; TeffÞ pair
of a quench can be used to determine the final state after
eventual thermalization by direct comparison with the
equilibrium ðU; TÞ phase boundaries. This is used
throughout this study in order to produce combined
equilibrium ðU; TÞ and nonequilibrium ðUf; TeffÞ phase
diagrams.
BDMFT captures the conversion between interaction,

kinetic, and condensate energy, as well as the relaxation
to the predicted thermal values (Fig. 3). Despite a
nontrivial time evolution of the individual components,
the total energy Et and the particle number hn̂i are
conserved to high accuracy by our fifth-order solver
(right-hand panel).
We note, however, that the NCA solution yields an

approximate spectral function, as for the Fermi-Hubbard
model [53]. To assess these errors, it is useful to check
the accuracy to which the spectral sum rules (valid also
in a nonequilibrium setting [54]) are fulfilled.
The moments μRn ðTÞ of the spectral function ARðT;ωÞ,
μRn ðTÞ ¼

R∞
−∞ dωωnARðT;ωÞ, are given by the

higher-order derivatives of the retarded Green’s function
GRðT; tÞ at t ¼ 0þ, μRn ðTÞ ¼ −Im½in∂n

t GRðT; tÞ�t¼0þ ,
where T and t are the absolute and relative time,
respectively; see Ref. [54]. The moments can also be
determined using the equation of motion, in terms of
operator expectation values: μR0 ¼1, μR1 ¼hϵi−μþ2hn̂iU,
and μR2 ¼ hϵ2i þ μ2 þ 3U2hn̂2i − hn̂ið4μU þ U2Þ, where
hϵni denotes the nth moment of the noninteracting density
of states; see Ref. [42]. For an approximate solution of the
BDMFT equations, these approaches do not yield the
same result. In equilibrium, BDMFTþ NCA gives a 1.6%
relative error of the first spectral moment μR1 in the Mott
insulating phase (U ¼ 96, T ¼ 6) and a 10% error in the
vicinity of the superfluid phase boundary (U ¼ 40,
T ¼ 6). For the second moment μR2 , the relative errors
are 11% and 36%, respectively.

B. Quenches from the Mott insulator

As a first application, we study quenches within the
symmetric Mott and normal phases (jϕj ¼ 0), i.e., sup-
pressing symmetry breaking (superfluid states). Since
the Gutzwiller mean-field description contains only the
condensate energy Ec and the interaction energy Ei, the
symmetric state in this approximation is simply the atomic
limit with Ec ∝ jϕj2 ¼ 0. So, for these quenches, no energy
conversion occurs in the Gutzwiller treatment, resulting in
an unphysical constant time evolution. BDMFT, however,
retains temporal fluctuations and enables the conversion of
interaction energy Ei into kinetic energy Ek, and vice versa,
which leads to nontrivial quench dynamics.

FIG. 4. (a) Nonequilibrium ðUf; TeffÞ phase diagram for quenches within the symmetric Mott and normal phases (jϕj ¼ 0) with
hn̂i ¼ 1. While the superfluid state is absent, the equilibrium superfluid ðU; TÞ phase boundary is shown for guidance (dotted line). The
shaded areas indicate the occurrence of rapid thermalization for the initial interactions Ui ¼ 30 (cyan area) and 45 (magenta area) and
Ti ∈ ½3; 18�. The point of most rapid thermalization is defined as the Uf maximizing j1 − κðt ¼ tmaxÞj−1 (diamonds), and the left and
right boundaries of the rapid thermalization area correspond to a threefold decrease from the maxima, as explicitly shown for Ui ¼ 30
and Ti ¼ 6 in (b). For the quenches from Ui ¼ 30 and Ti ¼ 6 ending at ðUf; TeffÞ (solid gray line), the real-time evolutions of κðtÞ for
Uf ¼ 4.2, 10.2, 15, and 21 (blue, green, red, and cyan lines) [see circles in (a)] are shown in (c) for short times and in (d) for long times
with j1 − κðt ¼ tmaxÞj (markers).
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To search for thermalization, we study the relative
change κ in the double occupancy hn̂2i,

κ ¼ hn̂2iðtÞ − hn̂2iUi;Ti

hn̂2iUf;Teff
− hn̂2iUi;Ti

; ð6Þ

defined so that κðt ¼ 0Þ ¼ 0 and κ ¼ 1 for a thermalized
state. Using this quantity, we identify an interme-
diate region of rapid thermalization in the ðU; TÞ plane
[Fig. 4(a)] in the following way: For a given initial state
ðUi; TiÞ, we locate the maximum of j1 − κðt ¼ tmaxÞj−1 as a
function ofUf at the longest accessible time tmax ¼ 2.66, as
shown explicitly for Ui ¼ 30 and Ti ¼ 6 in Fig. 4(b). The
values of Uf and the corresponding effective temperatures
Teff are shown in Fig. 4(a), and the result turns out to be
insensitive to the initial interaction (Ui ¼ 30, 45). In both
the weak- and strong-coupling Uf regimes, the system is
trapped in a long-lived “prethermalized state,” reminiscent
of the relaxation dynamics in the paramagnetic Fermi-
Hubbard model [55]. The observed absence of thermal-
ization in these regimes can be understood in terms of
proximity to an integrable point, since the Bose-Hubbard
model is integrable for both U ¼ 0 and U ¼ ∞ [22].
Interestingly, the relaxation behavior in the two regimes
differs. In the strong-coupling regime, the exponential
decay of j1 − κj slows down as Uf increases [green, red,
and cyan lines in Fig. 4(d)]. In the low Uf regime, κ very
rapidly reaches a plateau value [blue line in Fig. 4(d)],
which increases roughly exponentially as Uf is decreased.
The crossover between these two disparate behaviors is
hard to pinpoint, and the indicated regions in Fig. 4(a)
are only qualitative as j1 − κðt ¼ tmaxÞj−1 is tmax dependent
(the region becomes narrower and shifts to slightly higher
Uf with increasing tmax).

C. Quenches from the superfluid

1. Relaxation regimes

The nonequilibrium dynamics after a quench from the
superfluid (jϕj > 0) with weak interaction Ui ¼ 6 to larger
interactions Uf > Ui generates a variety of dynamical
behaviors depending on Uf. Apart from Uf, the system
has two other characteristic energies (or inverse time
scales), namely, the bandwidth W ¼ 12J and the conden-
sate coupling zJ ¼ 6J (where J ¼ 1 is our unit of energy).
In general, the time evolution can be separated into five
regimes; see Figs. 5(a) and 5(b).

(i) For quenches deep into the Mott regime, i.e., for
large Uf ≫ W; zJ, the condensate oscillates with
the frequency ω of the final interaction strength,
ω ≈Uf, while relaxing exponentially (green line).
The relaxation rate strongly depends on the initial
temperature Ti. For high Ti [as in Fig. 5(b)], the
system displays relaxation to the Mott phase, while

(d)

FIG. 5. Interaction quenches starting in the superfluid state
(Ui ¼ 6, Ti ¼ 5.1), with (a) the positions of the final states
(Uf, Teff ) (crosses) and the ðU; TÞ equilibrium superfluid
phase boundary (gray line), and (b) the corresponding
evolution of the magnitude of the order parameter jϕjðtÞ.
For Uf ¼ 6.6, the (equilibrium) thermal reference state at
ðUf; TeffÞ is also superfluid and the nonequilibrium dynamics
displays a rapid transient growth of the condensate (cyan).
Close to the phase boundary in the normal phase the system
is trapped in a superfluid for long times and the quench-
induced excitation is transferred to an amplitude mode at
longer times (magenta). For intermediate Uf , a constant
trapped superfluid persists (blue), and after passing the
dynamical transition Udyn

c , the system undergoes exponential
relaxation to the normal phase (red). For large final inter-
actions Uf ≫ W; zJ, the condensate displays “collapse-and-
revival” oscillations with frequency ω ≈ Uf (green). The
evolution from Uf ¼ 6.6 to Uf ¼ 11.4 is also shown (gray
lines). For the growing condensate at Uf ¼ 6.6, (c) shows the
accuracy in total energy Et and density hn̂i and (d) shows the
energy conversion during the time of rapid condensate
growth.
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for low Ti, the system is trapped in a nonequilibrium
superfluid state for long times; see Sec. III C 3.

(ii) In the intermediate coupling regime Uf ≳W > zJ,
the interaction-driven oscillations compete with
the kinetic time scale and only a few oscillations
can be observed. After the condensate time scale
2π=ðzJÞ, the system displays exponential relaxation
(red line).

(iii) For W ≳ Uf > zJ, the thermal reference state is
closer to the phase boundary in the normal phase. In
this regime, after an initial transient undershoot in
jϕj, the system becomes trapped in a nonequilibrium
superfluid state with a constant nonzero condensate
(blue line).

(iv) In the same range of Uf, an amplitude mode is
excited at longer times (magenta line) with a roughly
constant frequency but growing amplitude as the
phase boundary is approached from the normal-
phase side.

(v) For small ΔU ¼ Uf −Ui (W > Uf ≈ zJ), the initial
transient is weak as the quench energy scales with
ΔU. First, the condensate undergoes a weak oscil-
latory transient followed by a sudden rapid growth
(cyan line). This growth occurs when the final state
is in the equilibrium superfluid region.

The rapidly growing condensate is a numerical challenge
because of the occupation of high-energy (i.e., high
occupation number) states. On the one hand, the cutoff
in the bosonic Fock space must be chosen large enough to
accommodate this, and on the other hand, the fast oscil-
lations of the high-energy modes require a small time step.
In Fig. 5(b), we plot the results up to the point at which they
can be fully converged both in the size of the time step
and in the size of the Hilbert space. For Nmax ¼ 11 and
Δt ¼ 0.005, the drift in total energy ΔEt ¼ jEtðtÞ − Etð0Þj
and density Δhn̂i ¼ jhn̂ðtÞi − hn̂ð0Þij is of the order of
≲10−6; see Fig. 5(c). Hence, we conclude that the growth is
a robust feature of our BDMFTþ NCA calculations.
During the growth there is a rapid conversion between

the different energy components of the system, while the
total energy Et is conserved; see Fig. 5(d). The interaction
energy Ei and the normal component of the kinetic energy

EðnÞ
k ∝ hb†i biþ1i rapidly increase, while the condensate

energy Ec and the anomalous component of the kinetic

energy EðaÞ
k ∝ hbibiþ1i decrease by the same total amount.

The self-amplified transient growth of the condensate
fraction resembles the quantum-turbulence-driven dual
cascade with nonequilibrium Bose-Einstein condensation
observed in scalar field theories [56]. Also in other
contexts, dynamical instabilities with diverging solutions
have been observed in lattice boson systems. In the
weak-coupling limit, a Gross-Pitaevskii treatment yields
dynamically unstable solutions [57], also observed
experimentally [58]. In the Bose-Hubbard model, the

exponential condensate growth of symmetric initial states
has previously been studied with mean-field theory [36].
However, for the weak interaction quenches within the

superfluid, we cannot rule out that the sudden condensate
growth is an artifact of the NCA treatment. Higher-order
implementations of the self-consistent strong-coupling
expansion may in the future help to clarify this issue.

2. Short-time dynamics after quenches deep into
the Mott regime

In the limit of large final interaction Uf ≫ W, zJ, i.e.,
in regime (i), the superfluid quenches from Ui ¼ 6
display oscillations with a frequency ω scaling with Uf,
ω ≈Uf, and the short-time behavior is dominated by the
interaction, as it defines the shortest time scale of the
system. The short-time relaxation is expected to be driven
by local decoherence and the long-time relaxation
(t > 2π=W ≈ 0.52) dominated by hopping. In order to
study the short-time dynamics, we perform a series of
quenches to Uf ¼ 48 for several initial temperatures
Ti ¼ 3.00;…; 5.25; see Fig. 6. While ω scales with Uf,
there are important contributions from other frequency
components. Pure 2π=Uf oscillations can only be observed
in the first few revivals, while they are at later times washed
out by the off-diagonal mixing of local occupation number

FIG. 6. Superfluid quench short-time dynamics for Ui ¼ 6 and
Uf ¼ 48 deep within the Mott phase (Uf ≫ W > zJ). Upper
panel: The first revival maximum coincides with the final
interaction period n × 2π=Uf (black dotted lines). Exponential
fits for the relaxation, using the first revival maximum at t ¼
2π=Uf (colored dotted lines) are also shown. Lower panel: Time
dependence of ð∂tθÞjϕj2.
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states in the initial state. The first revival maximum occurs
at the period of the final interaction 2π=Uf, the second
revival has a pronounced two-peak structure with the first
peak occurring at 2 × 2π=Uf, and in the third revival, the
3 × 2π=Uf peak appears only as a shoulder of the main
peak. From Fig. 6, it is also evident that the short-time
decoherence strongly depends on the initial temperature Ti,
with higher temperature resulting in faster damping.
An interesting question is whether the long-time relax-

ation rate can already be inferred from the short-time
decoherence, in the spirit of the strong-coupling analysis
of Ref. [59]. To investigate this, we fit the simple
exponential model jϕjðtÞ ≈ jϕjð0Þe−t=τ to the real-time
data, where the relaxation rate τ is approximated
using jϕj at the first revival maximum tr ¼ 2π=Uf as
τ ¼ tr= log½jϕjðtrÞ=jϕjð0Þ�. Figure 6 shows that the relax-
ation rate τ is overestimated for low-temperature initial
states and underestimated for high-temperature initial
states. Hence, in this regime the condensate relaxation
cannot be inferred from the first revival maximum. In fact,
the long-time exponential relaxation rate is established only
after the characteristic condensate time scale 2π=ðzJÞ; see,
e.g., the green and red lines in Fig. 5(b).
We also note that the BDMFT calculation does not

involve any approximation concerning the time scales of
the dynamics. This sets it apart from, for example, the
low-frequency approximation applied in the Schwinger-
Keldysh generalization of the strong-coupling approach
[29], where in the particle-hole symmetric limit hn̂i ¼ 1 the
condensate phase θ and amplitude jϕj (where ϕ ¼ jϕjeiθ)
are constrained by ð∂tθÞjϕj2 ¼ C for some constant C. As
shown in the lower panel of Fig. 6, the BDMFT dynamics
has a nontrivial time dependence in this quantity.

3. Long-time dynamics

The long-time dynamics for quenches from the super-
fluid has been investigated in a number of zero-temperature
Gutzwiller mean-field studies [32–37]. The most prominent
nonequilibrium effect is a dynamical transition at Uf ¼
Udyn

c ½Ui� [34]. It is important to note, however, that for
low Ui only the mean-field calculation using a constrained
basis including the lowest three bosonic occupation number
states (Nmax ¼ 3) produces a sharp transition. If the
physically important states with higher occupations are
also considered, the transition turns into a crossover [60]. In
a broader perspective, the occurrence of a dynamical
transition is not specific to the Bose-Hubbard model, but
has also been observed in the Fermi-Hubbard model and
other systems on the mean-field level [35,61,62].
The quantum fluctuations missing in mean-field treat-

ments are expected to heavily modify the dynamical
transition, as previously shown for other systems, using
dynamical mean-field theory [55], the Gutzwiller approxi-
mation including Gaussian fluctuations [63,64], and 1=N

expansions [65]. Here, we show how the dynamical
transition in the Bose-Hubbard model is affected when
we go beyond the simple mean-field treatment, starting
from a thermal initial state, and include quantum fluctua-
tions using BDMFT.
As the hopping-induced relaxation is most prominent

for small Ui and temperatures Ti close to the superfluid
phase boundary, we fix Ui ¼ 6, far away from the zero-
temperature transition, UcðT ¼ 0Þ ≈ 26.4; see Fig. 2. To
see the enhanced relaxation in the vicinity of the phase
boundary, located at TcðU ¼ 6Þ ≈ 5.49, we consider the
two initial temperatures Ti ¼ 4.5 and 5.1 with relatively
weak superfluidity jϕj2 ≲ 0.5; see Fig. 7(a).
To analyze the dynamics of the condensate amplitude

jϕj, we first look at windowed time averages ¯jϕjðtÞ, using a
Gaussian window with width tw ¼ 1=3 to filter out
oscillations. In Fig. 7(b), we plot the window average
¯jϕjðt ¼ tmaxÞ at the longest time as a function of Uf,

thereby restricting ourselves to the regimes (i)–(iii) above,
i.e., when the final equilibrium state is not in the superfluid
phase and the order parameter does not show self-amplified
growth. From Fig. 7(b) it is evident that ¯jϕjðt ¼ tmaxÞ
exhibits a crossover for Ti ¼ 4.5, from high values at low
Uf close to Ui ¼ 6, through a minimum at intermediate
Uf, and increasing again for Uf ≳ 30, in qualitative
agreement with the mean-field dynamical transition [34].
Also, the general temperature dependence, namely, that a
higher temperature leads to lower condensate averages,
agrees with mean-field theory. However, the thermal effects
in BDMFT are much stronger: both the minimum and the
large Uf plateau are drastically reduced, going from
Ti ¼ 4.5 to Ti ¼ 5.1. As we show, this reduction is due
to a rapid condensate relaxation rate τ−1jϕjc emerging close to
the phase boundary [Fig. 7(g)].
The BDMFT real-time evolution in the three regimes

is shown in Fig. 7(c). For small Uf in regime (iii), jϕj
stabilizes at a finite value after an initial transient, even
though the thermal reference state is in the normal phase.
The intermediate regime (ii) shows fast thermalization with
a rapidly decaying condensate and damped collapse-and-
revival oscillations, in qualitative agreement with the
experimental results of Greiner et al. [8]. Interestingly,
for largerUf in regime (iii), the system is again trapped in a
nonthermal superfluid phase, now exhibiting coherent
amplitude oscillations with finite lifetime. Note that none
of these relaxation and thermalization effects are captured
by the Gutzwiller mean-field approximation, which pre-
dicts an oscillatory behavior [Fig. 7(d)].
While the minimum of ¯jϕjðt ¼ tmaxÞ indicates a cross-

over, the dynamical transition Udyn
c can be accurately

located by studying the condensate phase θðtÞ, where
ϕðtÞ ¼ jϕjðtÞeiθðtÞ. Its linear component ∂tθðtÞ ≈ ωθ exhib-
its a kink atUf ¼ Udyn

c , see Fig. 7(e), in direct analogy with
mean-field predictions where θ (mapped to a conjugate
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momentum p) also has a slope discontinuity at Udyn
c [34].

Similar to the fast thermalization region in the symmetric
phase, the double occupancy thermalizes rapidly for
Uf ≈ ðUdyn

c Þþ, as can be seen in Fig. 7(f) from the drastic
increase in the relaxation τ−1κ of

j1 − κj ∝ e−t=τκ ;

as Uf → ðUdyn
c Þþ.

To get a qualitative understanding of the condensate
amplitude jϕj relaxation dynamics, we fit the late time
evolution ðt > 1.3Þ to a damped two-component model,

jϕMjðtÞ ¼ Ajϕjce
−t=τjϕjc þ AjϕjAM cos2ðωtþ φÞe−t=τjϕjAM ;

with a nonoscillatory component (jϕjc) and a coherent
amplitude mode (jϕjAM), with relaxation τ−1jϕjc and damping

τ−1jϕjAM, respectively; see Figs. 7(f) and 7(g). The amplitude-

mode frequency ω has the same general behavior as ωθ (not
shown), and ω;ωθ → Uf in the large Uf limit. Analogous
to the rapid relaxation of the double occupancy, the
amplitude mode is strongly damped for Uf ≈ ðUdyn

c Þþ,
but it retains a finite lifetime τ−1jϕjAM > 0 for large Uf; see

Fig. 7(f). The relaxation of the nonoscillatory component
shows two distinct behaviors: For Uf < Udyn

c , the system is
trapped in a superfluid state and the condensate relaxation
is almost zero, τ−1jϕjc ≈ 0, while for Uf ≳ Udyn

c , it becomes

finite, reaching a maximum at intermediate Uf; see

Fig. 7(g). For large Uf and Ti ¼ 5.1, τ−1jϕjc stays finite

and the system eventually thermalizes to the Mott state,
while for Ti ¼ 4.5, τ−1jϕjc becomes small as Uf → ∞, which

means that the system is trapped for a very long time in a
superfluid state. The stability of the superfluid can be
understood in terms of a simple two-fluid model of
doublons and hard-core bosons [22]. In this picture, the
quench generates long-lived doublons and depletes the
hard-core boson gas away from unity filling, where it can
remain a superfluid for any local interaction [66]. This case
is particularly interesting as it opens up the possibility to
study the Higgs amplitude mode in a metastable superfluid.

4. Nonequilibrium phase diagram

We summarize the results for the long-time dynamics in
the nonequilibrium phase diagram shown in Fig. 8. By
repeating the analysis for Ui ¼ 6 and the series Ti ¼ 3.50,
4.00, 4.50, 5.10, and 5.25 of initial temperatures, we locate
the boundaries of the three dynamical regimes in the
equilibrium normal phase region, regime (i), the high-U
region characterized by a trapped superfluid and amplitude
mode (green), regime (ii), the crossover region with rapid
thermalization (red), and regime (iii), the trapped superfluid
in the vicinity of the equilibrium superfluid phase (blue).
While this nonequilibrium phase diagram depends on the
initial states and the quench protocol, it gives an over-
view of the different relaxation and trapping phenomena
and their location in parameter space. An experimental
verification of these different dynamical regimes of the

FIG. 7. (a) Interaction quenches from superfluid initial states with Ui ¼ 6, hn̂i ¼ 1, and initial temperatures Ti ¼ 4.5 (magenta) and
5.1 (yellow), close to Tc ≈ 5.49. (b) The window averages ¯jϕjðt ¼ tmaxÞ are suppressed in the crossover region (red shaded region).
(c) Typical time evolutions of jϕj (solid lines) and ¯jϕjðt ¼ tmaxÞ (dotted lines), for Ti ¼ 4.5, in the three regimes and (d) mean-field
results for the same parameters are also shown. (e) The phase frequency ωθ exhibits a kink (arrows) at the dynamical transition
Udyn

c ≈ 13.5 and 18.0 where (f) the double-occupancy relaxation τ−1κ is peaking and the damping of the amplitude mode τ−1jϕjAM is

maximal, while (g) the condensate amplitude relaxation τ−1jϕjc peaks after Udyn
c (arrows).
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Bose-Hubbard model would be very interesting and pre-
sumably possible.
In the one-dimensional Bose-Hubbard model, a similar

behavior has been theoretically observed using DMRG
[20], and for longer times using the time-dependent
variational Monte Carlo approach [25]. Quenches from
the zero-temperature superfluid display a region of thermal-
ization at intermediate final interactions and a trapping in
nonthermal states for long times at strong final couplings
[20]. At unity filling this behavior can be understood in
terms of a reduced effective scattering of holon and
doublon excitations at strong interactions [67]. Our results
from BDMFT indicate that this phenomenon is also
relevant in three dimensions (green region in Fig. 8).
However, we also identifiy a transient trapping at low
interactions (blue region in Fig. 8), which has not been
reported for 1D. It is an open question whether this feature
is specific to high-dimensional models. We also note that
while BDMFT allows us to compare nonequilibrium and
equilibrium states within the same formalism, the DMRG
studies involve comparisons between time-dependent cor-
relators and finite-temperature QMC results [20].

IV. CONCLUSIONS

We have developed the nonequilibrium BDMFT formal-
ism and its implementation in combination with a NCA-
type bosonic impurity solver. We have demonstrated its

ability to capture nontrivial dynamical effects in quenched
Bose-Hubbard systems, including dynamical transitions,
fast-thermalization crossovers, and trapped superfluid
phases with long-lived but damped amplitude oscillations.
These results have been collected into two nonequilibrium
phase diagrams (Figs. 4 and 8), which illustrate the
transitions and crossovers that occur as one varies the
quench parameters. Particularly noteworthy results are
the prediction of a very long-lived transient superfluid
state with an amplitude mode after quenches from the
superfluid phase into the Mott regime, our finding of a
trapped superfluid state after quenches into the vicinity of
the superfluid phase boundary, and the nonequilibrium
Bose condensation (growing condensate) after small
quenches within the superfluid phase.
The ability of BDMFT to describe hopping-induced

relaxation phenomena at finite temperature goes beyond all
current competing theoretical approaches. The Gutzwiller
mean-field formalism lacks all hopping-induced phenom-
ena [34,35], and the strong-coupling-based real-time
approach [29] is limited to zero temperature and slow
dynamics. The hopping perturbation expansion [28] looks
promising but has so far been applied only at zero temp-
erature. A comparative study with the finite-temperature
extension of this approach would be very interesting.
Extensions of the nonequilibrium BDMFT formalism

to multiflavor Hamiltonians [68,69] and inhomogeneous
systems (e.g., with a trapping potential) [70] should
enable direct comparisons with cold-atom experiments.
Multiorbital effects, such as virtual excitations to higher
orbitals, can trivially be included in BDMFT in terms of
effective three-body interactions [71]. While calculations
based on unitary-time evolution [72] suffice to understand
experiments [10] in the J → 0 limit, BDMFT can extend
the theoretical treatment to finite J.
An inhomogeneous extension of BDMFT will require a

more advanced parallelization scheme than that applied by
Dirks et al. [73] for the fermionic case, but it would enable
studies of very important phenomena, such as mass trans-
port and the effects of the trapping potential in general
cold-atom systems out of equilibrium. The big challenge in
these systems is the inherent disparity of the hopping and
mass transport time scales. Simpler approximations, such
as the hopping expansion, have successfully been applied
in this context [31], but without incorporating thermal and
retarded correlation effects.
In a broader perspective, it should be productive to apply

nonequilibrium BDMFT or variants of this formalism to
nonequilibrium Bose condensation in, e.g., polaritonic
systems and field theories [56,74,75].
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APPENDIX A: NONEQUILIBRIUM BOSONIC
DYNAMICAL MEAN-FIELD THEORY

The bosonic dynamical mean-field theory for the Bose-
Hubbard model in equilibrium was derived in Ref. [42] in
three alternative ways, using the kinetic energy functional,
an effective medium approach, and the quantum cavity
method, which is very similar to the cavity construction by
Snoek and Hofstetter [76]. Here, we follow the latter
approach, which combines the cavity construction with a
generating functional formalism and a cumulant expansion
to second order. By performing the derivation on the three-
branch Kadanoff-Baym contour C, we obtain the non-
equilibrium generalization of BDMFT. We also show that
BDMFT corresponds to the first-order correction in the
inverse coordination number 1=z, and the second-order
correction in the fluctuations, of the mean-field approxi-
mation for the Bose-Hubbard model.

1. Bose-Hubbard model

We consider the Bose-Hubbard model [Eq. (1)],

H ¼ −J
X
hi;ji

ðb†i bj þ b†jbiÞ þ
U
2

X
i

n̂iðn̂i − 1Þ − μ
X
i

n̂i;

on a lattice with nearest-neighbor hopping J and a local
pair interaction U, where n̂iðn̂i − 1Þ ¼ b†i b

†
i bibi is a pure

two-particle interaction counting the number of pairs on
site i, and hi; ji denotes the sum over all nearest-neighbor
pairs i and j. Using the Nambu-spinor notation b† ¼
ðb†; bÞ and collecting the local terms on site i into
Hi ¼ Un̂iðn̂i − 1Þ=2 − μn̂i, the Hamiltonian H can be
expressed as

H ¼
X
i

Hi − J
X
hi;ji

b†
ibj; ðA1Þ

where we use that bib
†
j ¼ b†jbi if i ≠ j. Note that in the

Nambu notation, b†
ibj is Hermitian, i.e.,

b†
ibj ¼ b†

jbi; for i ≠ j: ðA2Þ

2. Kadanoff-Baym and Nambu formalism

To treat an arbitrary time evolution starting from a
finite-temperature equilibrium state, we formulate the
theory on the three-branch Kadanoff-Baym contour C
(0 → tmax → 0 → −iβ) [38,46]. The partition function Z
of the initial state can be expressed as Z ¼ Tr½TCe−iS�,

where S is the action defined on the contour C,
S ¼ R

C dzHðzÞ, TC is the time-ordering operator on C,
and the trace Tr½·� runs over the Hilbert space of H. Time-
dependent operator expectation values can be expressed in
the trace formalism as

hÔðtÞiS ¼
1

Z
Tr½TCe−iSÔðtÞ�; ðA3Þ

and the single-particle Green’s function on the contour,
Gðt; t0Þ, is given by Gðt; t0Þ ¼ −ihbðtÞb†ðt0ÞiS. The Nambu
generalization of the single-particle Green’s func-
tion is a 2 × 2 matrix, which can be expressed in spinor
notation as

Gðt; t0Þ ¼ −ihbðtÞb†ðt0Þi: ðA4Þ

For a general introduction to the Kadanoff-Baym contour
formalism, see Ref. [46], and for a DMFT specific
introduction, see Ref. [38].

3. Real-time generating functional

To construct the generating functional on the contour C,
we introduce source fields ηi on each site i and the source
action

Sη ¼
Z
C
dtHηðtÞ; where Hη ¼

X
i

b†
iηi: ðA5Þ

Using Sη and the action S of the system

S ¼
Z
C
dt
X
i

HiðtÞ − J
Z
C
dt
X
hi;ji

b†
i ðtÞbjðtÞ; ðA6Þ

the generating functional Z½η� can be defined as

Z½η� ¼ Tr½TC expð−iSþ SηÞ�: ðA7Þ

It can be used to compute any connected response function
by taking derivatives with respect to the source fields:

∂n

∂η†α1…∂η†αn
lnZ½η�jη¼0 ¼ hbαn…bα1iðcÞS : ðA8Þ

4. Cavity construction

To derive a local effective action, we use the standard
cavity construction [77] and separate the Hamiltonian into
three parts,

H ¼ H0 þ ΔH þHð0Þ; ðA9Þ
whereH0 acts on the site i ¼ 0,ΔH connects the zeroth site
to its neighbors, and Hð0Þ is the lattice with a cavity at the
zeroth site, i.e.,
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H0 ¼ −μn̂0 þ
U
2
n̂0ðn̂0 − 1Þ; ðA10Þ

ΔH ¼ −J
X
h0;ii

b†
ib0; ðA11Þ

Hð0Þ ¼
X
i≠0

Hi − J
X
hi;ji
i;j≠0

b†
ibj; ðA12Þ

which in turn separates the action S into

S ¼ S0 þ ΔSþ Sð0Þ: ðA13Þ

Analogously, the source term can be decomposed into

Hη ¼ H0;η þHð0Þ
η ; ðA14Þ

according to the same protocol, with

H0;η ¼ b†
0η0; Hð0Þ

η ¼
X
i≠0

b†
iηi; ðA15Þ

which yields the corresponding terms of the source action

Sη ¼ S0;η þ Sð0Þη : ðA16Þ

Using this separation of the zeroth site’s degrees of
freedom, the generating functional can be written as

Z½η� ¼ Tr0½TCe−iS0þS0;ηZð0Þhe−iΔSþSð0Þη iSð0Þ �; ðA17Þ

where Tr0½·� denotes the trace over the Fock space of the
zeroth site. In this form, the generating functional can be
approximated and/or taken to, e.g., the infinite connectivity
limit, which results in different types of dynamical mean-
field theory approximations.

5. Cumulant expansion

We now perform a cumulant expansion [78] of the
expectation value he−iΔSþSð0Þη iSð0Þ in Eq. (A17). Formally,

this corresponds to expanding lnhe−iΔSþSð0Þη iSð0Þ in an
infinite sum of response functions with respect to Sð0Þ.
The initial logarithm ensures that the series enters in the
exponent, and for this reason, the procedure is often
referred to as “reexponentiation.”
Following Ref. [78], the cumulant expansion becomes

lnhexp½−iΔSþSð0Þη �iSð0Þ
¼ hexp½−iΔSþSð0Þη �−1iðcÞ

Sð0Þ

¼
X∞
n¼1

1

n!

Z
C
dt1…

Z
C
dtn

�Yn
k¼1

ð−iΔHðtkÞþHð0Þ
η ðtkÞÞ

�ðcÞ

Sð0Þ
:

In the derivation of the fermionic dynamical mean-field
effective action, the cumulant expansion terminates at
second order in the limit of infinite dimensions z → ∞
(using a J → J=

ffiffiffi
z

p
scaling of the hopping) [77]. This

yields the usual hybridization function term

lnhe−iΔSþSð0Þη iSð0Þ ¼ � � � ¼
Z Z

C
dtdt0b†ðtÞΔðt; t0Þbðt0Þ:

For bosons, however, anomalous contributions due to
symmetry breaking scale linearly with the coordination
number z, requiring a 1=z scaling of the hopping to obtain a
finite z → ∞ limit [41,42]. This procedure results in the
mean-field effective action [47], which does not include
quantum fluctuations of the noncondensed bosons. In order
to retain fluctuations, we therefore avoid taking the infinite
connectivity limit and instead truncate the cumulant
expansion at second order, which (as we show) yields
1=z corrections in the effective action [76].
We write the second-order approximation of the cumu-

lant expansion as

lnhexp½−iΔSþ Sð0Þη �iSð0Þ ≈ −iSð0Þeff þ Sð0Þeff;η; ðA18Þ

collecting the source-free terms in the effective action

Sð0Þeff ¼
Z
C
dthΔHðtÞiðcÞ

Sð0Þ
þ i
2

Z Z
C
dtdt0hΔHðtÞΔHðt0ÞiðcÞ

Sð0Þ
;

ðA19Þ

and the terms containing source fields η in the effective
source action

Sð0Þeff;η ¼
Z
C
dthHð0Þ

η ðtÞiðcÞ
Sð0Þ −

i
2

Z Z
C
dtdt0

× ½hΔHðtÞHð0Þ
η ðt0ÞiðcÞ

Sð0Þ þ hHð0Þ
η ðtÞΔHðt0ÞiðcÞ

Sð0Þ �

þ 1

2

Z Z
C
dtdt0hHð0Þ

η ðtÞHð0Þ
η ðt0ÞiðcÞ

Sð0Þ : ðA20Þ

Hence, by truncating the expansion at second order, we
obtain an effective action Seff and generating functional
Zeff ½η� according to

Z½η�
Zð0Þ ¼ Tr0½TCe−iS0þS0;ηhe−iΔSþSð0Þη iSð0Þ �

≈ Tr0½TC expð−iS0 − iSð0Þeff þ S0;η þ Sð0Þeff;ηÞ�
≡ Tr0½TC expð−iSeffÞ�
¼ Zeff ½η�: ðA21Þ

STRAND, ECKSTEIN, AND WERNER PHYS. REV. X 5, 011038 (2015)

011038-12



6. Explicit second-order form

To obtain the explicit form for the local effective action

Seff ¼ S0 þ Sð0Þeff þ iS0;η þ iSð0Þeff;η; ðA22Þ

we look into the details of the expansion giving the actions

Sð0Þeff and Sð0Þeff;η. At a later stage, we also make use of the
effective generating functional in order to arrive at the
contour generalization of the (self-consistent) BDMFT
effective action, previously derived for equilibrium in
Refs. [42,79].
The operators appearing in the expansion of Sð0Þeff and

Sð0Þeff;η [Eqs. (A19) and (A20)] are

ΔH ¼ −J
X
h0;ii

b†
ib0 ¼ −J

X
h0;ii

b†
0bi; ðA23Þ

Hð0Þ
η ¼

X
i≠0

b†
iηi ¼

X
i≠0

η†
ibi; ðA24Þ

where in the last steps we use the Hermitian property of
Nambu creation-annihilation operator products [Eq. (A2)].
Hence, the first-order expectation values take the form

hΔHðtÞiðcÞ
Sð0Þ

¼ −J
X
h0;ii

hb†
i ðtÞiðcÞSð0Þ

b0ðtÞ; ðA25Þ

hHð0Þ
η ðtÞiðcÞ

Sð0Þ ¼
X
i≠0

hb†
i ðtÞiðcÞSð0ÞηiðtÞ: ðA26Þ

The second-order terms can be obtained using the two
different ways of expressing the operators in Eqs. (A23)
and (A24) in order to arrive at Nambu response function

expressions as in Eq. (A4). The second-order term of Sð0Þeff in
Eq. (A19) reads

hΔHðtÞΔHðt0ÞiðcÞ
Sð0Þ

¼ b†
0ðtÞ

� X
h0;ii;h0;ji

JhbiðtÞb†
jðt0ÞiðcÞSð0ÞJ

�
b0ðt0Þ

¼ ib†
0ðtÞ

� X
h0;ii;h0;ji

JGð0Þ
ij ðt; t0ÞJ

�
b0ðt0Þ

¼ ib†
0ðtÞΔðt; t0Þb0ðt0Þ; ðA27Þ

where we introduce the connected single-particle Green’s

function Gð0Þ
ij ðt; t0Þ ¼ −ihbiðtÞb†

jðt0ÞiðcÞSð0Þ
of the lattice with

cavity and the total hybridization function Δ of the zeroth
lattice site

Δðt; t0Þ ¼
X

h0;ii;h0;ji
JGð0Þ

ij ðt; t0ÞJ: ðA28Þ

Hence, the source-free action Sð0Þeff can be written as

Sð0Þeff ¼ −J
Z
C
dt

X
h0;ii

hb†
i ðtÞiðcÞSð0Þb0ðtÞ

þ 1

2

Z Z
C
dtdt0 b†

0ðtÞΔðt; t0Þb0ðt0Þ: ðA29Þ

a. Local effective source action

Next, we consider the second-order terms of the effective
source action Sð0Þeff;η [Eq. (A20)]. In terms of Gð0Þ

ij ðt; t0Þ, the
quadratic source term reads

hHð0Þ
η ðtÞHð0Þ

η ðt0ÞiðcÞ
Sð0Þ ¼ i

X
i≠0;j≠0

η†
i ðtÞGð0Þ

ij ðt; t0Þηjðt0Þ;

ðA30Þ

and the first mixed term becomes

hΔHðtÞHð0Þ
η ðt0ÞiðcÞ

Sð0Þ
¼ −ib†

0ðtÞ
X

h0;ii;j≠0
JGð0Þ

ij ðt; t0Þηjðt0Þ:

ðA31Þ

By an interchange of integration variables, it is possible to
show that the other mixed term gives an equal contribution.
Collecting all of the terms, we arrive at the final

expression for the local effective source action:

Sð0Þeff;η ¼
Z
C
dt

X
i≠0

hb†
i ðtÞiðcÞSð0Þ

ηiðtÞ

þ i
2

Z Z
C
dtdt0

X
i≠0;j≠0

η†
i ðtÞGð0Þ

ij ðt; t0Þηjðt0Þ

−
Z Z

C
dtdt0 b†

0ðtÞ
X

h0;ii;j≠0
JGð0Þ

ij ðt; t0Þηjðt0Þ. ðA32Þ

7. Local anomalous term

We see in Eq. (A29) that the symmetry breaking of the
infinite lattice system induces a local symmetry-breaking
term on the zeroth lattice site. The strength of the
symmetry-breaking field is, however, determined by the
anomalous expectation values hb†

i ðzÞiðcÞSð0Þ on all sites i
neighboring the cavity.
For finite coordination numbers z, the removal of the

cavity site affects the neighboring sites; hence, this expect-
ation value is not equal to that of the original homogeneous
system [76],

hb†
i ðtÞiðcÞSð0Þ ≠ hb†

i ðtÞiðcÞS ≈ hb†
i ðtÞiðcÞSeff

: ðA33Þ
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To determine the difference between hb†
i ðtÞiðcÞSð0Þ

and

hb†
i ðtÞiðcÞSeff

, we calculate the latter using the effective
generating functional Zeff and the Nambu generalization
of Eq. (A8):

hb†
i ðtÞiðcÞSeff

¼ ∂
∂ηiðtÞ

lnZeff ½η�jη¼0

¼ hb†
i ðtÞiðcÞSð0Þ

−
Z
C
dt0hb†

0ðt0ÞiðcÞSeff

X
h0;ji

JGð0Þ
ji ðt0; tÞ:

ðA34Þ

Thus, the local anomalous term of Sð0Þeff in Eq. (A29) can be
rewritten, using only expectation values with respect to
Seff , as

− J
Z
C
dt
X
h0;ii

hb†
i ðtÞiðcÞSð0Þb0ðtÞ ¼−J

Z
C
dt
X
h0;ii

�
hb†

i ðtÞiðcÞSeff

þ
Z
C
dt0hb†

0ðt0ÞiðcÞSeff

X
h0;ji

JGð0Þ
ji ðt0; tÞ

�
b0ðtÞ

¼
Z
C
dt

�
−zJΦ†

0ðtÞ−
Z
C
dt0Φ†

0ðt0ÞΔðt0; tÞ
�
b0ðtÞ; ðA35Þ

where in the last step we have introduced the local

anomalous amplitude Φ†
0ðtÞ ¼ hb†

0ðtÞiðcÞSeff
and assumed

translational invariance hb†
0ðtÞiðcÞSeff

¼ hb†
i ðtÞiðcÞSeff

.

8. Local effective action

Substituting Eqs. (A29) and (A32) into Eq. (A22),
rewriting the local symmetry breaking using Eq. (A35),
and setting the sources to zero (η ¼ 0), we obtain the
BDMFT local effective action for the Bose-Hubbard
model,

Seff ¼
Z
C
dt

�
−μn̂ðtÞ þU

2
n̂ðtÞ(n̂ðtÞ − 1)

�

þ
Z
C
dt

�
−zJΦ†ðtÞ −

Z
C
dt0 Φ†ðt0ÞΔðt0; tÞ

�
bðtÞ

þ 1

2

Z Z
C
dtdt0 b†ðtÞΔðt; t0Þbðt0Þ; ðA36Þ

where we drop site indices and the complex field Φ†ðtÞ is
self-consistently defined as Φ†ðtÞ ¼ hb†ðtÞiSeff .

a. Equilibrium form

On the imaginary time branch the field is constant
Φ†ðτÞ ¼ Φ†, the hybridization function is time-
translational invariant Δðτ; τ0Þ ¼ Δðτ − τ0Þ, and the action
simplifies to

Seff ¼
Z

β

0

dτ

�
−μn̂ðτÞ þU

2
n̂ðτÞ(n̂ðτÞ − 1)

�

þΦ†
�
−zJ −

Z
β

0

dτ̄Δðτ̄Þ
� Z

β

0

dτ bðτÞ

þ 1

2

ZZ
β

0

dτdτ0 b†ðτÞΔðτ − τ0Þbðτ0Þ; ðA37Þ

in agreement with Refs. [42,79], up to a minus sign on the
hybridization function due to a different notation.

9. One-loop correction in 1=z

To see that the BDMFT effective action in Eq. (A36) is a
one-loop correction in the inverse coordination number
1=z, one must study the scaling of its terms. The only
nontrivial contribution comes from the hybridization func-

tion Δ ¼ J2
P

h0;ii;h0;jiG
ð0Þ
ij [Eq. (A28)]. On a graph without

loops, such as the Bethe graph, the sum over nearest

neighbors contains no cross terms Gð0Þ
ij ¼ δijG

ð0Þ
ii , and the

sum simplifies to

Δðt; t0Þ ¼ zJ2Gð0Þ
ii ðt; t0Þ: ðA38Þ

On more general lattices, the power counting in z gives the
same leading-order result, but is more elaborate [77].
Substituting this result into Eq. (A36) and making a

J → J=z rescaling of the hopping gives the rescaled action

~Seff ¼
Z
C
dt

�
−μn̂ðtÞ þU

2
n̂ðtÞ(n̂ðtÞ − 1)

�

þ
Z
C
dt

�
−JΦ†ðtÞ − J2

z

Z
C
dt0 Φ†ðt0ÞGð0Þ

ii ðt0; tÞ
�
bðtÞ

þ J2

2z

Z Z
C
dtdt0 b†ðtÞGð0Þ

ii ðt; t0Þbðt0Þ; ðA39Þ

which makes it evident that the terms containing Gð0Þ
ii , i.e.,

the hybridization terms in the BDMFT effective action
[Eq. (A36)], correspond to a 1=z correction of the mean-
field action (obtained by setting Δ ¼ 0).

10. Second-order fluctuation expansion

While BDMFT can bee seen as a one-loop expansion in
the inverse coordination number, it is also a second-order
expansion in the condensate fluctuations, as discussed in
Ref. [42]. This can be made explicit by rewriting the terms
containing the hybridization in the effective action using
the fluctuation operators δb, defined as δb≡ b −Φ, with
hδbi ¼ 0. Inserting these in Eq. (A36) yields
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Seff ¼
Z
C
dt

�
−μn̂ðtÞ þU

2
n̂ðtÞ(n̂ðtÞ − 1) − zJΦ†ðtÞbðtÞ

�

þ 1

2

Z Z
C
dtdt0δb†ðtÞΔðt; t0Þδbðt0Þ; ðA40Þ

where the hybridization term is the exact second-order
contribution of the fluctuations. Hence, BDMFT correctly
describes the deep superfluid where fluctuations are sup-
pressed, i.e., the weakly interacting Bose gas limit [80].

APPENDIX B: NAMBU GENERALIZATION OF
THE NONCROSSING APPROXIMATION

The solution of impurity actions without symmetry
breaking by means of self-consistent strong-coupling
perturbation theory, i.e., the noncrossing approximation
and its higher-order generalizations, has been discussed in
detail in Ref. [49]. To apply this method to the BDMFT
action in Eq. (2), we have to extend the NCA formalism to
Nambu spinors and symmetry-broken states. The diagram-
matics of Ref. [49] needs to be modified on the operator
and hybridization function level. While the pseudoparticle
propagators ĜΓΓ0 ðt; t0Þ still only carry local many-body
state indices Γ and Γ0 (corresponding to the occupation
number states jΓi and jΓ0i), the hybridization function
Δγνðt; t0Þ now carries two Nambu indices γ and ν. We
represent the propagators with directed solid and dashed
lines according to

where t and t0 are times on the contour C.
Because of the Nambu indices of Δ, the vertices of the

theory must also be equipped with a Nambu index γ, in
combination with a contour time t and in-and-out-going
many-body state indices Γ0 and Γ, respectively. The matrix
elements can be graphically represented as

where the direction of the hybridization line determines
the operator of the vertex. A hybridization line entering a
vertex creates a “Nambu particle” by insertion of b†

γ giving
the matrix element hΓjb†

γ jΓ0i, and an interaction line
leaving the vertex annihilates a Nambu particle through
bγ giving hΓjbγjΓ0i. In the following, we use the operator
symbols b†

γ and bγ to represent these matrix elements as

they act in the same Fock space as the pseudoparticle
propagator Ĝ and the pseudoparticle self-energy Σ̂.

1. Pseudoparticle self-energy

Following the diagram rules of Ref. [49], the pseudo-
particle self-energy Σ̂ at first order in Δ, corresponding to
the NCA, takes the form of shell diagrams,

where ξ ¼ �1 for bosons and fermions, respectively. Using
the Nambu generalization of propagators and vertices gives
the contour expression for the first diagram with a forward
propagating hybridization line according to

(B1)

with implicit matrix multiplications in the many-body state
indices Λ and Λ0. The second diagram is constructed
analogously:

(B2)

Suppressing many-body state indices in these diagrams
yields Fig. 1(a) in Sec. II B. Collecting all terms, we
obtain

Σ̂ðt; t0Þ ¼ i
2

X
γν

Δγνðt; t0Þ½b†
γðtÞĜðt; t0Þbνðt0Þ�

þ ξ
i
2

X
γν

Δνγðt0; tÞ½bγðtÞĜðt; t0Þb†
νðt0Þ�;

which corresponds to Eq. (4) in Sec. II B.
To perform actual calculations, we work with a subset

of Keldysh components [38], namely, the imaginary-time
Matsubara component Σ̂MðτÞ, the real-time greater compo-
nent Σ̂>ðt; t0Þ, the real-time lesser component Σ̂<ðt; t0Þ, and
the right-mixing component Σ̂⌝ðt; τ0Þ. These components
can be derived from the general contour expression for Σ̂
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using the Langreth product rules [46,81]. This is because the
pseudoparticle self-energy Σ̂ is given by contour time
products of the hybridization function Δ and the pseudo-
particle propagator Ĝ, Σ̂ ∝ ΔĜ. Note that the two contri-
butions Σ̂ð1Þ and Σ̂ð2Þ [Eqs. (B1) and (B1)] must be treated
differently as the order of the time arguments in Δ differs.

2. Single-particle Green’s function

The NCA approximation for the single-particle Green’s
function is given by the pseudoparticle bubble equipped
with two vertices [49]. The Nambu generalization amounts
to adding Nambu indices to the vertices and gives the
nonconnected Green’s function as

(B3)

where the hybridization line stubs denote the insertion of a
Nambu creation or annihilation operator, and the trace
corresponds to the summation over the Γ0 many-body state
index. To obtain the connected Green’s functionG from ~G,
the symmetry-broken contribution must be removed, i.e.,
Gðt; t0Þ ¼ ~Gðt; t0Þ þ iΦðtÞΦ†ðt0Þ, which corresponds to
Eq. (5) and Fig. 1(b) in Sec. II B.
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