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Population inversion in two-level systems possessing permanent dipoles
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Bare-state population inversion is demonstrated in a two-level system with all dipole matrix
elements nonzero. A laser field is resonantly driving the sample whereas a second weaker and lower
frequency coherent field additionally pumps it near resonance with the dynamically-Stark-splitted
states. Due to existence of differing permanent dipole moments in the excited and ground bare
states, quantum coherences among the involved dressed-states are induced leading to inversion in
the steady-state. Furthermore, large refractive indices are feasible as well as the determination of
the diagonal matrix elements via the absorption or emission spectra. The results apply to available
biomolecular, spin or asymmetric quantum dot systems.

PACS numbers: 42.50.Nn, 87.15.-v, 78.67.Hc,76.30.-v

I. INTRODUCTION

Population inversion in a few-energy-level quantum
system is strongly linked with its optical response and
has resulted in traditional masing or lasing effects be-
ing successfully demonstrated [1–3]. Subsequently, enor-
mous economical and technological progress was trig-
gered due to quantum electronics. However at present,
atomic steady-state population inversion is achievable es-
sentially only in pumped two-level atomic systems involv-
ing efforts via extra transitions with additional photon
sources or environmental vacuum modifications [4]. Ad-
ditionally, two-level quantum dot systems may also ex-
hibit population inversion due to extra phonon induced
decay rates [5]. Meanwhile, lasing without population
inversion operates as well with the help of induced quan-
tum coherences [6]. Moreover, free-electron laser sources
involving inversions of momentum states exist at higher
frequencies leading to original effects [7].

Over the past decade a range of experiments were per-
formed demonstrating quantum effects in biological sam-
ples [8]. Particularly, energy transfer through quantum
coherence in photosynthetic systems [9] was observed in
[10, 11], while long-living quantum coherences survive
in biological complexes even under normal conditions at
room temperature [12]. Quantum coherence and entan-
glement in the processes of magneto-reception of the sur-
rounding magnetic field [13, 14] were examined, too [15].
The single molecule fluorescence spectroscopy and the
emitted photon quantum statistics are further excellent
tools for research in quantum biology [16, 17]. Further-
more, coherent control of an effective two-level system in
a non-Markovian biomolecular environment was investi-
gated [18]. Additional quantum effects in biochemical
systems are discussed, for instance, in [19]. An impor-
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tant issue raised in this context is to image tiny objects,
such as biological cells or organic molecules and, there-
fore, highly refractive biological media are required [20].
Inspired by these remarkable advances in quantum bio-

chemistry, here, we put forward a novel scheme that en-
ables the creation of population inversion in certain bio-
logical samples acting as two-level systems with all possi-
ble dipole matrix elements being nonzero. The effect oc-
curs due to induced quantum coherences which arise from
the difference of the permanent dipole moments in the ex-
cited and ground states, respectively. This may allow for
lasing or amplifying as well as optical switching devises in
biomolecular materials. Large index of refractions with-
out absorption are also feasible which may lead to an
enhanced optical imaging resolution of the biomolecular
sample due to a reduced probe-field wavelength inside the
medium. Both the absorption or emission spectra can be
used to extract the values of permanent dipoles.
The article is organized as follows. In Sec. II we de-

scribe the analytical approach and the system of interest,
whereas in Sec. III we analyze the obtained results. A
summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

We consider a two-level system possessing permanent
dipoles and interacting with two external coherent laser
fields. The first laser is near resonance with the tran-
sition frequency of the two-level sample while the sec-
ond one is close to resonance with the dressed-frequency
splitting due to the first laser, respectively (see Figure
1). As a concrete system, we may consider gamma-
globulin macromolecules [19, 21] with the transition fre-
quency ω21 ≈ 4.8 × 1015Hz, transition dipole moment
d ≈ 1Debye and the difference between the diagonal
dipole moments in the upper and lower bare states given
by |d22 − d11| ≈ 100Debye. However, the analytical for-
malism applies equally to spin [22], asymmetric semicon-
ductor quantum dot [23] or other alternative [24] systems
promising wider applications. The Hamiltonian describ-
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FIG. 1: Energy diagram of a two-level emitter with nonzero
values of all involved dipole matrix elements dαβ , {α, β =
1, 2}. (a) A moderately intense laser field of frequency ωL

resonantly interacts with the molecular sample leading to dy-
namically Stark splitting of its energy levels. (b) A second
coherent source of frequency ω, close to generalized Rabi fre-
quency due to first laser, is applied leading to transitions
among the dressed-states. (c) The ”double dressed-states”
with 2ḠR being the corresponding Rabi splitting frequency.

ing such a model, in a frame rotating at the first laser
frequency ωL, and in the dipole approximation is:

H =
∑

k

~(ωk − ωL)a
†
kak + ~∆Sz + ~Ω(S+ + S−)

+ ~GSz cos (ωt) + i
∑

k

(~gk · ~d)(a†kS− − akS
+). (1)

In the Hamiltonian (1) the first three components are, re-
spectively, the free energies of the environmental electro-
magnetic vacuum modes and molecular subsystems to-
gether with the laser-molecule interaction Hamiltonian.
There, Ω = dE1/(2~) is the corresponding Rabi fre-
quency with d ≡ d21 = d12 being the transition dipole
moment while E1 is the amplitude of the first laser field.
The fourth term accounts for the second laser interacting
at frequency ω and amplitude E2 with the molecular sys-
tem due to presence of permanent dipoles incorporated in
G, i.e., G = (d22−d11)E2/~. The last term describes the
interaction of the molecular subsystem with the environ-
mental vacuum modes of the electromagnetic field reser-
voir. Further, ~g =

√

2π~ωk/V ~eλ is the molecule-vacuum
coupling strength with ~eλ being the photon polarization
vector and λ ∈ {1, 2} whereas V is the quantization vol-
ume. ∆ = ω21 − ωL is the laser field detuning from the
molecular transition frequency ω21. The molecule bare-
state operators S+ = |2〉〈1| and S− = [S+]† obey the
commutation relations [S+, S−] = 2Sz and [Sz, S

±] =
±S±. Here, Sz = (|2〉〈2| − |1〉〈1|)/2 is the bare-state
inversion operator. |2〉 and |1〉 are, respectively, the

excited and ground state of the molecule while a†k and
ak are the creation and the annihilation operator of the
kth electromagnetic field mode, and satisfy the standard

bosonic commutation relations, namely, [ak, a
†

k
′ ] = δkk′ ,

and [ak, ak′ ] = [a†k, a
†

k
′ ] = 0 [25–28]. Notice that the

Hamiltonian (1) is incomplete. The following term

H̃ = ~Ω̃S+eiωLt cos (ωt) + ~G̃Sz cos (ωLt)/2 +H.c., (2)

will not be taken into account. Here, the first term de-
scribes the interaction of the second laser with the molec-
ular system due to the transition dipole d, while the sec-
ond one represents the interaction of the first laser with
the molecule because of permanent dipoles and, hence,
Ω̃ = dE2/~ whereas G̃ = (d22 − d11)E1/~. Since we as-

sume realistic conditions that Ω̃ ≪ ωL±ω [27, 28] as well

as {G̃, ω} ≪ ωL the Hamiltonian (2) can be considered
as fast oscillating and, therefore, neglectable.
In the following, we shall consider a regime where the

generalized Rabi frequency Ω̄ =
√

Ω2 + (∆/2)2 is larger
than the single-molecule spontaneous decay rate as well
as the coupling due to permanent dipoles, i.e. Ω̄ ≫ γ and
Ω̄ > G. In this case it is more convenient to describe our
system in the semi-classical laser-molecule dressed-state
picture due to the first applied laser:

|2〉 = cos θ|2̄〉 − sin θ|1̄〉 and |1〉 = cos θ|1̄〉+ sin θ|2̄〉, (3)

with tan 2θ = 2Ω/∆. Here |2̄〉 and |1̄〉 are the correspond-
ing upper and lower dressed states, respectively (see Fig-
ure 1b). Applying the dressed-state transformation to
the Hamiltonian (1) one arrives at the following Hamil-
tonian represented in a frame rotating also at the second
laser field frequency, i.e. ω,

H =
∑

k

~(ωk − ωL)a
†
kak + ~∆̄Rz − ~Ḡ(R+ +R−)

+ i
∑

k

(~gk · ~d){a†k(sin 2θRz/2 + cos2 θR−e−iωt

− sin2 θR+eiωt)−H.c.}, (4)

where ∆̄ = Ω̄ − ω(1 − Ḡ2/ω2)/2 ≡ Ω̄ − ω/2 and Ḡ =
(G/4) sin 2θ, and we have performed the rotating wave
approximation with respect to ω, i.e., we have assumed
that ω ≫ Ḡ. Eliminating the vacuum modes of the elec-
tromagnetic field reservoir in the usual way by adopt-
ing the Born-Markov approximations [25–28] one arrives
then at the following dressed-state master equation:

ρ̇(t) + i[∆̄Rz − Ḡ(R+ +R−), ρ] = − γ0

4 sin2 2θ[Rz, Rzρ]

−γ+ cos4 θ[R+, R−ρ]− γ− sin4 θ[R−, R+ρ] +H.c. (5)

Here γ0,± are the single-qubit spontaneous decay rates
corresponding to dressed-state frequencies ωL and ωL ±
2Ω̄, respectively. The new quasi-spin operators, i.e.,
R+ = |2̄〉〈1̄|, R− = [R+]† and Rz = |2̄〉〈2̄| − |1̄〉〈1̄| are
operating in the dressed-state picture. They obey the
following commutation relations: [R+, R−] = Rz and
[Rz, R

±] = ±2R±. Notice that in the above master equa-
tion, we have neglected the rapidly oscillating terms in
the spontaneous emission part - an approximation valid
when {Ω̄, ω} ≫ {γ0, γ±}.
In the following section, we will discuss our results, i.e.,

the possibility to create bare-state population inversion
as well as high refractive media.
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FIG. 2: (color online) The steady-state dependence of the
bare-state inversion operator 〈Sz〉/N versus the scaled param-
eter ∆/(2Ω). The solid line is plotted for G/γ = 0, the long-
dashed one is for G/γ = 16 while the short-dashed curve cor-
responds to G/γ = 24. Other parameters are: Ω/(Nγ) = 45
and ω/(Nγ) = 100 with γ ≈ 2.6MHz as feasible for gamma-
globulin. (a) N = 1 whereas (b) N = 50 while molecules are
dense enough to allow for collectivity.

III. RESULTS AND DISCUSSION

One can observe from Eq. (5) that permanent dipoles
lead to the appearance of a pumping term among the
dressed states. This term contributes to a completely un-
expected behavior of the two-level system. In particular,
as we shall see, it can induce pumping the system into an
inverted state. The system of equations for the dressed-
state inversion and dressed-state polarization operators
can be obtained from the master equation (5), namely,

〈Ṙz〉 = −2iḠ(〈R−〉 − 〈R+〉)− 2Γ+〈Rz〉+ 2Γ−,

〈Ṙ+〉 = (2i∆̄− Γ)〈R+〉+ iḠ〈Rz〉, (6)

with 〈R−〉 = [〈R+〉]†. Here, Γ±=γ(sin4 θ ± cos4 θ), Γ =
Γ+ + γ sin2 2θ and we have considered that γ0 = γ± ≡
γ which is the case for a free-space setup. The mean-
value of the bare-state inversion operator 〈Sz〉 can be
represented via dressed-state operators as follows:

〈Sz〉 = cos 2θ〈Rz〉/2− sin 2θ(〈R+〉+ 〈R−〉)/2. (7)

From the system of equations (6) one immediately ob-
tains the steady-state relations:

〈R+〉 = iḠ〈Rz〉/(Γ− 2i∆̄) and 〈R−〉 = [〈R+〉]†. (8)

Inserting (8) in Eq. (7) one arrives at:

〈Sz〉 =
(

cos 2θ + 4∆̄Ḡ sin 2θ/[Γ2 + (2∆̄)2]
)

〈Rz〉/2, (9)

where, again, from Eqs. (6) one has that:

〈Rz〉 = 2Γ−/[2Γ+ + (2Ḡ)2Γ/(Γ2 + (2∆̄)2)]. (10)

An interesting result here is the non-zero value for the
dressed-state coherences 〈R±〉, see Eq. (8). In the ab-
sence of permanent dipoles, i.e. G = 0, these quantities
are zero in the moderately intense pumping regime con-
sidered here. Therefore, new physics is expected due to
existence of permanent dipoles in bichromatic pumping

fields. In particular, Figure 2(a) shows the mean-value of
the single-molecule bare-state inversion operator for par-
ticular parameters of interest. Steady-state inversion in
the bare states is achieved when 〈Sz〉 > 0 and it occurs in
the presence of permanent dipoles. On the other hand,
Figure 3(a) depicts the real part of the mean-value of the
dressed-state coherence operator 〈R+〉 in steady-state.
The minima observed in these behaviors correspond to
an inverted molecular bare-state system (compare Fig. 2a
and Fig. 3a). Thus, inversion occurs due to the real part
of the dressed-state coherences which can be nonzero in
our system.
One can apply the double dressed-state formalism (see

Figure 1) in order to obtain further information on our
system, namely,

|2̄〉 = cosφ|2̃〉+ sinφ|1̃〉, |1̄〉 = cosφ|1̃〉 − sinφ|2̃〉. (11)

This approach is particularly useful to account for vac-
uum induced collective effects among the emitters and
their corresponding influences on molecular dynamics.
Introducing (11) in the Hamiltonian (4) and, again, elim-
inating the degrees of freedom related with the environ-
mental vacuum modes in the Born-Markov approxima-
tions one arrives at the double dressed master equation:

ρ̇(t) + iḠR[R̃z , ρ] = −Γ̄0[R̃z, R̃zρ]− Γ̄+[R̃
+, R̃−ρ]

− Γ̄−[R̃
−, R̃+ρ] +H.c. (12)

Here, Γ̄0 = γ(ωL) sin
2 2θ cos2 2φ/4 + sin2 2φ{γ(ωL +

ω) cos4 θ + γ(ωL − ω) sin4 θ}/4, Γ̄+ = γ(ωL +
2ḠR) sin

2 2φ sin2 2θ/4 + γ(ωL + ω + 2ḠR) cos
4 φ cos4 θ +

γ(ωL − ω + 2ḠR) sin
4 θ sin4 φ and Γ̄− = γ(ωL −

2ḠR) sin
2 2φ sin2 2θ/4 + γ(ωL + ω − 2ḠR) cos

4 θ sin4 φ +
γ(ωL − ω − 2ḠR) sin

4 θ cos4 φ with cot 2φ = ∆̄/Ḡ, and

ḠR =
√
∆̄2 + Ḡ2. The new operators, i.e., R̃+ =

|2̃〉〈1̃|, R̃− = [R̃+]† and R̃z = |2̃〉〈2̃| − |1̃〉〈1̃| are op-
erating in the double dressed-state picture obeying the
following commutation relations: [R̃+, R̃−] = R̃z and

[R̃z, R̃
±] = ±2R̃±. The master equation (12) contains

only slowly varying terms in the spontaneous emission
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FIG. 3: (color online) The single-molecule steady-state behav-
iors of (a) the real part of the dressed-state coherences 〈R+〉

and (b) the double dressed-state inversion operator 〈R̃z〉 ver-
sus the scaled detuning ∆/(2Ω). The solid line is plotted for
G/γ = 16 while the dashed curve corresponds to G/γ = 24.
Here Ω/γ = 45 and ω/γ = 100.
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damping, that is, we have assumed that ḠR ≫ γ(ω̃), with
γ(ω̃) = 2d2ω̃3/(3~c3) being the single-molecule sponta-
neous decay rate corresponding to the double dressed-
state frequency ω̃ (see Figure 1).
The steady-state solution of Eq. (12) can be chosen in

the form:

ρ = Z−1 exp [−ηR̃z], (13)

where the normalization Z is determined from the re-
lation Tr{ρ} = 1. Inserting (13) into (12) one obtains
η = ln(Γ̄+/Γ̄−)/2. Using the relations (7) and (11) we
arrive at the following expression for the mean value of
the bare-state inversion operator 〈Sz〉 represented via

the double dressed-state inversion operator 〈R̃z〉, respec-
tively,

〈Sz〉 = cos [2(θ − φ)]〈R̃z〉/2. (14)

The steady-state expression for the double dressed-state
inversion operator can be obtained with the help of
Eq. (13) and the coherent molecular state |s〉 ≡ |N−s, s〉
which denotes a symmetrized N−molecule state in which
N − s molecules are in the lower double dressed-state |1̃〉
and s molecules are excited to the upper double dressed-
state |2̃〉, respectively [27]. Thus,

〈R̃z〉 = −N +
(x1+N − 1)− (1 +N)(x− 1)

2−1(x− 1)(x1+N − 1)
, (15)

where x = Γ̄+/Γ̄−. In this case the molecular system
has to occupy a volume with linear dimensions of the or-
der of the smallest relevant emission wavelength or less.
However, this restriction may be relaxed for certain ge-
ometries [25–28]. The molecular operators entering in

Eqs. (12-15) are then collective ones, i.e. R̃± =
∑N

j=1 R̃
±
j

as well as R̃z =
∑N

j=1 R̃zj . Figure 2(b) shows the

bare-state inversion operator 〈Sz〉/N , based on the ex-
pressions (14) and (15), for a collection of N = 50
molecules in a volume (2πc/ω21)

3 or a molecular den-
sity N̄ ≈ 7.8 × 1014cm−3. Almost full inversion in

HaL

-100 0 100

0.02

0

-0.02

-50 50

Dp�Γ

S
us

ce
pt

ib
il

it
y HbL

-100 0 100

0.02

0

-0.02

-50 50

Dp�Γ

FIG. 4: (color online) The steady-state dependence of the
linear susceptibility χ(νp) [in units of N̄d2/(~γ)] versus scaled
detuning ∆p/γ. The solid black curve corresponds to the
imaginary part (absorption spectrum) while the long-dashed
blue line to the real part of the susceptibility, respectively.
(a) ∆/(2Ω) = 0.43 whereas (b) ∆/(2Ω) = −0.43. Other
parameters are: Ω/γ = 45, ω/γ = 100, G/γ = 16.

the steady-state is achieved when we consider that the
double-dressed decay rates γ(ω̃) are equal and denoted
by γ. Furthermore, abrupt population behaviors are ob-
served as well which may be used for engineering opti-
cal switching devices with switching times of the order
of (Nγ)−1. Note that the mean values of non-diagonal
terms resulting from Eq. (12) are zero in the steady-state.
We proceed by calculating the refractive properties of

a very weak field probing the strongly driven molecular
sample around the first laser’s frequency ωL. The lin-
ear susceptibility χ(ν) of the probe field, at frequency
ν, can be represented in terms of the Fourier transform
of the average value of the two-time commutator of the
molecular operator as

χ(ν) =
i

~
N̄d2

∫ ∞

0

dτei(ν−ωL)τ 〈[S−(τ), S+]〉s. (16)

Note that the subindex s means steady-state. Inserting
the dressed-state transformations (3) and (11) in (16),
in a frame rotating also at the second laser’s frequency
ω, and using the master equation (12) one arrives at the
following expression for the susceptibility, namely,

χ(ν) =
i

~
N̄d2〈R̃z〉

{1

4
sin2 2θ sin2 2φ

(

χ1(∆p, 2ḠR)

− χ1(∆p,−2ḠR)
)

+ cos4 θ
(

sin4 φχ2(∆p, 2ḠR,−ω)

− cos4 φχ2(∆p,−2ḠR,−ω)
)

+ sin4 θ
(

cos4 φ

× χ3(∆p, 2ḠR, ω)− sin4 φχ3(∆p,−2ḠR, ω)
)}

, (17)

where χ1(∆p, x) = (Γ̄s + i(∆p + x))/[Γ̄2
s + (∆p + x)2],

χ2(∆p, x,−y) = (Γ̄s+ i(∆p+x−y))/[Γ̄2
s+(∆p+x−y)2]

and χ3(∆p, x, y) = (Γ̄s+i(∆p+x+y))/[Γ̄2
s+(∆p+x+y)2]

whereas ∆p = ν − ωL while Γ̄s = 4Γ̄0 + Γ̄+ + Γ̄−. Fig-
ure (4) shows the steady-state behavior of the linear sus-
ceptibility when the molecular sample is probed with a
weak coherent field of frequency ν. Both, positive or
negative dispersions without absorption are clearly vis-
ible around ∆p/γ = 0 which may lead to enhanced or
reduced refractive indices applicable for optical imaging,
lithography or negative refraction processes in dense me-
dia [29]. In particular, the index of refraction close to

vanishing absorption n(ν) ≈
√

1 + χ′ takes values n > 2
for N̄ = 1017cm−3 and ∆/(2Ω) = −0.43. These depen-
dences for the susceptibility χ(ν) are easily understood
in the double dressed-state picture (see Fig. 1c). Partic-
ularly, for ∆/(2Ω) = 0.43 there are more molecules in

the upper double dressed state |2̃〉, i.e. 〈R̃z〉 > 0 (see
Fig. 3b). As a consequence, at frequency ωL + ω + 2ḠR

one has gain while at frequency ωL − ω − 2ḠR we have
absorption, see the lateral dip/peak in Figure (4a). Sim-
ilarly one can explain the whole structure shown in Fig-
ure 4(a,b). An interesting issue here is the structure at
ωL± 2ḠR which may help to extract the value of perma-
nent dipoles, i.e. |d22 − d11|. If one inspects the absorp-
tion spectrum shown in Fig. 4 then the frequency sepa-
ration between the first maximum and minimum around
∆p = 0 is equal to 4ḠR. ḠR involves the difference of
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permanent dipoles |d22−d11|. This, in principle, allows to
determine |d22 − d11| if all other involved parameters are
known. Finally, the elastic photon scattering spectrum
consists of three lines at {ωL, ωL ± ω}. The inelastic one
may contain up to nine spectral lines in strict concor-
dance with the double dressed-state formalism schemat-
ically shown in Fig. (1c). Suppression of a spectral line
at the frequency of the strongly driving laser also oc-
curs [30]. As well, the emission spectrum permits de-
termination of the diagonal dipole matrix elements (see
also Ref. [31]). The magnitudes of permanent dipoles are
required for e.g. interpretation of biological images as
well as for biological high-harmonic or ultrashort pulse
generation processes via laser pumped media possessing
permanent dipoles [32] (see also [33]).

IV. SUMMARY

Summarizing, we have investigated the steady-state
quantum dynamics of laser pumped two-level molecu-
lar samples with broken inversion symmetry. We have
demonstrated population inversion in the bare states due

to induced coherences which in turn depend on the mag-
nitude of permanent dipoles. Vacuum mediated collec-
tive effects among the two-level emitters considerably en-
hance the molecular inversion. The values of the perma-
nent dipoles can be inferred from the emission or ab-
sorption spectra. Furthermore, the investigated system
exhibits large positive or negative dispersion without ab-
sorption facilitating applications including optical imag-
ing, lithography and negative indices of refraction. The
results apply especially to biomolecular, spin or asym-
metrical quantum dot systems.
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