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Details on solid-state NMR acquisition parameters:

CP contact times of 2.5ms, 400pus, and 9ms and effective fields of
18.3 kHz/44.8 kHz (80-100 % ramp on 13C), 18.8 kHz/41.3 kHz (80-100 % ramp on
15N), and 43.6 kHz/16.4 kHz (80-100 % ramp on 13C) were used for 1HN/13C, 1HN/15N,
and 13C/15N transfers, respectively. 13CO/13CA transfers were achieved by the HORROR
condition with a 9 ms spin lock on CA at an effective field of 25.2 kHz. Decoupling fields
were set to 2.9 kHz on 15N and 5 kHz on 1H. Recycle delays were set to 500 ms. The total
experimental time for each experiment is listed in Table S1. The acquisition parameters
are listed in Table S2. Apodization of the each dimension was achieved with a squared

sine bell window function shifted by 90°.



Spectrum Total experimental time
(H)CANH 32 h 13 min
(H)CA(CO)NH 15 h25 min
(H)CONH 15 h 2 min
(H)CO(CA)NH 15 h 23 min
H(N)(CO)(CA)NH 33h
(H)N(CO)(CA)NH 33h

Table S1. Experimental time for each experiment.

14N 147N
13 13 15 H H
co CA N (indirect) | (direct)
Spectral
width 1.9 4.5 2.6 4.0 30
(kHz)
Acquisition | g 07 | 353 | 143 | 90 40
time (ms)
Numberof |4, 1 g5 | 74 72 1920
Data points

Table S2. Acquisition parameters.
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Fig. S1. Signal to noise ratios of A) H(N)(CO)(CA)NH (sequential peak), B)
(H)N(CO)(CA)NH (sequential peak), C) (H)CANH, D) (H)CONH, E) (H)CA(CO)NH, F)
(H)CO(CA)NH spectra as a function of residue number. The sensitivity values were read
out using peak heights as obtained by CCPNmr (Vranken et al. 2005) and were scaled
according to the experimental time (see Supporting Table 2). The right scale relates the
s/n axis on the left again to the (H)NH sensitivity as a standard measure. Given the fact
that usually 1D (first-scan) spectra are used for such a comparison to avoid different
processing and acquisition parameters for 2D and 3D experiments, the axis here is
calculated from the 1D first-scan intensity ratio (see Figure 3 of the Main Manuscript,

read out using Topspin) subjected to the average 3D peak height.
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Fig. S2. BMRB data bank distributions of chemical shifts (in percent) over spectral space
in units of one linewidth (FWHM) for 13CO (A), 15N (B), 13CA (C), and 1HN (D) shifts as in
Main Text Figure 5. Here, for 13CO, 15N, and the !HN, we replotted the theoretical
probabilities approximating the minimum obtainable (natural) linewidths, assuming 50
Hz for tHN, 20 Hz for 15N and 13CO. The 13CA lineshape will additionally be influenced by
evolution of scalar couplings (triplet of 20 Hz to 2H plus doublet of 35 Hz to 13CB), thus
this minimum linewidth is represented as 110 Hz.
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Fig. S3. Comparison between first FIDs of (H)CA(CO)NH and (H)CO(CA)NH. The latter
provides slightly weaker signal to noise in the first scan. The (H)CO(CA)NH can
potentially be replaced by the out-and-back (H)CO(CA)CONH experiment (Barbet-
Massin et al. 2013), which may have advantages when shaped pulses are a bottleneck in
the straight-through version.
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Fig. S4. Pulse program for a 4D HN(CO)(CA)NH experiment to obtain 1HN;, 15N;, 1HN;4
and 15Nj1 correlations. Open, filled, and striped bars represent 90°, 180° and trim
pulses, respectively. The train of proton pulses for water saturation follows the
MISSISSIPI approach (Zhou and Rienstra 2008). All other pulses were applied with
phase x if not indicated explicitly. The phase cycle @1=x, -x; @2=4(+x), 4(-X); ©3=X, X, -X, -
X; Qrec=X,"X,-X, X,-X, X, X,-X was employed.
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