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To date, two types of coupling between electromagnetic radiation and a crystal lattice have 

been identified experimentally. One is direct, for infrared (IR)-active vibrations that carry 

an electric dipole. The second is indirect, it occurs through excitation of the electronic 

system and via electron-phonon coupling, as in stimulated Raman scattering [1,2,3]. Nearly 

40 years ago, proposals were made of a third path, referred to as ionic Raman scattering 

(IRS) [4,5]. It was posited that excitation of an IR-active phonon could serve as the 

intermediate state for Raman scattering, relying on lattice anharmonicities as opposed to 

electron-phonon interaction [6]. In this paper, we report an experimental demonstration of 

IRS using femtosecond excitation and coherent detection of the lattice response, by which 

means we show that this mechanism is relevant to ultrafast optical control in solids. The 

key insight is that a rectified phonon field can exert a directional force onto the crystal, 

inducing an abrupt displacement of the atoms from the equilibrium positions. IRS opens 

up a new direction for the optical control of solids in their electronic ground state [7,8,9], 

different from carrier excitation [10,11,12,13,14]. 

Crystal lattices respond to mid-infrared radiation with oscillatory ionic motions along the 

eigenvector of the resonantly excited vibration. Let QIR be the normal coordinate, PIR the 

conjugate momentum and ΩIR the frequency of the relevant IR-active mode, which we assume to 

be non-degenerate, and ( )2 2 2
IR IR IR IR / 2H N P Q= +Ω  its associated lattice energy (N is the number of 

cells). For pulses that are short compared to the many-picoseconds decay time of zone-center 

optical phonons [15] one can ignore dissipation, and the equation of motion is 
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where e* is the effective charge, MIR is the reduced mass of the mode, E0 is the amplitude of the 

electric field of the pulse and F is the pulse envelope. At times much longer than the pulse width 
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For IRS, the coupling of the IR-active mode to Raman-active modes is described by the 

Hamiltonian 2
A IR RSH NAQ Q= −  where A is an anharmonic constant and QRS is the coordinate of a 

Raman-active mode, of frequency ΩRS, which is also taken to be non-degenerate. Thus, the 

equation of motion for the Raman mode is 

2 2
RS RS RS IRQ Q AQ+Ω =&&   .                                                           (3) 

Ignoring phonon field depletion, it follows from Eq. (2) that excitation of the IR mode leads to a 

constant force on the Raman mode which, for ΩIR >> ΩRS, undergoes oscillations of the form 
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around a new equilibrium position. Hence, the coherent nonlinear response of the lattice results 

in rectification of the IR vibrational field and in the concomitant excitation of a lower-frequency 

Raman-active mode.  

We stress that equation (3) describes a fundamentally different process from conventional 

stimulated Raman scattering [16,17,18], for which the driving term Ξ̂  in the equation of motion 

2
RS RS RS

ˆQ Q+ Ω = Ξ&&  depends only on electron variables [19].  

To date, optical nonlinearities from IR-active phonons have only been evidenced in resonantly 

enhanced second harmonic generation experiments [20,21], while IRS has never been 

demonstrated experimentally.  
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Ultrafast optical experiments were performed on single crystal La0.7Sr0.3MnO3, synthesized by 

the floating zone technique and polished for optical experiments. La0.7Sr0.3MnO3 is a double-

exchange ferromagnet with rhombohedrally distorted perovskite structure. Enhanced itinerancy 

of conducting electrons and relaxation of a Jahn-Teller distortion are observed below the 

ferromagnetic Curie temperature TC = 350 K [22,23,24]. Due to the relatively low conductivity, 

phonon resonances are clearly visible in the infrared spectra at all temperatures [25].  The sample 

was held at a base temperature of 14 K, in its ferromagnetic phase, and was excited with 

femtosecond mid-IR pulses tuned between 9 and 19 µm, at fluences up to 2 mJ/cm2. The pulse 

duration was determined to be 120 fs across the whole spectral range used here. The time-

dependent reflectivity was measured with 30-fs pulses at 800-nm wavelength.  

Figure 1(a) shows time-resolved reflectivity changes for excitation at 14.3-µm wavelength at 2-

mJ/cm2 fluence, resonant with the 75-meV (605 cm-1) Eu stretching mode [25,26]. The sample 

reflectivity decreased during the pump pulse, rapidly relaxing into a long-lived state and 

exhibiting coherent oscillations at 1.2 THz (40 cm-1). This frequency corresponds to one of the 

Eg Raman modes of La0.7Sr0.3MnO3, which is associated with rotations of the oxygen octahedra 

[26,27], as sketched in the figure. Consistent with Eg symmetry, we observe a 180-degree shift of 

the phase of the oscillations for orthogonal probe polarization (Fig. 1(b)). 

In contrast, excitation in the near-IR yielded qualitatively different dynamics. A negative 

reflectivity change of similar size was observed, comparable to what was observed in the 

ferromagnetic compound La0.6Sr0.4MnO3 [28]. However, only 5.8-THz oscillations were 

detected, corresponding to the displacive excitation of a 193 -cm-1 A1g mode [27,29].  

Figure 2(a) shows the time-resolved reflectivity changes for various excitation wavelengths in 

the mid-IR spectral range. The amplitudes of the initial reflectivity drop, of the long-lived state 
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and of the oscillations all show strong pump wavelength dependence, peaking for excitation near 

the phonon resonance. In particular, the amplitudes of the 1.2-THz Eg oscillations, plotted in 

Fig. 2(b), are maximum for excitation near 75-meV, in resonance with the Eu stretching mode. In 

addition, as shown in Fig. 2(d), we observe a quadratic dependence of the coherent oscillation 

amplitudes on electric field strength. 

These observations are in agreement with the IRS model. According to Eq. (3), the driving force 

is second order in the mid-IR phonon coordinate, and induces a displacive lattice response 

analogous to rectification through the second-order susceptibility χ(2) in nonlinear optics. Thus, 

one expects the IRS response to peak when the infrared pump field is in resonance with Eu mode, 

i.e. when QIR is largest. Secondly, according to Eq. (4) a quadratic dependence of the coherent Eg 

oscillation amplitude on the mid-IR electric field is expected. 

Symmetry considerations are also supporting our interpretation. La0.7Sr0.3MnO3 crystallizes in the 

distorted perovskite structure of point group 6
3dD  (space group cR3 ). As mentioned above, the 

representation of the resonantly driven stretching mode is Eu, while the Raman mode is of Eg 

symmetry. Since uug EEE ⊗⊂ , one can write an interaction term of the invariant form 

   (5) 

 

as required for ionic Raman scattering. 

A second experimental observation substantiates our assignment. By using mid-IR pulses in 

which the carrier-envelope phase offset is stable, we could excite the lattice with a reproducible 

electric-field phase. To this end, we developed an actively stabilized mid-IR light source based 

on difference-frequency mixing between two different optical parametric amplifiers [30].  

1 2 ( )g gu u u u u uE EE E E E E E
A x y x x y yH NA Q Q Q Q Q Q Q Q⎡ ⎤= − + −⎣ ⎦
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Figure 3 shows the time-resolved reflectivity rise alongside the carrier-envelope phase-stable 

pump field, as measured in situ by electro-optic sampling in a 50 µm thick GaSe crystal. The 

time dependent reflectivity shows no signature of the absolute electric-field phase, an effect that 

is well understood for a driving force resulting from rectification of the lattice polarization.  

In summary, we have shown that ionic Raman scattering can be used to control crystal structures 

in a new way, opening the way to selective lattice modifications impossible with electronic 

excitations. For example, the nonlinear lattice rectification mechanism could be extended to 

difference-frequency generation between pairs of non-degenerate excitations, opening up new 

avenues for the control of condensed matter with light beyond linear lattice excitation.  
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the corresponding equation of motion is 
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Thus, the ratio between ionic, σI, and electronic-mediated Raman Scattering cross section, σE can 

be estimated as 
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FIGURE CAPTIONS 

Fig. 1 Mid-IR vs. near-IR excitation. (a) Time-resolved reflectivity changes of La0.7Sr0.3MnO3 

detected at the central wavelength of 800 nm for mid-IR excitation at 14.3 µm and near-IR 

excitation at 1.5 µm. The inset shows the Fourier transform of the oscillatory signal contributions 

for different pump wavelengths and the atomic displacements of the corresponding phonon 

modes. (b) Signal oscillations for mid-IR excitation for both parallel (dots) and perpendicular 

(circles) orientations between the pump and probe polarization. The sample temperature is 14 K. 

 

Fig. 2 Resonant enhancement at the vibrational mode. (a) Differential reflectivity as a 

function of the central mid-IR pump wavelength in the vicinity of the frequency of the MnO6 

stretching vibration, together with signal oscillations extracted from the data. The pump fluence 

is 1.1 mJ/cm2.  (b) Plot of the vibrational amplitude, as derived from an extrapolation of the 

measured oscillations to zero time delay. The red solid line is a Lorentzian fit to the data. (c) 

Dependence of the vibrational amplitude on the pump electric field measured on resonance at 

14.7 µm. 

 

Fig. 3 Carrier-envelope phase stable excitation. Relative change of the sample reflectivity 

induced by carrier-envelope phase stable mid-IR excitation in resonance with the Eu-symmetry 

stretching vibration (dark blue). The electric field of the pump pulse (red), as measured via 

electro-optic sampling in a 50 µm thick GaSe crystal, and its calculated envelope are also shown. 

To increase the temporal resolution, we used as probe an optical parametric amplifier which 

delivered broadband IR pulses (1.2– 2.2 µm) compressed to 14 fs. The probe light was spectrally 

filtered around 1.6 µm in front of the detector. 
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