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In a dedicated collisionality scan in Tore Supra, the geodesic acoustic mode (GAM) is de-

tected and identified with the Doppler backscattering technique. Observations are compared

to the results of a simulation with the gyrokinetic code GYSELA. We found that the GAM

frequency in experiments is lower than predicted by simulation and theory. Moreover, the

disagreement is higher in the low collisionality scenario. Bursts of non harmonic GAM oscil-

lations have been characterized with filtering techniques, such as the Hilbert-Huang transform.

When comparing this dynamical behaviour between experiments and simulation, the proba-

bility density function of GAM amplitude and the burst autocorrelation time are found to be

remarkably similar. In the simulation, where the radial profile of GAM frequency is continu-

ous, we observed a phenomenon of radial phase mixing of the GAM oscillations, which could

influence the burst autocorrelation time.
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I. INTRODUCTION

One of the main challenges facing the development of modern tokamaks and their lack of suffi-

ciently good confinement for achieving self-sustained thermonuclear fusion is the understanding and

the control of anomalous transport, generally thought to be driven by small scale turbulent phenomena

and its mesoscale nonlinear dynamics. Zonal flows (ZF), for example, are axisymmetric mesoscale

flow structures (m = n = 0), that are known to be generated by turbulence and that in turn quench

the turbulence which generate them1,2. Such a relation implies a dynamical coupling, mimicking

the population dynamics between a predator (i.e. ZF) and a prey (i.e. turbulence) species, which

may be playing a role in the Low to High confinement (L-H) transition3 observed in tokamaks and

stellerators4,5. Two families of these flows are identified: a stationary branch (which may nonetheless

be involved in some predator-prey evolution), called the low-frequency ZF, and a branch which os-

cillates at a frequency of the order cs/R, where cs is the sound speed and R is the major radius. This

latter branch is called the geodesic acoustic mode6 (GAM), which is the subject of the comparisons

in this article. GAM, by itself, does not reduce turbulence intensity as much as low-frequency ZF7,

but it is believed to exchange energy with the low-frequency ZF and the drift-wave turbulence thus

acting as a third player in a possible predator-prey dynamics8,9. As a result of this, it could be a key

ingredient in the L-H transition. Therefore knowing precise properties of GAM and comparing them

with simulations may help in understanding the different parts of the puzzle, which may in turn help

predicting, and potentially increasing, the performance of future machines.

Substantial progress has been made on understanding GAMs during the last decade. They have

been detected in a variety of machines, as reviewed for example in Ref.10. Its properties have been

compared to theory and gyrokinetic simulations: for example, the GAM-turbulence interaction and

GAM propagation simulated with GTC was consistent with HL-2A experiments11,12. ELMFIRE

calculations could reproduce the GAM frequency and radial structure found in FT-213,14. Here, we

study GAM frequency, intensity and dynamics in the core of Tore Supra plasmas and quantitatively

compare the observations between experiments and simulations. Notice that these results differ from

the earlier ones in that they are the first to achieve such detail in a reasonably large tokamak with

substantial heating.

GAM has been previously detected in the high collisionality case of a dedicated ν? scan in Tore

Supra15,16, using the Doppler backscattering technique. As part of our study, a simulation has been

run with the gyrokinetic code GYSELA17, based on parameters corresponding to the experiments.

The rest of the paper is organized as follows. Section II describes how GAM is detected in exper-

iments and simulation, including a description of the experimental setup, simulation and numerical

tools used to analyse GAM oscillations. In section III, GAM is identified in experiments and its
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frequency is compared with that found in simulation and predicted by theory. In section IV, we com-

pare the RMS value and the probability distribution function of GAM intensity. In section V, we

present the burst autocorrelation time of GAM oscillations in experiments and simulation, as well as

the properties of GAM radial propagation observed in simulation.

II. DETECTION OF GAM IN EXPERIMENTS AND IN SIMULATION

A. Doppler backscattering experimental setup

Results presented in the following have been obtained during a dimensionless collisionality scan

performed in the tokamak Tore Supra for studying the scaling of transport and turbulence15. In those

experiments, the profile of ν? = νiiqR
ε3/2Vt,i

has been varied by a factor of 4, while ρ? = ρi/a and β =

p/
(
B2/2µ0

)
profiles were kept constant. At ρ = 0.8, ν? varied from 0.2 (low ν? case) to 1 (high ν?

case), while ρ? = 2 ·10−3 and β = 5 ·10−4. The plasmas studied here are L-mode, limited discharges

with ion cyclotron resonance heating (ICRH). Flux surfaces are circular with R0 = 2.39 m and a =

0.72 m (figure 3c). The safety factor profile is kept constant during shots, with an edge safety factor

qa = 4. The high ν? case has a weaker ohmic current, weaker magnetic field, a stronger ICRH heating

and higher temperatures than its lower ν? counterpart. Temperature and ν? profiles are given in figure

1. More details of these dedicated experiments can be found in Ref. Vermare et al. 15 .

In experiments, GAMs are studied using signals from two Doppler Backscattering Systems (DBS).

This technique allows us to measure the velocity of turbulent fluctuations at a given wavenumber in

a direction perpendicular to both the radius and the magnetic axis18. The Doppler shift in spectra,

ωDBS, is related to the perpendicular velocity of density fluctuations with the relationship ωDBS =

k⊥V⊥, where k⊥ is the wave-number of the probed fluctuation, which is usually computed with a

beam tracing code19. The measured velocity, V⊥, is the sum of the mean E × B velocity of the

plasma (dominated at the edge by ripple ion transport mechanisms in Tore Supra20), plus a finite

phase velocity of fluctuations whose sign may change with the nature of the turbulent regime: V⊥ =

VE×B +Vφ .

The first DBS, described in Ref. Vermare et al. 16 , has two channels operating respectively in the

V and W bands. The first channel (V-band) features an O-mode beam that probes the core of the

plasma. The second channel (W-band) features an X-mode beam that probes the edge of the plasma,

towards the scrape-off layer (SOL). The second DBS has one channel, similar to the first one (V-band

in O-mode) and is located at the top of the machine with a vertical line of sight, in a different toroidal

sector (4ϕ = 210°).

Studying the GAM oscillation requires the ability to obtain the temporal sequence of the perpen-
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dicular velocity V⊥(t) with a sufficient time resolution. To extract the frequency associated with the

Doppler shift ωDBS(t) from the DBS signal with a high temporal resolution; a time-frequency analysis

can be done, either using the fast Fourier transform (FFT) on reduced time sliding window (SWFFT),

or using dedicated time-frequency techniques, such as the MUltiple SIgnal Classification (MUSIC)

algorithm16. For the analysis presented in this paper, we have used the latter with the following

settings: 50 % overlapping windows of 128 points, an autocorrelation matrix of size nw = 8 and a

number of frequencies to detect n f = 1 (in some cases, n f = 2). The resulting sampling rate of V⊥(t)

is 156 kHz in acquisitions that last between 3.3 and 53 ms.

B. Parameters of the GYSELA simulation

A dedicated simulation has been run with the semi Lagrangian, global full-f flux-driven 5D gy-

rokinetic code GYSELA17,21 to compare GAM properties with experimental results in detail. The

simulation is global with a radial extension 0.15 ≤ ρ ≤ 1, and flux-driven so as to preclude scale-

separation assumptions and allow for the temperature profile to freely evolve, with a dynamics due to

the volumic heat source, while it is fixed at the outer edge where contact with a thermal bath provides

heat sink. The heat source, applied through a modification of the distribution function21, is tailored

to reproduce the radial profile of additional experimental heating. The amplitude of the heat source

can be adapted to match the experimental temperature profile. Electrons are adiabatic (with Te ≡ Ti),

so that simulated turbulence is mainly ITG-like. In the present study, GYSELA will be used only to

simulate a case at high ν? and low β , in which ITG is dominant and trapped electron negligible (as

shown in sec. IV), and to compare GAM characteristics between simulation and experiments. Note

that passing kinetic electrons may have some effects even for ITG turbulence through ETG turbu-

lence, which will not be reproduced in this simulation. However, passing electrons and ETG are not

expected to have a significant impact on GAMs, so the adiabatic assumption appears reasonable for

the purpose of this work. The collision operator preserves mass, momentum and energy and only

accounts for ion-ion collisions22. Boundary conditions for the parallel velocity are no-slip on both

radial limits, with Dirichlet φ = 0 boundary conditions on the potential. In the core, a typical staircase

pattern of interacting flows and avalanches is observed, correlated to temperature corrugations23,24.

The simulation is performed with parameters as close as possible to the experimental high ν?

case described before. In particular there was an effort to match the radial profiles of normalized

temperature, normalized density, safety factor and collisionality to those of the experiment (cf. figure

1).

In practice, the shape of the radial profiles of density, safety factor and collisionality are directly

taken from experiments. Concerning the shape of the temperature profile, the amount of heat source
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Figure 1. Main plasma parameters compared in simulation and in experiments (high and low ν? cases). When

relevant, two regimes of the simulation have been separated: that of early oscillations before the turbulence

onset (solid black lines) and that of established turbulence, when the initial oscillations of GAM have vanished

(dashed black lines).
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is adapted to match the shape of the experimental one. When analyzing the outputs of the GYSELA

simulation, particular attention was required to put the simulation data in a dimensional form similar

to that of the experiment, in order to correctly mimic the absolute plasma parameters of the Tore Supra

high ν? shots. First, the temperature profiles have been denormalized with the values of experiments.

Secondly, aspect ratio R0/a = 3.3 and major radius R0 = 2.3945 m have been taken equal to those

of the experiment. The magnetic field is constrained by the value of ρ? (chosen as an input of the

simulation) and by the denormalized values of the temperature and of the minor radius. Finally,

the radial profile of the normalized collisionality ν?, which has been directly computed using the

density and temperature profiles from the experiments, is used to denormalize the density profile. It

should be noted that the simulation has been performed for Hydrogen (without impurities) while the

experimental plasma was mostly composed of Deuterium. This discrepancy lead to a factor
√

2 in the

absolute value of collisionality and therefore in the absolute value of density.

To summarize, the parameters which differ from their experimental counterparts are the on-axis

magnetic field B0 = 1.2 T (without any impact since the code is electrostatic), the absolute values of

collisionality and density (lower by a factor
√

2 in GYSELA), and the value of ρ? = 1/300 (almost

twice as much as the experimental values). ρ? is used to determine the radial grid size: its increase in

GYSELA reduces the numerical cost of the computation.

The
√

2 difference in the absolute value of ν? is expected to have a finite but small effect on

GAM, for example in the GAM damping. On the other hand, the same difference in the absolute

value of the density profile should not have any consequence since the normalized density gradient

is equal to the experimental one. In addition to these discrepancies, it should also be mentioned that

the amount of heat injected through the volumic heat source to recover the experimental temperature

profile, 0.8 MW , differs slightly from the experimental one: 2 MW .

This large-scale simulation was run on the Helios supercomputer (the 5D space is sampled by

∼ 8.6× 1010 points, with a 512-point radial axis leading to δρ ≈ 0.002). As a flux-driven system,

GYSELA has to be run on an energy confinement time in order to guarantee full convergence of the

fluctuation profiles. In the computation reported here, this profile has not yet saturated past 0.7 ≤ ρ

so that the excitation of the GAM is not realistic in that region. Therefore, the comparison of GAMs

between experiments and simulation is restricted to properties which are not expected to vary much

with the strength of the source: frequency and, more cautiously, dynamics.

To study GAM in GYSELA, the phase velocity of turbulent fluctuations is neglected and V⊥ is

simply taken equal to the E×B velocity, so that V⊥ =−∂r 〈φ〉/B, where 〈φ〉 is the surface-averaged

electrostatic potential, sampled roughly at 450 kHz.
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C. Numerical processing of V⊥ signals

Given V⊥ (t) from experiments and simulation, we first study the mean frequency of the GAM

oscillation from classical spectral analysis with an average spectral estimator: Welch’s power spectral

density estimate. An illustrative example of the power spectrum of an experimental signal is drawn

in figure 2a with a solid black line. In that case, the peak at 12 kHz is considered as that of GAM.

Then, to study the dynamical behaviour of the GAM oscillation and its intermittency, we proceed

with a time-frequency analysis on V⊥ (t). However, the relatively low sampling rate of the V⊥(t) time

sequence and its limited length make it difficult to apply: the sliding FFT method (SWFFT) lacks

temporal resolution and MUSIC lacks stability on short segments. Instead, we gain access to the

instantaneous frequency of the GAM and its amplitude with the same sampling rate as the original

signal by directly applying the Hilbert transform on V⊥(t) and calculating the phase derivative of the

resulting analytical (complex) signal. A more sophisticated version of this method is used here to

filter out the noise and keep the dominant oscillatory signal: V⊥ is preprocessed with an algorithm

called empirical mode decomposition (EMD). EMD decomposes the signal in a sum of functions

that, individually, behave well with the Hilbert transform. Therefore EMD gave V⊥ (t) = ∑n In (t)

with each In being an intrinsic mode function (IMF), representing the signal in a spectral interval (see

illustration in figure 2a). The whole process is named Hilbert-Huang transform (HHT)25–27.

In section V, to better emphasize the dynamics of GAM, V⊥ (t) is bandpass-filtered around the

GAM frequency. Two methods are used, so two signals are available: V FFT
⊥,GAM (t), given by a classical

bandpass filter with zero phase delay (based on FFT), and V HHT
⊥,GAM (t), found by adding the IMFs In

with weights that depend on their instanteneous frequency ωn:

V HHT
⊥,GAM (t) = ∑

n
[G(ωn (t)) In (t)] (1)

where G, illustrated in figure 2b, is the frequency response of the filter used for V FFT
⊥,GAM (t). ωn is

calculated with the derivative of the unwrapped phase of each In, in finite differences at the fourth

order, with a moving average selected for maximum stability25. In order to compute the probability

distribution functions in section IV, we used the instantaneous envelope of the filtered V⊥. Such

envelope is evaluated by

V±⊥,GAM (t) =±∑
n
[G(ωn (t))an (t)] (2)

where an is the instantaneous amplitude of IMF In. The application on a sample signal is drawn in

figure 2b). The IMFs In in eq. 1 are not exactly in phase, so the sum of their amplitudes an in eq.

2 (dashed red) is slightly wider than the sum of the In (solid red). To display spectral contents of
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Figure 2. Example of HHT processing applied to an experimental signal in low ν? scenario at ρ = 0.95.

GYSELA simulation in section III (figure 4c-d), we computed HHT pseudo-spectra with

P(ω) = ω
2
∫ T

0

[
n

∑
j=1

δ
(
ω,ω j (t)

)
a2

j (t)

]
dt (3)

where the Kronecker symbol δ (i, j) is 1 when i = j and 0 otherwise.
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III. GAM FREQUENCY PROFILES

A. Identification of GAM in experiments

As GAM and Beta Alfvén Eigenmode (BAE) share the same dispersion relation28,29, identifying

GAM by its frequency is, to be strict, not enough. Here, we show the m = 1 structure of δn and the

n = m = 0 structure of V⊥ in the experimental high ν? case. We used measurements on the same flux

surface in the equatorial plane and at the top of the plasma (see poloidal projection in figure 3c – the

toroidal angle between the two diagnostics is 210°).

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f (kHz)

S
p
e

c
tr

u
m

45510 O I1−2F1

 

 
Er

DBS signal intensity

(a) LFS, O-mode at ρ ∼ 0.82

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f (kHz)

S
p
e

c
tr

u
m

45510 VO I1−7F1

 

 
Er

DBS signal intensity

(b) TOP, O-mode at ρ ∼ 0.82

150 200 250 300

−80

−60

−40

−20

0

20

40

60

80

 

 

R (cm)

Z
 (

c
m

)

TS45510

LFS O

TOP O

(c) Poloidal view of DBS measurements

0 10 20 30 40
0

0.5

1

TS45510 − V⊥ CPSD − DIFDOP−O−I2F1 − DREVE−O−I3F1

f (kHz)

P
S

D

 

 

0 10 20 30 40

−Pi

0

Pi

P
h
a
s
e

Cross spectrum

Cross phase

(d) LFS-TOP V⊥ cross spectrum

Figure 3. Identification of GAM in experiments. (a-b) Superposition of spectral density (normalized) of V⊥ and

of DBS signal intensity, in shot 45510 (high ν?), in the equatorial plane (a) and from the top of the machine (b).

(c) Poloidal projection of localization of measurements. Green diamonds stand for contact points. (d) Cross

spectrum and cross phase between V⊥ signals between the equatorial plane and the top of the machine.
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GAM density perturbations δn have been estimated by the eigenvalue obtained by MUSIC asso-

ciated with fluctuations content. δn was not modulated at GAM frequency in the equatorial plane

(figure 3a, compatible with previous results16), while a spectral peak of δn at GAM frequency was

visible in measurements from the top of the plasma (figure 3b). This strongly suggests a m = 1

structure for GAM density fluctuations.

For the V⊥ structure, we computed the cross-spectrum and the cross-phase between equatorial

and top measurements. The cross spectrum shows a clear peak at 15 kHz (figure 3d in black). The

cross phase is close to zero at the frequency of the peak, while it spans the [−π, π] interval at other

frequencies. This observation is an indication of the n = m = 0 structure of V⊥ at the GAM frequency.

To conclude, the top-bottom m = 1 structure for density fluctuations and the n = m = 0 structure for

the flows evidence the presence of GAM in high ν? experiments.

B. Comparison of GAM frequency profiles

Observations in experiments

In experiments, GAMs are observed in the edge of both low and high ν? plasmas (as reported

earlier for the high ν? case16). To determine the experimental spectra, we compiled all exploitable

measurements for each collisionality scenario, shot by shot. Spectra are averaged over these identical

shots. In figures 4a (low ν?) and 4b (high ν?), GAM is visible in the range of 10-15 kHz, with an

increasing frequency towards the core, where temperature is higher. To determine the GAM frequency

profile, we have taken the maximum of X-mode spectra (blue pluses in figures). The frequency

profiles roughly match the empirical scaling found in literature30–33, drawn in solid green lines in

figures 4a-b :

fexp =

√
Ti +Te

mi

1
2πR

. (4)

However, exact theoretical predictions give higher frequencies. Literature gives several GAM fre-

quency predictions in fluid models (ideal MHD6 and Braginskii two-fluid framework34) and in kinetic

ones35–38. All known predictions are close in experimental conditions. Therefore, for clarity, only

the MHD prediction of Winsor6 and the kinetic one of Sugama37 have been drawn in figures 4a-d.

Winsor prediction is:

fW1968 =

√
2+

1
q2

√
(5/3)(Ti +Te)

mi

1
2πR

(5)

and that of Sugama, considered in the fluid limit
(

qR(2π f )/
√

2Ti/mi

)2
� 1 with less than 0.5 %

error, is:
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fS2006 =

√
2+

(23/4)T 2
i +4TiTe +T 2

e

q2 [(7/4)Ti +Te]
2

√
(7/4)Ti +Te

mi

1
2πR

≈
q2�1

√
2

√
(7/4)Ti +Te

mi

1
2πR

. (6)

Considering this model, GAM has a lower frequency than predicted by kinetic theory, by 20 to 40 %

in high ν? and by 40 to 50 % in low ν?. It is noted that the disagreement seems to decrease when ν?

increases.
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Figure 4. Comparison of GAM frequency measured in experiments (a-b, shot by shot averaged spectral densi-

ties) and observed in simulation (c-d, HHT pseudo-spectra as defined in eq. 3).

In addition, some frequency steps are observed in the experimental profiles of GAM frequency.

In the low ν? case, a step is visible near ρ = 0.91 with f ∼ 14 kHz. In the high ν? case, two steps
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are visible at ρ = 0.82 with f ∼ 15 kHz and at ρ = 0.91 with f ∼ 10 kHz. The width of the steps is

∆ρ ≈ 0.05 in the high ν? case. In low ν?, it is between ∆ρ = 0.03 and 0.05 (an uncertainty appears as

measurements are missing at some precise radii). Those values are higher than the radial resolution of

X-mode DBS (δρ ∼ 0.015) and match with the typical mesoscale dimension ∆ρ =
√

ρ?. Moreover,

they are consistent with the experimental findings on ASDEX39 and with a numerical study of Landau

fluid electrostatic ITG turbulence40. In the low ν? case, spectral content at f ∼ 14 kHz was not only

visible near the frequency step. It appeared as well for 0.72 < ρ < 0.82 and for 0.98 < ρ < 1, but

with a small signal to noise ratio. Given the available dataset, it is not possible to conclude on the

precise nature of this observation.

Observations in simulation

In the dedicated GYSELA run, GAM is observed through the surface-averaged Er, noted 〈Er〉, in

early linear oscillations with 20 < t < 152 µs (66 time steps, figure 4c) and in established turbulence

1.34 < t < 10.49 ms (4096 time steps, figure 4d). In both regimes, GAM is always much stronger

on 〈Er (θ)sinθ〉 than on 〈Er (θ)cosθ〉, confirming its m = 1 top-bottom poloidal structure (θ = 0

at the LFS and 90° at the top). Electrons being adiabatic in GYSELA, Te has been taken equal to

Ti in the calculation of GAM frequency predictions. Winsor’s prediction, with Γe = 5/3, is roughly

10 % higher than other predictions with Γe = 1, including that of Sugama (eq. 6). Therefore, in

the case of simulation, Winsor and Sugama predictions have been drawn for each regime analysed.

In both regimes, GAM frequency is very close to Sugama prediction (solid blue line). However,

GAM frequency is lower than the prediction in the buffer region, where an artificial Krook operator

is applied to damp the fluctuations. Observations should be considerered unreliable in that region,

indicated by the green line in figure 1a and by dashed black lines at ρ = 0.965 in figures 4c-d.

The early time steps of the simulation behave like a Rosenbluth-Hinton relaxation22,41 without

turbulent activity. Intense GAM oscillations are present in a wide radial range (0.25 < ρ < 1) and ab-

sent in the inner buffer region. GAM amplitude decreases with time. Later, in established turbulence

regime, GAM is still present but it is visible only on the outer part of the radial box, for ρ > 0.75.

The boundary coincides with the upper radial expansion of broadband signature of turbulence, that

may hide the GAM for ρ < 0.75, if it exists. The representative GAM frequency in simulation is

determined by the first moment f =
∫ f+

f− P f/
∫ f+

f− P of 〈Er〉 Fourier spectra with f− and f+ being

user-defined boundaries on each side of the GAM spectral peak. This frequency profile is plotted with

a dashed blue line in figure 4d. We discarded the results for ρ > 0.93 because of the presence of the

buffer.
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Discussion

In all experimental cases, we noted that GAM is observed at a lower frequency than predicted by

a standard kinetic prediction of the GAM frequency. In simulation, GAM frequency follows the same

kinetic prediction with a reasonable agreement. From here, we investigate effects that may help the

predictions reconcile with experimental observations.

First, the effect of plasma geometry, evaluated with the prediction of Gao42, is applicable in both

experiments and simulation. The finite aspect ratio and Shafranov shift lead to a reduction of Sugama

prediction by a factor 1− 3ε2

4 −
∆′2

8 + 5ε∆′

8 . 1, where ε = r/R is the inverse aspect ratio (up to 0.3)

and ∆′ =−2ρ∆0/a is the radial gradient of the Shafranov shift (∆0/a = 0 in simulation and typically

∆0/a = 0.1 in experiments). Applying such calculation for experiments leads to a practical reduction

of GAM frequency between 5.5 % at ρ = 0.7 and 10 % at ρ = 0.95. This brings predictions closer

to experimental observations. In simulation, the downshift of GAM frequency is 5.5 % at ρ = 0.9. It

does not significantly change the quality of the agreement between simulation and prediction.

Impurities have also a role on the GAM frequency43 which is only applicable to experiments, as

this GYSELA simulation did not include them. For example, in the FT2/ELMFIRE comparison,

impurities were an essential ingredient to match GAM frequencies13,14,44. On Tore Supra plasmas,

the main impurities are carbon and oxygen elements (due to carbon limiters and active cooling of

the walls with water). In Tore Supra, line averaged Ze f f =
(
∑i niZ2

i
)
/(∑i niZi) is measured from

visible spectroscopy. Its value was found to be around 2 (±0.5). From the definition of Ze f f , in a

two species plasma, we have : αimp = nimp/nbulk =
(
Ze f f −1

)
/
[
Zimp

(
Zimp−Ze f f

)]
, where nimp and

Zimp are the density and charge number of impurities, respectively. If q2� 1 (valid at the edge), if

GAM is weakly damped and if impurities and bulk ions have the same temperature Ti, Guo’s formulas

give fGAM,i =
√

2
√

(7/4)Ti
m1

+ Te
m2

1
2πR with the effective masses of ions m1 =

mbulk+αimpmimp
1+αimp

> mbulk and

m2 =
mbulk+αimpmimp

1+αimpZimp
= mbulk (indeed we have in this study mimp/mbulk = Zimp). Hence, the original

GAM frequency prediction is decreased by the presence of impurities. Thus, accounting for impurities

helps predictions, match with experimental observations. If Ti = Te and Ze f f = 2, the reduction of

GAM frequency with carbon-only impurities (Zimp = 6), is 5.5 %, while with oxygen (Zimp = 8) the

reduction is 4 %. The dependence of fGAM,i on Ze f f is significant: with Ze f f = 1.5 and 2.5 in carbon-

only scenario, corrections are 2.7 % and 8.3 % respectively. The downshift of the frequency prediction

caused by impurities should not exceed 10 %. The dashed blue line in figure 4 shows the total

correction of the GAM frequency prediction by the effects of shaping and impurities, in experiments

only, with carbon particles, Ze f f = 2 and finite Te/Ti and q. The combined effect of geometry and

impurities is not enough to explain the discrepancy between predictions and measurements. For

example, with carbon impurities, a Ze f f of 4 would be required to make the high ν? profiles match,
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while Ze f f would need to converge towards 6 in the low ν? case. Both values are unrealistic, especially

for the low ν? case.

The twofold effect of pressure anisotropy has to be discussed. First, the anisotropy of GAM pres-

sure perturbations modifies the adiabatic coefficient Γi in the formulas that predict GAM frequency.

Writing fGAM ≈
√

2
√

(ΓiTi +ΓeTe)/mi/2πR, isotropic models have Γi = 5/3, such as in single fluid

MHD6 and two-fluid MHD34. In frameworks that allow anisotropic pressure perturbations, Γi is

equal to 7/4, such as in MHD45, two-fluid MHD46 and in kinetic models, including that of Sugama

and Watanabe 37 . As 7/4 > 5/3, anisotropic models give slightly higher predictions than equivalent

isotropic ones. The other effect of pressure anisotropy deals with background pressure, as shown in

MHD45, and is visible when the ratio χ = p⊥/p‖ departs from 1. More precisely, in Ren’s model,

defining G1 =
3χ

2 +2+ 3
q2 and G0 =

√
3

6q2

(
1+χ− χ2

3

)
, the GAM frequency reads:

fR2014 =

√√√√√
G1 +

√
G 2

1 −4G0

2

 Ti‖+Te‖
mi

1
2πR

≈
q2�1

√
2

√√√√(7+3(χ−1)
4

)(
Ti‖+Te‖

)
mi

1
2πR

. (7)

This model appears as an evolution from that of Winsor, where, assuming q2 � 1, Γ = 5/3 and T

are simply replaced by Γ = (7+3(χ−1))/4 and T‖. χ has been computed in simulation. In the

radial interval of interest (0.75 < ρ < 0.93), χ = 1 in the early oscillations and χ ≈ 0.85 in the

turbulent regime, leading to a slight modification of the frequency prediction according to eq. 7.

The total effect of pressure anisotropy is in the downshift direction, rather small near the edge and

more visible towards the core. The profiles of Winsor and Ren predictions are drawn in solid and

dashed green lines on figure 4c-d. In experiments, χ is not accessible. ICRH should cause χ > 1

for the minority ion in the area of power deposition47, but it is near the magnetic axis while GAM

is observed closer to the edge (0.78 < ρ). Moreover, heat is transferred to electrons and bulk ions

through collisional processes that may damp anisotropies, leading to χ ≈ 1. Therefore, at the current

level of understanding, the effects of background pressure anisotropy are not expected to play a lead

role in the present experimental observations.

The effect of GAM radial wave number on the GAM frequency should also be considered. Liter-

ature did not provide a definitive and clear picture of this effect. We first considered the theories of

Sugama37 and Zonca48 and resolved the equations with Davies49 and multivariable Newton-Raphson

numerical methods. Significant effects arise for krρi > 0.1. In Sugama’s work, kr has a slightly

decreasing effect of GAM frequency and its main effect is to strongly enhance collisionless damp-

ing. In Zonca’s work, kr increases GAM frequency while collisionless damping remains reasonably

small (< 1 kHz). We noted in a more recent model50 that kr has a non-monotonous effect on GAM

frequency, coupled with finite β and ν? effects. Therefore, the effect of kr on GAM frequency is dif-

ficult to estimate. In addition, the evaluation of kr is not achievable in the experiments with the given
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experimental setup (radial correlation measurements would be required). In simulation, the propaga-

tive behaviour of GAM in turbulent regime described in section V B suggests that 0 < krρi < 0.1. A

compatible ordering, kr of the order 1 cm−1, has been observed in other machines such as JFT-2M51,

HL-2A11,12,52–54, T-1032, DIII-D55 and TCV56. In conclusion, the effect of GAM radial wave number

should be small.

Collisionality may play a role in simulation. In strongly collisional regimes (νii�VTi/R), Gao57

predicted that the GAM frequency decreases down to the empirical scaling (eq. 4). Generally, the

opposite scaling applies (νii�VTi/R) so this effect is negligible here. However, the buffer region in

simulation, characterized by a stabilizing Krook operator, may be an exception. In the case this effect

would be significant in the buffer region, it would explain why simulated GAM is observed at a lower

frequency than predicted.

Other contributions of toroidal58 and poloidal59 rotation, expected to increase GAM frequency,

are neglected. Indeed, Tore Supra has no significant external momentum input and the toroidal and

poloidal rotations remain largely subsonic60.

In summary, the experimental high ν? case could almost be recovered with geometry and impu-

rities effects, especially in the core for ρ < 0.9 (see dashed blue curve in figure 4). Including the

respective corrections, a reasonable fit is found in the high ν? case between experiments, simulation

and theory. However, the low ν? remains problematic, as the reviewed corrections are not enough

to explain the gap between observations and predictions. One may look for effects specific to low

collisionalities. For example, low ν? is characterized by trapped particles statistically following wide

portions of banana orbits. Watari et al.61, studying the effect of finite orbits and trapped particles,

noted the existence of two GAM bands, one of which may be comparable to experimental GAM scal-

ing. In the framework of Alfvén modes, Chavdarovski et Zonca62 found that a combined effect of

deeply trapped ions and inertia of the plasma could cause a O(ε) effect on mode frequency. Because

of the GAM/BAE degeneracy29, this effect might apply to GAM as well. Such effects should be

visible in GYSELA as it takes into account trapped ions orbits. Unfortunately, the simulated high ν?

case presented herein is where those effects may be negligible. In future work, simulations at various

ν? could exhibit this effect.
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IV. GAM INTENSITY PROFILES

In experiments, we estimated the intensity of GAM by the RMS (root mean square) value of

bandpass-filtered V⊥ signals (with FFT method, cf. section II C): AGAM = RMS
(

V FFT
⊥,GAM (t)

)
. Results

are reported on figure 5a. The main observation is that GAM is more intense in the low ν? case than

in the high ν? one. In high collisionality experiments, GAM amplitude grows progressively from

150 m/s at ρ = 0.75 to 450 m/s at ρ = 0.95, with slight corrugations. The low ν? profile features a

peak at ρ ∼ 0.92 and ∆V ∼ 800 m/s, where amplitude is twice as much as in the high ν? case. On

each side of this intensity peak, GAM intensity in low ν? is closer to high ν? results.
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Figure 5. GAM intensity: (a) experimental observations, (b) estimated damping and (c-d) linear growth rate γ

and frequency of turbulence ω calculated with GENE at ρ = 0.8, where positive (negative) ω indicate propa-

gation in the ion (electron) diamagnetic drift direction and where, in this context, cs =
√

Te/mi.

The interpretation of the GAM intensity requires information about both source and damping of

GAM. Here, the source is related to turbulent intensity8. The experimental profiles of δn/n are not
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precise enough to be used for low/high ν? comparisons, because of significant uncertainties related to

the contribution of the low k scales. Therefore, the source has been estimated using local simulations

performed with the gyrokinetic code GENE63, considering fully kinetic deuterium ions and electrons

for both scenarii at ρ = 0.8. The results in figure 5c-d show that the high ν? case is clearly ITG

dominant, while the low ν? case features a complex turbulent regime at low k scales, which seems to

be a hybrid ITG/TEM. In this range, the linear growth rate is higher in the low ν? case by a typical

factor of two. The GAM excitation is then expected to be stronger in the low ν? case.

Concerning the damping, fig. 5b shows that, in the edge, it is dominated by collisional effects57,64,

while Landau damping65 is negligible as q5 exp
(
−q2)� 1. Collisional damping is stronger in the

high ν? case than in the low ν? case. Therefore, the intensity of GAMs appears as a clear picture:

GAM is more intense in low ν? case where turbulent source is stronger and damping weaker.

In simulation, GAM has an intensity a few tens m/s, which is much weaker than in experiments

by an order of magnitude. Such disagreement could be explained by the smaller level of fluctuations

δn in the range of the simulation we analysed. To check the validity of this hypothesis, we considered

a simple energy equilibrium of GAM, excited by Reynolds stress S and linearly damped with a rate γ:

∂A/∂ t + γA = S. (8)

The quantity AGAMγ/S represents the steady state intensity of GAM, normalized to S/γ , the ratio

between source and damping. We compared this normalized intensity between experiments and sim-

ulation. For simplicity, S is considered proportional to δn2. At ρ = 0.85, δn/n is typically 2% in

experiments while δn/n is 0.6% in the range of simulation considered (note that nGY S/nEXP ∼ 0.8).

Values for γ are in fig. 5b. In this model, the ratio (SEXP/γEXP)/(SGY S/γGY S) is of order 17. This

ratio matches qualitatively with the observed ratio of intensities AEXP
GAM/AGY S

GAM ≈ 14. Therefore, even

if GAM is much weaker in simulation than in experiments, its intensity seems to scale consistently

with the local fluctuations level.

Going further than the RMS value of GAM intensity, we computed the probability density func-

tion (PDF) of ∆V⊥ (t), the time series of GAM intensity. In other words, we studied the statistics of

temporal variation of GAM intensity around its mean value drawn in fig. 5. Such a PDF provides

information about the nonlinear interaction between background turbulence and the GAM. For ex-

ample, in the case of a harmonic predator-prey interaction66, one would expect to observe the PDF

of a sinusoid (bull shaped). We have defined ∆V⊥ (t) as the instantaneous envelope of GAM oscil-

lations provided by HHT filtering (equation 2). We computed the corresponding PDF P(∆V⊥ (t))

on data from experiments and simulation. The results are displayed in figure 6 (note that ∆V⊥ axis

is in logarithmic scale for readability purposes). Data shows that, in all situations, the PDF can be

approximated by P(∆V⊥)≈ α∆V 2
⊥ exp

(
−∆V 2

⊥/∆V 2
⊥,0

)
with α ensuring that the integral of P is 1 and
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∆V⊥,0 is an average GAM amplitude close to that presented in figure 5a. Therefore, the PDF of GAM

intensity in simulation and experiments depend on a remarkably single parameter, a most probable

GAM intensity ∆V⊥,0. Note that in all cases the PDF could also be well represented by Γ distribu-

tions, P(∆V⊥) ∝ ∆V k
⊥ exp(−∆V⊥/V0) with k between 3.5 and 5.5 and V0 ≈ ∆V⊥,0/k, also represented

in figure 6. As the PDF observed are away from that of a sinusoid, this result shows the absence of

clear and harmonic predator-prey oscillations. In particular, this observation is compatible with the

fact that Tore Supra L-mode plasmas are not close to L-H transition.
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Figure 6. Probability density function of GAM amplitude at ρ ≈ 0.91. Amplitude axis is in log scale. Blue

squares represent the PDF of GAM amplitude, red curves are the fit with ∆V 2
⊥ exp

(
−∆V 2

⊥/∆V 2
⊥,0

)
and black

curves the fit with ∆V k
⊥ exp(−∆V⊥/V0).
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V. DYNAMICS

A. GAM bursty behaviour

The intermittent behaviour of GAM has been known for long (for example Conway et al. 31 , Mc-

Kee et al. 67), but comparably few authors have characterized it11,32,55,68. In this section, GAM burst

autocorrelation time is computed from the bandpass filtered V⊥ (equation 1) and compared between

experiments and simulation.

We have used three methods to compute the autocorrelation profile of V⊥. The figure 7 shows

an example of the direct autocorrelation of V⊥ (black line), of the autocorrelation of FFT bandpass-

filtered V⊥ (solid blue line) and of the autocorrelation of HHT bandpass-filtered V⊥ (solid red line).

The direct autocorrelation method features a very fast decorrelation time, smaller than a GAM period,

and does not seem meaningful. We rather focused on the results of the autocorrelation of filtered sig-

nals. Different time scales seem to exist: in the experimental and simulation data we analysed, a fast

decay of autocorrelation profile is generally noted within 0.3 ms, while a small but finite correlation

variations sustain for 1 ms and more. The fast decay time is small compared to the length of acquisi-

tions, so its statistics are more reliable compared to the long-lasting correlation time which approaches

the length of many data segments. Therefore, we only deal with the fast decay time, which we call

the burst autocorrelation time τ . Depending on the numerical method, it is noted τFFT or τHHT . The

envelope is fitted with f (∆t) = Ae−∆t/τ +(1−A) for 0 < ∆t < 1 ms and 0≤ A≤ 1. Results are dis-

played on figure 7 in blue and red dashed lines for FFT- and HHT-filtered signals, respectively. τFFT

and τHHT are close to a GAM period, which is consistent with visible GAM oscillations in figure 2a.

We noted that τHHT < τFFT . Indeed, HHT filter preserves the non-linearities in the oscillation and

FFT-filter sometimes exaggerates oscillations. Both determinations are displayed in figure 8 where

results are compared between simulation and experiments.

A reasonable agreement is found for burst autocorrelation time between simulation and both col-

lisionality cases. Across all exploited data, τ always has the 0.1 ms order of magnitude, as visible

on figure 8. Autocorrelation times found here are comparable to those found in JIPP-TIIU68 and in

HL-2A69, but smaller than those in DIII-D55 and in other HL-2A plasmas11, and much smaller than

those found in T-1032.

For experimental results of figure 8, we displayed the average of τ among groups of ∼ 20 data

segments for each radial point, weighted by the acquisition length. Error bars correspond to the vari-

ance between determinations of τ for each group of data segments. Radial profiles show interesting

corrugations. It appears that the low ν? profile has a peak at ρ ∼ 0.92 with τFFT = 0.24± 0.10 ms

being twice as much the values at adjacent radii τFFT ≈ 0.13±0.05 ms. High ν? profile has smaller
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Figure 8. Autocorrelation time compared between simulation and experiments.
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corrugations, with peaks at ρ ∼ 0.82 and ρ ∼ 0.91 and a bottom at ρ ∼ 0.87 with a 1.5 factor. The

peaks of τ profiles match with the locations at which GAM frequency profile is flatter than the con-

tinuum GAM profile (figure 4). In the case of low ν? where this observation is the clearest, it matches

the radius of GAM maximum intensity (figure 5). This could be an experimental evidence of a radial

zone where the GAM excitation is stronger than elsewhere. τ is smaller in simulation than in high

ν? experiments with a typical 1.5 factor. However, when normalized to the GAM period, GAM is

more coherent in simulation (1.5 < τ fGAM < 3.2) than in high ν? experiments (0.8 < τ fGAM < 2.5).

In low ν? experiments, the averaged τ fGAM tops at 3.2. The magnitude of τ could be illustrated

the following way, by rewriting the equation 8 in a Langevin form, related to the Brownian motion,

so that (∂/∂ t + γ)A = S (t). One may consider that the correlation time of S (t) is that of turbulent

fluctuations, a few microseconds70, and that the damping time γ−1 is close to a millisecond (fig. 5).

The autocorrelation time, at hundred microseconds, lies between those two orders of magnitude. The

physics that define τ might not be the same between simulation and experiments. In simulation,

GAM autocorrelation time may be linked to the radial propagation time (see section V B) while the

mechanism is not identified in experiments.

B. GAM propagation in simulation

In simulation, the knowledge of GAM oscillations in the time and radius axis allows us to study

the radial propagation of GAM. We analysed this propagation under two points of view: phase propa-

gation, showing how the phase of the mode organizes itself given a radial gradient of GAM frequency,

and group propagation, related to the energy of the mode. In both cases, GAM features an outwards

propagative behaviour.

The radial organization of the phase of the GAM is represented in figure 9a. The respective max-

ima and minima of Er10 (ρ, t) = 〈Er sinθ〉, bandpass filtered around GAM frequency, are radially

connected and displayed as red and blue lines. Four temporal filtered Er10 signals have been su-

perimposed for the sake of clarity. On average, red and blue lines are rather straight, which means

that oscillations are radially correlated. However, the direction of the lines varies with time. For

example, at t = 7 ms, there is no significant phase delay between radii, while at t = 7.1 ms, oscilla-

tions are slightly out of phase. This phenomenon is obviously caused by the radial gradient of GAM

frequency, which progressively desynchronizes GAM oscillators between radii. GAM frequency is

lower at ρ = 0.93 than at ρ = 0.85, so the direction of the red and blue lines turns clockwise with

time in figure 9b. This phenomenon has a limit where a critical slope is reached. For example, at

t = 7.15 ms and ρ = 0.86, a phase jump happens. Such jumps happen regularly, at various radii,

and coincide with a low intensity of GAM, as shown by the superimposed grey curves. The system
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seems to admit a maximum phase delay ∆t across ∆r so that min(∆r/∆t)≈ 1.3 km · s−1. On average,

∆r/∆t ≈ 2.9 km · s−1. This critical shearing rate could be related to the phenomenon of phase mixing

damping, also known as continuum damping. Such a mechanism has been described long ago in

the field of Alfvén waves, but much more recently on GAM itself71,72 and may explain the pulsing

noted in NLET simulations73. This propagative behaviour qualitatively fits with the FT-2/ELMFIRE

comparison14 where an agreement of radial phase velocity is found at roughly 1 km · s−1. In exper-

iments, similar outwards propagations have been obtained on TEXTOR74 and DIII-D55, but inward

propagation is observed on TCV56. In simulation, other authors have found GAM phase propagating

in both directions with GTC12 and NLET75 codes.

The group propagation is studied at the top of figure 9b. The displayed quantity, representative

of the intensity of GAM, is the logarithm of ∑
n
j=1 G

(
ω j (t)

)(
a j (t)ω j (t)

)2, using the notations of

section II C, where a j and ω j are the result of the HHT of ∂rEr. A series of propagative events is

clearly observed in the first milliseconds of the simulation, separated by ∆t ∼ 0.6 ms within the black

box, bounding the zones 0.85 < ρ < 0.93 and 1.5 < t < 4.3 ms. In this area, we have calculated

the intercorrelation of this signal between a reference radius, ρ0 = 0.89, and other radii. A finite

propagation of GAM intensity appears at Vr ≈ +0.4 km · s−1, which is smaller than the diamagnetic

velocity V ? =
∣∣∣ Te

enB
∂n
∂ r

∣∣∣ ∼ 1.5 km/s applicable for this simulation. It is unlikely that this propagative

behaviour is connected with transport through ballistic fronts76, as seen at deeper radii (ρ ≤ 0.8)

in the same simulation24. The group propagation seems rather related to the phenomenon of phase

synchronization described above: at the bottom of figure 9, we displayed the instantaneous frequency

of GAM, normalized to the prediction of Sugama (eq. 6) and defined by

f ?GAM (t) =
1

2π fS2006

[
∑

j
ω j (t) I j (t)G

(
ω j (t)

)]
/

[
∑

j
I j (t)G

(
ω j (t)

)]
.

The phase jumps are identified by red-blue vertical discontinuities in this figure, where f ?GAM varies

locally by a factor of 2 in the radial direction. We observed that the group propagation only happens

inside corridors, where no phase jump is present and where f ?GAM ∼ 1. Such corridors are noted in

the black box of figure 9b (top) and in the data used in figure 9a. The amount of group propagation

events decreases with time, as the radial gradient of temperature and GAM frequency increase slightly,

causing more phase jumps (where GAM is weak) and less room for group propagation.
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(a) Illustration of the radial synchronization of the phase of GAM oscillation.

(b) Top: time-radius map of the intensity of GAM (red color stands for high intensities). An

intercorrelation of the data inside the black box determined an outwards group propagation of GAM

intensity at roughly 400 m/s. Bottom: instantaneous frequency of GAM oscillations, normalized to

Sugama prediction (eq. 6).

Figure 9. GAM propagative behaviour in GYSELA high ν? simulation.
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VI. SUMMARY AND CONCLUSION

GAM properties have been compared between Tore Supra experiments and a simulation with GY-

SELA, which is tailored to represent the plasmas of a high collisionality case in a dedicated scan. For

GAM frequency, a fair agreement between simulation and theoretical predictions has been found. In

experiments, the measured GAM frequency is below predictions. Taking into account the effects of

plasma shaping and impurities helps approaching an agreement for the experimental high ν? case.

However, such effects are not large enough in the low ν? case counterpart, where the remaining

difference is not well understood.

GAM is found to be more intense in the low ν? case than in the high ν? one, which is consis-

tent with the estimated source and damping of the mode. GAM in simulation is weaker than in

experiments, obviously because the turbulence intensity is undervalued in the time interval we anal-

ysed. A simple evaluation of the source and damping ratio of the mode, in both experiments and

simulation shows that intensity of the mode scales consistently with the local fluctuations level. In

experiments and simulation, the PDF of GAM intensity is almost in ∆V 2
⊥ exp

(
−∆V 2

⊥/∆V 2
⊥,0

)
or in

∆V k
⊥ exp

(
−k∆V⊥/∆V⊥,0

)
, with k ∼ 4, which means that no clear predator-prey oscillation is present

between GAM and fluctuations.

GAM oscillations appear in amplitude bursts in both experiments and simulation, with a similar

burst autocorrelation time of the order 0.1 ms. In experiments, GAM seems more coherent at some

precise radii where it is more intense and where frequency steps are noted. In contrast, no frequency

steps are observed in the simulation, where the radial continuum of GAM frequency profile leads to

a pattern of mode intermittency, characterized by an outwards phase synchronization at several km/s

and some outwards propagative events at 0.4 km/s. As the phase mixing instationarity is mostly

restricted to simulation, it is not clear if the mechanisms defining the burst autocorrelation time in the

experiments and the simulation are the same.

In conclusion, this quantitative comparison between experiments, theoretical models and simu-

lation highlighted some limits of the current predictions of GAM frequency. Some potential miss-

ing ingredients such as the effect of finite orbit and trapped particles and/or the effect of the radial

wavenumber of the GAM are discussed, but deeper investigation is required to elucidate this over-

estimated prediction. In addition, the interest for the experimental technique of radial correlation with

Doppler backscattering appears, which could lead to further measurements of GAM propagation.
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