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Abstract
Computational breath analysis is a growing research area aiming at identifying volatile
organic compounds (VOCs) in human breath to assist medical diagnostics of the next
generation. While inexpensive and non-invasive bioanalytical technologies for metabolite
detection in exhaled air and bacterial/fungal vapor exist and the first studies on the
power of supervised machine learning methods for profiling of the resulting data were
conducted, we lack methods to extract hidden data features emerging from confounding
factors. Here, we present Carotta, a new cluster analysis framework dedicated to
uncovering such hidden substructures by sophisticated unsupervised statistical learning
methods. We study the power of transitivity clustering and hierarchical clustering to
identify groups of VOCs with similar expression behavior over most patient breath
samples and/or groups of patients with a similar VOC intensity pattern. This enables
the discovery of dependencies between metabolites. On the one hand, this allows us to
eliminate the effect of potential confounding factors hindering disease classification,
such as smoking. On the other hand, we may also identify VOCs associated with disease
subtypes or concomitant diseases. Carotta is an open source software with an intuitive
graphical user interface promoting data handling, analysis and visualization. The back-
end is designed to be modular, allowing for easy extensions with plugins in the future,
such as new clustering methods and statistics. It does not require much prior knowledge
or technical skills to operate. We demonstrate its power and applicability by means of
one artificial dataset. We also apply Carotta exemplarily to a real-world example dataset
on chronic obstructive pulmonary disease (COPD). While the artificial data are utilized
as a proof of concept, we will demonstrate how Carotta finds candidate markers in our
real dataset associated with confounders rather than the primary disease (COPD) and
bronchial carcinoma (BC). Carotta is publicly available at http://carotta.compbio.sdu.dk [1].
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1.

Introduction
In the last decade, the field of breathomics, defined as the metabolomics study of human
exhaled air, grew tremendously. One of the major goals is to non-invasively “sniff”
biomarker molecules that are predictive for the biomedical fate of individual patients. These
so-called personalized medicine (or precision medicine) approaches promise great hope to
move the therapeutic windows to earlier stages of disease progression.

Analytical technologies that overcome the obstacles of exhaled air analysis, like humidity
and variability, exist. The computational methods, especially for advanced statistical
breathomics analysis, however, are still in their infancy. To pave the way for this technology
towards daily usage in medical practice, these challenges remain to be addressed.

1.1.

Analytical Technologies for Breathomics
Various high-throughput and high-resolution technologies have been developed over the
last few years, producing tremendous amounts of increasingly complex data [2]. The major
spectrometric techniques currently employed are gas chromatography-mass spectrometry
(GC/MS) [3–5], electronic noses [6,7], proton transfer reaction-mass spectrometry (PTR-
MS) [8,9] and ion mobility spectrometry (IMS) [10–14].

All such approaches are non-invasive and provide the potential for early and fast diagnosis,
therapy monitoring and therapy optimization through identifying medically-relevant patterns
in the spectrum of exhaled substances that are associated with certain (stages of) disease
(progression). However, the sampling procedure remains a critical point for the majority
of the methods [15]. Therefore, the on-site analysis of samples is a significant advantage
of portable devices, like ion mobility spectrometry coupled to multi-capillary columns
(MCC) or electric noses. Note that MCC/IMS devices potentially offer identifying the key
components in the gathered samples, in contrast to electronic noses. The IMS technology
was developed in the early 1970s and originally used for military applications [16,17]
and the detection of drugs or explosives, e.g., at airports. The powerful combination with
multi-capillary columns allows for many possible application opportunities, in particular
in medicine [18–20] and biomedicine [21]. The main analytical advantages of the MCC/
IMS technique are the ability to handle the moisture in exhaled air and the high sensitivity
(detection limit at nanograms to picograms per liter) compared to other spectrometric
techniques (e.g., GC/MS). Particularly, the short sampling time (about 10 s) and sample
processing (about 5–10 min), as well as the robust and easy handling in every day practice
make the MCC/IMS technique suited specifically for large-scale screening studies [19].

1.2.

Motivation
The number and size of the datasets emerging from those studies evoke new challenges
in terms of data management and analysis. Breathomics faces the traditional biomarker
research barrier, just as many other omics technologies: a lack of robust statistical
data analysis methods hinders translation to the world outside laboratories. Tools for
visualization [19], preprocessing and peak detection [22,23] have been developed
and various explorative statistical inference measures (e.g., Mann–Whitney U-Test or
correlation) [12] and dimension reduction (principal component analysis, PCA) have been
applied. The usage of more sophisticated learning methods and robust evaluation remains
the minority, however [11,24–26]. Furthermore, most computational breathomics studies
focus on the separation of a set of subjects into previously known subgroups. However,
as with related omics technologies, the metabolic patterns of the human exhaled air are
influenced by various sources of disturbance originating from the environment or nutrition,
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for instance. These known or unknown confounding factors might form hidden structures
in the data that conceal the important information. They may, however, be useful when they
relate to disease subtypes, varying phenotypes or concomitant diseases (secondary disorders)
emerging within the group of volunteers.

In the last few years, the field of breathomics has opened up to the advantages of modern
statistical learning approaches [25,26]. Some very recent studies (mostly in 2014) utilized
unsupervised learning methods to analyze breath gas in order to define adult asthma
endotypes [27], compare human body chemistry between breath and skin [28] and to
identify pulmonary diseases sub-phenotypes [29]. This emphasizes the emerging need
for such technology. However, none of the existing studies emerged with a software or
bioinformatics toolbox addressing the community’s need for automatic unsupervised
processing of breathomics data. In addition, in breath analysis, multi-dimensional clustering
that allows for identifying groups of metabolites associated with groups of patients was not
applied yet.

Existing work further lacks in-depth evaluations using, for instance, the F-measure together
with disease annotation data (gold standards). Parameters were usually set rather arbitrarily
instead of systematically by utilizing internal separation measures, such as the silhouette
value. The quickly emerging breathomics field requires such solutions to efficiently screen
large-scale data for hidden metabolite profiles associated with sub-groups of patients, as
they are potential markers for confounders or secondary diseases.

A large body of bioinformatics approaches exists, but has not been designed for breathomics
data. Consequently, they were not employed in the breathomics community and have
not been evaluated sufficiently yet. One of the main reasons for the tentative usage of
modern learning methods is the fact that most of the various software packages for more
advanced analysis require expert knowledge in the area of statistics and often even expertise
in programming. Popular examples are graphical tools, like Weka [30] and RapidMiner
[31], or statistical learning environments, like R [32]. Other promising approaches for
multi-dimensional clustering exist, such as bi-clustering or co-clustering (see, e.g.,
[33,34]), but they do not yet provide graphical user interfaces to visually explore the results
systematically in response to changing input parameter sets. Therefore, a comprehensive and
user-friendly software is needed to fill the gap between the quickly emerging breathomics
datasets and the requirements of current breath data analysis.

This encouraged us to design Carotta, a software application that provides easy access to
advanced unsupervised learning analysis specifically designed for breath data analysis. We
are addressing two main goals, a user-friendly front-end, including several visualization
options, as well as a flexible and modular back-end that is open for functional extensions.
Carotta guides the user through the different steps of unsupervised learning analysis, starting
with the similarity function, clustering, cluster quality evaluation, filtering and visualization
by dimension reduction. Thereby, it offers biomedical researchers access to these techniques
without requiring deeper knowledge of advanced learning techniques. The software
application provides an intuitive way to process and analyze the data efficiently, reaching
back to well established machine learning technologies in the background. The flexible
plug-in system allows future methods to be added in a straight-forward fashion. Each step
comes with an interactive visualization allowing for in-depth investigation of intermediate
results directly in the user interface without the necessity to install and configure external
software packages or libraries.

2.

System and Implementation
The carotta software framework provides interactive access pipelines revealing hidden
structures from any kind of metabolomics data; see the general Carotta workflow in Figure 1
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Figure 1

The carotta pipeline consists of several steps: (1) import of pre-processed data (see Section
2); (2) similarity calculation; (3) clustering; (4) clustering quality; (5) similarity or clustering
visualization; (6) subset selection. Intermediate results of Steps 2–4 can be inspected,
optimized and repeated at an arbitrary depth.

.

In the first step of the carotta workflow, the data are imported into the system and displayed.
Beforehand, the raw data have to be preprocessed by technology-specific pre-processing
methods, such as baseline correction, de-noising, as well as peak detection (for MCC/IMS
and GC/MS), such that a data matrix, as shown in Figure 1, is generated. In the future,
we plan to integrated such pre-processing steps directly into Carotta as plugins. A review
paper for such methods may be found in Smolinska et al. 2014 [25]. In Step 2, the pairwise
relations of objects, either of study subjects (e.g., patients) or metabolites, can be calculated
based on one of the incorporated measures (Pearson correlation coefficient, Spearman
correlation coefficient or Euclidean distance [35]). See Section 5.1 for details.

These pairwise relations are stored in a matrix and depicted by a heat map. All further
steps require this matrix to present either a similarity or a dissimilarity; therefore, the
dissimilarity matrix is converted into a similarity matrix, and vice versa, according to the
needs of the following step. This is done as follows: the converted dissimilarity is defined
as d(x, y) = max(|P|) – |p(x, y)|, where P is the matrix containing the original similarity and
p(x, y) corresponds to the similarity of object x and y. The converted similarity is defined
accordingly: p(x, y) = max(|D|) – |d(x, y)|. Further, these representations can be visualized
in a two-dimensional scatter plot by using multi-dimensional scaling (MDS) [36]; see
Figure 1, Step 5. In the next step, a clustering algorithm can be applied based on these
pairwise relations. Two state-of-the-art clustering algorithms are integrated into the system,
namely hierarchical agglomerative clustering (HAC) [37], which is based on pairwise
dissimilarities, and transitivity clustering (TC) [38], which is based on similarities; details
on the methodology are given in Section 5.2. Depending on the method of parameters (set of
thresholds), the result of one clustering algorithm is a list of groupings, each corresponding
to a certain threshold. We will refer to the set of all groupings as the clustering result and to
each grouping as clustering. In Step 4, the value of these clusterings can be evaluated and
compared by means of two quality measures, the silhouette value and the F-measure. One
may now select one clustering result (for one threshold, which yielded optimal results, for
instance) and visualize it using the MDS coordinates of the underlying similarity, as well as
by means of a scatter plot color-coded by cluster. Finally, filtering methods can be utilized
to select a subset of the data, for example a representative for each cluster or all objects of
one cluster in a certain clustering. By repeating steps one to four on the selected subsets of
the data, Carotta explores various layers of potentially hidden sub-structures. Especially the
cross-clustering of samples and metabolites can reveal novel information; see Figure 2

Figure 2

The subset selection allows for the analysis of the hidden structures in the data. Steps 2–4
from Figure 1 are repeated on a selected subset (or all subsets). Here, we separate artificial
data with respect to the metabolite clusters discovered in the first layer. The second layer
clustering of the samples (patients) now evaluates the association of each metabolite cluster
to selected patient annotations (i.e., labels; here: “health”, “nutrition” and “smoking”).
Finally, the F-measure plots show to what extent the metabolite clusters “explain” the
different labels.

.
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In short, Carotta can be used to split the set of metabolites into subsets (clusters), which, in
turn, can be used individually to inspect their association with the primary outcome variable,
i.e., the disease. This allows for eliminating large sets of metabolites, which correlate
with potential confounding factors rather than the investigated disease (elimination of
unimportant features). Most notably, Carotta automatizes these steps and provides intuitive
means for intermediate result visualization.

2.1.

Visualization
The graphical user interface (see Figure 3

Figure 3

The graphical user interface is split into three basic regions: (A) the data and results area
lists available (intermediate and final) results; (B) a “details” panel; (C) the main result
visualization panel.

) is split into three basic regions: (1) the data and results area, showing a list of all generated
results ordered in a tree-like structure; the categories correspond to the previously described
processing steps (data, similarity, clustering results, clustering quality, visualization); (2) a
“details” panel, reporting the parameter of the currently presented result; this also includes,
for instance, general information on the dataset (such as the minimum and maximum values;
(3) the main result visualization panel displays the results of the different intermediate steps,
as well as the final results.

In the following, we will describe the visualization of each of the previously described steps
in the graphical user interface in detail.

Data and similarity matrix
Each data or similarity matrix is displayed as a heat map tagged by the corresponding
metabolite names and sample label, on the columns and rows, respectively. Labels can be
changed to arbitrary annotation details included in the original data matrix.

Clustering
The heat map of the underlying similarity matrix is displayed in the center of the clustering
result visualization. The rows and columns are sorted by the corresponding clustering.
For hierarchical clustering, results can be inspected interactively by selecting a clustering
threshold by sliding with the mouse in the two dendrograms. Leaf nodes correspond to
clustered objects; inner nodes depict how the dataset is split (top down) or merged (bottom
up) during the clustering. For transitivity clustering, one may manually adjust the threshold
through a bar on the right side. Depending on the selected cut, but independent of the
utilized clustering method, colors encode the resulting clusters. The axis labels are user
definable.

Cluster quality
The quality of one or more clusterings can be evaluated for varying cuts/thresholds by using
line plots. In the case of the external F-measure, the visualization depicts the comparison
of the clustering to one or more user-selected class label(s). To identify a reasonable cut/
threshold, the internal silhouette value measure may be applied (varying thresholds, but
without the gold standard).
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Multi dimensional scaling
The visualization of the similarity of a set of objects is provided by a customizable scatter
plot, based on coordinates determined by the MDS. Besides the custom-defined labeling,
the depiction of a clustering result can be colored according to a chosen threshold. This
representation can give the first indication of whether a clustering is “good”.

2.2.

Modularity and Extendibility
Carotta is open source. Due to its modular structure, new functionality can be integrated
easily. Each of the previously described processing steps (similarity, clustering, cluster
quality and visualization) can be expanded by additional methods. Java reflections guarantee
a comfortable plug-in system that does not require any further editing of the previous code.

2.3.

Import and Export
Convenient functions to export all intermediate and final results are included. The system
provides the export of all visualizations described before. The user has the possibility to
choose between different resolutions of the resulting portable network graphics (PNG)
image file. Carotta further supports exporting into an MS Excel file (e.g., a similarity matrix
or the results of the quality measure).

2.4.

Language and Packages
The Carotta software package and associated software libraries are purely Java-based. The
source code is available at the project website and underlies the Apache License Version
2.0. More information on the technical aspects can be found in the Supplementary Material
and the following address: http://carotta.compbio.sdu.dk/ [1]. The following software packages
have been used.

The TransClust package for transitivity clustering [39].

The HAC package for hierarchical agglomerative clustering [40].

The JExcelApi 2.6.12 parsing the excel sheet into the internal data structure [41].

The JFreeChart 1.0.14 visualization (clustering quality, scatter plot of MDS) [42].

The JHeatChart 0.6 creating the heat map [43].

The MDSJ calculation of the multi-dimensional scaling [44].

The Guava & Reflections & Javassist Google Core Libraries [45] and the Javassist [46] are
used for the reflections technology.

The log4j 2.0 for logging and debugging [47].

3.

Results and Discussion
To demonstrate the abilities of the Carotta clustering framework, we analyze two datasets,
one artificial and one real world.

3.1.

Artificial Data
The artificial dataset is dedicated to demonstrating and clarifying the capabilities of Carotta.
It consists of 16 samples and 12 metabolites associated with three metabolite groups.

http://carotta.compbio.sdu.dk/
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Each of these groups is related to one of the three predefined labels of the samples: (1)
“health” (values: healthy (five), disease Subtype 1 (five), disease Subtype 2 (six)); (2)
“smoking” (values: smoker (nine), non-smoker (seven)); (3) “nutrition” (values: apple
juice (four), tea (four), orange juice (four), coffee (four)). The label “health” is our primary
outcome variable, while “smoking” and “nutrition” shall be considered as potential
confounding factors. Supplementary Tables 1–3 show the corresponding mean and standard
deviations used to generate normal distributions from which the artificial dataset was
sampled. Note that these simulated data are highly idealized. This serves the sole purpose of
exemplifying and clarifying Carotta’s use and functionality.

We will use this dataset to exemplify the power of Carotta. We first used the Pearson
correlation coefficient to calculate the similarities between all metabolite occurrences, and
clustered them by both HAC and TransClust. Independent of the clustering method, the
silhouette value indicates, as expected, an optimum of three different metabolite clusters.
As demonstrated in Figure 2, the full dataset is now split into three subsets, one for each
cluster of correlating metabolites. Subsequently, for each cluster, as well as the full dataset,
the Euclidean distance between all pairs of patient samples is computed (separately for each
cluster). The three resulting clusterings gained from the metabolite clusters are compared
against the clustering achieved with the full metabolite dataset using the F-Measure (see
Section 5.3 for details).

Figure 4

Figure 4

Carotta’s final output. The top left plots show the F-measure for different clustering
thresholds on the full dataset, containing all metabolites. We observe a dominant effect
of the confounder “smoking”, which overlays the main outcome variable “health”. The
other three plots show the F-measure behavior over different thresholds for each cluster
of correlated metabolites separately. They clearly reflect and dissect the labels “health”,
“smoking” and “nutrition” now.

shows this evaluation of the clusterings in relation to the initially-designed class labels
(“health”, “smoking” and “nutrition”). In this artificial example, the entire dataset is heavily
confounded by the influence of the “smoking”-related metabolites. If we cluster the dataset
using all metabolites, the effect of those metabolites related to “smoking” are too dominant
(red curve). Consequently, we cannot detect the samples with the label “health” (green
curve).

When we analyze the F-measure curves for the three clusters of metabolites separately,
however, we may (1) detect this confounding effect and (2) reduce it. The metabolite Subset
Clusterings A and C show perfect F-measures for “smoking” and “nutrition”, respectively.
The metabolites clustered together in Subset B contain information to group the samples
according to the label “health”.

3.2.

COPD Data
COPD is an inflammatory lung disease characterized by a permanent blockage of airflow
from the lungs, which is not fully reversible. The airways and lungs react to noxious
particles or gases, like smoke from cigarettes or fuel, with an enhanced inflammatory
response [48]. The World Health Organization (WHO) reported it as one of the most
frequent causes of death. In the period between 2000 and 2011, the disease caused 5.8%
of all deaths worldwide [49]. Even though it is a leading cause of morbidity and mortality
worldwide, it is still widely under-diagnosed. Young et al. reported in 2009 that COPD is
both a common and important independent risk factor for lung cancer [50]. Lung cancer
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is defined as an “uncontrolled cell growth in lung tissue, usually in the cells lining air
passages” [51]. Two main subtypes are small cell lung cancer and non-small cell lung cancer
[51]. They are diagnosed based on the microscopic visual appearance of the cells. The
survival rate of patients within five years is less than 20% depending on the state of the
carcinoma. Today, the majority of bronchial carcinoma is detected randomly during routine
examinations.

Here, we study the exhalome of COPD patients using a dataset from [52]. It consists of
metabolic maps from 42 COPD patients, 52 patients suffering from both, COPD and
bronchial carcinoma, as well as 35 healthy controls. The patients’ breath was captured and
analyzed using an ion mobility spectrometer coupled with a multi-capillary column, as
introduced before. We identified 120 volatile organic compounds present in at least three of
the patients’ measurements.

This dataset was evaluated utilizing Carotta following the previously introduced workflow.
At first, all 120 metabolites were clustered by HAC and the Pearson correlation (converted
to dissimilarity, as explained above). Several thresholds (thus, varying numbers and sizes
of clusters) were investigated, leading to an optimal result of T = 40. Subsequently, the set
of metabolites was split into 40 subsets, one for each cluster of correlating metabolites.
We now exclude all clusters with less than three compounds, leaving us with a total of
14 metabolite sets. Finally, the hierarchical agglomerative clustering was performed on
the correlation matrix (converted to the distance matrix, as previously described) of the
patients for each of these metabolite sets. Carotta subsequently evaluates the overlap of the
patient clusters with the three patient groups over varying clustering thresholds using the F-
measure. Figure 5

Figure 5

Comparison of the clustering results on the entire COPD dataset, i.e., using all metabolites,
as well as the four most interesting metabolite clusters (two best and two of the worst).
The plot shows the F-measure for different clustering thresholds computed against the
disease annotation (COPD, COPD with bronchial carcinoma (BC) and healthy). The Y-axis
corresponds to the clustering threshold, in this case the number of splits. Given three groups
of patients in the annotation, we are particularly interested in the performance at clustering
results at T ~ 2 (x-axis). This is shown in more detail in the zoomed cutout, as well as the
table of F-measure values at this position. Two subsets of metabolites overlap with the
patients’ disease annotation better than the clusterings based on the entire metabolite set.
The two other metabolite subsets result in reduced F-measures, indicating a relation to
confounding factors, in this case menthol (see the text).

plots the results for four of the 14 metabolite subsets, as well as the results when using the
entire set of metabolites. For better visualization, we restricted the figure to the five most
interesting results: the entire metabolite set and the two best (highest F-measures), as well as
two of the worst (lowest F-measures) performing metabolite sets.

We are given annotations for three groups of patients. Thus, we investigate the overlap
of the clustering results at T ~ 2, corresponding to two splits of the data. One can see two
metabolite clustering subsets, namely Subsets 1 and 14, that peak around three clusters. Both
exceed the F-measure achieved using the full metabolite set.

The compounds within these clusters have been manually compared (via their specific
peak coordinates) to the results of previous COPD studies utilizing supervised learning
methodology [11]. Three of the compounds in Subset 1 were previously reported as
potential biomarkers.

This shows that the presented stepwise multi-dimensional clustering approach points out
putative COPD marker metabolites by using a purely unsupervised approach. In contrast, the
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metabolites in Subsets 3 and 4 show a rapid decrease in the F-measure for a growing number
of clusters. The evaluation of the list of compounds within these clusters uncovered that
these subsets contain the menthol trimer (Subset 3), as well as the menthol monomer and
dimer (Subset 4) compounds, respectively. The occurrence of menthol in human exhaled
air can be the result of various environmental and nutritional influences, for example tooth
paste or candy.

This exemplifies where Carotta is useful: when we expect yet uncharacterized confounders
to exist, which have an effect on the metabolic patterns, we like to detect and exclude them.
The human exhaled air in particular can be influenced by various external factors, like
nutrition and compounds in the environmental air. They do not need to be known a priori,
however. Our menthol example in human breath from above serves as a proof of concept
here.

Further analyses of the clustering results would be beneficial in the future. In particular, we
need to investigate to what extent the elimination of putative confounding metabolites would
improve the classification performance in a systematic statistical learning study. This clearly
goes beyond the focus of this paper. We will address such aspects in future work.

4.

Conclusions
We presented Carotta, a software for de novo detection of confounding factors and disease
sub-types. It is open source and comes with an intuitive graphical user interface for
unsupervised breathomics data analysis and visualization. The flexible back-end design
supports easy extensions with plugins in the future, new clustering methods and statistics.
It intuitively guides the user through four steps: (1) similarity matrix computation; (2)
clustering; (3) clustering evaluation; and (4) results visualization and interpretation.
This process does not require much prior knowledge or technical skills to operate and is
therefore suitable for non-technical trained personnel. By means of an artificial dataset, we
demonstrated the power and applicability of the Carotta software framework for revealing
hidden structures and confounding factors (in a highly idealized setting). In addition, we
exemplarily utilized Carotta to re-analyze a real-world example dataset on COPD. We
demonstrated how Carotta helps with finding potential informative metabolite clusters
containing substances also supported by previous studies. Most notably, it identified
confounder metabolites (e.g., menthol), which are related to nutrition and the environment
rather than to the primary outcome variable (disease annotation, i.e., COPD and lung
cancer). The Carotta software framework offers easy access to extensive clustering analysis
to non-technical personal working in the area of breathomics. It is publicly available at http://

carotta.compbio.sdu.dk [1].

5.

Methods

5.1.

Dissimilarity and Similarity Measures
The pairwise relation of two data points is defined by a similarity or dissimilarity function.
This function is how this relation is calculated within a high-dimensional space. Depending
on the clustering approach, either the similarity or dissimilarity matrix is needed. Therefore,
the analyzed similarity and dissimilarity matrices need to be converted accordingly. A
similarity matrix is converted into a dissimilarity matrix as follows: The entries of the new
matrix are defined as d(x, y) = max(|P|) – |p(x, y)|, where P is the matrix containing the
original similarity and p(x, y) corresponds to the similarity of objects x and y. The similarity
based on the dissimilarity is defined accordingly: p(x, y) = max(|D|) – |d(x, y)|.

http://carotta.compbio.sdu.dk
http://carotta.compbio.sdu.dk
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Pearson Correlation
The Pearson correlation coefficient [35] is a measure of linear correlation. It is varying
between #1 and 1, where #1 is negative correlation, 0 is no correlation and 1 is positive
correlation.

(1)

In the following, we focus on the absolute value of the correlation.

Spearman Correlation
A non-parametric version of the Pearson product-moment correlation is the Spearman
correlation. The corresponding value estimates how well one variable can be described as
a monotonic function of another variable. It varies between #1 and 1, where #1 is negative
correlation, 0 is no correlation and 1 is positive correlation. It is defined as the Pearson
correlation coefficient between the ranks of variables [53].

Euclidean Distance
The Euclidean distance [35] is the most commonly-used dissimilarity measure. It is defined
by the following equation:

(2)

The function is given by the Pythagorean theorem and is always greater than zero, besides
the two points being equal.

5.2.

Unsupervised Statistical Learning
Unsupervised methods try to find hidden structures without incorporating external
knowledge. Essentially, they identify groups (clusters) of data objects that are more similar
to each other than to objects from other groups [37]. In the following section, we focus
on two common clustering algorithms, namely hierarchical agglomerative clustering and
transitivity clustering. We briefly introduce them in the following.

Hierarchical Agglomerative Clustering
The hierarchical agglomerative clustering (HAC) is one of the most widely-used clustering
algorithms based on the dissimilarity of objects [37]. In contrast to the divisive “top down”
approach, the first level of the HAC algorithm assigns every object to its own cluster. In
an iterative process, the most similar (smallest distance) clusters are merged. This builds
a hierarchy of similar elements resulting in a different set of clusters (clustering) for each
step. The dissimilarity between two clusters of a set of objects of different coordinates are
defined by certain agglomeration or linkage methods. Popular examples are the average-
or complete-linkage specified as the average or the maximum of all pairwise dissimilarities
of all objects between the two clusters, respectively. Please find the complete list of
agglomeration methods in Supplementary Material Section 2. Each HAC run results in a set
of N clusterings, where N is the number of objects to be grouped.

Transitivity Clustering
Transitivity clustering is based on the weighted transitive graph projection problem [38].
A given similarity matrix is interpreted as a weighted similarity graph and split into a cost
graph by removing edges with weights below a user-given threshold. Such a putatively
intransitive cost graph G = (E, V ) will be transformed into a transitive graph G# by adding
and removing a minimal number of edges. In practice, the edge weights are taken into
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account, yielding a cost function for edge modifications that is to be minimized. In 2010,
Wittkokp et al. published an algorithm that tackles this NP-hard problem by combining
exact and heuristic algorithms [39]. The threshold influences the number of clusters, as the
average similarity of objects within one cluster is (provably) above the threshold, while the
average similarity of the object from different clusters is below the threshold. Consequently,
a high threshold leads to many small clusters, while a low threshold has few, but bigger
clusters. The Transitivity Clustering software also provides a hierarchical clustering mode.

Application and Thresholds
Besides methodological delineation the main difference between the two approaches is the
real-world interpretation of the threshold. In hierarchical clustering, it corresponds to the
number of clusters. In contrast, in transitivity clustering, it corresponds to the similarity
value S, for which the average similarity of all objects from different clusters is smaller than
S (and the similarities between objects from the same cluster is higher than S, on average).
The selection of the clustering method depends on the purpose of the study and the datasets
at hand. Using hierarchical clustering usually appears beneficial if we may assume (or
guess) a certain number of clusters. In datasets with few or no outliers, this might become
problematic. If prior knowledge on a preferable similarity cutoff is available, transitivity
clustering will be more appropriate. It is more robust to outliers, as it is independent of the
number of clusters (i.e., outliers would end up as singletons).

5.3.

Quality Measures
A clustering quality measure gives evidence of how well the groups of objects are separated
by the clustering. Internal quality measures are based on the pairwise relation of the objects.
In contrast, external indices compare the clustering result to a user-given gold standard, i.e.,
the primary outcome variable (in our case).

Silhouette Value
A prominent example for an internal quality measure is the silhouette value [54]. It evaluates
how well an object fits into the associated cluster depending on the paired dissimilarity to
the objects within its cluster in contrast to the objects in all other clusters. It is defined as
follows:

(3)

Here, ai is defined as the average dissimilarity to all objects in the same cluster, while bi is
the dissimilarity to the so-called neighbor cluster, which is the cluster of the next lowest
average dissimilarity to i. The average of all object silhouette values is called the overall
silhouette value of a clustering. The value varies between one and minus one. If all elements
are well clustered, the result will be one.

F-measure
Let K be the gold standard defining a known grouping of the objects. The F-measure
compares the clustering C to the gold standard, whereas ti,j denotes the number of common
elements of Ki and Cj. The final F-measure among all clusters is varying between 0 and 1.
While 0 corresponds to a poor overlap with the gold standard, 1 indicates a perfect match
[55]. It is defined as follows:

(4)

This measure gives an impression of the clustering performance with respect to a user-
defined gold standard. However, many biomedical datasets do not provide such a standard.
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In our case, though, we may utilize the outcome variables (disease annotation and/or the
confounding factor annotations, respectively).

5.4.

Dimension Reduction by Multi-Dimensional Scaling
The visualization of high dimensional data is a challenging and complex task. Carotta
integrates the so-called multi-dimensional scaling (MDS), a standard method for this
purpose. It aims to find an embedding from the pairwise representation to a space of lower
dimension, such that the distances are preserved [36]. Given N different objects z in a high
dimensional space p, the objects will be arranged in the low dimensional space p in such
a way that the pairwise distances are most similar to original distances. Therefore, the
objective is to minimize the squared distance of all pairwise distances, Equation (5) [56].

(5)

The resulting 2-dimensional or 3-dimensional coordinates can now be visualized by a
scatter plot. Another common method for dimension reduction, called principal component
analysis, determines the biggest principal components that correspond to the orthogonal
direction of larges variance represented by a linear combination of the most varying
variables. In contrast, MDS aims to preserve the pairwise distances between each of the two
coordinates, influenced by all variables equally. Since these distances are the bases for the
clustering, the MDA is a more reasonable choice for this purpose.

5.5.

Comparison to Existing Software
Several data analysis frameworks have been developed to process, visualize and analyze
metabolomics data, particularly for GC/MS data. Some of them focus on pre-processing
raw data, but include advanced methods for alignment, peak detection and identification,
such as mzMine [57]. Others, like the web application MeltDB, addresses issues concerning
metabolomics data storage, sharing, standardization and a binding to R software packages
to allow the application of the whole wealth of statistical data analysis tools integrated
nowadays in R, which requires programming knowledge, however [58]. More advanced
services, such as XCMSOnline [59] and MetaboAnalyst [60], offer advanced statistical
analysis techniques. The first, optimized for LC/MS data, offers various parametric
and non-parametric test statistics, as well as extended visualizations for meta-analysis
(Venn diagrams, for instance). Like Carotta, it offers unsupervised learning techniques
and visualization capabilities, mainly principal component analysis (PCA) and HAC.
In contrast to Carotta, it does not provide means for systematically exploring adequate
measures for internal and external clustering quality, which are essential to evaluate
the information content of the clusterings and to pick reasonable clustering parameters/
thresholds. The MetaboAnalyst web server also provides access to GC/MS data pre-
processing, multivariate statistics and PCA, but focuses mainly on supervised learning
and time series analysis afterwards. It is supporting advanced learning methods, such as
partial least squares, discriminant analysis or random forest and an evaluation framework,
including cross-validation, permutation test and ROC curve analysis, but it neglects features
for systematically exploring the results of unsupervised data processing technologies. In
contrast, Carotta’s focus lies on the de novo detection of confounding factors. It enables the
analysis of breath datasets, for instance, to detangle potential biomarkers and confounders in
an unsupervised manner.

Existing methods for such multi-dimensional clustering, such as bi-clustering or co-
clustering [33,34], do not provide graphical frameworks to systematically explore the
parameter space. Carotta, however, allows one to easily design and apply a sequence of
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various clustering combinations of metabolites and samples and to investigate all results
visually and systematically using different validity measures.

We like to emphasize that the main focus of Carotta is breath data analysis, yet its utility is
neither limited to MCC-IMS data nor to breath gas profiling. Applications in transcriptomics
(gene expression data) or related omics fields are generally possible. Here, we study breath
data only, as this kind of data is rich in yet undiscovered confounders emerging from the
environment, nutrition or ambient air. Besides systematic confounders breath data might
also be prone to various technological sorts of noise. An extensive analysis of their effects is
needed, but beyond the scope of this paper.

Unlike all other tools, but MetaboAnalyst, Carotta allows one to directly process a
metabolomics peak matrix (independent of the utilized technology). MetaboAnalyst,
however, does not support systematic clustering exploration. The MCC/IMS community has
established a number of standard procedures for pre-processing, and a set of integrated tools
has been developed in the past; see [22,25,61]. As all existing frameworks, Carotta also does
not yet support such pre-processing functionality, but offers a flexible plugin architecture,
which we will use in the future to implement such features, amongst others.
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