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Decades of brain research have identified various parallel loops linking the hippocampus

with neocortical areas, enabling the acquisition of spatial and episodic memories.

Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate

gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of

its seemingly simple connectivity and characteristic structures that are experimentally

well accessible. While numerous researchers focused on functional aspects, obtained

from a limited number of cells in distinct hippocampal subregions, little is known

about the neuronal network dynamics which drive information across multiple synapses

for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows

real-time recording of activity patterns in large/meso-scale neuronal networks with

high spatial resolution. In this way, we recently found that entorhinal theta-frequency

input to the DG most effectively passes filter mechanisms of the trisynaptic circuit

network, generating activity waves which propagate across the entire DG-CA axis. These

“trisynaptic circuit waves” involve high-frequency firing of CA3 pyramidal neurons, leading

to a rapid induction of classical NMDA receptor-dependent long-term potentiation

(LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced

to be essential for some forms of explicit learning in mammals. Here, we review data

with particular reference to whole network-level approaches, illustrating how activity

propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.

Keywords: hippocampus, trisynaptic circuit, neuronal network dynamics, filter, theta, voltage-sensitive dye

imaging, CA1 LTP

Introduction

Accumulating evidence points to a major role of the hippocampal formation in the acquisition
and recall of episodic and spatial memories in mammals (Whitlock et al., 2006; van Strien
et al., 2009). The idea to investigate the underlying neuronal network dynamics is well
illustrated by common theories about memory acquisition and consolidation (Frankland
and Bontempi, 2005; Teyler and Rudy, 2007). These models incorporate the intrinsic
organization of the hippocampal formation, its physiology, and its connectivity with other brain
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KEY CONCEPT 1 | Long-term potentiation (LTP)

Long-lasting activity-dependent enhancement in transmission strength at

chemical synapses. At many central synapses, LTP requires activation of NMDA

receptors. LTP is widely thought to be one of the major cellular mechanisms

underlying learning and memory.

KEY CONCEPT 2 | hippocampal formation

Compound brain structure consisting of the dentate gyrus, hippocampus

proper (cornu ammonis), subiculum, presubiculum, parasubiculum, and

entorhinal cortex. The hippocampal formation is critically involved in several

cognitive functions like formation of spatial and episodic memories and spatial

navigation.

KEY CONCEPT 3 | neuronal network dynamics

Complex spatio-temporal patterns of electrical activity in large/meso-scale

neuronal networks.

regions to give an account of how information about a relevant
experience is stored. Above all, this process involves the
repeated activation of hippocampal circuits by specific features
of the original experience. Due to reciprocal and hierarchically
organized connections between the hippocampal formation and
adjacent association areas, the information, which is initially
“buffered” in the hippocampus (DG + CA + subiculum), can
be transferred to the neocortex for subsequent long-term storage
(Teyler and Rudy, 2007; Nakashiba et al., 2008).

Contemporary neuroscience offers a rich toolbox to probe
neuronal functioning, ranging from single-cell and local
field potential recording to more indirect analyses of whole
brain activity by functional magnetic resonance tomography
(Andersen et al., 2007; deCharms, 2008). However, to study
the integration of thousands of neurons during information
processing, these approaches are limited either by their spatial
scale, since recordings from individual or a few neurons
(“microscale”) typically provide little information about the
associated network, or by the fact that non-invasive imaging
methods (“macroscale”) measure a surrogate signal whose
spatial and temporal resolution are subject to both physical
and biological constraints (Logothetis, 2008; Lewis and Lazar,
2013). Therefore, it is crucial to also engage circuit-centered
approaches, which operate at the interface of the aforementioned
methods (Buzsaki, 2004; Karayiorgou et al., 2012; Lewis and
Lazar, 2013). To directly study how neurons communicate
across several synapses in large/meso-scale networks, high-
speed optical techniques like voltage-sensitive dye imaging

(VSDI) proved themselves to be instrumental in covering
the methodologically demanding “mesoscale” of neuroscience
research (Iijima et al., 1996; Airan et al., 2007b; Refojo et al.,
2011; von Wolff et al., 2011; Stepan et al., 2012; Avrabos
et al., 2013). VSDI allows the analysis of neuronal activity on a
millisecond scale, with micrometer-range spatial resolution, and
a scope that spans the entire brain circuits under investigation

KEY CONCEPT 4 | voltage-sensitive dye imaging

Imaging technique that uses fluorescent dyes which stably insert into

cytoplasmic membranes and report changes in membrane potential by

changes in fluorescence emission.

(Tominaga et al., 2000; Grinvald and Hildesheim, 2004; Airan
et al., 2007b; Carlson and Coulter, 2008; Chemla and Chavane,
2010; Stepan et al., 2012).

The hippocampal formation is a brain module that is often
mentioned in conjunction with CA1 LTP. Reasons for this
are that CA1 LTP is heavily used as an experimental model
for examining cellular underpinnings of learning and memory,
demonstrations that CA1 LTP also naturally occurs in the brain,
and strong evidence that CA1 LTP is required for some forms of
explicit learning in mammals (Morris et al., 1986; Zola-Morgan
et al., 1986; Bliss and Collingridge, 1993; Tsien et al., 1996;
Burgess et al., 2002; Malinow, 2003; Gruart et al., 2006; Whitlock
et al., 2006; Henneberger et al., 2010).

KEY CONCEPT 5 | CA1 LTP

LTP at hippocampal CA3-CA1 synapses. CA1 LTP depends on NMDA

receptor activation, is normally induced by high-frequency (100Hz) or

theta-burst stimulation of CA3-CA1 projections, possesses the properties

of “cooperativity,” “associativity,” and “input-specificity,” and predominantly

results from a recruitment of additional AMPA receptors to the postsynaptic

membrane.

Much of the knowledge about CA1 activation and induction
of CA1 LTP comes from in vivo and in vitro studies using local
field potential or single-cell recording in area CA1, excluding
the detection of neuronal activity in upstream regions (Andersen
et al., 1966; Herreras et al., 1987; Bliss and Collingridge, 1993;
Whitlock et al., 2006). Yet, the well-defined regular structure and,
at some locations, unidirectional circuitry (Amaral and Witter,
1989) makes the hippocampal formation an ideal candidate
for network-level investigations. The entorhinal cortex (EC)
represents the main input/output partner of the hippocampus
(Witter et al., 2000), thus creating entorhinal-hippocampal
loops, perfectly suited for in vitro high-speed imaging studies
examining the mechanisms of polysynaptic activity flow and
induction of long-term synaptic plasticity (Andersen et al., 1966;
Herreras et al., 1987; Buzsáki, 1988; Iijima et al., 1996; Nakagami
et al., 1997; Stepan et al., 2012). Here, we review anatomical
and functional characteristics of the hippocampal trisynaptic
circuit and parallel pathways (e.g., temporoammonic pathway),
which constitute the foundation for complex neuronal network
dynamics during information processing. Including previous
work and our recent findings (Stepan et al., 2012), we describe
properties of local circuits in the DG and area CA3 and their
interaction to enable activity propagation across several synapses
for induction of CA1 LTP. We also discuss how our experimental
findings can be integrated in the existing literature and how
extensions of VSDI toward an “all optical” approach (e.g., by
a combination with optogenetic tools) might prove useful for
resolving the neuronal network dynamics underlying higher
order brain functions.

Structural Architecture of the Hippocampal
Trisynaptic Circuit and Parallel Pathways

The well-established role of the hippocampus in cognitive
processes like memory formation relies, among other
things, on remarkable anatomical features. In contrast to
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the reciprocal connectivity of most other cortical structures, the
hippocampus is characterized by a largely unidirectional passage
of information through its circuitry. However, before polymodal
sensory information enters the hippocampus, it has to pass a
hierarchically organized neocortical network. Upon sensory
receptor stimulation, primary sensory cortices are the first to
become activated, followed by supplemental sensory areas and
high-order association cortices. Accordingly, highly processed
sensory information is subsequently fed into the EC, with a
particular focus on superficial layers II and III (Andersen et al.,
2007; Teyler and Rudy, 2007).

The EC is often regarded as the first station of information
processing in the hippocampal formation. This notion originates
from the observation that its superficial layers provide the
main cortical input to the hippocampus, while its deep layers
represent the main target of information that returns back
from area CA1 and the subiculum. EC layer IV and V
neurons in turn project to superficial layers or high-order
association cortices. In particular, layer II neurons send their
axons via the perforant path to the DG and areas CA3
and CA2. The second major input emerges from layer III
neurons, which project via the temporoammonic pathway to
the CA1 subfield and the subiculum (Witter et al., 2000;
van Strien et al., 2009; Kohara et al., 2014). Moreover, some
hippocampal regions are connected to subcortical structures,
including the amygdala, the hypothalamus, the medial septum,
the raphe nucleus, and the locus coeruleus, completed by
a pronounced commissural input from the contralateral
hippocampus and an ipsilateral associational loop (Nicoll and
Schmitz, 2005; Andersen et al., 2007). Interestingly, activation of
the locus coeruleus can induce β-adrenergic receptor-dependent
LTP at perforant path-DG synapses (Walling and Harley,
2004).

The famous neuroanatomists Ramón y Cajal and Lorente
de No were already attracted by the extremely dense division
of the perforant path connecting EC layer II cells with the
DG (Lorente de No, 1934; Ramón y Cajal, 1995). These
axons provide excitatory synaptic input (in the following
abbreviated “EC/DG-input”) on apical dendrites of DG granule
cells, which give rise to mossy fibers, the most prominent
non-commissural/associational excitatory innervation of CA3
pyramidal neurons. These cells in turn synapse via the
glutamatergic Schaffer collaterals onto ipsilateral CA1 pyramidal
neurons, thereby completing the hippocampal trisynaptic circuit
(Amaral andWitter, 1989). Its prominent anatomical appearance
and well-established role in information processing strongly
suggest that the trisynaptic circuit is the main route of activity
flow through the hippocampus (Nicoll and Schmitz, 2005;
Nakashiba et al., 2008; Neves et al., 2008; Daumas et al.,
2009).

Recent research points to an additional trisynaptic circuit,
which might operate independently from the classical one.
In this circuit, a subpopulation of DG granule cells target
CA2 pyramidal neurons, which synapse on CA1 counterparts.
Although uncertainties remain with regards to the specific role
of this pathway and its interaction with the classical trisynaptic
circuit, its proposed function is to prevent neuronal hyperactivity

by triggering feedforward inhibition of CA3 pyramidal neurons
(Kohara et al., 2014).

Together, from the gross anatomy of the hippocampal
formation and associated structures, there emerges a complex
neuronal network containing several parallel pathways. The
trisynaptic circuit represents the most prominent one and
is comprised of three excitatory (glutamatergic) synapses
(EC layer II → DG → CA3 → CA1, Figure 1A). However,
the trisynaptic circuit network does not only consist of
trisynaptic interconnections, but also includes associational
loops and partly complex interneuronal circuits which
mediate feedforward and/or feedback inhibition of principal
neurons and disinhibition processes (Andersen et al., 2007;
Bartos et al., 2007; Savanthrapadian et al., 2014). Further
complicating the picture, several back-projections (e.g., from
CA3 pyramidal neurons to the dentate hilus or inner molecular
layer of the DG) have been identified (van Strien et al.,
2009).

Voltage-Sensitive Dye Imaging: Toward a
Comprehensive Understanding of
Hippocampal Network Dynamics

To accurately characterize the activity dynamics and
physiological function(s) of a particular hippocampal pathway,
several groups deactivated specific fiber tracts in vivo or in vitro
(Remondes and Schuman, 2002; Ang et al., 2005; Hunsaker
et al., 2007; Nakashiba et al., 2008; Daumas et al., 2009; Suh
et al., 2011; Stepan et al., 2012). In vivo investigations allow
a direct correlation of manipulations of connectivity patterns
with behavioral changes (Hunsaker et al., 2007; Nakashiba
et al., 2008; Daumas et al., 2009; Suh et al., 2011). In vitro
approaches, in which structures like the hippocampus are
studied in brain slices, are equally important, since they permit
a more precise control of neurophysiological processes (e.g.,
Butler and Paulsen, 2014). Together, in vivo and in vitro
experiments revealed that each hippocampal pathway alone, but
also their interactions, are necessary for normal hippocampal
functioning (Remondes and Schuman, 2002; Ang et al., 2005;
Nakashiba et al., 2008; Stepan et al., 2012; Kallarackal et al.,
2013).

To overcome the limited spatial scale of single-cell and local
field potential recordings, several recent studies applied VSDI
to hippocampal slice preparations. Most of these investigations
examined neuronal network activity in distinct regions of the
hippocampal formation like the EC (Canto et al., 2012), the
DG (Jackson and Scharfman, 1996; Airan et al., 2007b; Ikrar
et al., 2013; Yu et al., 2013; Wright and Jackson, 2014),
and area CA1 (Ang et al., 2005; Airan et al., 2007b; Suh
et al., 2011; Kim et al., 2012; Dine et al., 2013; Haettig
et al., 2013). However, VSDI studies on neuronal activity
propagation through the entire trisynaptic circuit are scarce
(Iijima et al., 1996; Nakagami et al., 1997; Stepan et al., 2012)
and were mostly performed without deactivation of potentially
interfering pathways (Iijima et al., 1996; Nakagami et al.,
1997).
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FIGURE 1 | The hippocampal trisynaptic circuit and monitoring of

“trisynaptic circuit waves” by VSDI. (A) Schematic drawing of the

hippocampal trisynaptic circuit (marked in red) and experimental arrangement

used for the investigations shown in (B,C). Scissors illustrate specific

deafferentations. (B,C) VSDI filmstrip and recording traces depicting trisynaptic

circuit waves evoked by theta-frequency (5Hz) stimulation of perforant path

fibers. Warmer colors in (B) indicate higher neuronal activity (i.e., excitatory

postsynaptic potentials and action potentials; adapted from, Stepan et al.,

2012). Abbreviations: 1F/F, fractional change in fluorescence; MF, mossy fiber;

PP, perforant path; ROI, region of interest; SC, Schaffer collateral; Stim,

electrical stimulation; TA, temporoammonic pathway.

Activity Dynamics in the Trisynaptic Circuit
Network and a Putative Filter Function

Different stimulation paradigms, with varying physiological
relevance, have been used in vivo and in vitro to trigger action
potential firing of EC layer II cells for activation of the DG. What
emerged from these studies is that low-frequency EC/DG-input

(≤0.2Hz) leads to pronounced neuronal activity in the DG,
but only feeble or no activation of CA areas (Herreras et al.,
1987; Scharfman, 1991; Stepan et al., 2012; Yu et al., 2013). In
contrast, EC/DG-input at 1–20Hz generates waves of neuronal
activity which propagate through the entire trisynaptic circuit
network (Herreras et al., 1987; Stepan et al., 2012). These
“trisynaptic circuit waves,” which can be accurately monitored
by VSDI (Figures 1A,B) and are applicable for pharmacological
investigations, start to appear in an initially progressive manner
a few hundred milliseconds after the onset of EC/DG-input and
precisely follow the input rhythm (Figure 1C; Supplementary
Video in Stepan et al., 2012). Furthermore, trisynaptic circuit
waves dissipate within a couple of seconds if the inducing
EC/DG-input is followed by a low-frequency (e.g., 0.05Hz)
one (Stepan et al., 2012). These findings indicate that the
occurrence and strength of activity propagations through the
trisynaptic circuit network critically depend on the frequency
and persistence of EC/DG-input, a connection which presumably
reflects a basic filter mechanism of the hippocampus regarding
EC inputs.

Does the DG-CA3 Complex Act As a
“Band-Pass Filter”?

A key finding of our previous work is that theta-frequency
(5Hz) EC/DG-input is very effective at generating trisynaptic
circuit waves, whereas 1 and 20Hz EC/DG-input evokes weaker
ones. Moreover, we revealed that trisynaptic circuit waves
critically depend on frequency facilitation of mossy fiber synaptic
transmission onto CA3 pyramidal neurons and observed that DG
activity increasingly declines during 0.2, 1, 5, and 20Hz EC/DG-
input, respectively (Stepan et al., 2012). Together with the fact
that frequency facilitation at mossy fiber synapses develops
stronger with higher frequencies (Toth et al., 2000), these results
suggest that, regarding neuronal activity propagation from the
EC to area CA1, the DG-CA3 complex operates as a kind of “low-
order band-pass filter,” wherein the DG network serves as the
“low-pass unit” and the CA3mossy fiber system as the “high-pass
device” (Neural band-pass filter; Figure 2). If so, this filter would
be effectually passed by sensory information encoded in the
theta-frequency range. Synchronous theta-rhythmical spiking in
EC layer II cell ensembles, as mimicked by our 5Hz stimulation

KEY CONCEPT 6 | Mossy fiber synapse

Excitatory (glutamatergic) synapse formed by dentate gyrus granule cell axons

and CA3 neurons. Mossy fiber synaptic transmission onto CA3 pyramidal

neurons exhibits prominent frequency facilitation, a form of presynaptic short-

term plasticity which is strongly pronounced in the theta-frequency range and

can potentiate the otherwise weak neurotransmission by up to ∼1200%.

KEY CONCEPT 7 | “Neural band-pass filter”

Neural substrate which only generates significant output in response to an

input signal if the input signal ranges in a certain frequency band. If the filter

displays smooth output attenuation characteristics, it represents a “low-order

band-pass filter.”
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FIGURE 2 | Proposed filter properties of the DG-CA3 complex. The DG

network operates as a kind of “low-order low-pass filter” (black curve),

whereas the CA3 mossy fiber system possesses opposing filter characteristics

(dotted curve). The output attenuation ramps overlap, leading to “band-pass”

properties of the DG-CA3 complex (red curve) regarding neuronal activity

propagation from the EC to area CA1.

paradigm (Figure 1), occurs during EC theta oscillations, which
in turn are tightly linked to several cognitive functions in
mammals (Mizuseki et al., 2009; Quilichini et al., 2010; Burgalossi
et al., 2011; Colgin, 2013). Given that trisynaptic circuit waves
elicit action potentials in pyramidal neurons of the CA1
output subfield of the hippocampus (Herreras et al., 1987;
Stepan et al., 2012), an important physiological function of EC
theta oscillations thus might be to drive sensory information
through the whole entorhinal-hippocampal loop formed by the
trisynaptic circuit network.

KEY CONCEPT 8 | Theta

Frequency band covering ∼4–12Hz of rhythmical (oscillatory) neural activity.

Theta activity occurs in various brain structures, including the hippocampal

formation, and is tightly linked to mechanisms of learning and memory.

Putative Cellular Mechanisms Underlying
DG and CA3 Filter Properties

The remarks given above are in line with previous work
proposing that the DG acts as a filter to prevent the hippocampus
from sensory overflow or runaway excitation as seen in
pathological brain states like schizophrenia or temporal lobe
epilepsy, respectively (Javanbakht, 2006; Hsu, 2007; Coulter et al.,
2011). A filter function was also attributed to the CA3 circuitry
(Mori et al., 2004; Zalay and Bardakjian, 2006). But what might
be the cellular mechanisms underlying these filter properties?

For area CA3, the situation appears relatively simple. This is
because frequency facilitation at mossy fiber synapses onto CA3
pyramidal neurons, which starts to occur at 0.5–1Hz, develops
stronger with higher frequencies and can be so pronounced that
even a unitary excitatory postsynaptic potential (EPSP) becomes
forceful enough to fire the target cell (Jonas et al., 1993; Toth et al.,
2000). Frequency-dependent depression at mossy fiber synapses
onto CA3 interneurons, which mediate feedforward inhibition
of CA3 pyramidal cells, additionally promotes spiking of these

principal neurons (Toth et al., 2000; Mori et al., 2004). Therefore,
the CA3 mossy fiber system seems ideally suited to act as a kind
of “low-order high-pass filter.”

Although the situation in the DG is presumably more
complicated (Hsu, 2007), several findings point to “low-order
low-pass filter” properties. For instance, EPSPs at medial
perforant path-DG granule cell synapses show frequency-
dependent depression, which strongly increases with higher
frequencies (Kilbride et al., 2001). Furthermore, a recent study
revealed that voltage attenuation in apical dendrites of DG
granule cells becomes more severe if the experimentally induced
voltage deflections are enhanced in their frequency (Krueppel
et al., 2011). A role of inhibitory interneurons must also be
taken into account, since repetitive stimulation of perforant
path fibers causes habituation of DG granule cell activity, a
phenomenon which likewise develops stronger with higher
frequencies and involves activation of postsynaptic GABAB

receptors (Teyler and Alger, 1976; Rausche et al., 1989).
Paired-pulse facilitation at perforant path synapses onto basket
cells (Savanthrapadian et al., 2014), which effectively inhibit
DG granule cells (Bartos et al., 2007), might additionally
contribute to “low-pass filter” properties. Finally, representing
another possible mechanism, GABAergic dendritic inhibition
of DG granule cells has been found to be more powerful
during periods of intense perforant path activity (Liu et al.,
2014).

Trisynaptic Induction of CA1 LTP

As stated in the introduction, much evidence speaks in favor
for an essential role of CA1 LTP in the formation of some
explicit memories in mammals. If so, induction of CA1 LTP
should be triggered by sensory information transfer to the
hippocampus. How could this take place at the level of the
trisynaptic circuit network? We propose that synchronous theta-
rhythmical spiking in EC layer II cell ensembles, which occurs
during EC theta oscillations (Mizuseki et al., 2009; Quilichini
et al., 2010; Burgalossi et al., 2011), can be an effective starting
process. Indeed, we found that trisynaptic circuit waves induced
by 5Hz EC/DG-input involve high-frequency firing (>100Hz) of
CA3 pyramidal neurons and cause induction of NMDA receptor-
dependent CA1 LTP within a few seconds (Stepan et al., 2012).
Such trisynaptic circuit waves precisely follow the input rhythm,
indicating that the activated DG granule cells also discharge in a
theta-rhythmical manner. Consistently, EC theta oscillations are
tightly associated with theta-modulated spiking of DG granule
cells (Jung and McNaughton, 1993; Skaggs et al., 1996; Mizuseki
et al., 2009; Pernía-Andrade and Jonas, 2014). The resultant
frequency facilitation/depression at mossy fiber synapses (see
above) causes firing of CA3 pyramidal neurons, which typically
respond with burst spiking (100–300Hz, ∼4–6 action potentials
per burst) to suprathreshold depolarizations (Andersen et al.,
2007). Pharmacologically induced burst discharges in CA3
pyramidal neurons as well as theta-burst stimulation of CA3-
CA1 projections efficiently evoke CA1 LTP (Buzsáki et al.,
1987; Bliss and Collingridge, 1993). A simplified scheme of the
described circuit process and trisynaptic circuit dynamics, which
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presumably fail to cause induction of CA1 LTP, is shown in
Figure 3.

The remarks given above suggest that trisynaptic circuit
waves and induction of CA1 LTP by them also occur naturally
at the level of sparse numbers of trisynaptic interconnections
and associated microcircuits (Jung and McNaughton, 1993;
Whitlock et al., 2006; Leutgeb et al., 2007). This does not
exclude contributions of other excitatory inputs (e.g., direct
EC inputs to CA areas) and intrahippocampal pathways (e.g.,
commissural-CA3 pathway, Hagena and Manahan-Vaughan,
2011) to induction of CA1 LTP, but ascribes a major role to
EC/DG-input. This might be the reason why some forms of
hippocampus-dependent learning need the integrity of the entire
trisynaptic circuit (Nakashiba et al., 2008) and are impaired if
mossy fiber to CA3 neurotransmission is inhibited (Daumas
et al., 2009).

Prior to our work, “polysynaptic LTP” in area CA1 has
already been described by Buzsáki (1988) and Nakagami et al.
(1997). However, there are strong differences to our study.
Buzsaki induced population spike LTP by 400Hz stimulation
of the angular bundle. It is questionable if 400Hz firing is a
physiological activity pattern of EC layer II cells (Andersen
et al., 2007) and Buzsáki states that direct EC inputs to CA
areas, which we intentionally eliminated in our experiments
(Figure 1A), were presumably essential for the population spike
LTP. Moreover, he points out that trisynaptic interconnections
are not able to follow high-frequency activity in the perforant
path. In the second study, Nakagami and colleagues performed
VSDI recordings in hippocampal slices and claimed that 100Hz
stimulation of the DG’s dendritic field provoked trisynaptic LTP
induction. Yet, the stimulation paradigm employed most likely
did not only trigger neurotransmission at perforant path-DG

granule cell synapses, but also led to direct perforant path inputs
to CA3 pyramidal neurons and non-synaptic excitation of DG
granule cells. Furthermore, in this study no clear evidence for the
occurrence of CA1 LTP is provided, e.g., by blocking the LTP via
NMDA receptor inhibition.

Finally, it is important to mention that LTP in the
hippocampus has been evidenced to be related to hippocampal
theta and gamma oscillations (Bikbaev and Manahan-Vaughan,
2008). For instance, it has been shown that high-frequency
activity in the Schaffer collateral-commissural pathway induces
CA1 LTP if triggered during the positive phase of the
hippocampal theta rhythm. In contrast, if evoked during the
negative phase, long-term depression (LTD) occurs (Hölscher
et al., 1997; Hyman et al., 2003). Our VSDI assay does currently
not allow investigations on such relationships for plasticity
induction by trisynaptic circuit waves. Anyhow, this assay
revealed a circuit process that illustrates how sensory information
transfer from the EC to the DG can produce high-frequency
activation of CA3-CA1 synapses.

Summary

Based on our recent work (Stepan et al., 2012) and studies
from other groups, we developed a neurophysiological scenario
illustrating how sensory information transfer from the EC to
the hippocampus might cause induction of memory-associated
CA1 LTP. We describe data suggesting that theta-frequency
EC/DG-input (generated by theta-modulated spiking in EC
layer II cell ensembles) can effectively overcome “band-pass
filter” mechanisms of the DG-CA3 complex, producing activity
waves which propagate through the entire trisynaptic circuit
network. Such trisynaptic circuit waves start to appear in an

FIGURE 3 | Proposed (simplified) trisynaptic circuit dynamics which

cause or fail to provoke induction of CA1 LTP. (A,B) Due to “band-pass

filter” properties of the DG-CA3 complex, low- or high-frequency spike

activity in an EC layer II cell ensemble (even if synchronized) produces only

marginal burst firing of CA3 pyramidal neurons and, thus, fails to cause

induction of CA1 LTP. (C) Theta-modulated discharge activity in the same EC

ensemble provokes synchronized theta-burst spiking of CA3 pyramidal cells,

leading to LTP induction at CA3-CA1 synapses.
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initially progressive manner a few hundred milliseconds after
the onset of EC/DG-input and involve high-frequency firing
of CA3 pyramidal neurons, leading to a rapid induction of
NMDA receptor-dependent CA1 LTP. Therefore, an important
physiological function of EC theta oscillations might be to drive
sensory information through the whole trisynaptic entorhinal-
hippocampal loop and to “buffer” it in area CA1. These processes,
however, only take place if EC/DG-input exhibits a certain
amount of persistence (>for CA1 LTP induction), which is
reminiscent of the observation that episodic and spatial learning
typically needs a certain time of content exposure.

Outlook: “All Optical” Probing of
Hippocampal Network Dynamics In Vitro

A comprehensive elucidation of the mechanisms and
physiological functions of hippocampal network dynamics

does not only require sophisticated recording methods like

fast VSDI or multi-electrode array techniques, but also tools
which allow a temporally precise activation or silencing of

specific types of neurons. The latter is now provided by the

optogenetic toolbox (e.g., Zhang et al., 2010) and a combination
with VSDI has already been proposed to yield an useful “all

optical” approach for studying brain circuit dynamics in vitro
(Airan et al., 2007a). Due to the data we obtained by VSDI

(Refojo et al., 2011; von Wolff et al., 2011; Stepan et al.,
2012; Avrabos et al., 2013), we also consider this approach

promising. Especially its refinement by genetically encoded
voltage indicators, which supersede staining of the neuronal

network under study with a conventional VSDI dye and enable
one to optically record from specific cell types (Flytzanis et al.,

2014) appears valuable for future research. This also applies to
two-photon activation of optogenetically used opsins (Prakash
et al., 2012).
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