Understanding the ionic liquid $[NC_{4111}][NTf_2]$ from individual building blocks: an IR spectroscopic study

Kenny Hanke, Matin Kaufmann, Gerhard Schwaab, and Martina Havenith^{a)}
Department of Physical Chemistry II, Ruhr-University Bochum,
D-44801 Bochum
Conrad Wolke, Olga Gorlova, and Mark A. Johnson
Department of Chemistry, P.O. Box 208107, Yale University, New Haven,
CT 06520-8107
Bishnu Kar and Wolfram Sander
Department of Organical Chemistry II, Ruhr-University Bochum,
D-44801 Bochum
Elsa Sánchez-García
Department of Theoretical Chemistry, Max-Planck-Institut für Kohlenforschung,
Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr

Keywords: IR Spectroscopy, Ionic Liquid, Helium Nanodroplets

^{a)}E-mail to:martina.havenith@rub.de

Fig. S 1. Gas phase mass spectrum of $[NC_{4111}][NTf_2]$. m/z = 116 is the cation mass. Peaks at m/z = 58, 60, 64, 69 result from the fragments Bu+H⁺, N(CH₃)₃+H⁺, SO₂⁺ and CF₃⁺ of anion and cation, respectively. The water, nitrogen and CO₂ signals at m/z = 18, 28, 44 are due to the background in the QMS chamber.

Mass spectrosocopic measurements This work present a line-of-sight mass spectroscopic measurement of the evaporated $[NC_{4111}][NTf_2]$ at an evaporation temperature of 450(1) K. In Figure S1 we show the gas phase mass spectrum of $[NC_{4111}][NTf_2]$. m/z = 116 corresponds to the cation mass. Peaks at m=z = 58, 60, 64, 69 result from the fragments $Bu + H^+$, $N(CH_3)_3 + H^+$, SO_2^+ and CF_3^+ of anion and cation, respectively. The water, nitrogen and CO_2 signals at m/z = 18, 28, 44 are due to the background in the QMS chamber. We observed a signal at m/z = 116 corresponding to the cation as well as fragments of the anion. After switching off the ionization filament no signal below m/z = 1000 could be observed. This supports the results of earlier studies that aprotic ILs evaporate in ultrahigh vacuum as classical ion pairs (see reference 27,74).

IR spectra for the IL using the deuterated cation Figure S2 displays the recorded IR spectra of the IL building blocks of the deuterated cation d_9 . From top to bottom: CIVP

Fig. S 2. From top to bottom: CIVP spectra of the deuterated cation (1,0)-d₉; IR spectrum of $[d_9-NC_{4111}][NTf_2]$ measured in helium droplet Helium (1,1)-d₉; CIVP spectra of the deuterated (2,1) and (1,2) clusters and the FTIR bulk spectrum of $[d_9-NC_{4111}][NTf_2]$, labeled (2,1)-d₉, (1,2)-d₉ and FTIR (bulk)-d₉, respectively. Note that the vertical axes are arbitrarily scaled on either side of the break in the abscissa. The arrow marks the position of the VTMA measurement.

spectrum of the deuterated cation $d_9 - (1,0)$. $[d_9 - NC_{4111}][NTf_2]$ ion pair measured in helium droplet Helium d9-(1,1); CIVP spectra of the deuterated (2, 1) and (1, 2) clusters and the FTIR bulk spectrum of $[d_9 - NC_{4111}][NTf_2]$, labeled $d_9 - (2, 1)$, $d_9 - (1, 2)$ and room temperature FTIR d_9 -(bulk), respectively. Vertical lines, corresponding to the most intense $(d_9-(1,0))$ features, aid to identify spectral changes. IR transitions are arbitrarily scaled on either side of. The arrow marks the position of the VTMA measurement.

Results of the theoretical predictions in comparison to the experimental results

TABLE I. Harmoni	c frequenc	ies and	assign	ments ob	tained	by $MP2/$	cc-pwC	VTZ (scaled b	y 0.968) o	of the anion ir	trans $((0,1) trans)$ and c	\mathbf{s}
$((0,1) \ cis)$ conform.	ation; cent	er frequ	encies	of the a	nion (((),1)) mea	sured b	y CIV	P; anior	ı bands fr	om two harm	onic frequency calculatior	\mathbf{S}
of an ion pair with	the anion	in trans	((1,1))) trans) ε	und cis	$((1,1) \ cis$) and t	he cat	ion both	in ap/ap	conformation	ı obtained by MP2/aug-c	4
pwCVDZ (unscaled); center fr	equenci	es of a	mion ban	ds in cn	n ⁻¹ . Ban	d freque	encies	from res	onances s	hifted due to e	lifferent local environmen	\mathbf{S}
are separated by a	semicolon.	Predic	ted fre	equencies	in itali	cs.							
assignmer	t^a $(0,1)$ tran.	s (0,1) cis	: (0,1)	(1,1) trans	(1,1) cis	(1,2)	(2, 3)	(2,1)	(3,2)	bulk FTIR	Neon	Argon	
δCSN	616	595^{b}	626	601	581^{b}	626	625	621	616	617 (306;609;621;626	603;608;620;624	
δSNS	615	642	Ι	615	637	I	669	I	643	656	656;672	655;670	
$\delta_s \mathrm{CF}_3$	734	735	I	726*	728*	737	740	I	Ι	741	742	741	
VCS	748	749	I	$\gamma 39*$	74.3*	756	760	Ι	Ι	763	692	767	
$ u_{s} SN $	788	784	I	* LLL	772^*	788	793	I	Ι	791	794	792	
$ u_a SN $	1077	1080	1069	1022	1029	1063;1074	1059;1073	1055	1057	1060	1053;1058;1065	1056;1063	
Ι	I	I	I	1100^{*}	1102^{*}	I	I	I	I	I	I	1	
$\nu_s^{o.p.SO.}$	2 1144	1142	Ι	1105^{*b}	1106^{*b}	1144	1148	1140	1130	1139	1134;1141	1132;1139	
$ u_s^{i} \cdot p \cdot \mathrm{SO}_2^{\circ} $	1148	1148	I	1118^{*b}	1115^{*b}	1153	1152	1149	1142	I	1146;1151	1143;1149	
$ u \text{CF}_3 $	1173	1176^{b}	1178	1142^{b}	1152^{b}	1171	1184	1182	Ι	1177	I	1	
$ u \text{CF}_3 $	1179	1178^{b}	I	1148^{b}	1166^{b}	I	I	1190	I	I	I	1	
$ u \text{CF}_3 $	1181	1187	1186	1190	1191	1183	I	1202	1195	I	1197;1200	1193	
$ u \text{CF}_3 $	1207	1203	1205	1202	1198	1204;1215	1202; 1216	1216]	1212;1220	1199	1208; 1213	1203	
$\nu_a {\rm CF}_3$	1234	1238	1229	1214	1213	1234	1235	Ι	1226	1226	1222	1	
$\nu_s {\rm CF}_3$	1246	1245	1236	1225	1222	1249	I	1255	1241	I	1237	1234	
$\nu_{a}^{o.p.} SO_{c}$	2 1359	1358	1348	1322^{*}	1314^{*}	1347; 1368	1330	1342	1327	1335	1321;1332	1321;1331	
$ u_{a}^{i} \cdot p \cdot \mathrm{SO}_{2} $	1379	1375	1370	1352^{*}	1338^{*}	1362;1379	1361; 1368	1368	1349	1355	1350;1361 1	345 sh;1348 sh;1355	
a The symbols have	their usual	meaning	ν, str	retching; δ	õ, bendiı	ıg; <i>s</i> , sym	metric; ,	, antis	symmetri	c; ^{<i>i.p.</i>} , in-p	hase; ^{o.p.} , out-	of-phase; sh, shoulder. b	

Vibration is localized on either moiety. *Strongly coupled band.

monic frequencies and group assignments obtained by MP2/cc-pVTZ (scaled by 0.94) of the cation in ap/ap conformation	frequencies of cation bands as shown in the main document and in argon matrix in $\rm cm^{-1}$. Band frequencies from resonances	lifferent local environments are separated by a semicolon. Calculated frequencies are written in italics.	assignment ^a ap/ap $(1,0)$ $(2,1)$ $(3,2)$ $(1,2)$ $(2,3)$ bulk FTIR Helium $(1,1)$ Helium $(2,2)+$ Neon Argon
TABLE II. Harmonic freque	(ap/ap); center frequencies o	shifted due to different local	$assignment^a$ a

itterent loc	al env	ironme	ints are sepa	urated by	a sem	icolon. Calc	ulated fr	equencies a	tre written	in italic	s.
$assignment^{\iota}$	ap/ap	(1,0)	(2,1)	(3,2)	(1,2)	(2,3) 1	oulk FTIR	Helium (1,1)	Helium $(2,2)+$	Neon	Argon
	2889	2884	2880	$2880 \mathrm{sh}$	2885	2869	$2874 \mathrm{~sh}$	$2880 { m sh}$	$2880 \mathrm{sh}$	2882 sh	$2875 \mathrm{sh}$
یے :	2897	2895	2892	2889	I	2886	2883	2889	2889	2891	2887
ν_s D	2902	I	2901	I	I	I	I	Ι	I	I	I
	2911	I	I	I	I	I	I	I	Ι	I	I
	2915	I	2915	2914	2916	2912	I	2913	2913	$2918 \mathrm{sh}$	I
$\nu_s { m m}$	2918	I	I	I	I	I	I	I	I	I	I
	2921	I	I	I	I	I	I	I	I	I	I
	2933	$2950 \mathrm{sh}$	2939	I	I	2935	I	2931	$2930 { m \ sh}$	2929	2924
	2956	2959	2950	2949	2946	2947	2942	2949	2948	2951	2946
$\nu_a \mathbf{b}$	2975		I	Ι	I	I	I	I	Ι	Ι	I
	2979	2979	2976; 2978 sh	2973	2970	2971; 2977 sh	2972	2975	2975	2979	2975
	2991	2996	2988; 2990 sh	$2979 \mathrm{sh}$	2980 sh	$2985 \mathrm{sh}$		2984	$2982 { m \ sh}$	$2990 \mathrm{sh}$	$2984 { m \ sh}$
	3018	I	3014	I	3014	3006	I	3009	3009	3017	I
	3019	I	I	I	I	I	I	I	I	I	I
	3023	3039	3031	3030	3032	3024	I	3030	3034	$3037 \mathrm{~sh}$	$3029 \mathrm{sh}$
$ u_a \mathrm{m} $	3023	I	I	I	I	I	I	I	I	I	I
	3035	I	Ι	Ι	I	I	I	Ι	Ι	I	I
	3038	3055	3042;3048	3040; 3048	3053	3050	3048	3046	3051	3048	$3043 \mathrm{~sh}$
	I	I	3057;3064	3060	3063	$3063 \mathrm{~sh}$	I	3058	$3057 \mathrm{sh}$	3057	3053

 a The symbols have their usual meaning: $\nu,$ stretching; $_s,$ symmetric; $_a,$ antisymmetric; sh, shoulder.

Fig. S 3. Recorded intensity ratio with field on/off as a function of the electric field strength for the 3054 cm-1 band at an evaporation temperature of 515 K. Results for the laser polarization parallel/perpendicular to the electric field are displayed in green and red, respectively.

TABLE III. Harmonic frequencies and group assignments obtained by MP2/cc-pVTZ (scaled by 0.94) of the cation in different conformations; cation bands from two harmonic frequency calculations of an ion pair with the anion in trans ((1,1) *trans*) and cis ((1,1) *cis*) and the cation both in ap/ap conformation obtained by MP2/aug-cc-pwCVDZ (scaled by 0.945).

$assignment^a$	ap/ap	ap/sc	sc/ap	ac/ap	$\mathrm{sc/sc}$	ac/sc	(1,1) trans	(1,1) cis
	2889	2891	2880	2892	2892	2892	2880	2885
. 1	2897	2900	2894	2896	2894	2905	2888	2887
$ u_s$ d	2902	2903	2897	2904	2900	2906	2889	2890
	2911	2913*	2911*	2912*	2914*	2914*	2907	2906
	2915	2915*	2914*	2915*	2917*	2918*	2911	2911
$\nu_s { m m}$	2918	2918	2917	2918	2918*	2918*	2917	2916
	2921	2921	2924**	2921	2924*	2922*	2924	2920
	2933	2951	2924**	2933	2941	2947	2955	2958
	2956	2957	2945	2952	2947	2952	2968	2969
$ u_a \mathbf{b}$	2975	2973	2974	2974	2971	2972	2976	2979
	2979	2981	2979	2976	2978	2978	2995	2986
	2991	2987	2992	2991	2987	2989	-	-
	3018	3018	3017	3019	3017	3018	3015	3015
	3019	3019	3018	3020	3018	3019	3019	3018
	3023	3023	3022	3023	3022	3023	3025	3024
$ u_a$ m	3023	3023	3024	3024	3024	3024	3029	3026
	3035	3035	3032	3033	3032	3034	3032	3029
	3038	3038	3056	3037	3054	3037	3035	3034
	_	-	-	_	_	-	3059	3054

^{*a*} The symbols have their usual meaning: ν , stretching; *s*, symmetric; *a*, antisymmetric. ^{*} ν_s b and ν_s m coupled band. ^{**} ν_s m and ν_a b coupled band.

TABLE IV. Harmonic frequencies and group assignments obtained by MP2/cc-pVTZ (scaling factors see computational methods) of the deuterated cation in ap/ap conformation (ap/ap - d_9); center frequencies of deuterated cation bands in cm⁻¹. Band frequencies from resonances shifted due to different local environments are separated by a semicolon. Calculated frequencies are written in italics.

${\rm assignment}^a$	ap/ap - d_9	(1,0) - d ₉	$(2,1) - d_9$	(1,2) - d ₉	Helium (1,1) - d $_9$	bulk FTIR - d_9
	1419		1418	1418		1421
	1420		-	-		-
	1461		1455	$1455~{\rm sh}$		$1455 { m sh}$
	1461		-	—		_
$\delta { m m}$	1470	no data	-	-	no data	-
	1471		-	-		-
	1491		1467	1470		
	1493		1476	1476		1476
	1508		1491	1491		1492
	2082		2078	2078		2078
u h	2104	no doto	-	-	no doto	-
ν_s D	2112	no data	2115	2116	no data	2117
	2116		-	—		_
	2177		-	2145		2147
	2195		2221	2215		2226
$ u_a \mathbf{b}$	2207	no data	-	-	no data	-
	2210		-	-		-
	2216		2231	$2235~{\rm sh}$		-
	2915	—	-	-	_	-
	2918	—	-	-	—	-
ν_s m	2920	—	-	-	—	-
	-	2983	2976;2980 sh	2976	2974	2972
	—	—	2994	2994	2987	$2983~{\rm sh}$
	3018	—	-	—	_	_
	3019	-	-	-	—	-
	3023	-	-	-	—	-
ν_a m	3023	3041	3032	3033	3029	-
	3035	-	-	_	_	-
	3037	3055	3043;3049	$3055 { m sh}$	3044	3049
	-	_	3059 sh;3064	3064	3059	_

 a The symbols have their usual meaning: δ bending; $\nu,$ stretching; $_{s},$ symmetric; $_{a},$ antisymmetric; sh, shoulder.