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Abstract

In this paper we investigate the entropy of gravitational Chern-Simons terms for the horizon with non-

vanishing extrinsic curvatures, or the holographic entanglement entropy for arbitrary entangling surface. In 3D

we find no anomaly of entropy appears. But the squashed cone method can not be used directly to get the correct

result. For higher dimensions the anomaly of entropy would appear, still, we can not use the squashed cone

method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get a reasonable result we

suggest two methods. One is by adding a boundary term to recover the gauge invariance. This boundary term

can be derived from the variation of the Chern-Simons action. The other one is by using the Chern-Simons

relation dΩ4n−1 = tr(R2n). We notice that the entropy of tr(R2n) is a total derivative locally, i.e. S = dsCS .

We propose to identify sCS with the entropy of gravitational Chern-Simons terms Ω4n−1. In the first method

we could get the correct result for Wald entropy in arbitrary dimension. In the second approach, in addition to

Wald entropy, we can also obtain the anomaly of entropy with non-zero extrinsic curvatures. Our results imply

that the entropy of a topological invariant, such as the Pontryagin term tr(R2n) and the Euler density, is a

topological invariant on the entangling surface.
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1 Introduction

The entropy is often used as a quality to reflect the degree of freedoms of a system. In the gravitational field black

hole entropy, i.e., Bekenstein-Hawking entropy[1][2], is related with geometry of the spacetime, and performs as

a thermal quality. On the other hand in the gauge field theory with gravity dual, the entanglement entropy for

a subsystem could also have a geometry description in the gravity side, which is known as the Ryu-Takayanagi

formula[3]. In general the geometry description of the entropy is closely connected with the detail of the theory.

Wald formula [4]provides the connection between the action and entropy for general covariant gravitational theory.

The recent idea concerning about the generalized gravitational entropy [5] gives a strong evidence for the Ryu-

Takayanagi formula on general entangling surfaces. Generalization to theory other than Einstein gravity seems not

so straightforward. To deal with the singular mainfold without a U(1) symmetry in the subspace orthogonal to

singular surface Σ, one must also consider the possible contribution from the extrinsic curvatures. The paper [6]
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provides a method to calculate the geometry quality of this kind singularity, called by the squashed cone method.

More systemic study on this problem for different covariant gravity theory can be found in [7, 8], see also[9]-[14].

The squashed cone method works well for covariant gravitational theories. However, it may break down or

need to be modified for non-covariant gravitational theories. There are two kind of non-covariant gravitational

theories. The first one is that neither the action or the equations of motion are gauge invariant. The balck hole

thermodynamics is not well-defined for this kind of gravitational theories [15, 16, 17]. The second one is that the

action is gauge invariant up to some boundary terms. Theory with gravitational Chern-Simons term is of this kind

of non-covariant theories. The Chern-Simons(CS) term as a possible correction to Einstein gravity is motivated

by the low-energy effective action from superstring theories. In 3D the modification of the black hole entropy by

CS term is studied in many literatures, see [25]-[33]. In higher dimensions the answer is also found in [22][23] by

generalizing the covariant phase formalism. There are also some studies on the contribution to thermodynamics

and transport in hydrodynamics from the gravitational anomalies[35][36], which is related to the gravitational

CS term by AdS/CFT[37][38][39]. In this paper we would like to study the problem for generalized gravitational

entropy. Specially, we would use the regularization process developed in [7]. The method works well for covariant

theory, but for CS theory, we find that the method should be modified significantly to get a consistent result.

The modification is related with the local gauge transformation of theory with gravitational Chern-Simons term,

for this transformation would produce a total derivative terms. Actually the regularized process would ignore the

possible effect caused by the gauge transformation. The modification is based on the consideration to fix the gauge

freedom. In the following we refer to entropy either to generalized gravity entropy or to holographic entanglement

entropy for they are the same thing in a sense.

The paper is organized as follows. In the next section we briefly introduce the regularization process developed

in [7]. In section 3 we briefly review the gravitational Chern-Simons terms in arbitrary dimension. We will calculate

the entropy in 3D in this section 4. In section 5, we propose an approach to derive the entropy of gravitational

Chern-Simons terms. We work out the entropy exactly in 7D space-time. In section 6, we use this method to get

the Wald entropy in arbitrary dimension. We will also discuss other approach to get the correct Wald entropy. We

will conclude and discuss some related problems in section 7. Some useful formula and detail calculation can be

found in Appendix.

2 Review of Generalized Gravitational Entropy

The generalized gravitational entropy is based on the “replica trick” in Euclidean spacetime. In classical approx-

imation the density matrix ρ of the gravity field would be related with the Euclidean solution by trρ = I, where

I is the on-shell Euclidean action. The n-th replica spacetime Bn would produce the relation trρn = I(n). One

could consider the orbifold B̂n ≡ Bn/Zn. This leads to In = nÎ(n), where Î(n) means the action with the solution
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B̂n without counting the contribution from the conical defect in B̂n . The entropy in O(G−1) can be expressed as

S = ∂ǫÎ(ǫ), (1)

where we denote n = 1 + ǫ. Now one fills the singular cone, the calculation becomes

S = −∂ǫI(ǫ), (2)

where I(ǫ) is the action of the regularized squashed cone. This equation is the starting point to calculate the

entropy. We refer the readers to [5]and [7] for more argument and explanation to the generalized gravitational

entropy and holographic entanglement entropy.

But in the theory that is not-covariant this statement can not be used directly. Such as the gravity with Chern-

Simons term we will discuss below, the local gauge transformation or the non-covariant part of the diffeomorphism

will lead to a boundary term, which also contributes to the O(ǫ). Our main discussion below is about how to

eliminate the ambiguity in the non-covariant theory when using the squashed cone method.

Regardless of the difference that we mention above, one have to find a way to regularize the squashed cone .

We would follow the regularization process in [7]. According to [7], the metric of regularized cone is

ds2 = e2A[dzdz̄ + e2AT (z̄dz − zdz̄)2] +
(

gij + 2Kaijx
a +Qabijx

axb
)

dyidyj

+ 2ie2A(Ui + Vaix
a)(z̄dz − zdz̄)dyi + ... (3)

where T, gij ,Kaij , Qabij , Ui, Vai are independent of z and z̄, with the exception that Qzz̄ij = Qz̄zij contains a factor

e2A. The warp factor A is regularized by a thickness parameter a as A = − ǫ
2 log(zz̄+a2). The result is independent

of the choice of regularization.

The contribution from the Wald entropy is related with the fact

∫

dzdz̄e−βA∂z∂z̄A = −πǫ. (4)

The key observation of [7] is that

∫

ρdρ∂zA∂z̄Ae
−βA = − ǫ

4β
, (5)

where z = ρeiτ . The would-be logarithmic divergence gains a 1
ǫ enhancement:

∫

ρdρ
1

ρ2
eβǫ ∼ 1

βǫ
. (6)

This will give the anomaly contribution of the entropy. One is suggested to refer the recent paper [9] in which we

discuss more possible terms that may contribute to entropy. For our purpose in this paper (4)(5) are enough.
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3 Gravitational Chern-Simons term

In the this section we would like to introduce some definitions and properties of CS terms. The gravitational CS

terms can be constructed in two different ways, one is by the one-form of Christoffel symbol Γ, the other one is

the spin connection ω.

By using ω the (2n+1)-dimensional gravitational CS terms Ω2n+1 are formally defined as

dΩ2n+1(ω) = TrRn+1, (7)

where R = dω + ωω is the two-form curvature, and we suppress the wedge between the forms. Ω2n+1 can be

expressed as

Ω2n+1 = (n+ 1)

∫ 1

0

tnstr(ωR
n
t
), (8)

where Rn
t
≡ R+ (t− 1)ω2, and “str” is defined by

str(A1, A2, ..., An) ≡
1

n!

∑

π

Tr(Aπ(1)Aπ(2)...Aπ(n)), (9)

π denotes the permutations of {1,2,...,n}. The CS action is

ICS =
λ

32πG

∫

M2n+1

2n

n+ 1
Ω2n+1, (10)

λ is the coupling constant. The full action is

I =
1

16πG

∫

d2n+1x
√−g(R +

n(2n+ 1)

l2
) + ICS . (11)

The spin connection ω can be construct by vielbeins E = {eaν
µ }, which is defined by Gµν = eaκ

ν eaσ
µ δaκaσ

. As an

example we could choose the vielbeins of (3) up to O(ρ) as follows.

ea1 = eµa1dx
µ =

eA

2
(dz + dz̄) + eA(z̄ − z)Uidy

i,

ea2 = −i
eA

2
(dz − dz̄)− eA(z̄ + z)Uidy

i,

eai
= ējai

dyj + xaKajai
dyj , (12)

where ējai
ēkai

= gjk and Kajai
= Kajie

i
ai
. Here a1, a2 denotes the local Lorentz indices with respect to z, z̄. One

can check that the above vielbeins can yield the correct metric in order O(ρ):

eµa1eνa1 + eµa2eνa2 + eµai
eνai

= Gµν +O(ρ2). (13)

The choose of vielbeins are not unique, different ones are related by performing local Lorentz transformations,

e′aµ
= Λ(x) bν

aµ
ebν . (14)
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We can calculate the spin connection ω by the following formula,

ωµ,aνaκ
=

1

2
(Caνσµe

σ
aκ

+ Caκµσe
σ
aν

− Caσαβe
α
aν
eβaκ

eaσ

µ )

Caσ

µν = ∂µe
aσ

ν − ∂νe
aσ

µ . (15)

The spin connection ω can also be related with the one-form Christoffel symbols Γ by the vielbeins,

ω x
µ y = Γx

µy − eax∂µeya, (16)

where we have mapped all the index into spacetime. We list some useful components of the Christoffel symbols

and spin connections in Appendix A.

By varying the action (8) new terms would contribute to the equation of motion. The result is derived in

[22][24],

Rµν − 1

2
GµνR− n(2n+ 1)

l2
Gµν + λCµν = 0 (17)

where

Cµν = ▽αS
µνα (18)

with

Sµνα = −1

2
ǫλ1λ2...λ2nµRν

κ1λ1λ2
Rκ1

κ2λ3λ4
...R

κ2n−2α
λ2n−1λ2n

. (19)

The CS term expressed by Γ is similar to ω, with ω replaced by Γ in (8).

4 Entropy of gravitational Chern-Simons terms in 3D

In the case of 3D theory with CS term is also known as topologically massive gravity[21]. The black hole entropy in

this theory has been discussed in many authors, see e.g. [25]-[32] . Non-trivial correction appears for rotating BTZ

black. We would like to use the squashed cone method to study the correction of CS term to black hole entropy

(also the HEE formula) in 3D spacetime.

For the Euclidean theory, the action of 3D CS term is

ICS =
−iλ

64πG

∫

d3x
√
Gǫµνσ(Γα

βµR
β
ανσ − 2

3
Γα
βµΓ

β
γνΓ

γ
ασ), (20)

where we have integrated t, −i appears because of the Wick rotation, see [23].
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4.1 Result by using the squashed cone method directly

Firstly we use the squashed cone method directly. To get the contribution to HEE from the CS action, we need

work in metric (3), and find the O(ǫ). We calculate the components of Γ and R in the Appendix A. It’s easy to

see that only the Wald entropy appears, and the final result of the entropy is

S =
iλ

16G

∫

Σ

dy(Γz
yzǫ

z
z + Γz̄

yz̄ǫ
z̄
z̄) =

iλ

16G

∫

Σ

Γν
σµǫ

µ
νdx

σ (21)

where Σ is codimension-2 surface in the bulk.

It’s also interesting to check the result by using the spin connection ω. The action would be

ICS =
−iλ

64πG

∫

d3x
√
Gǫµνσ(ω α

µ βR
β
ανσ − 2

3
ω α
µ βω

β
ν γω

γ
σ α). (22)

We also calculate all the components of ω in appendix A. Besides the Wald entropy there are also contributions

from the second term in (22). But the contribution finally vanishes. The result is also

S =
iλ

16G

∫

Σ

Γν
σµǫ

µ
νdx

σ , (23)

where we use ω z
y z = Γz

yz +O(z). It is natural because Γ ia related with ω by local gauge transformation, and the

result is gauge-invariant.

But (21)(23) is not consistent with the result given in literature [25]-[33]. The inconsistence warn us to be careful

when dealing with the non-covariant theory. Just like the Wald method [4] to calculate the entropy of CS term,

some modification is expected to get the correct result, see [32]. We would give a solution to this problem in the

next subsection for the squashed cone method.

4.2 A solution

The vielbeins (12) still have a gauge freedom (14). An arbitrary local Lorentz transformation would produce an

additional total derivative term for the action. This term contributes to entropy if we use the squashed cone method

before integrating out the total derivation term. The freedom should be eliminated if we want a reasonable result.

We denote the action of CS term after regularization as I(ǫ), the entropy S = −∂ǫI(ǫ). As we can see from metric

(3) the vielbeins Ea
µ and the spin connection ω a

µ b would also depend on ǫ. Under an infinitesimal local Lorentz

transformation parameterized by θab,

δθe
b = −θbae

a,

δθω
a
b = dθab + [ω, θ]ab. (24)

The 3D CS action

I
(3)
CS =

−iλ

32πG

∫

M3

Tr(ωdω +
2

3
ω

3) (25)
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would have a variation that is total derivative term,

δθI
(3)
CS =

−iλ

32πG

∫

M3

dT r(θdω(ǫ)). (26)

When we work in the metric (3), the above term (26) contains ǫ, which contributes to entropy. This suggests new

terms should be added to the action to eliminate the ambiguity. We find the following one satisfies the requirement,

∆I
(3)
CS =

iλ

32πG

∫

M3

dT r(ω(0)ω(ǫ)). (27)

The total derivative term does not modify the equation of motion. At the limit ǫ → 0 it vanishes, we get the

original action. Under the infinitesimal local Lorentz transformation,

δθ∆I
(3)
CS =

iλ

32πG

∫

M3

dT r(δθω(0)ω(ǫ) + ω(0)δθω(ǫ))

=
iλ

32πG

∫

M3

(

dT rθdω(ǫ)− dT rθdω(0)
)

(28)

The variation of the modified action,

δθĨ
(3)
CS = δθ(I

(3)
CS +∆I

(3)
CS) =

iλ

32πG

∫

M3

dT rθdω(0). (29)

This is what we expected. Now the contribution from (27) is

∆S =
iλ

16G

∫

Σ

Γν
σµǫ

µ
νdx

σ. (30)

Including this contribution we recover previous result for black hole in 3D gravity with CS term. Then the HEE

formula for 3D gravity theory with CS term is

1

4G

∫

dy
√
gyy +

iλ

8G

∫

Γν
σµǫ

µ
νdx

σ . (31)

In [25] and [34] the authors actually use different method to get the correct result. As the statement of [25],

ω = ωsing + ωreg, so R = dωsing + dωreg + ...,
∫

ωR =
∫

ωregRsing + ωsingdωreg + ... = 2
∫

ωregRsing.... A factor

2 also appears in this approach. In higher dimension the anomaly term of the entropy (5) will appear, it seems

very difficult to perform the similar process to get the correct result. We consider that the ambiguity of result is

related with the local gauge transformation. To eliminate the ambiguity of the gauge transformation, one need to

add a boundary term, which will not effect the equation of motion. But is also very hard to construct the suitable

boundary term like (27) in more general case. We will comment on the problem in higher dimension theory with

CS term later.

4.3 The surface

If we know the solution of a black hole in 3D, the result (21) can be directly used to calculate the entropy. But

for HEE we have to find the surface Σ firstly. We would use boundary condition method to determine where the
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Σ should be. We will follow the same strategy as [5][7].

We could parameterize the coordinate y in 3D, the metric is

ds2 = e2A[dzdz̄ + e2AT (z̄dz − zdz̄)2] +
(

1 + 2Kax
a +Qabx

axb
)

dy2

+2ie2A(U + Vax
a)(z̄dz − zdz̄)dy + ... (32)

In three dimensions

Cµν = ǫµκσ ▽κ (Rν
σ − 1

4
δνσR) (33)

The equation of motion is

Eµν = Rµν − 1

2
GµνR− 1

l2
Gµν − iλCµν = 0 (34)

Let’s check the divergent terms in Ezz. The result is

Ezz =
ǫ

z

(

− 1

2
Kz(y) + λ(U(y) − 3Vz)Kz(y)−

iλ

2
K ′

z(y)
)

+ ..., (35)

where the “...” means terms less divergent. We should set the divergent term in (35) to zero. We get the constraint,

−1

2
Kz(y) + λ(U(y)− 3Vz)Kz(y)−

iλ

2
K ′

z(y) = 0, (36)

when λ = 0 we get the conditions for Einstein gravity ([5]). For Ez̄z̄ we would get a constraint on Kz̄ with z ↔ z̄

and U(y) ↔ −U(y)), Vz → −Vz̄ in (36). The CS term would give a non-trivial correction to constraint on the bulk

surface Σ.

The question is considered in [34], they conclude that the minimization of (31) results in the Mathisson-Papapetrou-

Dixon(MPD) equations for a spinning particle in 3D, which is exactly the equation (36). To get the correction to

HEE by CS term, one need to solve the MPD equation firstly1.

Actually without knowing the equation of motion of the surface, one also could get the leading contribution of

the correction to HEE. According to method of [40], the coordinate y could be parameterized as y = ρ near

the boundary, where ρ is the coordinate of the bulk direction in the FG gauge, which states that any spacetime

asymptotical to AdS admit the expansion

ds2 =
l2

4

dρ2

ρ2
+

1

ρ
(g(0)ij + ρg(1)ij + ρ2g(2)ij + ...), (37)

where g(0)ij is the boundary metric. Now we have two coordinates to describe the bulk metric, i.e., Xµ ∈ {ρ, x1, x2}
and {z, z̄, y}, where x1 and x2 are the boundary coordinates. To find the leading contribution of the entropy one

needs to know the transformation between the two coordinates. It is possible to get the coordinate transformation

near the boundary (ρ → 0),as

ρ = y +Bzy3/2 + Cz̄y3/2 + ...

1We would like to thank Prof. Takayanagi for reminding the paper [34] when preparing the draft.
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xi = xi
0(y) +Aiy1/2z + Āiy1/2z̄ + ..., (38)

with xi
0 = xi

0(0)+Dy..., where B,C,Ai, Āi, D are constants, there are some relation among these parameters, which

is not important for our purpose.This transformation can be obtained by considering the following constraints.

∂Xµ

∂z

∂Xν

∂y
Gµν |z=0,z̄=0 = 0, and

∂Xµ

∂z

∂Xν

∂z̄
Gµν |z=0,z̄=0 =

1

2
. (39)

We know from (31) that the additional terms for the HEE formula is proportional to

Saddition ∝
∫

dyUy. (40)

Uy can be written in the coordinate {ρ, x1, x2} as

Uy ∝ ∂Xµ

∂y

∂Xν

∂z̄
▽µ nzν , (41)

where nν
z ≡ ∂xν

∂z , the derivative ▽ is defined in the coordinate {ρ, x1, x2}. One could take the coordinate trans-

formation (38) into (41), and find the ρ−1 term is vanishing, thus Uy ∝ O(ρ0). As we know the first term in

(31) would contribute a log divergence term for the HEE. So the additional term in the theory with CS term

would not contribute to the leading divergence. In [34] the authors calculate some examples in which the bulk are

asymptotically to AdS3, the result is consistent with conclusion above.

5 Entropy of gravitational Chern-Simons terms in 7D

We find the contribution from the 3D CS term for HEE or black hole entropy. In 3D the possible correction related

with extrinsic curvature do not appear. It’s also interesting to investigate this property in higher dimensional

theory. It is well known that gravitational CS term only exists in (4n− 1) dimensional spacetime. We will discuss

7D theory in the following. Like the 3 dimensional case, one can’t obtain the result directly by using (2). This

is related with the fact that the action is not covariant. In higher dimension the trick that is used in [25] and

[34] seems also difficult to operate. In this section we will use a “topological method” to get the result. We argue

that the result is correct. As an important check this method could produce the correct result for Wald entropy in

arbitrary dimension. We will also discuss the trick that we have used in 3 dimension in section 5.

5.1 Approach to 7D case by a topological method

In this section we would like to use a “topological method” to derive the entropy for 7D theory with gravitational

CS term. This method is based on the observation that the entropy of a topological Invariant is a local total

derivative2. This is indeed the case for Euler densities, or equivalently, the Lovelock gravity in critical dimensions

[7], see also [18][19][20]. As we shall prove below, this is also the case for the Pontryagin density tr(R4). Recall

that we have

dΩ7(ω) = TrR4. (42)

2After our paper we notice that a recent paper also uses the same method to deal with the entropy CS term[41].
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We propose to derive the entropy of 7D CS term s7 from the following identity

ds7 = Entropy of dΩ7(ω) = Entropy of TrR4. (43)

Since the right hand side of (42) is invariant under the local Lorentz transformation, s7 (up to an exact form)

would also be free of the ambiguity. To make s7 really be the entropy of 7d CS term, we have assumed

Entropy of dΩ7(ω) = d(Entropy of Ω7(ω)). (44)

An evidence for the above approach is that we derive the correct entropy with zero extrinsic curvature, which is

obtained by using the generalized covariant phase formalism in [22][23].

Now let us start to derive the entropy of 7D CS term. We use the spin connection formulism in this section.

Let’s take a theory in 8D with the action,

I8 =

∫

M8

tr(R4). (45)

By using the relation (7) one have

I7 =

∫

M7

Ω7, (46)

where M7 is a 7D manifold as the boundary of M8. The action (45) is invariant under the local Lorentz transfor-

mation. We would firstly get the entropy for the theory with such an action (45). The details of the calculation

can be found in Appendix C, we list the result as follows.

S8 = −iπ

∫

Σ6

√

det(g)ǫ̂zz̄i1i2i3...i6
[

− 6Kzi1j1K
j1

z̄i2
Rzj2i3i4R

j2
z̄i5i6

+ 64∂i1Ui2∂i3Ui4Kzi5j1K
j1

z̄i6
+ 48Kzi1j1K

j1
z̄i2

∂i3Ui4Kzi5j2K
j2

z̄i6

− 6K j1
z̄i1

Rzj1i2i3Kzi4j2R
j2
z̄i5i6

+ 2Kzi1j1r
j2j1
i2i3

Kz̄i4j3r
j3
j2i5i6

− 12Kzi1j1r
j1
j2i2i3

K j2
z̄i4

K j3
zi5

Kz̄j3i6 + 8iKzi1j1r
j1
j2i2i3

K j2
z̄i4

∂i5Ui6

+ 64∂i1Ui2∂i3Ui4∂i5Ui6 + 8i∂i1Ui2Rzj1i3i4R
j1
z̄i5i6

+ Rzj1i1i2r
j1
j2i2i3

Rj2
z̄i5i6

]

+ (z ↔ z̄), (47)

where the integration is on the codimension-2 surface Σ6, “-i” appears because we are using Euclidean version.

The result is still quite complex, to see it more clear, we would rewrite the result by forms. On the surface Σ6,

where z = z̄ = 0, Kaij and Ui are one-form, Raijk and rijkl are two forms. One could map the other index into

the local Lorenz coordinate by the vielbeins (12). For example3,

Kzij = eaze
b
iωi,ba, −2iUi = eza

′

ea
′′

z ωi,a′a′′ , rijkl = eb
′

i e
b′′

j rb′b′′kl, (48)

one could rewrite (47) as4

S8 = −iπ

∫

Σ6

[

− 6ǫaa
′

ωbaω
b
a′Ra′′b′R

b′a′′

+ 64dUdUǫaa
′

ωbaω
b
a′

3In the following, a , a′, etc, refers to a1, a2, b, b′, etc, refers to b1, b2, ... , c refers to a1, a2, a3...

4We note that dxν1 ∧ dxν2 ... ∧ dxνn = ǫν1ν2...νn
√

det(g)dnx.
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+ 24dU(ǫaa
′

ωbaω
b
a′)2 + 8ωbaR

baǫa
′a′′

ωb′a′R
b′

a′′

+ 8ǫaa
′

ωbar
b
b′r

b′

b′′ω
b′′

a′ − 6ωbar
b
b′ω

b′aǫa
′a′′

ωb′′a′ω
b′′

a′′

+ 32ωbar
b
b′ω

b′adU + 128dUdUdU + 32dURabR
ba

+ 8ǫaa
′

Rabr
b
b′R

b′

a′ . (49)

To simplify result we need the relation

Rab ≡ dωab + ωacω
c
b = dωab + ωaa′ω

a′

b + ωab′ω
b′

b, (50)

rbb′ = dωbb′ + ωbb′′ω
b′′

b′ . (51)

The result is

S8 =

∫

Σ6

ds7, (52)

with

s7 = −iπ
[

8ǫaa
′′

ωabω
b
b′ω

b′

b′′ω
b′′

c ω
c
a′′ − 6ǫaa

′

ωbaω
b
a′ωa′′b′′R

b′′a′′

+ 64UdUǫaa
′

ωbaω
b
a′ + 32Udωabdω

ba + 128UdUdU

+ 8ǫaa
′

ωabdω
b
b′ω

b′

a′′ω
a′′

a′ − 8ǫaa
′

ωbaω
b
b′dω

b′

b′′ω
b′′

a′

+ ǫaa
′

dωbaω
b
b′ω

b′

b′′ω
b′′

a′ + 32dUω
aa′

ωbaω
b
a′

+ 16Uωabdω
b
b′ω

b′a − 32dUωabω
b
b′ω

b′a

+ 8ǫaa
′

ωabdω
b
b′dω

b′

a′

]

. (53)

One could define the “density” of the entropy in 8D s8, and the relation s8 = ds7. This is the expected relation

that we mentioned in the beginning of this subsection. s8 is the entropy that we obtain from the Pontryagin

density, it has the similar relation (7) which must be satisfied by the Pontryagin class. The entropy for the CS

term in 7D is

S7 = π

∫

Σ5

(s7 + ds′), (54)

where the surface Σ5 is the codimension-2 surface in 7D, which is also a boundary of Σ6
5, s′ is arbitrary. Our

above approach actually do not use the viebeins in the regularized spacetime (12), it is not expected the result is

effected by the local gauge transformation.

Here we only calculate the 7D result. We expect it can be generalized to (4n + 1)D without any difficulty in

principle. Conversely, we could say our result above provides another evidence to support our proposal that the

entropy of a topological Invariant is also a topological Invariant.

5Actually the action in 8D depends on one more coordinate, the result of the corresponding entropy is dependent on the coordinate.

But one can assume to choose a suitable Mainfold for M8, on which the boundary is M7, and the boundary of the surface Σ6 is Σ5

12



6 Wald entropy in arbitrary dimension

6.1 The topological method

Here we use a topological approach to this problem by considering the relation (7). For 3 dimension

dΩ3 = TrR2, (55)

here R lives in 4 dimension spacetime M4, Ω3 lives in M3. The above terms are invariant under local Lorentz

transformation. Let’s define

Ĩ4 =

∫

M4

TrR2 =

∫

M3

Ω3. (56)

It’s easy to check the contribution from (∂zA, ∂z̄A) vanishes. The total contribution of (56) to the entropy is

S̃4 = 8iπ

∫

Σ2

RN , (57)

where the integration is on the a dimension-2 surface Σ2, RN is defined as

RN ≡ 1

2
trǫR. (58)

Note that RN = dΓN , where “d” is the defined on Σ2,

ΓN ≡ 1

2
tr(ǫΓ). (59)

One could rewrite (57) as

S̃4 = 8iπ

∫

Σ1

ΓN , (60)

where Σ1 is a codimension-3 surface in M4, as well as a codimension-2 surface in M3. Formally considering (56)

we have the entropy

S3 = 8iπ

∫

Σ1

ΓN , (61)

if one uses the trick to find suitable M4 such that M3 is a boundary of M4, and Σ1 as a boundary of Σ2.

The result is same as (31), and also [34][25]. Now it is easy to generalize the method to higher dimension. Actually

the generalization is quite trivial. With the relation

dΩ2n+1 = trRn+1, (62)

one could have

Ĩ2n+2 =

∫

M2n+2

trRn+1 =

∫

M2n+1

Ω2n+1, (63)

The entropy from Ĩn is

S̃2n+2 = 4iπ(n+ 1)

∫

Σ2n

R
n
N . (64)
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With the relation RN = dΓN , one have

S2n+1 = 4iπ(n+ 1)

∫

Σ2n−1

ΓNR
n−1
N

. (65)

The result is consistent with the one that is obtained by the covariant phase formalism [22][23].

6.2 Another approach

Actually we also could use the trick in 3 dimension to get the correct result for Wald entropy in arbitrary dimension.

We will briefly state the process in the following. As the appendix B shows, a local gauge transformation would

lead to a boundary term which is related with ǫ in the regularized spacetime. Even if we only consider the Wald

entropy,i.e., the extrinsic curvature is vanishing, this ambiguity still exist. The following term is suitable to add to

the action6,

∆In = −n(n+ 1)

∫ 1

0

dt(t− 1)tn−1

∫

M

dstr(ω(0),ω(ǫ),Rn−1
t

), (67)

where ω(ǫ) is the spin connection in the regularized metric (3), Rt is constructed by ω(ǫ). After complex calculation

one could get the variance of the action with the additional term,

δθ(In +∆In) = −n(n+ 1)

∫ 1

0

dt(t− 1)tn−1

∫

M

[

− str(R1, dθ,R
n−1
t

)

+ str(ω(0),R2,R
n−1
t

)
]

+ 2n(n+ 1)

∫ 1

0

dt(t− 1)2tn−1

∫

M

[

str(R1,ω,R2,R
n−2
t

)

− str(ω(0), Dtω,R2,R
n−2
t

) + str(ω(0),ω,R3,R
n−2
t

)
]

, (68)

with the following definitions,

R1 = Dtω(0), R2 = Dtdθ, R3 = DtDtdθ = [Rt, dθ], (69)

see the definition of “Dt” in Appendix B. One could extract the O(ǫ) terms in (68), and finally get

∆S = −4iπ(n+ 1)

∫

Σ

dfRn−1
N

, (70)

where Σ is the codimension-2 surface, f is defined as

f ≡ n− 1

n+ 1
tr(θǫ). (71)

RN is defined as

RN ≡ 1

2
tr(ǫR) (72)

6The CS action is normalized as

In = (n+ 1)

∫

M

Ω2n+1. (66)
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where ǫ is 2-dimension Levi-Civita symbol with ǫ12 = −ǫ21 = 1. (71) is actually a integration of total derivative

term. Thus the local gauge transformation will not effect the final result of the entropy, which is what we expect.

With the additional term one could get the entropy,

S = 4iπ(n+ 1)

∫

Σ

ωNR
n−1
N

, (73)

where RN is defined by (72), and ωN is defined as

ωN =
1

2
tr(ǫω), (74)

the result is consistent with [22][23] and (65). (72) and (74) are related with each other by

dωN = RN , (75)

for tr(ǫωω) = 0. Then it’s obvious (70) can be seen as the gauge transformation

ωN → ωN − df. (76)

Note that in 3D f = 0, so the result in 3D is gauge invariant.

We use the spin connection formulism of CS action in the above discussion. But it’s easy to generalize the result

to Christoffel symbols formulism. The non-covariant part of the diffeomorphism δξ of Γ is,

δ̂ξΓ = dΛ, (77)

where Λa
b = ∂bξ

b. If one replaces the parameter θ with Λ, as well as Γ with ω, all the result for Christoffel symbols

formulism can be obtained.

7 Conclusion and Discussion

In this paper we have analyzed the entropy when gravitational Chern-Simons terms are added into the action.

We find it is necessary to modify the squashed cone method for Chern-Simons theory. The necessity is related

with the non-covariant part transformation of diffeomorphism for a total derivative term would appear under such

transformation. The covariant theory is free of this ambiguity. One possible solution to this problem is to add a

total derivative term into the original Lagrangian, which does not affect the equation of motion, at the same time

eliminates the ambiguity caused by the diffeomorphism. This term is also vanishing in the limit ǫ → 0.

For gravitational Chern-Simons term we suggest a term (67) which could lead to a consistent result for the special

case Kaij = 0. We find the gauge freedom of the Chern-Simons action is not completely broken by such term, there

is still a gauge transformation on the codimension-2 subspace for the entropy. This may lead us to find a principle

to fix the special term. For the general case, i.e., Kaij 6= 0, we suspect that (67) is sufficient to get a consistent

result. It seem more terms are needed to eliminate the ambiguity of the anomaly entropy. It’s worthy to go on

15



the discussion on this direction. On the other hand we propose a ‘topological approach’ to calculate the entropy of

gravitational Chern-Simons terms when the extrinsic curvature Kaij is non-vanishing. It yields the correct Wald

entropy in arbitrary dimension and gives non-trivial results when the extrinsic curvature does not vanish. Our

results imply that the entropy of a topological invariant seems to also be a topological invariant. There may exist

some mathematical interpretations or correspondence for this nice property. We hope someone could clarify this

problem in future.
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A Useful components of Γ and R

Γz̄
z̄z̄ = 2∂z̄A, Γz̄

iz̄ = 2iUi, Γj
z̄i = gjkKz̄ki, Γz

ij = −2e−2AKz̄ji, Γm
li = γm

li , (78)

ω z
z z = −ω z̄

z z̄ = ∂zA, ω z
i z = −2iUi, ω j

i z = K j
z i, ω z

i j = −2e−2AK j
z̄ i, ω k

i j = ω̄ k
i j , (79)

Rzz̄zz̄ = e2A
(

∂z∂z̄A− 3Te2A
)

,

Rzz̄zi =
1

2
e2A

[

2iUi(z̄∂z∂z̄A+ ∂zA+ z∂z∂zA) + 3iVzi

]

Rzizj =
1

2

[

4Kzij∂zA− 2Qzzij + 2glkKzljKzik

]

Rzz̄ij =
1

2
e2A

[

2i∂iUj − 2e−2AglnKz̄njKzli

]

− (i ↔ j),

Rziz̄j =
1

2
e2A

[

i(∂iUj − ∂jUi) + 2e−2AgmnKz̄niKzmj + 4UiUj − 2e−2AQzz̄ij

]

Rzijk =
1

2
e2A

[

− 2e−2A∂jKzki − 4ie−2AUjKzik − 2e−2AKzljγ
l
ik

]

− (j ↔ k)

Rikjl = rikjl −
[

2e−2A(KzijKz̄kl +Kz̄ijKzkl)
]

− (j ↔ k). (80)

B Non-covariant part of Ω

Following the step as [22], we define the “covariant” derivative

D = d + [ω, ], Dt = d + [tω, ], (81)

16



note that d
dt (tRt) = Dtω one can get

δ̂Ω2n+1 = (n+ 1)

∫ 1

0

dttn
(

str(δ̂ω,Rn
t
) + nstr(ω, δ̂Rt,R

n−1
t

)
)

= (n+ 1)

∫ 1

0

dt
(

tnstr(dθ,Rn
t
) + ntn−1str(ω, (t − 1)Dtdθ,R

n−1
t

)
)

= (n+ 1)

∫ 1

0

dt
(

tnstr(dθ,Rn
t )− ntn−1dstr(ω, (t − 1)dθ,Rn−1

t
)

+ nstr(
d

dt
(tRt), (t− 1)dθ, (tRt)

n−1
)

, (82)

where the last step we use

dstr(A1,A2...,An) =

n
∑

i=1

(−)a1+a2...+aistr(A1, ..., D(Ai), ...), (83)

Ai denotes the ai-form, the covariant derivative D ≡ d + [Θ, ], Θ is 1-form. Then

∫ 1

0

dtnstr(
d

dt
(tRt), (t− 1)dθ, (tRt)

n−1 =

∫ 1

0

dt
( d

dt
str((t − 1)dθ, tnRn

t
)− tnstr(dθ,Rn

t
)
)

, (84)

the first term vanishes. We get

δ̂Ω2n+1 = −n(n+ 1)d

∫ 1

0

dttn−1(t− 1)str(ω, dθ,Rn−1
t

). (85)

C Details of the calculation in section 5

The action (45) can be written by the spacetime components as

I8 =
1

16

∫

M8

√

det(G)ǫβ1β2...β8Rα1

α2β1β2
Rα2

α3β3β4
Rα3

α4β5β6
Rα4

α1β7β8
. (86)

The contribution to the entropy from Rzz̄zz̄ is

I(1) = 2

∫

M8

√

det(G)ǫzz̄i1i2i3i4i5i6Rzz̄zz̄

[

4Rzz̄i1i2Rzz̄i3i4Rzz̄i5i6

+ 2Rzz̄i1i2Rzj1i3i4R
j1
z̄i5i6

+ 2Rzj1i1i2R
j1
z̄i3i4

Rzz̄i5i6

+ Rzj1i1i2R
j1
j2i3i4

Rj2
z̄i5i6

(87)

The contribution from (Rzizj , Rz̄iz̄j) is

I(2) = 4

∫

M8

√

det(G)ǫzz̄i1i2i3i4i5i6∂zA∂z̄A
[

Rzj1i1i2R
j1
z̄i3i4

Kzi5j2K
j2

z̄i6
(Gzz̄)2

+ Kzi1j1K
j2

z̄i2
Rzz̄i3i4Rzz̄i5i6(G

zz̄)3 +K j1
zi1

Kz̄i2j2R
j2
zi3i4

Rz̄j1i5i6(G
zz̄)2

+ K j1
zi1

Kz̄i2j2R
j2
z̄i3i4

Rzj1i5i6(G
zz̄)2 +K j1

zi1
Kz̄i1j2R

j3
j4i3i4

Rj3
j1i5i6

Gzz̄

− Kzi1j1R
j1
zi2i3

Kz̄i4j2R
j2
z̄i5i6

+Kzi1j1R
j1
j2i2i3

K j2
z̄i4

Rzz̄i5i6

]

+ (z ↔ z̄). (88)
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One could get the O(ǫ) term of the above terms after complex calculation,

S8 = π

∫

Σ6

√

det(g)ǫ̂zz̄i1i2i3...i6
[

− 6Kzi1j1K
j1

z̄i2
Rzj2i3i4R

j2
z̄i5i6

+ 64∂i1Ui2∂i3Ui4Kzi5j1Kz̄i6j1 + 48Kzi1j1K
j1

z̄i2
∂i3Ui4Kzi5j2Kz̄i6j2

− 6K j1
z̄i1

Rzj1i2i3Kzi4j2R
j2
z̄i5i6

+ 2Kzi1j1r
j2j1
i2i3

Kz̄i4j3r
j3
j2i5i6

− 12Kzi1j1r
j1
j2i2i3

K j2
z̄i4

K j3
zi5

Kz̄j3i6 + 8iKzi1j1r
j1
j2i2i3

K j2
z̄i4

∂i5Ui6

− 32i∂i1Ui2∂i3Ui4∂i5Ui6 + 8i∂i1Ui2Rzj1i3i4R
j1
z̄i5i6

+ Rzj1i1i2r
j1
j2i2i3

Rj2
z̄i5i6

]

+ (z ↔ z̄). (89)
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