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Abstract

We study the renormalization of a general field theory on the homogenous space (SU(2)/U(1))×d

with tensorial interaction and gauge invariance under the diagonal action of SU(2). We derive the
power counting for arbitrary d. For the case d = 4, we prove perturbative renormalizability to all orders
via multi-scale analysis, study both the renormalised and effective perturbation series, and establish
the asymptotic freedom of the model. We also outline a general power counting for the homogeneous
space (SO(D)/SO(D − 1))×d, of direct interest for quantum gravity models in general dimensions,
and point out the obstructions to the direct generalisation of our results to these cases.

1 Introduction

Group field theories [1] (GFT) are a candidate formalism for the fundamental degrees of freedom of
quantum spacetime (the ‘atoms of space’), and an approach to quantum gravity which merges insights
and mathematical structures from loop quantum gravity and spin foam models [2], simplicial quantum
gravity and tensor models [3], which have all achieved remarkable progress in recent years.

They share with loop quantum gravity the general structure of quantum states, associated to graphs
labeled by group-theoretic data, and indeed can be seen as a 2nd quantized, Fock space-based reformulation
of both its kinematics and its operator dynamics [4]. And they encode and complete the covariant definition
of the same quantum dynamics, formulated in terms of spin foam models, which in fact appear generically
as GFT Feynman amplitudes [5]. The same amplitudes can be recast in the form of simplicial gravity
path integrals [6, 7], clarifying their discrete geometric content, and substantiating further the analysis
of the quantum geometry of loop quantum gravity states and spin foam amplitudes [8]. At the same
time, they are based on the same combinatorial structures (in their action, Feynman graphs and transition
amplitudes) of tensor models, which they enrich by adding group-theoretic data. The hope is that this
nice interplay between combinatorics and algebra, in a quantum field theory setting, will prove powerful
enough to explain from first principles the emergence of spacetime and geometry from more fundamental
entities [9].

Indeed, not only they merge the key elements of these related approaches (and thus most results
obtained in them), but group field theories offer a promising mathematical context for tackling some of
their outstanding open issues, thanks to QFT methods, most notably renormalization. In particular, they
allow to identify stringent criteria for constraining spin foam model building, for controlling quantisation
ambiguities in both spin foam and canonical formulations of loop quantum gravity, and for ensuring
consistency of the resulting quantum dynamics. These issues, in fact, translate into the problem of
proving perturbative renormalizability of their GFT reformulation, since the GFT action encodes the
choice of operator spin network dynamics and the GFT Feynman amplitudes coincide with spin foam
models. The issue of controlling the sum over spin foam complexes, which completes the definition of spin
foam models, and of defining the full quantum spin network dynamics, encoded in a projection operator
onto physical states or in their partition function, on the other hand, translates into the problem of
making sense of the corresponding non-perturbative GFT dynamics and of unravelling the macroscopic
phase diagram (and interesting phase transitions) of the theory. This is the problem of the continuum limit
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of the theory, which is in many ways the outstanding issue of the whole approach (alongside the physical
issue of extracting the effective dynamics of the theory in the same continuum limit). Again, QFT tools
become available thanks to the GFT reformulation, be it in the form of constructive renormalisation or of
functional renormalisation group techniques.

It is here that the input from tensor models has proven most relevant, in particular, the large body of
recent results on coloured tensor models [10], where the use of colour labels on combinatorial structures
ensures a greater control over their topology, and an analytic understanding of their scaling limits. In turn,
this led to important results about the universality classes of tensor models, and to a precise suggestion
for the class of allowed tensor interactions: those satisfying a ‘tensor invariance’criterion, which can be
seen as the tensor analogue of the notion of locality in standard quantum field theory on flat spacetime.

This becomes particularly relevant for group field theories and their renormalisation analysis. In fact,
by treating GFT fields as quantum geometrically-enriched tensors, one has then a prescription for the
relevant theory space that the renormalisation group flow should explore. This defines the class of GFTs
known as tensorial group field theories (TGFTs), where most work on renormalisation has been carried
out (after the very first step in this research direction [12]).

Beside constructive analyses [13] and the first FRG studies [14], most developments up to now con-
cerned perturbative renormalizability of TGFT models. Such development can be seen as progressively
approaching TGFT models for 4d quantum gravity, as developed in the spin foam context. The first models
[15, 16] that have been shown to be renormalizable to all orders in perturbation theory were Abelian ones,
with the TGFT field defined on several copies of a U(1) group manifold (the number of copies matching
the dimensionality of the cellular complex arising in their Feynman expansion). Next [17, 18] came Abelian
models incorporating a gauge invariance condition in their amplitudes, which turns them into lattice gauge
theories and proper spin foam models, and gives the states of the theory the structure of spin networks.
Then came the first proof of perturbative renormalizability at all orders of a non-abelian model, based
on SU(2), with the same gauge invariance [19]. For many of these models, the renormalizability analysis
was completed by the computation of the beta functions, with very interesting results on their asymptotic
freedom (or safety) [20].

A bulk of solid work and understanding has therefore already accumulated. The stage is now set
for tackling full-blown 4d quantum gravity models, as developed in the spin foam context. Some results
on radiative corrections in the simplicial setting (where more is known also in the 3d case [21]) are
available [22], but we lack any systematic analysis, like the ones mentioned in the TGFT setting. Beside a
better geometric understanding of the ‘tensor invariance’condition, this requires a generalisation to higher-
dimensional non-abelian groups, i.e. SO(4) or the even more interesting non-compact Lorentz group
SO(3, 1), and, most important, the imposition of additional constraints on the amplitudes, the so-called
‘simplicity constraints’(see [2, 7] and references therein). Depending on the exact model considered (i.e.
the chosen way of imposing the simplicity constraints and the value of the so-called Immirzi parameter),
these have the effect of reducing the initial domain of the GFT fields from the Lorentz group (or its
euclidean counterpart SO(4)) to its homogeneous space SO(3, 1)/SO(3) (or SO(4)/SO(3) ' S3), or to
another sub- manifold of the same group. A renormalizability analysis of TGFT models of 4d quantum
gravity requires therefore an extension of the known results and techniques from simple group manifolds
to these more complicated domains.

In the present paper, we perform one more step towards establishing the renormalizability of 4d quan-
tum gravity TGFT models, by studying the renormalization of a TGFT model on the homogeneous space
(SU(2)/U(1))d, endowed with the additional gauge invariance conditions characterising spin foam mod-
els. The imposition of the constraints reducing the field variables to the homogeneous space is obtained
in a covariant manner, using the formalism developed in [7]. By rigorous multi-scale analysis, we prove
renormalizability to all orders in perturbation theory of the model for d = 4 (in d = 3 our results im-
ply super-renormalizability). For the same model, we also compute both the renormalised and effective
perturbative series, analyse the 2-point and 4-point correlation functions, compute the beta function and
establish asymptotic freedom at one-loop order. Moreover, we generalise several of our results to arbitrary
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homogeneous spaces of the type SO(D)/SO(D − 1) ' SD−1; in particular we establish a general Abelian
power counting and classify such models in terms of their potential renormalizability, as seen from the
Abelian power counting, for various choices of D and d. However, we also discuss why this can be a
misleading classification, since the exact power counting of other non-abelian models may deviate from
the Abelian one, and what aspects of the analysis need to be carried out in detail for these cases in order
to really prove (or disprove) their perturbative renormalizability.

The model is defined in detail in Section 2. In Section 3 we provide an equivalent definition of the
same model in terms of projections onto the homogeneous space, which is more elegant and lends itself
immediately to the higher-dimensional generalisation. We then set-up the multi-scale analysis of the model,
in Section 4, and obtain the Abelian power counting. The analysis of perturbative renormalizability of the
model is performed in Section 5, while in Section 6 we go beyond this to study the full renormalisation
flow of the model, computing also the renormalised and effective series. In Section 7, we report the study
of the beta function at one-loop, and the proof of asymptotic freedom to the same order.

2 The model

2.1 Tensorial quantum field theory on S×d2

We consider a tensorial quantum field theory on d copies of the homogeneous space SU(2)/U(1), which
is isomorphic to the two dimensional sphere S2. The phase space of the theory is the cotangent bundle
(T ∗S2)×d ∼= (S2 × R2)

×d
. The (complex) field ψ ∈ L2(S×d2 ), assumed to be square-integrable, is defined as

ψ : [SU(2)/U(1)]d → C
(x1...xD) ∈ [SU(2)/U(1)]d → ψ(x1...xD)∫
S×d2

d∏
i=1

d2xiψ̄(x1, ..., xd)ψ(x1, ..., xd) <∞

while its quantum dynamics is defined by the partition function

Z =

∫
dµC(ψ, ψ̄)e−Sint(ψ,ψ̄), (1)

where we have defined a Gaussian measure encoding the kinetic part of the classical action, and defining
the free 2-point function, to be detailed below. The interaction part of the action Sint is constructed with
all the ”trace invariant” contractions

Sint =
∑
b

λbTrb(ψ, ψ̄), (2)

as graphically illustrated by the bipartite regular (i.e. strictly d-valent) graphs, with links coloured with
d colors at each vertex, in the figure below, where the black and white vertices correspond to the fields ψ
and ψ̄. Indeed, it can be shown that each such trace invariant monomial of fields can be put in unique
correspondence with one such bipartite coloured graph (called a ”bubble”). Such precise characterisation
of the allowed interactions by combinatorial properties is important for a recipe characterisation of the
theory space we work with, and for the renormalisation analysis of the corresponding field theories. The
parameters λb are the coupling constants associated to each of the interaction terms. At this stage, all
such interaction bubbles are possible, but as we will see later, the renormalizability criteria drastically
limit the allowed interactions, as needed to have a predictive field theory.
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Figure 1: Example of interaction bubbles

In a coordinate system on the 2-dimensional manifold S2, the Gaussian measure can be defined by the
choice of a kinetic action as follows

dµC(ψ, ψ̄) := e−Skin[ψ̄,ψ]dψdψ̄ (3)

with, in our case:

Skin[ψ̄, ψ] :=

∫
[S2]D

d∏
i=1

d2xi
√
|g|ψ̄(~x)(−∆ +m2)ψ(~x). (4)

∆ is the Laplacian operator on the 2-sphere of unit radius. In an Euclidean differential manifold with
metric g, the Laplacian is defined by the following generic formula in local coordinates

∆ =
1√
g
∂i
[√
ggij∂j

]
(5)

or, explicitly for the unit 2-sphere, in local spherical coordinates (θ, φ):

∆ =
∂2

∂θ2
+

1

tan θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
. (6)

As a continuous function on S×d2 , the field ψ can be expanded in spherical harmonics Yl,m(θ, φ), which
form a complete basis of L2-functions on the 2-sphere

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (7)

as

ψ({θi, φi}) =
∑
{li,mi}

D∏
i=1

t{li,mi}Yli,mi(θi, φi). (8)

where the components

t{li,mi} =

∫∫ d∏
i=1

d cos θidφiY
∗
l,m(θi, φi)ψ({θi, φi}), (9)

are independent of the mi. The spherical harmonics are solutions of the Laplace equation

−∆Yl,m(θ, φ) = l(l + 1)Yl,m(θ, φ), (10)

and we can invert the operator −∆ +m2 in the kinetic term to give the propagator (or covariance)

C0({θi, φi, θ′i, φ′i}) =

∫
dµC0ψ̄({θi, φi})ψ({θ′i, φ′i}) =

∑
{li,mi}

C{li,mi}

d∏
i=1

Y ∗li,mi(θi, φi)Yli,mi(θ
′
i, φ
′
i),

with

C0 {li,mi} :=
1∑

i li(li + 1) +m2
, (11)

4



which does not depend on mi. To define properly the theory, we introduce a cut-off regularized propagator
via Schwinger regularization:

C0 Λ({θi, φi, θ′i, φ′i}) =

∫ +∞

1/Λ2

dαe−αm
2 ×

∑
{li,mi}

d∏
i=1

e−αli(li+1)Y ∗li,mi(θi, φi)Yli,mi(θ
′
i, φ
′
i), (12)

in terms of the heat kernel:

Kα({θi, φi, θ′i, φ′i}) =
∑
{li,mi}

d∏
i=1

e−αli(li+1)Y ∗li,mi(θi, φi)Yli,mi(θ
′
i, φ
′
i) (13)

verifying the heat equation
∂

∂α
Kα = ∆Kα (14)

with initial conditions:
Kα=0(θ, φ; θ′, φ′) = δ(cos θ − cos θ′)δ(φ− φ′). (15)

From the definition of the heat kernel as a sum over markovian paths on the manifold S2 one deduces the
composition law∫

sin θdθdφKα1({θ′, φ′, θ, φ})Kα2({θ, φ, θ′′, φ′′}) = Kα1+α2({θ′, φ′, θ′′, φ′′}). (16)

This is in turn the key property to obtain the expression for the Feynman amplitudes entering the per-
turbative expansion of the N-point correlation functions SN in Feynman graphs (with an example given
in the figure (2) below):

SN =
∑
G

1

s(G)

(∏
b∈G

λb

)
AG. (17)

Figure 2: Example of Feynman graph

where s(G), the symmetry factor, is just the dimension of the (discrete) proper symmetry group of the
graph G, and the amplitude AG is

AG =

 ∏
l∈L(G)

∫ ∞
1/Λ2

dαle
−αlm2

× ∏
f∈F (G)

∑
lf

(2lf + 1)e−α(f)lf (lf+1) (18)

×
( ∏

f∈Fext(G)

∑
lf ,mf

e−α(f)lf (lf+1)Y ∗lf ,mf (θs(f), φs(f))Ylf ,mf (θt(f), φt(f))

)
,

where s and t map open faces to their boundary variables, and α(f) :=
∑

l∈∂f αl. εef is the incidence
matrix, which contains the information on whether a line belongs to the boundary of a face and their
relative orientation: εef = 0 if e /∈ ∂f , +1 or −1 if e ∈ ∂f .
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2.2 Closure constraint

We will impose an additional condition on our field, which we call “closure constraint̊’. It can be understood
as a gauge symmetry for the field, which reduces the manifold S×d2 as:

[SU(2)/U(1)]d → [SU(2)/U(1)]d/SU(2), (19)

identifying the field components up to a global SU(2) group action. More precisely, if we denote the action
of the group element g ∈ SU(2) on the field ψ as R̂(g).ψ, where R̂ and . are defined by the explicit group
action of SU(2), the closure constraint identifies, for a given ψ, all the elements R̂(g) . ψ ∀g ∈ SU(2). In
other words, the projective field space PG℘ is the set {R̂(SU(2)) . ψ} =: PGL2(S×d2 ).

Let us specify further the group action. We observe that the 2-sphere admits a natural embedding in
R3, and, using this, into SO(3):

π : S2 → SO(3) (20)

(θ, φ)→ π(θ, φ) ∈ SO(3) (21)

with the following explicit expression in local coordinates (θ, φ):

π(θ, φ)[ẑ] = ~n(θ, φ) (22)

where:

~n : (θ, φ)→ ~n(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ) ∈ R3 (23)

Hence, π(θ, φ) is the rotation of SO(3) mapping the ẑ axis in the direction ~n 3.

Starting from our field on S×d2 , this mapping enable us to define a new field on SO(3)×d, ψ̃ ∈
L2(SO(3)×d) such as π∗ψ̃ := ψ.

For the field ψ̃ ∈ L2(SO(3)×d), there are a natural right action of the group SO(3). Hence, we can
define the gauge symmetry as the identification of all the fields up to a global right action of SO(3). More
concretely, we introduce the symmetric rotation R̂ on L2(SO(3)×d), such that R̂(g) = R̂(−g)∀g ∈ SU(2)
(it is more convenient to work with a compact simply connected group). Hence, the operator R̂ can be
understood as a function on SO(3). For any R ∈ SO(3) we can therefore define the transformation law:

R̂(g) : L2(SO(3)×d)→ L2(SO(3)×d) (24)

[R̂(g)ψ̃]({π(θi, φi)}) := ψ̃({π(θi, φi)R(g)}),

Now, we can clarify the definition of the action . introduced before. More precisely, R̂(g) acts on ψ as:

R̂(g) . ψ({θi, φi}) := π∗[R̂(g)ψ̃]({θi, φi}) (25)

= ψ(π−1[(π(θi, φi))R(g)]),

implying :
R̂(g). ≡ π−1

∗ Î ◦ R̂(R(g))π∗, (26)

R̂(g). : PGL2(S×d2 )→ PGL2(S×d2 ), (27)

where R(g) ∈ SO(3) is the unique element of SO(3) associated to g ∈ SU(2) (R(g) = R(−g)) and Î is
the identity operator on PGL2(S×d2 ).

3This is a unique group element, up to an initial rotation around ẑ and a final rotation around ~n: π(θ, φ) ∼ R~nπ(θ, φ)Rẑ
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The gauge symmetry, or closure constraint, is simply

R̂(g) . ψ = ψ ∀g ∈ SU(2) (28)

If the model is defined in terms of fields satisfying this symmetry, we can not define easily an explicit
Skin, because the propagator of the theory, taken to be the fundamental entity, is not, strictly speaking,
invertible on the space of fields. But the Wick theorem states that the Gaussian measure, and with it, the
perturbative expansion of the quantum theory, is well defined as long as the 2-point function at λb = 0
(the propagator CΛ({θi, φi}, {θ′i, φ′i})) is properly defined. We choose:∫

dµC(ψ, ψ̄)ψ({θi, φi})ψ̄({θ′i, φ′i}) =

∫
SU(2)

dg

∫
dµC0(ψ, ψ̄)R̂(g) . ψ({θi, φi})ψ̄({θ′i, φ′i}), (29)

or∫
dµC(ψ, ψ̄)ψ({θi, φi})ψ̄({θ′i, φ′i}) =

∫
SU(2)

dg

∫ ∞
1/Λ2

dαe−αm
2

d∏
i=1

Kα({π−1[(π(θi, φi))R(g)]; θ′i, φ
′
i}). (30)

We can obtain an explicit expression for this constrained propagator. Using the expression for the heat
kernel (13) and the decomposition,

Yl,m((π(θi, φi))R(g)ẑ) =
+l∑

m′=−l

D
(l)
m′m[R(g)−1π(θi, φi)

−1]Yl,m′(ẑ),

where D(l) is the well known Wigner matrix defined, in the usual Dirac notation for the canonical basis of
angular momentum, as:

D
(l)
mm′ [R(g)] := 〈m, l|R̂(g)|l,m′〉 l ∈ N,

we obtain, using the fact that Y l ∗
m =

[
2l+1
4π

]1/2
D

(l)
m0, and that Y l

m(0, φ) =
[

2l+1
4π

]1/2
δm,0:∫

dµC(ψ, ψ̄)ψ̄({θi, φi})ψ({θ′i, φ′i}) =

∫
SU(2)

dg

∫ ∞
1/Λ2

dαe−αm
2

(31)

×
∑
{li}

d∏
i=1

e−αli(li+1) 2l + 1

4π
D

(li)
00 [R(g)π(θi, φi)

−1π(θ′i, φ
′
i)].

Note that the integral over the group of a product of such representation matrices defines a resolution of
the identity in the space of intertwiners (invariant tensors) of the group SO(3) :∫

dg
∏
i

D
(li)

mim′i
[R(g)] ∈ inv(SO(3)) .

2.3 Regularized parametric representation of correlation functions

We wish to obtain now the expression of the N-point correlation functions in perturbative expansion. The
argument involving (16) is still valid, and not affected by the closure constraint. Using the “addition
formula”:

+l∑
m=−l

Y ∗l,m(θ, φ)Yl,m(θ′, φ′) =
2l + 1

4π
Pl(~u · ~u′), (32)
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where ~u (resp ~u′) is the unit vector pointing on the 2-sphere of radius unity in the direction (θ, φ) (resp
(θ′, φ′)), we deduce, using the explicit expression (31), the expression for the Feynman amplitudes of the
constrained theory:

AG =

[ ∏
l∈L(G)

∫ ∞
1/Λ2

dαle
−αlm2

∫
[SU(2)]|L(G)|

∏
l∈L(G)

dhl

]
(33)

×
( ∏

f∈Fint(G)

∑
lf

(2lf + 1)D
(lf )
00

[
R
(
Πl∈∂fh

εef
)]
e−α(f)lf (lf+1)

)

×
( ∏

f∈Fext(G)

∑
lf

e−α(f)lf (lf+1) 2lf + 1

4π
D

(lf )
00

(
R
(
Πl∈∂fh

εef
)
π(θs(f), φs(f))

−1π(θt(f), φt(f))
))

.

From this amplitude, we deduce the following proposition:

Proposition 1 : The amplitude AG for a connected graph G has a SO(3)×|V (G)| gauge symmetry, which
allows to fix variables along a spanning tree T ⊂ G, such as he = 1∀e ∈ L(T ).

Proof : Simply note that the expression ?? is invariant under the transformation:

he → gt(e)heg
−1
s(e), (34)

where t(e) and s(e) are the target and source vertex of an oriented edge e (with the additional rule that
one of the two group elements is the identity for open lines). Because of this invariance, |V (G)| gauge
variables can be freely redefined, one more than the |V (G)| − 1 lines of a spanning tree of the graph.

�

We also deduce immediately the following lemma,

Lemma 1 : Let a spanning tree T ⊂ G of a connected graph G, and R(G) the rank of the incidence
matrix εef . Then, under the graph contraction G→ G/T the rank is unchanged.

We will recall the precise definition of contraction in a colored graph in section 5.

3 Equivalent formulation via projections

The problem of the above formulation, defined directly on the homogeneous space, is that we lose the
explicit group structure of the group field theory. This leads to some practical difficulties in dealing with
the theory, in particular in studying the divergence structure of its Feynman amplitudes and its renor-
malisability, following what has been done in previous works. These difficulties are mainly due to the
fact that elements of the homogeneous space do not compose via multiplication to other elements of the
homogeneous space. The way to proceed is to recast the field theory as a field theory on (several copies
of) SU(2), but with the fields subject to constraints effectively projecting them to the homogeneous space.
This way one can perform all calculations using the standard SU(2) formalism. This is indeed well-known
and already used in the GFT formulation of constrained spin foam models for 4d quantum gravity, in
particular the BC model[23, 24, 25, 26]. An ensuing subtle point is that special care should be payed to
the compatibility between the constraints projecting the field onto the homogeneous space and the gauge
invariance condition to be satisfied by the same fields. more precisely, the constraints have to be imposed
covariantly with respect to the diagonal group action. This was also realised in the context of GFTs and
spin foam models for 4d quantum gravity [27, 23, 7], and a properly covariant construction was identified,
which we now describe in some detail.
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3.1 Constrained representation

We choose an element of the Lie algebra su(2), σz for instance, and note that the set of group elements
g ∈ SU(2), such as gσzg

−1 = σz, the stabilizer group, is isomorphic to the group U(1):

Hσz := {g = eiθσz ∀θ ∈ [0, 2π[ } ∼ U(1). (35)

Now we can simply define a field theory for a new field Ψ : SU(2)×d → C with the constraint :

Ψ(g1, ...gi, ..., gd) = Ψ(g1h1, ..., gihi, ...gdhd) ∀(h1...hd) ∈ H×dσz . (36)

For this new field we define the partition function:

Z =

∫
dµC̃Λ

(Ψ, Ψ̄)e−Sint(Ψ,Ψ̄), (37)

where, as in the previous construction, Sint is a sum of tensorial invariants. The only difference between the
two formulations is that in the first one, the fields have 2d variables, while the new field has 3d variables,
with a constraint which reduces the number of degrees of freedom from 3d to 3d− d = 2d, so that we left
in the end with the same degrees of freedom.

The covariance C̃Λ for this model is defined as:∫
dµC̃Λ

Ψ({gi})Ψ̄({g′i}) :=

∫
H×dσz

d∏
i=1

dhi

∫ +∞

1/Λ2

dαe−αm
2

d∏
i=1

Kα(gihig
′−1
i ). (38)

from which we deduce the Feynman expansion of a N-point function SN , indexed by graphs G:

AG =

 ∏
e∈L(G)

∫ ∞
1/Λ2

dαee
−αem2

d∏
i=1

dhie

 (39)

×

 ∏
f∈F (G)

Kα(f)

(
~∏

e∈∂f
h
εef
i(f)e

)×
 ∏
f∈Fext(G)

Kα(f)

(
gs(f)

~∏
e∈∂f

h
εef
i(f)e

g−1
t(f)

),
where i(f) is the color of the face f and Kα is the solution of the heat equation on SU(2) (given by the
same formula (14) with ∆ replaced by the Laplace operator on SU(2)). This equation replaces the formula
(39).

We now confirm briefly the equivalence of the two constructions at the dynamical level. This can
be seen immediately noting that the spherical harmonics are just the Wigner representation matrices for
SU(2) integrated over a one-dimensional subgroup isomorphic to U(1). Indeed, the heat kernel is a class
function on SU(2) and, by virtue of the Peter-Weyl theorem, it can be expanded on the (class invariant)
basis of characters as:

Kα(g1g
−1
2 ) :=

∑
j∈N/2

(2j + 1)e−4αj(j+1)χj(g1g
−1
2 ), (40)

where the characters χj := TrjD
(j) of the irreducible representation j, verify :

∆SU(2)χ
j(g) = −4j(j + 1)χj(g). (41)

Now, in the Euler angles parametrization

χj(geiσzθ) =
∑
m

D(j)
mm(geiσzθ) =

∑
m

〈m, j|eiγJzeiβJyei(α+θ)Jz |j,m〉,

9



and: ∫ 2π

0

dθ

2π
χj(geiσzθ) = 〈0, j|eiβJy |j, 0〉 = D

(j)
00 (g).

Note that becausem = 0, j is necessarily an integer. When applying the previous result to
∫
dθχ(g1e

iθσzg−1
2 ),

we find: ∫ 2π

0

dθ

2π
χj(g1e

iσzθg−1
2 ) = D

(j)
00 (g−1

2 g1) =
∑
m

D
(j)
0m(g−1

2 )D
(j)
m0(g1) =

∑
m

D
(j)∗
m0 (g2)D

(j)
m0(g1).

Hence, because of the relation : Y l ∗
m =

[
2l+1
4π

]1/2
D

(l)
m0, the equivalence between the two representations (up

to a change of normalization of α and m : α→ α/4, m→ 2m) follows easily.

We now turn to the imposition of the gauge invariance (closure) constraint in this formulation. The
aim is to combine the constraint (36) with a global constraint of the form ψ(g1, ...gd) = ψ(g1l, ..., gdl)∀l ∈
SU(2). We first define the two transformations

T̂l : Ψ(g1, ..., gd)→ Ψ(g1l, ..., gdl) (42)

t̂
(i)
hi

: Ψ(g1, ..., gd)→ Ψ(g1, ..., gihi, ..., gd), (43)

satisfying :
T̂l ◦ t̂(i)hi = t̂

(i)

l−1hil
◦ T̂l (44)

Hence, by defining

Ψσz(g1, ..., gd) :=

∫
H×dσz

d∏
i=1

dhit̂
(i)
hi

[Ψ](g1, ..., gd), (45)

we have:
T̂l[Ψσz ](g1, ..., gd) = Ψl−1σzl(g1, ..., gd), (46)

with, for any k ∈ su(2):

Ψk(g1, ..., gd) :=

∫
H×dk

d∏
i=1

dhit̂
(i)
hi

[Ψ](g1, ...gd). (47)

Then, to include the closure constraint, we recast the theory in terms of the field: Ψk({gi}) from [SU(2)]d×
su(2) to C, and impose the constraint:

Ψk(g1, g2, ..., gd) = Ψh−1kh(g1h, ..., gdh). (48)

We define the partition function:

Z =

∫
dµC(Ψ, Ψ̄)e−Sint(Ψ,Ψ̄), (49)

with an interaction of the form:

Sint(Ψ, Ψ̄) =
∑
b

λbTrb

(∫
su(2)

dkΨk,

∫
su(2)

dk′Ψ̄k′

)
, (50)

and the propagator:∫
dµC(Ψ, Ψ̄)Ψk({gi})Ψ̄k′({g′i}) = δk,k′

∫
SU(2)

dl

∫
dµC̃(Ψ, Ψ̄)Ψk({gil})Ψ̄k({g′i}), (51)
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which gives, explicitly, using (38),∫
dµC(Ψ, Ψ̄)Ψk({gi})Ψ̄k′({g′i}) := δk,k′

∫
SU(2)

dl

∫
H×d
l−1kl

d∏
i=1

dhidh
′
i

∫ +∞

1/Λ2

dαe−αm
2

d∏
i=1

Kα(gihilh
′ −1
i g′−1

i )

:= δk,l−1k′l

∫
SU(2)

dl

∫
H×dk

d∏
i=1

dhi

∫ +∞

1/Λ2

dαe−αm
2

d∏
i=1

Kα(gilhig
′−1
i ) . (52)

Because of the form of the action (50), we can define a new “effective” field at the graph level (we sum
over all unit vectors k),

ψ =

∫
S2

dkΨk : [SU(2)]×d → C, (53)

satisfying the closure constraint, as it can be easily proven, using the invariance of the Haar measure. Let
h ∈ SU(2),

T̂h[ψ](g1, ..., gd) =

∫
su(2)

dkΨk(g1h, ..., gdh) (54)

=

∫
su(2)

dh−1khΨh−1kh(g1h, ..., gdh)

=

∫
su(2)

dhkh−1Ψk(g1, ..., gd)

=

∫
su(2)

dkΨk(g1, ..., gd) = ψ(g1, ..., gd),

and has the covariance:∫
dµC(Ψ, Ψ̄)ψ({gi})ψ̄({g′i}) =

∫
dk

∫
SU(2)

dl

∫
H×dk

d∏
i=1

dhi

∫ ∞
1/Λ2

dαe−αm
2

d∏
i=1

Kα(gilhi(g
′
i)
−1). (55)

Using the same strategy as in the previous section, we find the Feynman amplitude AG entering the
expansion of the N-point function:

AG =

[ ∏
e∈L(G)

∫
dαee

−αem2

∫
dle

∫
dke

d∏
i=1

Dkehi,e

]
(56)

×
( ∏

f∈F (G)

Kα(f)

( ∏
e∈∂f

(lehi(f))
εef
))

×
( ∏

f∈Fext(G)

Kα(f)

( ∏
e∈∂f

gs(f)(lehi(f))
εefg−1

t(f)

))
where s and t map open faces to their boundary variables, ε is the adjacency matrix, i(f) is the “color”
of the face f , and

Dkli := dliδ(k − lik(li)
−1) (57)

which reduces the integration over SU(2)×d to Uk(1)×d ≡ H×dk . Because of the integration over ke, we
deduce that the graph amplitude has the same gauge invariance as the amplitude in the first formulation.
Hence, the proposition 1 and its corollary 1 hold true.

This formulation is more convenient for the study of the renormalizability of the model, and it also
lends itself more easily to generalisation to other homogeneous spaces SO(D)/SO(D−1) ' SD−1, making
clearer the role of the group manifold dimension parametrized by D.
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3.2 Geometrical interpretation

Before we move to the renormalisation of this model, let us give some more information on its geometric
interpretation, which also motivates its interest from a quantum gravity perspective. The closure constraint
admits a ‘geometrical interpretation which can be easily understood with the mathematical tool of the non-
commutative (group) Fourier transform originated in the quantum group literature [28, ?], introduced in
the GFT context in [6], after being first used in the spin foam context in [29], and developed, in particular
for the case of SU(2), from the more mathematical perspective in [28, 30, 31]. This non-commutative
Fourier Transform is a functional mapping from a (usually but not necessarily) compact group G into its
Lie algebra g, sending any square-integrable function on G to a non-commutative function on g. For the
group SU(2), the mapping is between SU(2) and the R3 space, dual to its Lie algebra su(2). Consider a
function φ on SU(2), its Fourier transform is defined as:

φ̂ :=

∫
SU(2)

dgφ(g)eTr(|g|x) x ∈ su(2), (58)

where Tr is the trace in the fundamental representation and |g| = Sign
[
Tr(g)

]
g, ensuring that the basis

functions eg are trivially on SO(3), because : eg = e−g. Note that this condition also concerns the function
φ: φ(g) = φ(−g), which can be understood as a field on SO(3).

The inverse Fourier Transform is formally given by:

φ(g) =
1

π

∫
R3

d3x
[
φ̂ ? eg−1

]
(x), (59)

where the ?-product is dual to the convolution product on SU(2):

φ̂ ? ψ̂(x) =

∫
SU(2)

dg eg(x)
(
φ ◦ ψ

)
(g)

and is compatible with the group structure, in the sense that:

eg1 ? eg2(x) = eg1g2(x), ∀g1, g2 ∈ SU(2). (60)

The Fourier Transform can easily be extended to any function on [SU(2)]d as:

φ̂(x1, ..., xd) :=

∫
[SU(2)]d

[dg]d φ(g1, ..., gd)
d∏
i=1

egi(xi). (61)

It can thus be immediately applied to the GFT field Ψk introduced above, and verifying the constraints
(42) and (43). Note that, because of the symmetry T̂l[Ψk] = Ψk, the field Ψk verifies : Ψk(~g) = Ψk(−~g),
and is effectively a field on [SO(3)]d.

We now have a look at the constraints (42) and (43) successively. Starting with (42), we find:∫
[SU(2)d]

[dg]d
∫
SU(2)

dl T̂l[Ψk](g1, ..., gd)
d∏
i=1

egi(xi) (62)

=

∫
[SU(2)d]

[dg]dΨk(g1, ..., gd)
d∏
i=1

egi(xi)~? δ0

(
d∑
i=1

xi

)

= Ψ̂k(x1, ..., xd)~? δ0

(
d∑
i=1

xi

)
.

12



where the ~?-product distributes the ?-product between all the eg basis functions, and:

δ0

(
d∑
i=1

xi

)
:=

∫
SU(2)

dl

d∏
i=1

el(xi), (63)

verifying, for any function of one variable φ̂,∫
d3y(δ0 ? φ̂)(y) =

∫
d3y(φ̂ ? δ0)(y) = φ̂(0). (64)

Hence, the representation of the right projector P̂ =
∫
dlT̂l is a simple non-commutative multiplication:

P̂ [Ψ̂k](x1, ..., xd) := Ψ̂k(x1, ..., xd)~? δ0

(
d∑
i=1

xi

)
. (65)

We now move on to the constraint (43). Consider the operators t̂
(i)
hi

, acting on the i-th variable of Ψk. We

wish to compute the Fourier Transform of
∏

i

∫
hi∈Uk(1)

dhit̂
(i)
hi

[Ψk], and we find that it is proportional to:

∫
[SU(2)d]

[dg]dΨk(g1, ..., gd)
d∏
i=1

egi(xi)~?
d∏
i=1

δ0

(
1

2
Tr(kxi)k

)
= Ψ̂k(x1, ..., xd)~?

d∏
i=1

δ0

(
1

2
Tr(kxi)k

)
, (66)

which follows from the definition of the basis functions eg, and in particular :∫
Uk(1)

dhTr(hx) =

∫
Uk(1)

dhTr
[
h
(1

2
Tr(kx)k

)]
=

∫
SU(2)

dhTr
[
h
(1

2
Tr(kx)k

)]
,

and the projector Ŝk :=
∏

i

∫
hi∈Uk(1)

dhit̂
(i)
hi

acts on Ψk as:

Ŝk[Ψk] := Ψ̂k(x1, ..., xd)~?
d∏
i=1

δ0

(
1

2
Tr(kxi)k

)
. (67)

From the definition (1), it follows that Ψk = Ŝk[Ψ], and the non-commutativity (44) implies:

Ŝk ◦ P̂ =

∫
dlT̂l ◦ Ŝlkl−1 . (68)

The first result (62) explains why the constraint (42) is named “the closure constraint”. The second result
(66) means that the Fourier variables are forced to be orthogonal to the Lie algebra index k. In the case
d = 3, the field (quanta) can be interpreted as describing a triangle in R3, with its Lie algebra variables
being its edge vectors. The closure constraint forces in fact these edge vectors to sum to zero, thus the
corresponding edges to ”close”. The constraint (43) implies that this triangle is orthogonal to the unit

3-vector ~k, associated with the index k ∈ su(2) of the field. Hence, for example, an interaction represented
by the diagram on the left hand side of figure 1 is dual to a topological 2-sphere, triangulated by four
triangles, each orthogonal to a vector k, defining the radial direction.

3.3 Extension to [SO(D)/SO(D − 1)]×d

In this paper we focus on the field theory on Sd2 , and on its renormalisation. However, most of our con-
struction as well as part of the renormalizability analysis, can easily be extended to the homogeneous space
[SO(D)/SO(D− 1)]×d, using the projector formulation introduced above. In this section, we reframe the
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essential results obtained in the previous section for the homogeneous space [SO(D)/SO(D − 1)]×d. The
extension is straightforward, therefore we give only the essential steps, without too many details.

Let {(Lµν)ρσ}, a basis of anti-symmetric D ×D matrices of the Lie Algebra so(D), and k = {kµ} an unit
vector of RD (the Greek indices run over 1, ..., D and label the Euclidean coordinates on RD). Any element
g ∈ SO(D) can be written as (we use the Einstein convention for sums over Greeks indices):

g = eΩµνLµν , (69)

and any element h of the stabilizer group of k, isomorphic to SO(D − 1) (denoted SOk(D − 1)), can be
written as:

h = e
ΩµνPkµµ′P

k
νν′L

k
µ′ν′ ∈ SOk(D − 1) (70)

where Pk = I − k ⊗ k, (Pk)2 = Pk is the projector onto the subspace orthogonal to k. As in section ??,
we define a field theory on SO(D)×d as a map Ψ : SO(D)×d → C, and we reduce the manifold to the
homogeneous space [SO(D)/SO(D − 1)]×d imposing the constraint

Ψ(g1, ..., gi, ..., gd) = Ψ(g1h1, ..., gihi, ..., gdhd) ∀(h1, ..., hd) ∈ [SOk(D − 1)]×d . (71)

At the quantum level, the theory is defined by the choice of a partition function, or in other worlds, by
the choice of an action Skin and of a (UV regularized) Gaussian measure dµC̃Λ

, in the notation of section
??. As before, the action is a sum of tensorial invariants, built again as in correspondence with coloured
bipartite graphs (bubbles). We choose the propagator such as it enforces the constraint (71) at the level
of the amplitudes. Similarly to (38), we choose:∫

dµC̃Λ
Ψ({gi})Ψ̄({g′i}) :=

∫
SOk(D−1)×d

d∏
i=1

dhi

∫ +∞

1/Λ2

dαe−αm
2

d∏
i=1

Kα(gihig
′−1
i ) . (72)

The closure constraint is then implemented as in section ??. We first define the operators T̂l and t̂
(i)
hi

T̂l : Ψ(g1, ..., gd)→ Ψ(g1l, ..., gdl) (73)

t̂
(i)
hi

: Ψ(g1, ..., gd)→ Ψ(g1, ..., gihi, ..., gd) , (74)

satisfying again : T̂l ◦ t̂(i)hi = t̂
(i)

l−1hil
◦ T̂l. Then, defining

Ψk(g1, ..., gd) =

∫
SOk(D−1)d

d∏
i=1

dhit̂
(i)
hi

[Ψ](g1, ..., gd) , (75)

we have again
T̂l[Ψk](g1, ..., gd) = ΨR−1

l [k](g1, ..., gd) , (76)

where R−1
l [k] is the vector k rotated by the SO(D) element l. All the equations after (49) can be applied

to this more general case without any change. We define the partition function as

Z =

∫
dµC(Ψ, Ψ̄)e−Sint(Ψ,Ψ̄) , (77)

with the action

Sint(Ψ, Ψ̄) =
∑
b

λbTrb

(∫
su(2)

dkΨk,

∫
su(2)

dk′Ψ̄k′

)
, (78)

and the gauge invariant propagator∫
dµC(Ψ, Ψ̄)Ψk({gi})Ψ̄k′({g′i}) = δk,k′

∫
SO(D)

dl

∫
dµC̃(Ψ, Ψ̄)Ψk({gil})Ψ̄k({g′i}) , (79)
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imposing the closure constraint in each Feynman amplitude. And again we can introduce the effective
field ψ:

ψ :=

∫
dkΨk : [SO(D)]d → C, (80)

which satisfies the closure constraint T̂h[ψ](g1, ..., gd) = ψ(g1, ..., gd)∀h ∈ SO(D), and whose effective
propagator can be written as:∫

dµC(Ψ, Ψ̄)ψ({gi})ψ̄({g′i}) =

∫
dk

∫
SU(2)

dl

∫
H×dk

d∏
i=1

dhi

∫ ∞
1/Λ2

dαe−αm
2

d∏
i=1

Kα(gilhi(g
′
i)
−1) . (81)

The Feynman amplitudes for the corresponding TGFT model take then the form (56).

4 Multiscale analysis

In this section we explore the power counting for the divergences of the theory, in order to find renor-
malizability criteria that would allow to identify the renormalizable interactions (including the super-
renormalizable ones). We focus on the SU(2)/U(1) model, but we also try to extend our results to the
general SO(D)/SO(D− 1) case, whenever possible. We begin by studying the divergences in the Abelian
approximation, expected to be optimal from the results obtained recently in [19]. We will give some addi-
tional arguments in favour of this intuition in section 3.3, and we will see that the Abelian power counting
becomes exact, for the SU(2)/U(1) model, in the next section. We also point out why the same arguments
do not generalise trivially to arbitrary dimension D, and what needs to be understood in order to achieve
such generalisation.

4.1 Abelian power counting for the [SU(2)/U(1)]d model

The multiscale analysis is based on the following slice decomposition of the propagator,

CΛ =
∑
i<ρ

Ci (82)

where the cut-off Λ is chosen of the form Λ = Mρ, M > 1, and the propagator “in the slice i” Ci is

Ci =

∫
dk

∫
SU(2)

dh

∫
[SU(2)]d

d∏
j=1

dljδ(k − ljk(lj)
−1)

∫ M−(i−1)

M−i
dαe−αm

2
d∏
i=1

Kα(gihli(g
′
i)
−1). (83)

We will prove the following key theorem, given the power counting of the theory and a divergence criterion
for a graph amplitude, which is the first step of the perturbative renormalizability analysis at all orders.

Theorem 1 Consider the previous model on [SU(2)/U(1)]×d with diagonal SU(2)-gauge invariance. The
amplitude AG,µ for a graph G and scale assignment µ = {il1 , ..., il|L(G)|} li ∈ L(G), admits the following
bound:

|AG,µ| ≤ K |L(G)|
∏
i

k(i)∏
k=1

Mω(Gki ), (84)

where Gk
i is the k-th connected component of the sub-graph Gi ⊂ G, which contains only the lines of the

graph G with a slice il ≥ i, and where the divergence degree ω(Gk
i ) is given by:

ω(Gk
i ) = −2|L(Gk

i )|+ 2(|F (Gk
i )| −R(Gk

i )). (85)
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Proof :
The first step is to bound the heat kernel. The heat kernel Kα(g) on SU(2) has a complicated expression
(see for example [32]). However, it can be approximated in the ”UV” regime, i.e. for large representation
labels, by the following bound:

Ci({gj}, {g′j}) ≤ KM (3d−2)i

∫
dk

∫
SU(2)

dh

∫
[Uk(1)]d

d∏
j=1

dlje
−δM i

∑d
j=1 |gjhljg

′ −1
j |. (86)

where here |g1g
−1
2 | indicates the geodesic distance (using the standard metric on SU(2) ' S3) between the

two group elements g1 and g2, and δ, K are two positive constants which can be precisely computed (the
values of these constants do not affect the proof).

This result allows us to bound the (multi-)scale decomposition AG,µ of the amplitude. The first step is
to rewrite in a suitable manner the term

∏
l∈L(G) M

(3d−2)il . To this end, note that, trivially: M i =
∏

iM .

This allows to rewrite the product over the lines of the graph as:
∏

l∈L(G) M
(3d−2)il =

∏
l∈L(G)

∏il
i=1M

(3d−2).
Now, we wish to invert the order of the double product. Selecting a scale-assignment i, and a subset of
lines in G so that, for each of these lines, the scale assignment is higher than or equal to i, we define the
subgraph Gi of G. It follows that

∏
l∈L(G)

M (3d−2)il =
∏

l∈L(G)

il∏
i=1

M (3d−2) =
∏
i

∏
l∈L(Gi)

M (3d−2) .

Because the graph Gi is not necessarily connected, we introduce the notation Gk
i for its connected com-

ponents,so that Gi = ∪k(i)
k=1G

k
i . It follows that the previous decomposition becomes

∏
l∈L(G)

M (3d−2)il =
∏
i

∏
l∈L(∪k(i)

k=1G
k
i )

M (3d−2) =
∏
i

k(i)∏
k=1

∏
l∈L(Gki )

M (3d−2) =
∏
i

k(i)∏
k=1

M (3d−2)L(Gki ) .

The second step is to integrate over the group variables along each face of the graph. Using the same
decomposition and the compactness of the group U(1), we obtain the following contribution for the internal
faces: ∏

i

k(i)∏
k=1

M−3d|L(Gki )|+3|F (Gki )| . (87)

Note that, to obtain this formula, we have chosen an optimal tree in each face on which we perform the
integrations over the angle variables. This result, combined with the first one provided by the factors
M (3d−2)i gives ∏

i

k(i)∏
k=1

M−2|L(Gki )|+3|F (Gki )| . (88)

The third and last contribution comes from the remaining integrals∫ ∏
e

dhedke
∏
f

dl
c(f)
ke

e−δM
i(f)|

∏
e∈∂f (hel

c(f)
ke

)
εef | , (89)

and it is at this point that the Abelian approximation intervenes. As showed in [19] for an SU(2) TGFT,
the exact power counting is uniformly bounded by its Abelian version, which corresponds to the linearized
version of the exact one around identity for all the group elements (i.e. the non-commutativity of the
group variables improves the convergence of a graph amplitude compared to the Abelian version). The
proof of this fact for our model is the subject of the next section. As we will see below, the Abelian power
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counting coincides also in our case with the non-Abelian one (for the SU(2)-based model) for the leading
order (or divergent) graphs, which are the graphs of interest for renormalization.

The Abelian version 89 is ∫ ∏
e∈L(G)

d~λedke

∫ ∏
f

dθ
c(f)
ke

e−δM
i(f)|

∑
e εef (~λe+θ

c(f)
ke

~eke )|. (90)

Where i(f) := inf {il, l ∈ ∂f} and c(f) is the color of the face f , and where ~ek is the unit 3d vector

associated to the unit Lie algebra element k and |~q| :=
√∑d

j=1 q
2
j is the R3 norm (we use here explicitly

the trivial isomorphism between the elements of the Lie algebra su(2), and the vectors of R3).
Integrating over a selected tree T2 of faces, such that the number of faces in this set equals the rank of the
incidence matrix, and in an optimal way, in the sense that the faces of this set proceed recursively from
the leaves to the root of the Gallavotti-Nicoló tree, the integral (90) over the ~λ and θ variables gives the
power counting contribution ∏

i

k(i)∏
k=1

M−3R(Gki ), (91)

and the remaining integration∫ ∏
e∈L(G)

dke

∫ ∏
f∈F/T2

dθ
c(f)
ke

e−δM
i(f)|

∑
e∈∂f εefθ

c(f)
ke
| =

∫ ∏
f∈F/T2

∫ ∏
e∈∂f

dθ
c(f)
ke

dkee
−δM i(f)|

∑
e∈∂f εefθ

c(f)
ke
|, (92)

gives, up to a positive constant,∏
f∈F/T2

M−i(f) =
∏
i

∏
k

∏
f∈F/T2(Gki )

M−1 =
∏
i,k

M−|F (Gki )|+R(Gki ) , (93)

from which we deduce the bound on the amplitude AG,µ:

|Aµ(G)| ≤ K |L(G)|
∏
i

k(i)∏
k=1

M−2|L(Gki )|+2|F (Gki )|−2R(Gki ) = K |L(G)|
∏
i

k(i)∏
k=1

Mω(Gki ). (94)

�

4.2 Abelian power counting for models on [SO(D)/SO(D − 1)]×d

It is not hard to extend the previous analysis to the homogeneous space [SO(D)/SO(D − 1)]d ' (S)D−1,
allowing to obtain a preliminary classification of potentially just-renormalizable models, for various choices
of D and d.

Such classification is of cours valid only to the extent in which the Abelian power counting captures in
fact the exact power counting of these non-abelian models. This is however not straightforward, and we
have actually reasons not to believe it, as we are going to discuss in the following.

We obtain the following result:

Theorem 2 The Abelian superficial divergence degree of any Feynman graph G associated to a field theory
on [SO(D)/SO(D − 1)]× d with closure constraint is given by

ω(G) = −2|L(G)|+ (D − 1)
[
|F (G)| −R(G)

]
. (95)
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The proof is the exact generalization of the previous one, and we will only give the main steps. Let
{(Lµν)ρσ} be a basis of anti-symmetric D × D matrices of the Lie Algebra so(D), and k = {kµ} a unit
vector of RD (the Greek indices run over 1, ..., D and label the Euclidean coordinates on RD). Any element
g ∈ SO(D) can be written as (we use the Einstein convention for sums over Greek indices)

g = eΩµνLµν , (96)

and any element l of the stabilizer group of k isomorphic to SOk(D − 1) as

l = e
ΩµνPµµ′Pkνν′L

k
µ′ν′ , (97)

where Pk = I− k ⊗ k, (Pk)2 = Pk is the projector onto the subspace orthogonal to k.

The previous bound (86) for the propagator becomes, for SO(D),

Ci({gj}, {g′j}) ≤ KM (dD−2)i

∫
dk

∫
SU(2)

dh

∫
[SOk(D−1)]d

d∏
j=1

dlje
−δM i

∑d
j=1 |gjhljg

′ −1
j | . (98)

After integration over group variables gi, the product (88) becomes

∏
i

k(i)∏
k=1

M−2|L(Gki )|+D(D−1)
2
|F (Gki )| (99)

and the remaining integration (90), in the Abelian approximation, which corresponds to the linearized
version of (89), becomes∫ ∏

e∈L(G)

dλedke ×
∫ ∏

f

dθ
c(f)
ke

e
−δM i(f)

∣∣∑
e εef

(
λe,µν+θ

c(f)

ke,µ′ν′
Pke
µ′µP

ke
ν′ν

)
Lµν

∣∣
. (100)

The integration over the λe variables replaces (91) by:

∏
i

k(i)∏
k=1

M−D(D−1)
2

R(Gki ) (101)

and the remaining integration over the θ
c(f)
ke

gives, instead of (93),∏
i,k

M− (D−1)(D−2)
2

[
|F (Gki )|−R(Gki )

]
. (102)

Combining the results (99), (100) and (102), we obtain the divergence degree (95).

4.3 Optimal bound and Abelian power counting

In this section we want to examine further the validity of the Abelian power counting for our non-Abelian
model. To this end, we will study the behaviour of the integral (89)4. In order to simplify the reasoning,
we choose the orientations of faces and lines such that εef ≤ 0. A moment of reflection shows that it is
always possible to do so: one just has to exploit the bipartite structure of the Feynman graphs, and choose

4Our analysis is close to the one of [33] for the SU(2) case.
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the orientation of lines from black to white vertices, for instance. Hence, we will studying the behaviour
in Λ of the simpler integral:

IΛ =

∫ ∏
e

dhedke
∏
f

dl
c(f)
ke

e−Λ2
∣∣∏

e∈∂f hel
c(f)
ke

∣∣2
, (103)

in the large Λ limit. Because of the normalization of each integration measure, I goes to zero when
Λ → ∞, and we expect a behavior of the type Λ−Ω(G). The aim is therefore to find Ω, or, at least, an
optimal bound for it. In addition, note that the integral is absolutely convergent, and trivially bounded
by 1.

The large Λ limit enforces the relations: ∏
e∈∂f

hel
c(f)
ke

= I, (104)

and the strategy is to expand the exponent in the vicinity of these solutions, and integrating around them,
by the Laplace method. Let x = {h̄e, l̄c(f)

e } a point in the space of solutions of (104), expected to be a
manifold with a priori many connected parts, eventually of null dimension (a single point). We define
A = {he} the set of group variables attached to each line and Hf the map from SO(D)×|L| to SO(D)×|F |

defined by :

Hf (A) =
∏
e∈∂f

hel
c(f)
ke

(105)

whose differential around x is:

dHf (x) =
∑
e∈∂f

Ad{∏
e′∈∂f |e′<e h̄e′ l̄

c(f)

e′

}[δ̂e + h̄eδ̂
f
e h̄
−1
e

]
=:
∑
e∈∂f

Lfe
[
δ̂e + h̄eδ̂

f
e h̄
−1
e

]
, (106)

where δ̂e and δ̂fe , living in the Lie Algebra su(2), are the right variations of he and l
c(f)
e respectively.

Defining δ̂f ]e = h̄eδ̂
f
e h̄
−1
e , we obtain, around x:

IΛ(x) =

∫ ∏
e,f

dδ̂edδ̂
f
e

∏
f

e−Λ2|
∑
e∈∂f Lfe(δ̂e+δ̂

f ]
e )|2 . (107)

In order to integrate it, we introduce the quantities δ̂f and δ̂]f as:

δ̂f =
∑
e∈∂f

Lfeδ̂e δ̂]f =
∑
e∈∂f

Lfeδ
f ]
e , (108)

and the notations δ̂f ‖ and δ̂f ⊥, designating respectively the components parallel and orthogonal to δ̂]f .
Inserting this in (107), we find

IΛ(x) =

∫ ∏
e,f

dδ̂ee
−Λ2|δ̂f ⊥|2

∫
dδ̂fe

∏
f

e−Λ2|δ̂f ‖+δ̂
]
f |

2

, (109)

which behaves as

IΛ(x) ∼
∣∣ det[L]ker(L)⊥

∣∣−1
Λ
−
{

dim
[
SO(D)

]
−dim

[
SO(D−1)

]}
rk[L]

Λ− dim
[
SO(D−1)

]
|F | (110)

=
∣∣ det[L]ker(L)⊥

∣∣−1
Λ−(D−1)rk[L]Λ−

(D−1)(D−2)
2

|F | ,

where rk[L] is the rank of L, and the notation det[L]ker(L)⊥ indicates the determinant over the complemen-
tary space ker(L)⊥ of ker(L). Because the rank rk[L] is at least equal to the rank of εef , the previous bound
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in always bounded by its Abelian version. The sum over x, however can eventually spoil this result. As
explained before, the support of this sum splits into continuous and discrete components, and the integral
over the continuous component can be ill-defined. However, these singularities occur when the determinant
vanishes, and because the integral is absolutely convergent, it is a snag of the Laplace method. Moreover,
for these points, the co-dimension of the kernel of L becomes bigger than the co-dimension of the kernel
on the other points. Hence, presumably these singularities do not affect the conclusion.

This result is important for the rest of this paper, because it allows to find some just-renormalizable
models only from the Abelian divergent degree. However, it imply that the Abelian power counting is
pessimistic, and as a result, that the list of just-renormalizable models obtained using the Abelian divergent
degree is certainly incomplete. In addition, the flatness condition 104 is different of the one obtained in
standard TGFT, which is

∏
e∈∂f he = I. We will return on this subtlety in a future section.

5 Renormalisability

This section is devoted to a detailed analysis of the divergence degree given by (95). The aim is to determine
for which values of d and D, and for which value of the maximal degree vmax of interactions, the theory is
just-renormalizable (obviously, a stronger degree of convergence would indicate super-renormalizability).
Recently, an analysis of this type has been make in [19] for TGFT with gauge invariance (but no other
constraints) on group manifolds, for which a classification table has been obtained. We make here the
same work for our models on the homogeneous space [SO(D)/SO(D − 1)]×d. This work can also be
taken as preliminary step towards a similar analysis for TGFT models for quantum gravity, obtained by
constraining models of quantum BF theory, the additional constraints there having a similar effect as the
projection to a homogeneous space (and in the Barrett-Crane-type models being exactly such projections
on SO(4)/SO(3)). However, we emphasize in advance that the difficult issue in applying this classification
to SO(D)/SO(D−1) models lies in showing that the exact power counting is well captured by the Abelian
one. We will return to this point in the following.

5.1 Basics on colored graphs

This section give some definitions and properties of colored graphs. Most of these properties are well-
known in tensor model literature, so we simply adopt them and refer to, say, [10] for their proof. We begin
with the following lemma:

Lemma 2 Consider a connected graph G, with F and R respectively its number of faces and the rank of
the incidence matrix εef . Under contraction of a spanning tree T , F and R do not change.

Proof : Because T is a spanning tree, its lines bound faces with a number of boundary lines bigger or
equal to two, so their number does not change under contraction. For the rank, its invariance is assured
by the corollary 1.

�

From [19], we adopt the following definitions.

Definition 1 (contraction operation). Let G be a Feynman graph and L0 = {li} ⊂ L(G) an ordered subset
of dotted (i.e. propagation) lines in G (including tadpole lines). The graph G/L0 is obtain from G by the
following steps:

considering the dotted line li ∈ L0:
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• deleting the line li and its two (black and white) end vertices and all the colored lines joining these two
vertice;
• identifying the colored line linked to the deleted black vertex with the corresponding line linked to the
white vertex;
• repeating the same steps for li+1, and so on.

Definition 2 For a connected graph G with |L| lines, |V | vertices and a spanning tree T ⊂ G, we call
tensorial rosette or simply rosette, the contracted graph G/T with one vertex and |L| − |V |+ 1 lines.

The figure 3 below illustrates the definition 1 in a simple example.

1 2
1

3

2

3
1 1

2

Figure 3: Contraction of a dotted line between two vertices

Definition 3 Consider a Feynman graph G. The colored extension Gc of this graph is the bipartite regular
graph for which:

• the vertices are partitioned in the form V(Gc) = V ∪ V̄ , where V (respectively V̄ ) is the set of black
(respectively white) vertices;
• the set of lines E(Gc) is formed by all the lines (colored plus dotted) joining any pair {v, v̄} ∈ V × V̄ ; by
definition, the dotted lines have color 0;
• the set of faces is of the form F(Gc) = F ∪F 6=0

c , where F is the set of faces in G, i.e. the set of faces of
the form f0i with boundary lines of color 0 and i (i 6= 0), and F 6=0

c is the set of faces of the form fij with
boundary lines of color i and j(i 6= j; i, j 6= 0);

Definition 4 Consider a colored extension Gc. A k-dipole dk is a set of k colored lines necessarily includ-
ing the color 0 and linking two vertices v and v̄. An example is depicted on the figure 4 below.

0

1

k − 1

k

k + 2
k + 1

d+ 1

Figure 4: Example of k-dipole

In addition, we recall the following three definitions about colored graphs:

Definition 5 (jacket) Consider a colored extension Gc in dimension d. A jacket J is a 2-subcomplex of
Gc, labeled by a (d+ 1)-cycle τ , such that J has the same number of lines and vertices as Gc, but only a
subset of its faces: FJ = {f ∈ FGc |f = (τ q(0), τ q+1(0)), q ∈ ZD+1}.

A jacket is a ribbon graph, corresponding to a sub-manifold of dimension 2 and of Euler-Poincaré charac-
teristic given by χ(J ) = |FJ | − |EJ |+ |VJ | = 2− 2gJ , where gJ is the genus of the surface.
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Definition 6 (Degree) The degree $(Gc) of a colored extension Gc is the sum over all the degrees of its
jackets:

$(Gc) =
∑
J

gJ ⇒ $(Gc) ≥ 0

Definition 7 The graphs whose degree is equal to zero are called melonic graphs.

In addition to these definitions, we have the three following lemmas:

Lemma 3 The melonic graphs are dual to a d-dimensional sphere.

Lemma 4 In dimension d, the degree $(Gc) is related to the number of bi-colored faces and to the number
of black (or white) vertices p, by the following two relations:

|F| = d(d− 1)

2
p+ d− 2

(d− 1)!
$(Gc)

$(Gc) =
(d− 1)!

2
(p+ d− B[d]) +

∑
i;ρ

$(Bî(ρ)).

In addition, we can show that p+ d− B[d] ≥ 0.

Note that, in this lemma, the sum over i in the second relation includes the color 0. In addition, Bî(ρ)

is the connected component ρ of the sub-graph obtained from Gc by deleting all the lines with color i
(including the color 0). B[d] is the number of these connected sub-graphs. These sub-graphs are the
so-called “d-bubbles”. From this lemma, we easily deduce the following proposition:

Proposition 2 Under any 1-dipole contraction, the degree of a graph is unchanged.

With this material at hand, we now move on to the renormalizability analysis, which is the object of the
next section.

5.2 Renormalizability

We have seen that, for these models, the divergence degree of a graph grows with the number of faces. The
first question is: which are the graphs that have a maximum number of faces? To answer this question,
consider a vacuum graph G and its colored extension Gc. We can choose a tree T in G and build the
rosette G/T = Ĝ, Ĝc being its colored extension. Then, from the lemma 4, we have:

|F (Ĝ)| = (d− 1)|L(Ĝ)|+ 1−∆(Ĝ) , (111)

where we have used the fact that L(Ĝ) = p in the lemma 4, and where

∆(Ĝ) :=
2

(d− 2)!

[ 1

d− 1
$(Ĝ)−$(Ĝ0)

]
,

where Ĝ0 is the d-bubble of color 0 obtained from Ĝ by deleting all the lines of color 0. Note that because
the rosette Ĝ have only one vertex, Ĝ0 have only one connected component. Because one can prove that
$(Ĝ) ≥ d$(Ĝ0), we easily deduce that |F | is bounded by:

(d− 1)p+ 1− 2

(d− 1)!
$(Ĝ) ≤ |F | ≤ (d− 1)p+ 1− 2

(d− 1)!
$(Ĝ0).

The number of faces is then maximal when $(Ĝ) = 0, implying $(Ĝ0) = 0 from the lemma 4. Hence
we deduce that the number of faces is maximal for the melonic (colored extension) graphs. This result
is actually a key one for all the TGFT models that have been studied to date. In addition to the formal
definition given by 7, the melonic graphs have an iterative definition. From the simplest melon with p = 1
(the so-called “supermelon”) given in figure 5 below
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Figure 5: The supermelon graph

we obtain the refined melons of order p by replacing an edge by a d-dipole as in the figure 6 below.

Figure 6: Melonic recursion: d-dipole insertion.

Note that for a rosette, this recursion procedure excludes the line of color 0 because the d-bubble Ĝ0 has
just one connected component.
Now we can turn to the analysis of the rank, the other main contribution to the divergence degree. It is
obvious from the previous recursion that for a melonic rosette of order p, the rank is just equal to p, the
number of lines L(Ĝ) in Ĝ. Hence, the rank is maximal for the same melonic graphs, and each insertion
of a d-dipole increases |F | −R by d− 2. It follows that, for a melonic rosette graph:

|F (Ĝ)| −R(Ĝ) = (d− 2)|L(Ĝ)|+ 1. (112)

It is tempting to think that this is also the optimal bound for |F | − R for arbitrary graphs. Indeed, we
can prove that this is the case by recursion. Starting from the order p = 1, the unique connected vacuum
graph M1 is the supermelon in figure 5. For the next order p = 2, we wish to add one black vertex and
one white vertex, or, in other words, a new dotted line. Each line carries at least d faces f 0i i 6= 0 of length
one, and can increase the rank at least of +1. Because of the connectivity constraint, it seems that one
colored line must be sacrificed, and bound a common face for the two dotted lines. Hence, the maximal
number of faces is 2d− 1 = 2(d− 1) + 1, in accordance with the formula (112). Concerning the rank, if we
wish to minimize this variation in the step p = 1 → p = 2, the only possibility is to exclude the creation
of a k-dipole for k > 1, and so to create a new face f 0i. Hence, we loose d − 1 faces, and, if d > 2, this
possibility does not correspond to the leading order. Privileging the graphs with the maximum number
of faces is then more advantageous, and the connectivity constraint implies that the only possibility is a
melonic graph M2 as depicted in the figure 7.

The same argument survives at order p. Starting with a melonic graph of order p, Mp, we move from
the order p to the order p+ 1 by adding a dotted line. This dotted line can carry at least d faces, but one
is necessarily common with another dotted line, ensuring the graph connectivity. Hence, adding a new line
increases at least by d − 1 the number of faces, and the optimal graph corresponds to the melon Mp+1.
As to the rank, it can at least increase by 1. It is clear that the optimal graphs for the rank and the faces
are incompatible, because to minimize the rank variation, so ∆R = 0, it is necessary that no k-dipole (for
k > 1) and no face is created by the new line. Then, we loose d− 1 lines compared to the melonic graphs,
and this solution does not correspond to a leading order graph.
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j

Figure 7: The most divergent graph at the order p = 2.

Hence, the melonic rosettes correspond to the most divergent graphs, i.e. the leading order of the pertur-

bative expansion. Because L(Ĝ) = |L(G)| − |V (G)|+ 1, we deduce the following result:

Proposition 3 Let G be a vacuum Feynman graph. Its divergence degree is bounded by

ω(G) ≤ ωmelo(G) (113)

with

ωmelo(G) :=
[
(D − 1)(d− 2)− 2

]
|L(G)| − (D − 1)(d− 2)(|V (G)| − 1) + 1 , (114)

which correspond to the divergence degree of a melonic rosette graph.

We are tempted to deduce from this theorem that the leading order graphs are also melonic. In fact, this
property can be seen as an elementary property of the melonic graphs. It follows from another elementary
result concerning the degree $(Gc), i.e. that it is invariant under 1-dipole contraction [10, 19]. Yet, it is
obvious that the tree contraction given by the rosette in the previous proposition is a succession of 1-dipole
contractions, then:

Corollary 1 The leading order graphs are melonic: their degree $ vanish.

From this follows trivislly that

Corollary 2 Only the melonic interactions contribute to the leading order graphs.

It remains to consider the non-vacuum graphs. It is tempting to think that the leading order graphs are
melonic, as in the vacuum case. This conclusion is right, but must be made more precise, and the result
is the following proposition:

Proposition 4 Let GN be a non-vacuum graph with N external lines. Its divergence degree is bounded
as:

ω(GN) ≤
[
(D − 1)(d− 2)− 2

]
|L(G)| − (D − 1)(d− 2)(|V (G)| − 1) (115)

with equality for melonic graphs. In addition, an external mono-color face connects all the external black
and white vertices.

Proof : Let Ĝ be a vacuum graph containing GN in the following sense. G ⊂ Ĝ means that Ĝ contains
all the vertices of GN and has the same connectivity, and that a face of Ĝ is the sum of the internal and
external faces of GN . In addition, this inclusion supposes that GN can be obtained from Ĝ by cutting
some internal lines. Because of proposition 3, it follows that Ĝ is a leading order graph if and only if it is
melonic. Starting from this graph, we wish to build the most divergent graph with the same number of
external lines as GN . Suppose that GN has 2 external lines. From Ĝ, we begin by selecting a spanning
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tree T and we construct the rosette
¯̂
G. Now, the simplest way to obtain a non-vacuum graph from the

rosette is to cut an internal dotted line. An internal line is necessarily a dipole line, and carries d faces. In
addition, the rank has to be decreased by 1, and |F | −R decreases by d− 1 = (d− 2) + 1. Another (more
complicated) way to build a 2-points graph is to cut n internal dotted lines, to select 2 half dotted lines,
and to reconnect the 2(n − 1) remaining half dotted lines in an optimal way. But observe that cutting
these n lines decreases |F |−R at most by (d− 2)n+ 1. Hence, we must at least reconstruct (d− 1)(n− 1)
faces and increase the rank by (n − 1), obtaining in a more involved way exactly the same result. It is
then obvious, from the recursive definition of the melonic graphs and their inherited connectivity, that any
reconnecting procedure, which does not correspond to the cutting of a singular dipole, increases the length
of the d externals faces, and necessarily reduces the number of internal faces. Hence, cutting a single
dipole is the more face-economic way to obtaine a 2-point graph which respects the melonicity condition,

and thus the maximization of the divergence degree. Therefore, from the rosette
¯̂
G, we obtain the leading

order 2-points graphs Ḡmelo
2 by cutting one dipole, and the divergence degree of G2 is bounded by:

ωmelo(G2) ≤ −2|L(G2)|+ (D − 1)(d− 2)
[
|L(

¯̂
G)| − 1

]
= −2|L(G2)|+ (D − 1)(d− 2)|L(Ḡ2)|

which bounds also the divergence degree of any 2-point graph.

Now, from the 2-point graph, we would like to build the 4-point graph. As previously, we start from
a rosette graph Ḡmelo

2 . The same argument as before shows that the leading order graphs are obtained
by cutting a new dipole. But a new subtlety appears. Indeed, because of the special connectivity of the
melonic graphs, two given lines in Ḡmelo

2 can be the boundary of one and only one internal face. If two
lines do not have common faces, they are called “face disconnected”, and if we cut two “face-disconnected”
lines, we loose 2d faces against 2(d− 1) + 1 if they are “face-connected”. Hence, it follows that the leading
order graphs with 4 external lines are melonic with an external face of length upper than 2 in the colored
extension graph. The same argument can be applied with N external lines. Then, from the complete

graph
¯̂
G, |F | −R decreases by (N/2)(d− 1) + 1 when we cut face-connected lines. Hence,

ωmelo(GN) ≤− 2|L(GN)|+ (D − 1)(d− 2)
[
|L(

¯̂
G)| −N/2

]
= −2|L(GN)|+ (D − 1)(d− 2)|L(ḠN)|,

and an external mono-color face connects all the external black and white vertices.

�

From proposition 4, we can easily deduce a criterion for just-renormalizability. Remember that a field
theory is said to be ”just-renormalizable” if its divergence degree does not increase with the number of
vertices. Because of the following “topological” relationship:

|L(G)| =
kmax∑
k=1

knk(G)−Next/2 |V (G)| =
kmax∑
k=1

nk(G), (116)

where nk is the number of vertices of degree k in G (with k black (or white) vertices in their corresponding
bubble interaction vertex), we deduce from the previous theorem 3:

ωmelo(G) := (D − 1)(d− 2)−
[
(D − 1)(d− 2)− 2

]Next

2

+
kmax∑
k=1

([
(D − 1)(d− 2)− 2

]
k − (D − 1)(d− 2)

)
nk(G).
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Hence, renormalizability is ensured if, and only if, the maximal value kmax for the degree of the interactions
does not exceed

kR =
(D − 1)(d− 2)

(D − 1)(d− 2)− 2
. (117)

This result allows to classify the just- and super-renormalizable TGFT models, on the basis of the Abelian
power counting. The super-renormalizable models are those for which kmax < kR, such that the divergence
degree decreases with the number of vertices, implying that only a finite number of graphs needs to be
renormalized. It is only when the divergence degree does not depend on the order of the pertubative
expansion, i.e. when the higher degree kmax equals kR, that the theory is said to be “just-renormalizable”,
and that the divergences can be taken care of by a renormalization procedure, implying the definition of
a finite number of counter-terms. The table 5.2 below lists some potentially just-renormalizable TGFT
models, in the class we have been considering and on the basis of the Abelian power counting only.

Type d D kR ωmelo

A 3 4 3 3−N/2−2n1−n2

B 4 3 2 4−N − 2n1

C 5 2 3 3−N/2−2n1−n2

D 6 2 2 4−N − 2n1

Table 1: Table of potentially just-renormalizable theories

Note that some promising models for quantum gravity are absent of this table. This is the case, for
example, of models on SO(4)/SO(3) in dimension 4, the TGFT counterpart of the simplicial ones studied
in [24, 25, 23] and which have been a source of inspiration for this paper. Their absence is due to the rather
‘pessimistic’Abelian divergence degree, which, as discussed in section 4.3, is always higher than the exact
divergence degree. Hence, if all the models in the table are certainly just-renormalizable, this classification
certainly does not exhaust the class of just-renormalizable models. To emphasize this point, we adopt for
the following definition:

Definition 8 Any model which is just-renormalizable on the basis of the Abelian power counting only
is said to be Abelian just-renormalizable. Obviously, any Abelian just-renormalizable model is also just-
renormalizable according to the general definition.

In the rest of this paper, however, we study only the Abelian just-renormalizable quartic melonic model
on [SU(2)/U(1)]×4, clarifying further why in this case the Abelian power counting is actually exact.

5.3 Exact power counting and melons

As explained in [19] in the case of a TGFT on SU(2), the Abelian power counting bounds the exact one,
and becomes equal to it for the melonic graphs. This fact follows from a special property of melons,
which are said to be “contractible”, up to a spanning tree contraction, and from the properties of SU(2)
holonomies. More precisely:

Definition 9 A subgraph H of a graph G is said to be “contractible” if it verifies

∀f ∈ F (H)
∏
e∈∂f

h
εef
e = I =⇒ he = I.

Hence, in the language of lattice gauge theory, for contractible graphs, the flatness of the holonomies
imply triviality of connections, and it is obvious to see that any melon graph contracted with a spanning
tree (a melonic rosette, called “melopole” in the literature) is contractible. And because, for this class

26



of TGFT models (based on simple group manifolds, with Laplacian kinetic term and tensor invariant
interaction with trivial interaction kernels), the divergences are dominated by flat holonomies, the power
counting becomes exact for these graphs.

The issue now is whether this conclusion is exact for our models on SU(2)/U(1). A careful investigation
shows that this is not so obviously true. As seen in section ??, the flatness condition for holonomies
is replaced by equation (104), involving additional group variables attached to each face in addition of
the connections attached to each lines, imposing the projection onto the homogensous space. Because of
this face dependence, the contractibility is not enough to guarantee the equivalence with the exact power
counting in the case of melopoles. However, because intuitively melonic graphs have a lot of short faces
(i.e. those with few boundary lines), it seems that they are at least those for which the exact power
counting is the closest to the Abelian one. More precisely, if the faces are essentially of length one, we
expect that the exact power counting goes to its Abelian approximation, as we will see in section 7 for
the simplest melopole. Another situation, in which the exact power counting goes to its Abelian version,
occurs when the faces share the same lines, and an example is given in section 7. More precisely, if a set
of lines l carries d− 1 faces, it follows from gauge invariance that:∏

e∈∂f

hel
c(f)
ke

=
∏
e∈∂f

he
∏
e∈∂f

l
c(f)
ke

∀f ⊃ l (118)

and this case can therefore be reduced to the case of a melopole with one line. Hence, only a subset of
melons have a divergence degree given by the Abelian power counting:

Proposition 5 Consider a potentially divergent melonic graph with an internal face of color i (with two or
four external lines); if it contains only faces of length one, or lines carrying d− 1 faces, then it divergence
degree corresponds to the Abelian one. We called this type of melonic graph an “Abelian melon”.

An example is given in 8 below for the Abelian just-renormalizable melonic φ4 model on [SU(2)/U(1)]× 4.

i

i

i

i

Figure 8: Example of Abelian melon for the renormalizable φ4 model on [SU(2)/U(1)]× 4

5.4 Essentials about the just-renormalizable T 4 model on [SU(2)/U(1)]× 4

The previous analysis shows that the special model in dimension 4 with group SU(2) and quartic melonic
interaction is just-renormalizable. The interactions of this model are of the form depicted in the figure 9
below. There are exactly four interactions of this type, one for each choice of the color of the intermediate
lines between the two 3-dipoles. In the following, each interaction bubble bi will be labeled by the color of
these intermediate lines.
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i

Figure 9: The melonic φ4 interaction bi

Normally, each bubble bi can appear in the interaction part of the action with its own coupling but in the
following we will limit our attention to the simplest case where all the interaction bubbles have the same
coupling. Hence :

Sint = λ
4∑
i=1

Trbi
(
ψ̄, ψ

)
. (119)

As for the Gaussian measure, it, is given by the formula (38) (or (31) in the first formulation), and allows
to write the regularized generating functional as:

ZΛ[J, J̄ ] :=

∫
dµCΛ

e−Sint(ψ̄,ψ)+〈J̄ ,ψ〉+〈ψ̄,J〉, (120)

where:

〈J̄ , ψ〉 :=

∫
[dg]4J̄(g1, g2, g3, g4)ψ(g1, g2, g3, g4) . (121)

In its minimal prescription, the aim of the renormalization procedure is to give a sense to the limit
Λ→∞ perturbatively. This issue will be considered in the following two sections.

From the previous section, a question remains: if it is now clear that the most divergent graphs are the
so-called melon graphs, it is not obvious that all the divergent graphs are melonics. In other words, we
have not proved that the melonic graphs contain all the divergences occurring in the graph expansion of
correlation functions, and we dedicate the end of this section to the answer to this question.

The form of the interaction bubbles in figure 9 allows to use a very useful representation of the theory,
the “intermediate field representation”, from which the problem can be translated into a simple recursion
relation. The building rules of the intermediate field representation are the following. From the basic
properties of the Gaussian integration, the generating functional (120) can be formally rewritten as:

ZΛ[J, J̄ ] =

∫
dµCΛ

4∏
i=1

dµ1(σi)e
i
√

2λ〈ψ̄,Σψ〉+〈J̄ ,ψ〉+〈ψ̄,J〉 , (122)

where dµ1(σi) := e−tr(σ2)dσ is the Gaussian measure for Hermitian matrices σi, Σ =
∑

i Σi, and:

Σi = I⊗ · · · ⊗ σi ⊗ · · · ⊗ I . (123)

Now, the Gaussian integration over ψ and ψ̄ can be performed, leading to the following effective multi-
matrix model:

ZΛ[J, J̄ ] =
4∏
i=1

dµ1(σi)e
−Tr ln(1−i

√
2λCΣ)+〈J̄ ,RJ〉, (124)

where : R := (1 − i
√

2λCΣ)−1C. The Feynman rules are the following: expanding the logarithm, we
generate interactions with one, two,... n-external points, and a typical Feynman graph is composed of
several of these vertices, connected to each other by matrix lines. These matrix lines, of color 1 to 4, are
depicted by a wavy line, and the vertices, to which they are hooked, by a grey disk, as in figure 10. In
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this figure, one of the grey disks has a dotted arrow line (a cilium). This grey disc does not correspond
to an interaction generated by the logarithm expansion, but comes from the expansion of the R operator
defined before (124), and a ciliated disk with n external wavy lines correspond to the term of degree n in
the expansion in powers of Σ.

Figure 10: A Feynman graph in the intermediate field representation

This representation has been studied in detail in several recent papers, e.g. [?]. An important result about
this representation is that the leading order graphs, the melons of the original representation, appear as
trees in the intermediate field representation. More precisely:

Proposition 6 In the intermediate field representation, the melon graphs are trees with one or two exter-
nal wavy lines, all of the same color, and connected to the same external face.

This can be easily proven by recursion. Now, we will use this property to see if all the divergent graphs
are melons. Starting from a leading order graph (a tree) with l wavy lines (to each wavy line corresponds
a vertex of the original representation, and the number of these wavy lines is equivalent to the power of λ
associated to the graph), we will investigate the different ways to build a graph with l+ 1 wavy lines, and
the possibility that one of these gives a non-melonic divergent graph. Two of these ways are depicted in
figure 11. They correspond to the addition of a tadpole graph over a grey disk, or of a “field correction” on
a wavy line. But neither of them affects the tree structure of the starting graph, which remains a melon.

r r

Figure 11: Addition of a tadpole over a grey disk and of a “field correction” over a wavy line

The two operations depicted in figure 12 are more promising. They are both a deviation from the mel-
onicity, because both affect the tree structure of the starting graph (because of the connectivity of the
starting graph, the second operation necessarily builds a loop). As a result, only these two operations can
give us a non-melonic divergent graph, and we will examine these two possibilities.
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Figure 12: Addition of a self-loop and of a wavy line between two disks.

In the two cases, we increase the number of field lines by two (the field lines are the dotted lines of the
original formulation, which are hidden inside the disks in the intermediate field representation). The
number of faces increases only by one, and the rank does not change. Hence, the total variation of the
divergence degree is:

δω ≤ δωAbelian = −2δL+ 2δ(F −R) ≤ −2 , (125)

where ωAbelian is the Abelian divergence degree computed previously. Because of the Abelian divergence
degree is 4−N for a graph with N external lines, any graph with N ≤ 2 becomes superficially convergent,
and we have proven the following result:

Proposition 7 All the divergent graphs with four external lines of the melonic φ4 model on
[SU(2)/U(1)]× 4 are melonic.

The divergent 2-points graphs, however, can include submelonic contributions, and we expect that this is
indeed the case. This result does not affect the analysis of the rest of the paper, because, in all cases, the
melonic contributions are the most divergent graphs, and if the corresponding divergences are subtracted
by counter-terms, all the sub-divergences are automatically subtracted, and affect only the mass parameter.

As a remark, note that, conversely, for models of type A in table 5.2, all divergent graphs are melonic,
and the melonic sector alone contains all the divergences of the model. This can be seen as follows. From
equation (111) and proposition 4, it follows that |F | −R can be written as

|F (G)| −R(G) = (d− 2)(|L(G)| − |V (G)|+ 1) + ρ , (126)

with ρ ≤ 0 for non-vacuum graphs, and ρ < 0 for non-melonic graphs. By the same methods deployed
above to obtain the Abelian classification, we find that the divergence degree can be written as:

ω(G) = 3−N/2− 2n1 − n2 + 3ρ, (127)

and is bounded by −N/2 for non-melonic graphs. Our conclusion about the Abelian just-renormalizable
model φ4 in d = 4 is fundamental for the following reason. The recent literature on TGFT renormalization
has shown that melonic graphs are interesting for two (closely related) essential reasons. The first one is
that the Abelian power counting become exact for these graphs, and the second one is that they are said
to be “tracial”, in the sens that any connected graph remains connected under contraction of a melonic
subgraph - a property which is essential for renormalization. In our case, however, we have seen that
divergent sub-melonic contributions can occur, but only for 2-points graphs. And fortunately, for such
graphs, contraction does not change the connectivity, as we will see explicitly in the next section 6.1, and
the renormalization procedure can be defined in a worst-case-scenario context, in which all the Abelian
divergent graphs are regarded as “dangerous”.
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6 Renormalization of the model

6.1 Divergent graphs and renormalized amplitude

The table 5.2 shows that in the present case, the divergence degree of a Feynman graph G with N external
lines is bounded by 4 − N (with equality for melonic graphs). Hence, a priori, only the 2 and 4-points
functions are potentially dangerous. Then, we adopt the following definitions:

Definition 10 Consider a Feynman graph G and let h ⊆ G be a subgraph of G with nh external lines.
The subgraph h is said to be:

• superficially convergent if ωAbelian(h) < 0.
• superficially divergent or dangerous if ωAbelian(h) ≥ 0⇒ nh ≤ 4.

Definition 11 Consider a Feynman graph G. The set of divergent subgraphs D(G) = {h ⊆ G|ω(h) ≥ 0},
eventually including G itself, is the so-called divergent or Zimmerman forest. In addition, the Zimmerman
forest is an inclusion forest, in the sense that, taking two elements h1, h2 ∈ D(G), they are either included
one into the other, or vertices and lines disjoint.

The definition 10 is motivated by the following theorem, which states that the Feynman amplitude is finite
if it does not contain any subdivergent graph in the sense of the definition 10 :

Theorem 3 (“Weinberg” uniform) Consider a completely convergent graph G, i.e. a graph with no
subdivergences. Its corresponding Feynman amplitude AG has the following bounds:

|AG| ≤ K |V (G)|, K ∈ R+. (128)

Proof. The proof is standard in renormalization theory, and we will only give the main steps. The first
step is to note that, when N > 4, one has 4 − N ≤ −N/3 (the graph with five external lines does not
exist). Hence, for a given scale attribution µ, the graph amplitude AG verifies the following trivial bounds:

|AGµ| ≤
∏
i,k

M−N(G
(k)
i )/3 .

Now, we define:

Definition 12
ib(µ) = sup

l∈Lb(G)

il(µ) eb(µ) = inf
l∈Lb(G)

il(µ) ,

where b stands for a vertex bubble b ∈ G, and Lb(G) is the set of its external lines. Note that b touches

a connected subgraph G
(k)
i if and only if i ≤ ib(µ), and is an external vertex if eb < i ≤ ib. Therefore,

because each vertex touches at most 4 subgraphs:∏
i,k

M−N(G
(k)
i )/3 ≤

∏
i,k

∏
b∈G(k)

i
eb<i≤ib

M1/12 ,

and
|AGµ| ≤ K l(G)

∏
b

M− |ib(µ)−eb(µ)|
12 .

Using the fact that there are at most 4 half-lines, and thus 6 = 4 × 3/2 pairs of half-lines hooked to a
given vertex, and that, for two lines l and l′ of a bubble b, |eb − ib| ≥ |il − il′|, we obtain:

|AGµ| ≤ K l(G)
∏
b

∏
(l,l′)∈Lb×Lb

M−
|il−il′ |

72 .
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This expression implies directly the finiteness of AG. To understand why, observe that we can choose a
total ordering of the lines L(G) = {l1, ..., l|L(G)|} such that l1 is hooked to an external vertex b0 and that
each subset {l1, ..., lm}, m ≤ |L(G)| is connected. Hence, for any line lj, we can choose lp(j) (with p(j) < j)
a line sharing a vertex with lj, from which we deduce:

∏
b

∏
(l,l′)∈Lb×Lb

M−
|il(µ)−il′ (µ)|

78 ≤
|L(G)|∏
j=1

M−
|ilj−ilp(j)

|

72 .

Because ∑
ilj

M−
|ilj−ilp(j)

|

72 ≤
∑

ilj≥ilp(j)

M−
|ilj−ilp(j)

|

72 ≤ 1

1−M−1/72
,

we have

|AGµ| ≤ K l(G)
∑

µ={i1,...,il(G)}

|L(G)|∏
j=1

M−
|ilj−ilp(j)

|

72 ≤ K ′l(G) .

�

When the graphs contain some dangerous subgraphs, the proof given above breaks down, and the
finiteness of the sum over scale attribution is not guaranteed. Therefore, the case of the presence of these
subgraphs must be considered in details.

• N=2 . We start with the case of a subdivergent graph with two external lines. The situation is
depicted in figure 13 below. The structure of the amplitude AGµ for the scale attribution µ is

AµG =

∫ ∏
l

dḡ1ldḡ2ldg1ldg2lĀµ,G({ḡ1l}, {ḡ2l})Ci1({g1l, }{ḡ1l})Ci2({g2l, }{ḡ2l})Mj(g11, g21) , (129)

where Mj is the 2-points subgraph depicted in figure 13, j its scale, i.e. the scale of its highest line, and
Āµ,G is a completely convergent amplitude. The scale attribution is chosen such as j > i1, i2, and the
subgraphMj is said to be ”high”. This is typically the region in which this graph is potentially divergent.
Obviously from the propagator structure one has Mj(g, g

′) =Mj(gg
′ −1).

Now, we define the real parameter t as follows: g21(t) = g11 exp
(
tXg−1

11 g21

)
t ∈ [0, 1], where Xg ∈ su(2) is

the Lie algebra element such that g = eXg ∈ SU(2). Therefore, we can define

AµG(t) =

∫ ∏
l

dḡ1ldḡ2ldg1ldg2lĀµ,G({ḡ1l}, {ḡ2l})Ci1({g1l}, {ḡ1l})Ci2(g21(t), {g2l l 6=1}, {ḡ2l})Mj(g11, g21) ,

(130)

and AµG = AµG(t = 1). We introduce the ∗ application τM such as:

τ ∗MAµG(t) :=

ω(M)∑
n=0

1

n!

dnAµG
dtn

(t = 0) , (131)

and the aim, motivated by the usual quantum field theory, is to prove that

ARµ,G = (1− τ ∗M)AµG|t=1 =

∫ 1

0

dt
(1− t)ω(Mj)

ω(Mj)!

dω(Mj)+1AµG(t)

dtω(Mj)+1
(132)
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is finite. The first key result is the following obvious bound of the Lie derivative of the propagator in the
slice i: [

LXg ,g1

]k
Ci({gi}, {g′i}) ≤ |Xg|kKM (3d−2+k)i , (133)

where || is the Killing norm of the su(2) elements, and LXg ,g1 is the Lie derivative of the variable g1 in
the direction Xg, defined as : LXg ,g1f(g) := f ′(getXg)|t=0. Because of the bounds (133), the derivative
appearing in (132) increases the bound of the propagator by a factor M (ω(Mj)+1)i2 . Furthermore, because
the norm of Xg−1

1 g2
scales as M−j with M , the power |Xg−1

1 g2
|ω(Mj)+1 is bounded by KM−(ω(Mj)+1)j. Hence,

the total exponential decay is of the type

ω(Mj) + (ω(Mj) + 1)(i2 − j) < −1 , (134)

and the subgraph is made superficially convergent in the sens of the definition 10.

ĀG,µ

Mj

i1
i2

11

Figure 13: Sub-divergent 2-points graph

• N=4 We now turn to the melonic subgraphs with four external lines. A typical sub-divergence of this
type is depicted in figure 14 below, in which the graphs Ā(i)

G,µ are free of sub-divergences.

Ā
(1)
G,µ

i1

i2

Ā
(2)
G,µ

i3

i4

1

M(4)
j

1

Figure 14: Sub-divergent 4-points graph

As in the previous case, we begin by writing the amplitude in terms of the three blocs defined in figure
14. We define, with the same notations as in the case N = 2:

AG,µ(t) =

∫ 4∏
l=1

4∏
k=1

dglkdḡlkA(1)
G,µ({ḡ1l}, {ḡ2l}) (135)

×
2∏

k=1

Cik({ḡkl}; gk1(t), {gkl l 6=0})
4∏

k=3

Cik(gk1(t), {gkl l 6=0}; {ḡkl})

×A(2)
G,µ({ḡ3l}, {ḡ4l})M(4)

j (g11, g12; g13, g14) .

As in the case of the 2-point function, we introduce the ∗ operator τM(4) whose action is defined by the
equation (132). The same argument as in the previous section can be applied to this case (there are
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two terms instead of one after differentiation with respect to t), and the conclusion is unchanged: in the
domain j > ik ∀k, the subgraph M(4) is made superficially convergent in the sense of the definition 10.

The previous analysis motivates the following definition:

Definition 13 The renormalized amplitude ARG associated with the graph G is deduced from the bare
amplitude AG though the Zimmermann formula (or forest formula):

ARG :=
∑

F⊂D(G)

∏
γ∈F

(−τ ∗γ )AG, (136)

where D(G) is the Zimmerman forest.

The explicit form of the counter-term τ ∗MAG,µ is of interest for the next section. As in the previous
paragraph, we start with the case N = 2. From the definition (132), we have three terms, corresponding
to the zeroth, first and second derivative with respect to t.

• Because Mj is a class function, in the sense that Mj(g1, g2) ≡ F (g1g
−1
2 ) and F (g) = F (g−1) =

F (hgh−1) ∀h ∈ SU(2), the zero derivative can be written as:

τ 1∗
MAG,µ =

{∫
SU(2)

dgMj(g)

}
AG/M,µ , (137)

where G/M, µ is the graph obtained from G by cutting the two lines of color 1 linked to the melon M,
and joining to one another the two half lines of color 1 linked to ĀG,µ. In the usual terminology, the term
in square brackets corresponds to the mass renormalization. Note that this term includes presumably
some sub-melonic contributions, as mentioned at the end of section 5.4.

• The case of the first derivative with respect to t is easier, because the property F (g) = F (g−1) trivially
implies A′G,µ(0) = 0.

• The last case, involving two derivative terms with respect to t, also exploits the class properties of M.
Noting that

∑
ν(Liσν )2 ≡ ∆SU(2), where the σν ν = 1, 2, 3 are the usual Pauli matrices, we can easily show

that

τ 2∗
MAG,µ =

{
1

3

∫
SU(2)

dgMj(g)|Xg|2
}

(138)

×
∫ ∏

l

dḡ1ldḡ2ldg1ldg2lĀµ,G({ḡ1l}, {ḡ2l})

× Ci1({g1l}, {ḡ1l})∆g11Ci2(g11, {g2l l 6=1}, {ḡ2l}) ,

where the term in square brackets corresponds to the so-called wave function renormalization term, and
gives the ”first deviation from locality”, in the sense that the combination with the Laplacian operator
does not correspond exactly to an ”invariant trace”.

The case of the 4-point function follows the same pattern, but is simpler because only one term appears
in the Taylor expansion: the zeroth derivative term. It follows that the divergent term can be written as

τ 1∗
MAG,µ =

{∫
dgdg′M(4)

j (g, g′)

}
×AG/M(4),µ . (139)

where G/M(4) is the (connected) contracted graph obtained from G in the procedure detailed previously,
and depicted in figure 6.1 below. This counter-term gives the coupling constant renormalization.
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Figure 15: Contraction of a 4-points subgraph
.

6.2 Counter-terms and renormalized series

The previous calculations show that the divergent parts of the dangerous graphs are all of the form of
the interaction and of the kinetic terms in the action, without gauge symmetry. Its a familiar situation
in quantum field theory, justifying the definition of the renormalized theory, which can be operationally
identified as follows. We begin by defining the renormalized quantities, coupling constant, mass and field,
labeled by an index “r”, as

ψ = Z1/2(Λ)ψr ,

λ = Z−2(Λ)Z
1/2
λ (Λ)λr = Z1/2

λ λr ,

m = Z−1/2(Λ)Z1/2
m (Λ)mr = Z1/2

m mr ,

in terms of which the UV-regularized partition function can be rewritten as:∫
dµ

C(Z−1/2Z
1/2
m mr)

(Z1/2ψr, Z
1/2ψ̄r)e

Z
1/2
λ λr

∑4
i=1 Trbi (ψ̄r,ψr)

=

∫
dµ

C(Z−1/2Z
1/2
m mr)/Z

(ψr, ψ̄r)e
Z

1/2
λ λr

∑4
i=1 Trbi (ψ̄r,ψr) .

The covariance can be expressed as follows:∫
dµ

C(Z−1/2Z
1/2
m mr)/Z

(ψr, ψ̄r)ψr({θi, φi})ψ̄r({θ′i, φ′i})

= 4π

∫
dg

∑
{li,mi,m′i}

∏4
i=1 R̂(g) . Yli,m′i(θi, φi)Y

∗
li,mi

(θ′i, φ
′
i)

Z
[∑

i li(li + 1) + Z−1Zmm2
r

]
= 4π

∫
dg

∑
{li,mi,m′i}

∏4
i=1 R̂(g) . Yli,m′i(θi, φi)Y

∗
li,mi

(θ′i, φ
′
i)∑

i li(li + 1) +m2
r

× 1

1 +
δZ
∑

i li(li + 1) + δmm
2
r∑

i li(li + 1) +m2
r

,

where, in the last expression, δZ := Z − 1 and δm := Zm − 1, and the factor 4π comes from the choice of
normalization for spherical harmonics. By expanding any Feynman graph in δZ and δm, we generate all
the so-called ”counter-terms” needed to define a finite amplitude in the Λ→∞ limit.

The previous propagator has the form:

C ′ =
C

1 + ∆C
, (140)
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where C is the propagator defined by (31), in which the bare mass parameter is replaced by the renormalized
mass parameter mr. From the basic properties of the Gaussian integration (in particular, the Wick
theorem) we can prove the two following results, even in the case in which the covariance C ′ does not
admit an explicit kinetic action term (i.e. an explicit inverse):

Proposition 8 For non-normalized Gaussian measure dµC, the covariance C ′ = C − ∆C

1 + ∆C
satisfies

the following equation: ∫
dµC′(ψ, ψ̄)

N∏
j=1

ψ̄j({gj})ψj({g′j}) (141)

= det

[
C

C ′

] ∫
dµC(ψ, ψ̄)e−

∫
ψ̄∆ψ

N∏
j=1

ψ̄j({gj})ψj({g′j}) ,

where ∫
ψ̄∆ψ :=

∫
[dg]6ψ̄(~g)(−δZ∆~g + δmm

2
r)ψ(~g) . (142)

Corollary 3 The previous proposition ensures that, even if C does not correspond to an explicit kinetic
term, the counter-terms in ∆ can be included in the interaction part Sint, and, for normalized Gaussian
measure: ∫

dµC′(ψ, ψ̄)e−Sint[ψ̄,ψ]

N∏
j=1

ψ̄j({gj})ψj({g′j}) (143)

=

∫
dµC(ψ, ψ̄)e−

∫
ψ̄∆ψ−Sint[ψ̄,ψ]

N∏
j=1

ψ̄j({gj})ψj({g′j}),

where normalized Gaussian measure means that
∫
dµC = 1.

In the Feynman expansion of a correlation function, the counter-terms in Sint allow to define an operational
renormalization procedure generating all the subtractions of the divergent parts of each divergent subgraph.
Hence, in the Feynman expansion, each amplitude corresponds to a renormalized one defined in definition
(13). Then, the Feynman expansion of an arbitrary correlation function SN can be reorganized in the
following way, namely the “renormalized series”:

SN =
∑
G

1

s(G)
λ|V (G)|
r AG. (144)

This result is exactly what we obtain from the renormalized generating functional with the previous
prescription for counter-terms.

6.3 Bounds on the renormalized series

The finiteness of the renormalized amplitude can be proved rigorously. In fact, we can prove that, when the
graph contains some subdivergences, the renormalized amplitude ARG is finite, but increases dramatically
as the factorial of the number of divergent forest. Proving this theorem requires to define precisely the
so-called “dangerous” and “safe” divergent forests:
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Definition 14 Dangerous and safe forests Consider a graph G, AG,µ the corresponding amplitude for
the scale attribution µ, and DG the set of divergent forests. Consider then H ⊂ DG. We define iH and eH
as:

eH = sup{il|l ∈ H/ADG(H)} iH = inf{il|l ∈ LH ∩ BDG(H)}
where LH is the set of external lines of H, BDG is the ancestor of H in DG ∪ H and ADG(H) the
descendant, such as ADG(H) = ∪h;g⊃h∈DGh. H is said to be “compatible” with DG, in the sense that
DG ∪H is still a forest.

The safe forest Fµ is then the complementary in DG of the set Dµ(Fµ) of dangerous or high subgraphs in
G with respect to the scale assignment µ, defined as : Dµ = {H ∈ DG|eH > iH}.
This definition allows to rewrite the renormalized amplitude as:

ARG =
∑
f∈DG

ARG,f , (145)

with:
ARG,f :=

∑
µ|f∈Fµ

∏
g∈f

(−τ ∗g )
∏

h∈Dµ(f)

(1− τ ∗h)AG,µ , (146)

or
ARG,f :=

∑
µ|f∈Fµ

∏
g∈f

(−τ ∗g )
∏

g∈f∪{G}

∏
h∈Dµ(f)
Bf (h)=g

(1− τ ∗h)AG,µ . (147)

Beginning with the contractions over the safe forest f , we obtain, after appropriate organization of the
successive contractions: ∏

g∈f

(−τ ∗g )AG,µ =
∏

g∈f∪{G}

νµ(g/Af (g)) , (148)

where νµ(g) is the discarded part of the amplitude. Note that all these terms are not exactly disconnected,
because the contraction of the 2-points graphs reveal a non-local operator, which acts on another contracted
component. From the multiscale analysis, it follows that:∣∣ ∏

g∈f∪{G}

νµ(g/Af (g))
∣∣ ≤ ∏

g∈f∪{G}

∏
i,k

Mω
[

(g/Af (g))ki

]
. (149)

Now, observe that the contraction over the high divergent graphs only affects the components g/Af (g). It
follows then, from the analysis of the previous paragraph, that the decay of a renormalized graph g is at
most M−|eg−ig |. Hence, the renormalized amplitude is bounded by:∣∣ARG∣∣ ≤ ∑

µ|f∈Fµ

∏
g∈f∪{G}

∏
i,k

Mω′
[

(g/Af (g))ki

]
, (150)

where :
ω′
[
(g/Af (g))ki

]
:= inf

(
− 1, ω

[
(g/Af (g))ki )

])
,

except when (g/Af (g))ki = g/Af (g), in which case

ω′
[
(g/Af (g))ki

]
= 0 .

From the decay factor of equation (150), we can extract the factor M−δimax(µ), where imax(µ) := sup(µ).
With the rest of the decay, we can sum over each component g/Af (g) g ∈ f , as in the proof of the Weinberg
theorem. Because of the following bound:∏

g∈f∪{G}

K |V (g/Af (g))| ≤ K ′ |V (G)| , (151)
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the sum over internal scale assignments in each g/Af (g) is bounded by K ′ |V (g/Af (g))|. The remaining sum
over imax is bounded by: ∑

imax

(imax)
|f |M−δimax ≤ |f |!K |f | , (152)

where |f | is the cardinality of the set f . Because the number of sub-forests in a graph G can be bounded
by 2|DG|, we finally deduce the following theorem:

Theorem 4 (BPH uniform) Consider a Feynman graph G of order |V (G)|. The renormalized amplitude
ARG has the following bound:

|ARG| ≤ K |V (G)||DG|!, K ∈ R+ , (153)

where |D(G)| is the cardinality of the divergent forest set in G.

As announced, the amplitude is finite but arbitrarily large, increasing dramatically with the size of the
divergent forest. This is the known problem of renormalons, which implies that the convergence of the
renormalized series (144) is not guaranteed in a perturbative approach. To prove its convergence we would
need the help of the constructive theory and of Borel summability technology, which is not the focus of
this paper. To solve this technical difficulty, we use the effective series, defined in the next section, which
is renormalons-free. This result, added to the asymptotic freedom, proved in section 7 at the one loop
order, confirms the convergence of the effective series i.e. the perturbative series expressed in terms of the
effective amplitudes and effective coupling.

6.4 The effective series

The effective series is a more physical approach of renormalization, closely related to the Wilson approach.
It is a way to solve the renormalons problem and to ensure the convergence of the perturbative series
in many cases, as we will see below. The basic idea is the following. Consider a graph G and its bare
amplitude Aµ(G) at scale attribution µ, as defined above. As we have seen before, in this graph, there
are some divergent graphs, which form the set D(G). But in fact, only a subset of these subgraphs is
potentially dangerous, the subset noted Dµ(G) in the previous section. The argument is that only this
subset needs to be renormalized, and the effective amplitude Aeffµ (G) is defined by

Aeffµ (G) :=
∏
γ∈Dµ

(1− τ ∗γ )Aµ(G) , (154)

about which we have the following theorem [19, 34]:

Theorem 5 (Existence of the effective expansion): Consider the formal (bare) power series defined
by:

SΛ
N =

∑
G,µ

1

s(G)

 ∏
b∈V(G)

(
− λ(Λ)

b

)Aµ(G) , (155)

where V(G) is the set of vertices in G including all the interactions compatible with the just-

renormalizability criterion and λ
(Λ)
b their coupling constants. This series can be rewritten in a more

convenient form in terms of the effective amplitudes:

SΛ
N =

∑
G,µ

1

s(G)

 ∏
b∈V(G)

(
− λ(Λ)

b,eb(G,µ)

)Aeffµ (G) , (156)
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where the λ
(Λ)
b,eb(G,µ) are the effective couplings, generated by the local part of the high divergent subgraphs.

They obey the following inductive relation

−λ(Λ)
b,i = −λ(Λ)

b,i+1 +
∑

(H,µ,Ŝ)Ŝ 6=∅
φi(H,µ,Ŝ)=(b,µ,∅)

1

s(H)

 ∏
b′∈V(H)

(
− λ(Λ)

b′,i′b(H,µ)

)×
 ∏
m∈Di+1

µ \Ŝ

(1− τ ∗m)

 ∏
M∈Ŝ

τ ∗MAµ(H) ,

(157)

with eb = sup{µl, l hooked to b}.

The notation introduced above will be defined precisely in the proof, for which we give only the main steps,
referring to [19, 34] for details.

Proof (Sketch)

The basic idea is to introduce an intermediate step between the bare and the effective series as follows.
We consider a slice i and define:

SΛ
N =

∑
G,µ

1

s(G)

 ∏
b∈V(G)

(−λ(Λ)
b,sup(i,ib(G,µ))

Aeff,iµ (G) , (158)

where
Aeff,iµ (G) :=

∏
γ∈Diµ

(1− τ ∗γ )Aµ(G) , (159)

and
Di+1
µ (G) = {m ∈ D(G)|im > i} im := inf{µl, l hooked to b} .

It is obvious that, if i = ρ, where Λ = Mρ, the effective series reduces to the bare one. Assuming this is
true at scale i+ 1, we can prove it at scale i by induction, by multiplying the effective amplitude at scale
i + 1 by a suitable form of the identity, adding and subtracting the counter-terms in Di

µ(G) \Di+1
µ (G) =

{m ∈ D(G)|im = i+ 1}, which changes Aeff,i+1
µ (G) into Aeff,iµ (G),

Aeff,iµ (G) :=
∏

S⊆Diµ\D
i+1
µ

S 6=∅

∏
M∈S

(1− τ ∗M + τ ∗M)
∏
γ∈Diµ

(1− τ ∗γ )Aµ(G) .

The completely subtracted piece changes Aeff,i+1
µ (G) into Aeff,iµ (G), and the second one is developed as a

sum over S as follows:

SΛ
N =

∑
(G,µ,S)

S⊆Diµ\D
i+1
µ

1

s(G)

 ∏
b∈V(G)

(−λ(Λ)
b,sup(i+1,ib(G,µ))

Aeff,iµ,S (G) ,

with
Aeff,iµ,S :=

∏
M∈S

(−τ ∗M)
∏

m∈Di\S

(1− τ ∗m)Aµ(G) ,

and in particular Aeff,iµ,∅ = Aeff,iµ . A subtlety appears in this case because the 2-point divergent graphs
(with degree ω = 2) introduce two counter-terms, one for the mass and one for the wave-function. For
this reason we modify the previous definition of S, and introduce the new definition:

Ŝ = {(M,kM)|M ∈ S, kM ∈ 0, 2, kM ≤ ω(M)} .
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Secondly, we introduce the collapse φi which sends the triplets (G, µ, Ŝ) to its contracted version (G ′, µ′, ∅),
such that the previous sum can be rewritten as a sum on G ′

SΛ
N =

∑
G′,µ′

∑
{(G,µ,S)}=
φ−1
i (G′,µ′,∅)

Aeff,iµ,S (G)

s(G)

 ∏
b∈V(G)

(−λ(Λ)
b,sup(i+1,ib(G,µ))

 . (160)

Decomposing ∏
M∈Ŝ

(−τ ∗M) =
∏

b′∈V(G)

 ∏
M∈Ŝ,M⊂φ−1

i (b′)

(−τ ∗M)


in the sum (160), we find that it gives exactly the effective sum at scale i given by (158), if the coupling
satisfies the recursive relation of the theorem.

�

The coupling recursion defines a discrete flow, for which the initial data are, as usual in standard quantum
field theory, imposed by the 1PI functions at zero momenta.

The main interest of the effective series is that all these amplitudes are bounded in the form [19]

|Aeff (G)| ≤ KV (G) , (161)

a result which can be directly deduced from the theorem 4 proved in the previous section, in the special case
where the set of inoffensive forest is empty. Remarkably, in the previous bound, renormalons do not appear.

Another important fact about the effective series and effective coupling constants is their relationship with
the renormalized series. In fact, if we define the renormalized coupling by λr := λ−1, and if we reframe
the effective series in terms of the renormalized coupling, we find exactly the renormalized series.

7 Running of the coupling constant and asymptotic freedom

In this section we study the behavior of the one particle irreducible part (1PI) of the 2- and 4-point
correlation functions at the leading (melonic) order. From these results, we deduce the beta function,
describing the behavior of the effective coupling λeff with respect to the UV regulator Λ. It turns out that
this beta function is negative, meaning that the theory is asymptotically free at least at one-loop order.

7.1 Divergences of the 2-points function

At one-loop order, the divergences are due to the melonic tadpole diagrams, an example of which is
depicted in figure 16, and corresponds to the following amputated Feynman amplitude:

A(4)
M(g−1

t gs) =

∫ +∞

1/Λ2

dαe−αm
2

∫
dl

∫
dk

∫
Uk(1)×4

[dh]4

×Kα

(
lh1

)
Kα

(
lh2

)
Kα

(
lh3

)
Kα

(
g−1
t gslh4

)
(162)

=
∑
l4,m4

∫ +∞

1/Λ2

dαe−αm
2

∫
dl

∫
dk

∫
Uk(1)×3

[dh]3(2l4 + 1)

×Kα

(
lh1

)
Kα

(
lh2

)
Kα

(
lh3

)
D

(l4)
m4,0

[l]D
(l4)
0,m4

[g−1
t gs]e

−4αl4(l4+1) ,
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where we have performed the integration over h4, and used of the cyclic permutation invariance of the
heat kernel : Kα(g1g2) = Kα(g2g1). We define:

A(4)
M ;l4,m

=

∫ +∞

1/Λ2

dαe−αm
2

∫
dl

∫
dk

∫
Uk(1)×3

[dh]3

×Kα

(
lh1

)
Kα

(
lh2

)
Kα

(
lh3

)
D

(l4)
m,0[l]e−4αl4(l4+1), (163)

such that A(4)
M(g−1

t gs) =
∑

l4,m
A(4)
M ;l4,m

(2l4 + 1)D
(l4)
0,m[g−1

t gs].

The aim is to extract the divergent part of the previous expression.

4

Figure 16: Tadpole contribution to the one-loop 1PI 2-point function

As the divergences occur in the vicinity of α = 0, we can make use of the corresponding approximation
for the heat kernels appearing in (162)

Kα(g = eiX) −→
α→0

(
4πα

)−3/2
e−
〈X,X〉

4α , (164)

where 〈., .〉 : su(2) → R is the (normalized) Killing form on the Lie algebra. The vicinity of α = 0 forces
us, in the saddle point approximation, to evaluate only the fluctuations around the identity for each group
arguments :

eXleYhi ≈ I where l =: eXl , hi =: eYhi . (165)

Hence, the integral in (163) behaves as( 1

4πα

)9/2
∫
R2

d2x

∫
R

3∏
i=1

dyie
− 3x2

1+3x2
2+(x3−y1)2+(x3−y2)2+(x3−y3)2

4α ∼ α−2 ,

where
∑

j ixjĴj := Xl and iyj
~̂
J · ~k = Yj. Note that the power of α coincides with the divergence degree

computed previously. Hence, we confirm its validity in this simple example.

The divergences come from the negative powers of α. In order to extract these divergent parts, we use the
general group manifold analog of the following identity for the Gaussian distribution on Rd:

e−~x
2/4α =

α→0
(4πα)d/2δ(~x) + (4πα)d/2α∆δ(~x) +O(α

d+2
2 ) , (166)

where ∆ is the Laplacian on Rd. This relation can be extended to the general group case as follows: for
any function f(g) on SU(2), and with Xg such that g = eXg , we have:∫

dge−
〈Xg,Xg〉

4α f(g) =
α→0

(167)∫
dge−

〈Xg,Xg〉
4α

[
f(I) +

df(etXg)

dt

∣∣∣
t=0

+
1

2

d2f(etXg)

dt2

∣∣∣
t=0

+ · · ·
]

=

∫
dge−

〈Xg,Xg〉
4α

[
f(I) + LXgf(I) +

1

2
LXgLXgf(I) + · · ·

]
= (4πα)3/2f(I) + (4πα)3/2α∆SU(2)f(I) +O(α5/2) ,
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where in the last step we have used the reflection symmetry of the Gaussian, the relation LXg =
∑

ν X
ν
gLiσν ,

and the definition of the Laplacian : ∆SU(2) =
∑

ν

(
Liσν

)2
. This result allows to extract the divergent part

of (163). From the power counting, it follows that the divergent contributions are all contained in:

A(4)∞
M ;l4,m

:=

∫ +∞

1/Λ2

dαe−αm
2

∫
dl

∫
dk

∫
[dh]3

3∏
i=1

Kα

(
lhi
)

×
[
1 +

1

2

∑
µ,ν

Xµ
l X

ν
l LiσµLiσν

]
D

(l4)
m0 (I)

(
1− 4αl4(l4 + 1)

)
. (168)

Because of the gauge symmetry, any term involving Xµ
l X

ν
l LσµLσµ vanishes when µ 6= ν, and does not

depend on ν. Hence, the sum can be replaced by (X1
l )2
∑

ν(Liσν )2 = (X1
l )2∆SU(2), and because of the

relation
∆SU(2)D

l4
m0(I) = −4l4(l4 + 1)Dl4

m0(I) = −4l4(l4 + 1)δm0 ,

we find:

A(4)∞
M ;l4,m

= δm0

∫ +∞

1/Λ2

dαe−αm
2 1

3

( 1

4πα

)2
[
1− 16

3
αl4(l4 + 1))

]
=

δm0

48π2

[
I1 −

16

3
I2 l4(l4 + 1)

]
.

Note that, as explained above, the terms which do not appear in this expression have a power of α higher
than −1, and do not diverge when Λ→∞. From the definition of (163), we finally obtain:

A(4)∞
M (g−1

t gs) =
∑
l4

1

48π2

[
I1 +

4

3
I2 ∆4

]
(2l4 + 1)D

(l4)
0,0 [g−1

t gs]

=
1

48π2

[
I1 +

4

3
I2 ∆4

] ∫
dk4dh4K0[gsh4g

−1
t ] ,

where we have used the fact that ∆4D
(l4)
0,0 [g−1

t gs] = −4l4(l4 + 1)D
(l4)
0,0 [g−1

t gs], and introduced I1 and I2,
defined as:

I1 :=

∫ +∞

1/Λ2

dα

α2
e−αm

2

(169)

I2 :=

∫ +∞

1/Λ2

dα

α
e−αm

2

. (170)

We obtain a similar expression to (169) for each of the four colors of the intermediate lines. Hence, the

complete amplitude Γ
(2)
∞ ({gti}, {gsi}) is (a global factor 2 comes from the Wick-theorem):

Γ(2)
∞ ({gti}, {gsi}) = −λ

∫ ∏
l

dgldg
′
l

4∑
i=1

A(i)∞
M (g−1

i g′i) (171)∏
l 6=i

δ(g−1
l g′l)CΛ({gtk}, {g′k})CΛ({gk}, {gsk})

= − λ

6π2

[
I1 +

1

3
I2 ∆SU(2)×4

]
CΛ({gtk}, {gs}) ,

where the first term is interpreted as a mass renormalization and the second one as a wave function
renormalization.
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7.2 4-points function

We now move on to the computation of the 4-point function. At one-loop order, the leading (or divergent)
graphs are of the type depicted in figure 17 below, with one melonic loop between two vertices.

4 4

Figure 17: Melonic contribution to the 1PI 4-points function at the one-loop order

The amputated Feynman amplitude can be easily obtained from the Feynman rules and from the previous
calculation. We find:

A(4)
M4

(gs, gt, g
′
s, g
′
t) =

∫ +∞

1/Λ2

dα1dα2e
−(α1+α2)m2

∫
dl1dl2

∫
dk1dk2

∫
[dh1]3[dh2]3

3∏
i=1

Kα1+α2

(
l2h

2
i l1h

1
i

)
×
∑
l4,m4

l′4,m
′
4

(2l4 + 1)(2l′4 + 1)D
(l4)
m40(l1)D

(l′4)

m′40(l2)

[
D

(l4)
0m4

(
g−1
t gs

)
D

(l′4)

0m′4

(
g′−1
t g′s

)
+ gs ←→ g′s

]
.

To extract the divergent part of this amplitude, we consider the Hepp sector α1 ≥ α2, and define the new
variables α and β as:

α1 = α (172)

α2 −
1

Λ2
= β

(
α1 −

1

Λ2

)
(173)

such that α ∈ [1/Λ2,∞] and β ∈ [0, 1]. In terms of these new variables, the Lebesgue measure
becomes:dα1dα2 = αdαdβ. Because of the presence of α, it follows, from the previous computation,
that the divergent contribution comes from the approximation:

Kα(g) ∼ δ(g), (174)

and using the same approximation scheme as before, we deduce that the divergent part of the 4-point
amplitude, defined as the contribution involving a negative power of α, is:

A(4)∞
M4

(gs, gt, g
′
s, g
′
t) =

λ2

48π2
I2

∫
dk4dh4

[
K0

(
g−1
t gsh4

)
δ
(
g′−1
t g′s

)
+ gs ←→ g′s

]
. (175)

7.3 Renormalization and asymptotic freedom

In order to extract the dangerous part of the expression obtained above, i.e. the terms involving a positive
or null power of Λ, we study the behavior of the integrals I1 and I2. Firstly, observe that an integration
by part gives:

I1 = Λ2e−m
2/Λ2 −m2I2 .

Secondly, observe that the divergence of I2 is at most logarithmic. Hence,

I2 = A ln(Λ) +O(1/Λ) .

By differentiating the two members of this equality, we obtain A = 2, and finally:

I1 ∼ Λ2 − 2m2 ln(Λ) (176)

I2 ∼ 2 ln(Λ) . (177)
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Hence, for the 1PI 2-point function, the dangerous part Γ2
div is equal to

Γ(2)
∞ ({gti}, {gsi}) =

−λ
6π2

[
Λ2 − 2m2 ln(Λ) +

2

3
ln(Λ) ∆SU(2)×4

]
CΛ({gtk}, {gs}) , (178)

which fixes the divergent (or essential) parts of the mass and wave function counter-terms as:

δm2
div := − λ

6π2

[
Λ2 − 2m2 ln(Λ)

]
(179)

δZdiv :=
λ

9π2
ln(Λ) . (180)

Similarly, from the expression (175), we deduce that the divergence is exactly compensated by an inter-
action of the initial form with an intermediate line of color 4, if this interaction is proportional to the
counter-term δλ, with:

δλ =
λ2

12π2
ln(Λ). (181)

This result allows to obtain the dependence of the effective coupling on Λ. Indeed, the effective coupling
includes the effect of the wave-function renormalization. Hence:

λeff (Λ) :=
λ+ δλ

Z2
. (182)

By differentiating the two terms, and using the relations (178) and (181), we find:

Λ
dλeff
dΛ

= − 5

36π2
λ2
eff , (183)

where the minus sign means that the model is asymptotically free.

8 Conclusion

We have studied the renormalization of a TGFT model on the homogeneous space (SU(2)/U(1))d, endowed
with the additional gauge invariance condition, using multi-scale methods. We have proven renormaliz-
ability to all orders in perturbation theory for the model with melonic quartic interactions in d = 4 (and,
implicitly, super-renormalizability for the model in d = 3). This is the first example of a renormalization
analysis for a TGFT model on a homogeneous space, rather than a group manifold, and a promising step
forward towards 4d gravity models, which have similar formulations.
For the same model, we have also computed both the renormalised and effective perturbative series, and
established its asymptotic freedom at one-loop order, by the analysis of the 2-point and 4-point correlation
functions. This is another interesting result, because it support the view that asymptotic freedom is generic
in TGFTs, and even survives stepping out of the simple group-based setup to move to homogeneous spaces.
Clearly, however, more work is needed to confirm such general expectation.
Whenever possible, we have also generalised our construction and results to arbitrary homogeneous spaces
of the type SO(D)/SO(D − 1) ' SD−1. This included a general Abelian power counting, and a corre-
sponding classification of potentially just-renormalizable models, for various choices of D and d. However,
as we pointed out, the exact power counting of such more general non-abelian models may deviate from
the Abelian one, and a more detailed case-by-case analysis needs to be carried out in order to prove (or
disprove) their perturbative renormalizability.
To keep moving in the direction of 4d quantum gravity models, as defined in the spin foam context, is our
next goal. In particular, the mentioned detailed analysis of divergences and exact power counting should
be performed for TGFTs on the homogeneous space (SO(4)/SO(3))d, the case d = 4 corresponding to
the so-called Barrett-Crane imposition of the simplicity constraints reducing topological BF theory to

44



gravity (see [23] and references therein), defining interesting 4d quantum gravity models (in absence of
the Immirzi parameter). We expect the results of [33] to be a good basis for such generalisation. The
Lorentzian counterpart of these models would of course be the next target. After this, one would have
the proper understanding and basis to tackle the deformation of such models induced by the Immirzi
parameter, which brings out of the homogeneous space setting to more general sub-manifolds of the SO(4)
(or SO(3, 1)) group manifold (see [7].
It is clear that the path towards a renormalizable quantum field theory for the ‘atoms of space’is still long,
but it should be also clear that we are making steady and important progress along it.
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