Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow

MPG-Autoren
/persons/resource/persons173623

Pumir,  Alain       
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard       
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173713

Xu,  Haitao
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pumir, A., Bodenschatz, E., & Xu, H. (2013). Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow. Physics of Fluids, 25, 035101-1-035101-20. doi:10.1063/1.4795547.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-1009-A
Zusammenfassung
We describe the structure and dynamics of turbulence by the scale-dependent perceived velocity gradient tensor as supported by following four tracers, i.e., fluid particles, that initially form a regular tetrahedron. We report results from experiments in a von Kármán swirling water flow and from numerical simulations of the incompressible Navier-Stokes equation. We analyze the statistics and the dynamics of the perceived rate of strain tensor and vorticity for initially regular tetrahedron of size r 0 from the dissipative to the integral scale. Just as for the true velocity gradient, at any instant, the perceived vorticity is also preferentially aligned with the intermediate eigenvector of the perceived rate of strain. However, in the perceived rate of strain eigenframe fixed at a given time t = 0, the perceived vorticity evolves in time such as to align with the strongest eigendirection at t = 0. This also applies to the true velocity gradient. The experimental data at the higher Reynolds number suggests the existence of a self-similar regime in the inertial range. In particular, the dynamics of alignment of the perceived vorticity and strain can be rescaled by t 0, the turbulence time scale of the flow when the scale r 0 is in the inertial range. For smaller Reynolds numbers we found the dynamics to be scale dependent.