Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nature of self-localization of Bose-Einstein condensates in optical lattices

MPG-Autoren
/persons/resource/persons173533

Hennig,  Holger
Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173508

Fleischmann,  Ragnar       
Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hennig, H., & Fleischmann, R. (2013). Nature of self-localization of Bose-Einstein condensates in optical lattices. Physical Review A, 87(3): 033605. doi:10.1103/PhysRevA.87.033605.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-1015-E
Zusammenfassung
We analyze the nature of self-localization (SL) of Bose-Einstein condensates in one-dimensional optical lattices in the presence of weak local dissipation. SL has recently been observed in several studies based on the discrete nonlinear Schrödinger equation (DNLS); however, its origin is hitherto an open question. We show that SL is based on a self-trapping crossover in the system. Furthermore, we establish that the origin of the crossover is the Peierls-Nabarro barrier, an energy threshold describing the stability of self-trapped states. Beyond the mean-field description the crossover becomes even sharper, which is also reflected by a sudden change of the coherence of the condensate. While we expect that the crossover can be readily studied in current experiments in deep optical lattices, our results allow for the preparation of robust and long-time coherent quantum states.