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1 Introduction

Mirror symmetry is by now a familiar property of two-dimensional (2,2) superconformal

field theories (SCFTs). In the modern times it is mostly stated, studied, and applied in

the context of type II string theories, with only occasional terminology, such as “Yukawa

couplings,” indicating its origins in the study of heterotic strings. In that context, the

restriction to theories with (2,2) supersymmetry is rather artificial, since most (2,2) het-

erotic theories have deformations preserving only (0,2) superconformal invariance. The
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mirror isomorphism should extend to these deformations, but currently the extension is

not understood in any detail. In this work we will identify a class of (2,2) models and (0,2)

deformations where the number of (0,2) deformations is mirror symmetric, and the (0,2)

deformation space admits a simple algebraic description. In order to discuss these models,

we will first present a quick and prejudiced sketch of (2,2) mirror symmetry. A thorough

pedagogical treatment is given in [1, 2].

The basic statement of mirror symmetry is that d-dimensional Calabi-Yau manifolds

come in pairs (M,M◦), and the pair of non-linear sigma models (NLSMs) with target

spaces M , M◦ define families of isomorphic (2,2) SCFTs. Near a generic point the moduli

space for the SCFT obtained from M is a product manifold McK(M) ×Mc-x(M), where

McK parametrizes the choice of complexified Kähler class, and Mc-x labels the choice of

complex structure. McK and Mc-x are special Kähler manifolds of dimensions h1,1(M)

and hd−1,1(M), respectively. Mirror symmetry implies that McK(M) and Mc-x(M
◦) are

isomorphic as special Kähler manifolds, a statement that goes a long way to finding the

explicit isomorphism and is a crucial ingredient in the remarkable enumerative predictions

of mirror symmetry [3].

A large class of mirror pairs consists of Calabi-Yau (C-Y) hypersurfaces in certain Fano

toric varieties [4]. The three-folds obtained via this construction were classified by com-

puter search [5], which produced 30108 pairs of distinct Hodge numbers. This construction

has been extended to Calabi-Yau complete intersections in toric varieties [6, 7]. This much

larger set remains unclassified, and it is unknown whether it is finite. The NLSMs for all of

these manifolds are distinguished by having a gauged linear sigma model (GLSM) descrip-

tion [8]—they are realized as IR fixed points of a two-dimensional (2,2) supersymmetric

abelian gauge theory. In this context mirror symmetry can be stated as an equivalence of

IR limits of two comparatively simple UV theories: a GLSM for M and a GLSM for M◦.

In what follows, we will restrict attention to the case of hypersurfaces, but much of what

we will discuss in this note should be extendable to the complete intersection case at the

price of additional combinatorics.

The GLSM perspective is useful for describing the SCFT deformations that are easily

identified with simple terms in the UV action. General considerations of the renormal-

ization group imply that each of the deformations of the fixed point must be identifiable

with some GLSM deformation; however, the question is whether an SCFT deformation

corresponds to a deformation of some simple part of the GLSM Lagrangian, such as a

holomorphic superpotential. This is the case for the subspace of “toric” Kähler defor-

mations — elements of H1,1(M) obtained by pulling back elements of H1,1(V ) and for

the subspace of “polynomial” complex structure deformations — deformations of complex

structure of M that arise by deforming the defining hypersurface equation. As we will

review, these do not give a complete description of the SCFT moduli space. Remarkably,

however, these subspaces are preserved by the mirror isomorphism: toric deformations of

M map to polynomial deformations of M◦ and vice versa. The resulting “algebraic gauge”

coordinates combined with the monomial divisor mirror map [9] are natural for explicit

GLSM computations [10] and may be used to prove mirror symmetry — at least at the

level of topological theory — without relying on special Kähler coordinates [11–14].
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In this work we will be concerned with (0,2) deformations of (2,2) GLSMs. The study

of such theories is of great interest for probing the stringy geometry of the heterotic string

and serves as a useful starting point for exploring quantum corrections in more general

(0,2) theories. The (0,2) GLSMs have already played an important role in understanding

heterotic compactifications. The original construction of [8] was explored in detail in [15],

where it was shown that special points in the moduli space could be used to obtain certain

exact results; in [16–18] the GLSM perspective was used to argue for the existence of non-

trivial (0,2) deformations; and, more recently, studies of the half-twisted GLSM have led

to an improved understanding of deformations of quantum cohomology [19–23].

Given a (2,2) GLSM for some C-Y M in a Fano toric variety V , we know exactly how

to construct the GLSM for the mirror hypersurface, M◦ ⊂ V ◦, and for both of the GLSMs

there are natural deformations of the GLSM Lagrangian that preserve (0,2) supersymme-

try.1 These GLSM deformations are believed to describe some of the (0,2) deformations of

the IR fixed point [16–18]. Mirror symmetry, when thought of as an isomorphism of two

SCFTs, implies an isomorphism of their (0,2) deformations as well. Does this map yield an

isomorphism from one set of (0,2) GLSM deformations to the other? There is no a priori

reason why this should be so, just as there was no a priori reason for the (2,2) mirror map

should respect the splitting of moduli into toric/non-toric and polynomial/non-polynomial.

Nevertheless, we find evidence that there is such a split in a subclass of GLSMs.

Our evidence is much cruder than that for the original monomial-divisor mirror map [9]

and does not yield an explicit isomorphism: in fact, all we verify is that the numbers of

(0,2) deformations agree. However, this is a necessary first step in seeking to construct

the map — a topic to which we plan to return in the near future. We can now state

our main results:

1. Given a (2,2) mirror pair of GLSMs for (d−1)-dimensional C-Y hypersurfaces M ⊂ V

and M◦ ⊂ V ◦, the number of (0,2) deformations of the GLSMs is mirror symmetric

provided that dim AutV = d and dim AutV ◦ = d, i.e. the automorphism groups of

V and V ◦ have minimal dimension for d-dimensional toric varieties.

2. When either member of the pair fails to meet the condition, the numbers are generally

not mirror symmetric. The form of the discrepancy suggests that some modification

of the GLSM could restore the symmetry; however, we have not been able to find a

modification that leads to mirror symmetric results in all cases.

Our results lead to a number of questions. First, in the favorable case where the

number of (0,2) deformations is mirror symmetric, what is the mirror map at the level

of the GLSM? How does this map act on the half-twisted correlators? Does this lead to

computationally useful results? More generally, what is the number of deformations of the

tangent bundle for a Calabi-Yau hypersurface in a toric variety? We suspect this should

be given by a combinatorial formula generalizing our counting of GLSM parameters, and

1Working in a geometric phase of the GLSM it is easy to see that infinitesimally these deformations

correspond to some of the unobstructed elements of H1(EndTM ).
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Figure 1. Reflexive polytopes for the elliptic curve in P2.

the correction terms, akin to those describing non-toric and non-polynomial deformations,

should combine with our results to give mirror symmetric counts.2

The rest of the paper is organized as follows: after reviewing some standard notions

of toric geometry in section 2, we turn to the GLSM (2,2) Lagrangian and its (0,2) de-

formations in section 3; in section 4 we give combinatorial expressions for the dimension

of the space of deformations, apply them to a number of examples, and prove our basic

results; finally, we discuss the mismatch of (0,2) parameters in generic mirror pair GLSMs

in section 5. The appendix describes the parameter space of (0,2) deformations for the

GLSM for a toric variety V .

2 Some toric notions

We begin with a review of some toric geometry relevant to the construction of mirror

pairs of Calabi-Yau hypersurfaces in toric varieties [4]. This material is well-known, and a

pedagogical treatment is given in [1].

2.1 Polytopes

Let M be a d-dimensional lattice in MR ≃ R
d, N ∈ NR ≃ (MR)∨ be the dual lattice, and

denote the natural pairing MR × NR → R by 〈·, ·〉. Let ∆ ⊂ MR be a lattice polytope

(i.e. one whose vertices lie in M) containing the origin. The dual polytope ∆◦ ⊂ NR

is defined by

∆◦ = {y ∈ NR | 〈x, y〉 ≥ −1 ∀ x ∈ ∆} . (2.1)

A familiar example from d = 2 is given in figure 1. The lattice polytope ∆ is said to be

reflexive if and only if its polar dual ∆◦ is also a lattice polytope. Since (∆◦)◦ = ∆, it

follows that ∆ is reflexive if and only if ∆◦ is reflexive. Since ∆ is defined by hypersurfaces

that are distance 1 from the origin, it follows that ∆ must have a unique interior point.

2Such a result may perhaps hold only with suitable genericity assumptions on the (2,2) parameters. After

all, it is known that dim H1(End TM ) is in general a discontinuous function of complex structure moduli [27],

and mirror symmetry leads us to expect similar discontinuities for suitably tuned Kähler parameters.
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Figure 2. Fan for the mirror elliptic curve (left) and its maximal projective subdivision.

There are two natural ways to relate ∆ to geometry:

1. ∆ is a Newton polytope for a hypersurface {P = 0} ⊂ (C∗)d;

2. ∆ defines a complete toric variety V with fan ΣV ⊂ NR given by taking cones over

faces of ∆◦. In particular, the one-dimensional cones, denoted by ΣV (1), correspond

to vertices of ∆◦.

In fact, these two notions are nicely related: the hypersurface {P = 0} ⊂ (C∗)d has a

natural compactification to a subvariety M = {P = 0} ⊂ V. When ∆ is reflexive, then V

is Fano, and M ⊂ V is a Calabi-Yau hypersurface with “suitably mild” singularities [4].

Let us make more precise the notion of “suitably mild singularities.” A toric variety V

with fan ΣV is smooth if and only if every full dimensional cone σ ∈ ΣV is simplicial, and

its generators furnish a basis for N . In general, the ΣV constructed as above will lead to a

singular variety V . For example, exchanging the roles of ∆,∆◦ in the example of figure 1

yields the fan shown in the left half of figure 2. The resulting toric variety is CP
2/Z3 — a

space with three singular points. As shown in the figure, the fan may be refined by intro-

ducing six additional one-dimensional cones, leading to a fan ΣeV
for a smooth projective

variety Ṽ . This construction gives a toric crepant resolution of singularities Ṽ → V .

Although any toric variety has a toric resolution of singularities obtained by refining

the fan, in general these will fail to be crepant. However, for the purposes of constructing

smooth Calabi-Yau hypersurfaces, there is a toric crepant resolution of singularities that

is sufficiently smooth. Namely, any fan ΣV constructed from ∆◦ may be refined to a fan

ΣeV
whose one-dimensional cones, denoted by ΣeV

(1), are generated by the non-zero lattice

points in ∆◦, such that ΣeV
is simplicial and Ṽ is a Gorenstein orbifold with terminal

singularities. Such a refinement is known as a maximal projective subdivision.3 It may

be shown that the singular locus of a Gorenstein orbifold with terminal singularities has

codimension ≥ 4.4 When d = 4, the singular locus consists of points, and a generic

hypersurface M ⊂ Ṽ is smooth.

3There may be many possible maximal projective subdivisions, each corresponding to a different phase

of the GLSM (i.e. a different cone in the secondary fan).
4This is nicely discussed in appendix A.2 of [1].

– 5 –



J
H
E
P
0
7
(
2
0
1
1
)
0
4
4

We will have use for two types of projective subdivisions: a maximal projective subdi-

vision ΣV max , where the one-dimensional cones are generated by all non-zero lattice points

of ∆◦, and a minimal projective subdivision ΣV min, where ΣV min(1) is generated by the non-

zero lattice points in ∆◦ that are not contained in the relative interior of any facet ϕ◦ ⊂ ∆◦.

The former is a subdivision of the latter, so that V max is a resolution of singularities of

V min. The two only differ in the singular points corresponding to the non-empty facets of

∆◦. These singular points in V min are disjoint from a generic hypersurface M ⊂ V min, as

are the corresponding exceptional divisors in V max from a generic Calabi-Yau hypersurface

M̃ ⊂ V max. Thus, when we use these different subdivisions to construct GLSMs for a

Calabi-Yau manifold M , we should find two different descriptions of the same IR physics.

We will refer to the corresponding GLSMs as “maximal” and “minimal” models.

2.2 The Audin/Cox homogeneous coordinate ring

A d-dimensional complete simplicial toric variety V with fan ΣV ⊂ NR can be presented

as a holomorphic quotient,

V ≃ C
n − F

G
, (2.2)

where F is the “exceptional set”, G ≃ (C∗)n−d × H for some finite abelian group H, and

the quotient is the usual geometric quotient [24].

To describe the construction, denote the generators of the one-dimensional cones by

ρ ∈ ΣV (1), and set n = |ΣV (1)|. To each ρ we associate a coordinate Zρ on C
n and a

generator of the polynomial ring S = C[Zρ1
, . . . , Zρn ]. The Cox ideal B(ΣV ) is defined by

B(ΣV ) = 〈
∏

ρ6⊂σ

Zρ | σ ∈ ΣV 〉 ⊂ S, (2.3)

and the exceptional set F is the subvariety defined by the vanishing of B(ΣV ). When V is

simplicial F is given by a union of intersections of coordinate hyperplanes in C
n, where for

each collection {ρi}i∈I that does not belong to a full-dimensional cone in ΣV , F includes

∩ρi∈I{Zρi
= 0} as a component.

The group G is determined by the exact sequence

1 // G // (C∗)n
eρ

// TN
// 1, (2.4)

where TN ≃ C
∗⊗N ≃ (C∗)d is the algebraic torus contained in V , and the map ρ̃ is given by

ρ̃ : (t1, · · · , tn) 7→ (
∏

ρ

tρ
1

ρ ,
∏

ρ

tρ
2

ρ , · · · ,
∏

ρ

tρ
d

ρ ). (2.5)

In other words, G is “everything in the big torus that does not survive to the little torus.”

The natural action of the big torus on C
n,

(tρ1
, tρ2

, . . . , tρn) · (Zρ1
, Zρ2

, . . . , Zρn) = (tρ1
Zρ1

, tρ2
Zρ2

, . . . , tρnZρn), (2.6)

induces an action of G on the homogeneous coordinate ring S, which is thus graded by

representations of G. More generally, two Laurent monomials
∏

ρ Z
aρ
ρ ,
∏

ρ Z
bρ
ρ have equal

– 6 –
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grading if and only if there exists m ∈ M such that aρ = bρ + 〈m,ρ〉. Note that when V

is compact, a monomial µ ∈ S has degree zero if and only if µ ∈ C; otherwise, under the

quotient by G µ would descend to a non-constant holomorphic function on the compact

variety V .

The homogeneous coordinates lead to a convenient presentation of the polynomial P

that defines the generic Calabi-Yau hypersurface M ⊂ V :

P (Z) =
∑

m∈∆∩M

αm

∏

ρ

Z〈m,ρ〉+1
ρ . (2.7)

Note that P (Z) is G-equivariant. That is, if an element g ∈ G acts via

g :
∏

ρ

Zρ 7→ τ
∏

ρ

Zρ, (2.8)

where τ ∈ C
∗, then P (g · Z) = τP (Z). In particular, P = 0 is a well-defined hypersurface

in V . In the GLSM it is convenient to choose an explicit basis of integral charges for the

(C∗)(n−d) ⊂ G action. We will denote this basis by Qa
ρ. That is, the (C∗)(n−d) action will

take the form

Zρ 7→
n−d∏

a=1

t
Qa

ρ
a Zρ, ta ∈ C

∗. (2.9)

Under this action the polynomial P has charges
∑

ρ Qa
ρ.

The holomorphic quotient construction leads to an elegant construction of the group

of Weil divisors on V , denoted by Ad−1(V ). Ad−1(V ) is generated by the torus-invariant

divisors Dρ of the toric variety, modulo linear equivalence encoded by the exact sequence

0 // M
ρ

// Z
n

f
// Ad−1(V ) // 0. (2.10)

The map ρ is

ρ : m 7→ (〈m,ρ1〉, · · · , 〈m,ρn〉), (2.11)

while the second map sends a point in Z
n to the corresponding divisor:

f : a 7→
∑

ρ

aρDρ. (2.12)

When V is simplicial, the torus-invariant divisors Dρ are given by projections of the hy-

perplanes {Zρ = 0} under the quotient. In this case H1,1(V ) is generated by the classes ξρ

dual to Dρ, and linear equivalence implies h1,1(V ) = n − d. The ξρ may be expanded in

a basis as ξρ =
∑

a Qa
ρηa. Moreover, Hk,k(V ) are the only non-empty cohomology groups,

and H∗,∗(V ) is isomorphic to C[η1, . . . , ηn−d]/IS-R, where the Stanley-Reisner ideal IS-R is

obtained by substituting ξρ for Zρ in the Cox ideal above.

2.3 The automorphism group of V

The homogeneous coordinate ring description leads to a nice presentation of AutV — the

automorphism group of V . This group fits into an exact sequence

1 // G // ÃutV // AutV // 1, (2.13)

– 7 –
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and the connected component of the identity Ãut0V ⊂ ÃutV is described as follows. For

each ρ, let Sρ be the set of monomials in S that have the same degree as Zρ:

Sρ = {monomial µ ∈ S | deg[µ] = deg[Zρ]}. (2.14)

The group Ãut0V is generated by elements of Sρ: each µ ∈ Sρ yields a one-parameter

action on the homogeneous coordinates given by δZρ = ǫµ and δZρ′ 6=ρ = 0. Note that this

includes the (C∗)n action of the “big torus.” It follows that the dimension of Ãut0V is

given by

dim Ãut0V =
∑

ρ

|Sρ|. (2.15)

In the subsequent analysis we will only be interested in Aut0 V , and for simplicity we will

drop the subscript 0.

When V is constructed from a reflexive polytope as above, there is a nice combinatorial

expression for dim ÃutV [9]. To derive this, consider a monomial µ ∈ Sρ, µ =
∏

ρ Z
aρ
ρ .

Suppose µ 6= Zρ. In that case, aρ = 0, since otherwise µ/Zρ would descend to a non-

constant holomorphic function on the compact variety V . Recall from above that the

degrees of µ and Zρ are equal if and only if there exists m ∈ M such that

aρ = 〈m,ρ〉 + 1 and aρ′ = 〈m,ρ′〉 for ρ′ 6= ρ. (2.16)

Since aρ = 0 and aρ′ 6=ρ ≥ 0 this implies

〈m,ρ〉 = −1, and 〈m,ρ′〉 > −1 for ρ′ 6= ρ. (2.17)

If ρ is a vertex of ∆◦, these equations imply that m is an interior lattice point of ϕρ ⊂ ∆,

the facet dual to ρ. If ρ is not a vertex, then the list of ρ′ includes all the vertices, and

the inequalities would imply m = 0, in contradiction to the assumption µ 6= Zρ. Thus, we

conclude that

dim ÃutV = n +
∑

ϕ

ℓ∗(ϕ) and dimAut V = d +
∑

ϕ

ℓ∗(ϕ). (2.18)

where the ϕ denote the facets of ∆, and we have used a common notation ℓ∗(P ) for the

number of lattice points in the relative interior of a closed set P . In what follows we will

also have use for ℓ(P )—the number of lattice points in a closed set P .

2.4 Batyrev mirror pairs

We now have all the ingredients to state the Batyrev mirror correspondence. Since reflexive

polytopes come in pairs, exchanging the roles of ∆,∆◦ and refining fans as necessary, the

construction actually yields a pair of Calabi-Yau hypersurfaces M,M◦. It is natural to

conjecture that these are mirror, and a check of the proposal is the computation of the

Hodge numbers.5

5In d = 4 these are just the usual Hodge numbers of M ; when d > 4 M is generally singular, and one

must use the stringy Hodge numbers.
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Let us start with h1,1(M). A subset of Kähler classes on M is obtained by puling back

Kähler classes on V . If ΣV is a maximal projective subdivision, then h1,1(V ) = ℓ(∆◦)−1−d.

However, not all of the corresponding divisors intersect M , since a divisor corresponding

to an interior lattice point of a facet ϕ◦ ⊂ ∆◦ is disjoint from M ⊂ V , and its dual class

does not contribute to h1,1(M). Consequently,

h1,1
toric(M) = ℓ(∆◦) − 1 − d −

∑

ϕ◦

ℓ∗(ϕ◦). (2.19)

The same number would have been obtained had we used a minimal projective subdivision.

This is not the whole story, as some of the divisors on V become reducible when restricted

to M and lead to additional generators of H1,1(M). The full Hodge number is given by

h1,1(M) = h1,1
toric(M) +

∑

Θ◦

ℓ∗(Θ◦)ℓ∗(Θ̂◦), (2.20)

where Θ◦ ⊂ ∆◦ is a codimension-two face of ∆◦, and Θ̂◦ ⊂ ∆ is its dual. While the

correction term does not have the intuitive interpretation of h1,1
toric(M), it is still determined

by the combinatorics of ∆,∆◦.

Next, consider the deformations of complex structure, which are counted by hd−2,1(M).

Some of these may be obtained by varying the coefficients in the defining polynomial.

Naively, this would lead to ℓ(∆) parameters, but rescaling P by a constant does not change

the hypersurface, nor do changes in the parameters of P that may be undone by an action

of Aut(V ). Using eq. (2.18), we have

hd−2,1
poly (M) = ℓ(∆) − 1 − d −

∑

ϕ

ℓ∗(ϕ). (2.21)

Again, this is not the whole story, since in general M will have non-polynomial deformations

of complex structure. The correction to hd−2,1(V ) has been computed, leading to

hd−2,1(M) = hd−2,1
poly (M) +

∑

Θ

ℓ∗(Θ)ℓ∗(Θ̂). (2.22)

The Hodge numbers for M◦ are obtained by exchanging the roles of ∆ and ∆◦, with

the expected result h1,1(M) = hd−2,1(M◦) and hd−2,1(M) = h1,1(M◦). However, note that

there is a refinement of this statement:

hd−2,1
poly (M) = h1,1

toric(M
◦), hd−2,1

poly (M◦) = h1,1
toric(M). (2.23)

This observation is the basis for the monomial-divisor mirror map [9] and an inspiration

for our attempt to find a mirror map for the (0,2) GLSM parameters.

3 The Lagrangian and its (0,2) deformations

In this section we review the structure of the GLSM Lagrangian for the M-Model [8]. We

begin with (2,2) supersymmetry. The field content includes 1 + n (2, 2) chiral superfields

Φ0,Φρ, where in the maximal case ρ runs over the non-zero lattice points in ∆◦, while in
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the minimal case ρ is further restricted not to lie in the interior of a facet. These matter

fields are minimally coupled to r = n − d gauge fields Va with twisted chiral superfield-

strengths Σa. In addition to the usual flat D-terms, the action is determined by the chiral

and twisted chiral superpotentials:

LW =

∫
dθ+dθ−Φ0P (Φ) + h.c.,

LfW
= − 1

4π
√

2

∫
dθ+dθ

−
log(qa)Σa + h.c.. (3.1)

Here the qa, a = 1, . . . , r are the algebraic coordinates on the complexified Kähler moduli

space for the toric variety V; P (Φ) is given by the combinatorial data as above; and Φ0 has

charges Qa
0 = −∑ρ Qa

ρ, as required by gauge invariance. Evidently, the minimal theory

has r obvious complexified Kähler deformations, which is exactly h1,1
toric(M). The geometric

discussion above suggests that in the maximal theory,
∑

ϕ◦ ℓ∗(Γ◦) of the r complexified

Kähler parameters are redundant. We will discuss this point in greater detail below.

The coefficients of P (Φ) in LW are holomorphic parameters of the GLSM. Not all of

these lead to parameters in the IR theory, since holomorphic field redefinitions can shift

some of them into the (presumed irrelevant) D-terms. The redefinitions compatible with

(2,2) supersymmetry and gauge invariance are given by

δΦ0 = ǫ0Φ0, δΦρ = ǫµµ, µ ∈ Sρ. (3.2)

Thus, the number of field redefinitions is 1 + dim ÃutV . However, gauge invariance of LW

implies that n − d of these redefinitions simply leave the superpotentials invariant. Thus,

the number of complex structure deformations described by the GLSM is

N c-x = #(P ) − 1 − dim AutV = ℓ(∆) − 1 − d −
∑

Γ

ℓ∗(Γ) = hd−2,1
poly (M). (3.3)

Note that N c-x is the same whether computed in the maximal or minimal GLSM.

The holomorphic terms in the GLSM Lagrangian are particularly convenient for de-

scribing the toric and polynomial deformations of the M-model. This leads to the suspicion

that in the more general (0,2) setting the GLSM will also select a natural set of deforma-

tions. To see if this is so, we must first describe the natural set of (0,2) deformations of

the (2,2) models.

3.1 (0,2) superfields

Following [8], our first step is to recast the (2,2) theory in terms of (0,2) superfields. The

results are summarized (in Wess-Zumino gauge) by

V (2,2)
a 7→ Va,− ; va,+,

Σ(2,2)
a 7→ Σa ; Υa,

Φ(2,2)
ρ 7→ Zρ ; Γρ,

Φ
(2,2)
0 7→ Z0 ; Γ0, (3.4)
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θ+ Zρ Γρ Z0 Γ0 Σa Υa

U(1)R 1 0 0 1 1 1 1

U(1)L 0 0 −1 1 0 −1 0

Table 1. Symmetry Charges

where Σa, Zρ are bosonic chiral multiplets, Υa are chiral Fermi gauge field-strength multi-

plets, and the Γρ are Fermi multiplets obeying

D+Γρ = i
√

2

r∑

a=1

ΣaQ
a
ρZρ. (3.5)

Here D+ is a (0,2) superspace derivative. The (2,2) superpotentials combine into a single

(0,2) superpotential LW that encodes the holomorphic terms in the action:

LW =

∫
dθ+

{
log(qa)

8πi
Υa + Γ0P (Z) + Z0

∑

ρ

ΓρP,ρ

}
+ h.c., (3.6)

where P,ρ = ∂P/∂Zρ. Since the Γρ are not chiral, this action is not obviously supersym-

metric. The condition for supersymmetry (i.e. for LW to be chiral) is

Z0

r∑

a=1

Σa

[
Qa

0P (Z) +
∑

ρ

Qa
ρZρP,ρ

]
= 0. (3.7)

But Qa
0 = −∑i Qa

i , and gauge invariance implies that P is quasi-homogeneous, so that

the last term just yields +
∑

ρ Qa
ρP (Φ). The terms in the bracket cancel for all a, and the

theory is supersymmetric after all.

In addition to the gauge symmetry, the action has two important global U(1) sym-

metries: the U(1)R gives charge +1 to θ+ and should become the U(1) current in the

right-moving N = 2 algebra; the U(1)L is a global symmetry from the point of view of

(0,2) superspace, but will become the U(1) current in the left-moving N = 2 algebra. The

charges of the superfields, determined up to gauge transformations, are given in table 1.

Any (0,2) deformations should preserve these symmetries.

3.2 (0,2) parameters

The (2,2) action above has an obvious (0,2) generalization: write a general chirality con-

straint for the Γρ and use the most general superpotential LW consistent with gauge in-

variance, U(1)R ×U(1)L symmetries, and supersymmetry. Restricting to terms polynomial

in the fields, the solution is

D+Γ0 =
∑

a

ΣaE
a0Z0, D+Γρ = Eρ(Σ, Z) =

∑

a

ΣaE
aρ(Z), (3.8)

and

LW =

∫
dθ+

{
log(qa)

8πi
Υa + Γ0P (Z) + Z0

∑

ρ

ΓρJρ(Z)

}
+ h.c., (3.9)
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where Ea0 is a set of constants, the polynomials Eaρ have gauge charges Qa
ρ, and the Jρ

have charges −Qa
0 − Qa

ρ. The superpotential is chiral if and only if

Ea0P (Z) +
∑

ρ

Eaρ(Z)Jρ(Z) = 0 for all a. (3.10)

We have assumed that Z0 is the unique monomial in the Z0, Zρ with charges Qa
0. This is

reasonable for a hypersurface but will be modified in the complete intersection case.

Working in a large radius phase of the GLSM, it is not hard to see that this indeed

corresponds to deformations of the tangent bundle [8, 25] described by the complex

0 // Or|M Eaρ
// ⊕ρO(Dρ)|M

Jρ
// O(
∑

ρ Dρ)|M // 0 . (3.11)

The supersymmetry condition of eq. (3.10) ensures this is indeed a complex, and the

quotient F = ker J/ im E defines a rank 3 holomorphic bundle over M . Setting Eaρ and

Jρ to their (2,2) values determines the constants Ea0 to be the charges, and F = TM .

3.3 Field redefinitions

Just as in the (2,2) case, we do not expect that all of the parameters in the E and J

correspond to deformations, since field redefinitions can be used to absorb some of the

parameters into deformations of the presumably irrelevant D-terms. The field redefinitions

should be consistent with supersymmetry, global symmetries and gauge invariance. If we

also assume, as in the (2,2) case, that the redefinitions are polynomial in the fields, the

possibilities are restricted to

δZ0 = uZ0, δΓ0 = vΓ0,

δZρ =
∑

µ∈Sρ

ǫµµ, δΓρ =
∑

ρ′

∑

ν∈Sρρ′

ηννΓρ′ ,

δΣa = Gb
aΣb, δΥa = 0.

(3.12)

Here u, v, ǫµ, ην are complex parameters; Ga
b is a field-independent GL(r, C) matrix; Sρ is

as in eq. (2.14); and

Sρρ′ = {monomial ν ∈ S | deg[ν] = deg[Zρ] − deg[Zρ′ ]}. (3.13)

Since these redefinitions are holomorphic, the 1 + r redefinitions corresponding to U(1)L
symmetry and gauge transformations will leave LW and Eaρ invariant. When these redefi-

nitions were first considered in [23], a mistake was made in the form of δΓρ. Although this

error does not affect models where the monomials in Sρ are linear in the fields, it does lead

to extra redefinitions in more general models.

As long as the µ and ν monomials are linear in the Zρ, these redefinitions have well-

defined Jacobians, at least at the level of the bosonic zero modes; however, it is not so

obvious that this holds for non-linear µ and ν. To see that the non-linear terms cause no

trouble, consider the redefinition of the Γρ:

Γ̃ρ = Γρ + δΓρ =
∑

ρ′

Uρ
ρ′(Z)Γρ′ . (3.14)
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At first sight, since U depends on Z, no matter how small the parameters ην in δΓ are

taken to be, detU might vanish for some non-zero Z. However, since detU is a polynomial

in the Z of gauge charge zero, it must actually be independent of Z, since otherwise it

would descend to a non-constant function on the compact variety V . Since detU is Z-

independent, sufficiently small ην parameters will ensure detU 6= 0. A similar argument

may be given for the redefinitions of the Zρ.

This is a good point to note that in general the Kähler parameters will not be invariant

under generic (0,2) redefinitions of the matter fields. This is easily seen in the geometric

phase in an instanton expansion, where the field-independent determinant factors from

redefinitions of the fermion measure will shift the action by terms proportional to the

instanton number. This fact is sure to play an important role in any definition of a (0,2)

GLSM mirror map.

4 Combinatorics of deformations

Having described the E and J parameters and the redefinitions, we will now give combi-

natorial expressions for the holomorphic (0,2) deformations of the GLSM.

4.1 E and J parameters

The polynomial P (Z) defining the hypersurface contains ℓ(∆) parameters — the coefficients

αm of the monomials
∏

ρ Z
〈m,ρ〉+1
ρ . On the (2,2) locus the Jρ are given by

Jρ = P,ρ =
∑

m∈∆∩M

(〈m,ρ〉 + 1)αmZ〈m,ρ〉
ρ

∏

ρ′ 6=ρ

Z
〈m,ρ′〉+1
ρ′ . (4.1)

More generally, Jρ must contain the same set of monomials as P,ρ, but their coefficients

need not be related to the αm. Each ρ ∈ ∆◦ ∩ N belongs to the relative interior of a face

of minimal dimension τ◦
ρ . It is not hard to show that m ∈ ∆ satisfies 〈m,ρ〉 = −1 if and

only if m belongs to the dual face of τ◦
ρ , τρ ⊂ ∆. Thus, the general Jρ takes the form6

Jρ =
∑

m∈∆\τρ

[(〈m,ρ〉 + 1)αm + βρ
m]Z〈m,ρ〉

ρ

∏

ρ′ 6=ρ

Z
〈m,ρ′〉+1
ρ′ , (4.2)

where the βρ
m parametrize the difference from the (2,2) locus values. The number of these

parameters is

#J =
∑

ρ

∑

m∈∆

[1 − δ(〈m,ρ〉 + 1)] = nℓ(∆) −
∑

ρ

ℓ(τρ). (4.3)

Next, we consider the parameters in Ea0 and Eaρ. Ea0 = (Qa
0 + δa), leading to r

parameters δa. To describe the Eaρ, it is useful to consider separately the vertices of ∆◦.

Let V be the set of vertices of ∆◦. If ρ ∈ V then τρ = ϕρ, the facet of ∆ dual to ρ. Denoting

the relative interior of a set K ⊂ MR by riK, the Sρ take the form

Sρ =




{Zρ} ∪

{∏
ρ′ 6=ρ Z

〈m,ρ′〉
ρ′ | m ∈ riϕρ

}
, ρ ∈ V

{Zρ} otherwise.
(4.4)

6There is a slight abuse of notation here, since m is a lattice point in ∆\τρ. Similarly, ρ is restricted to

be a generator of ΣV (1). We will make use of this abuse when it is not likely to lead to confusion.
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Using this decomposition, we can write down the Eaρ:

Eaρ =

{
(Qa

ρ + γa0
ρ )Zρ +

∑
m∈ri ϕρ

γam
ρ

∏
ρ′ 6=ρ Z

〈m,ρ′〉
ρ′ , ρ ∈ V

(Qa
ρ + γa0

ρ )Zρ otherwise.
(4.5)

Evidently, the total number of the E parameters, δa, γam
ρ and γa0

ρ is

#E = r

(
1 + n +

∑

ϕ

ℓ∗(ϕ)

)
= r(1 + dim ÃutV ). (4.6)

Finally, we need to examine the supersymmetry constraint. Plugging P , E and J into

eq. (3.10), we find the condition
∑

m∈∆

F a
m

∏

ρ

Z〈m,ρ〉+1
ρ = 0, (4.7)

where

F a
m = δaαm +

∑

ρ

∑

l∈∆\τρ

[
γa0

ρ (〈l, ρ〉 + 1)αl + Qa
ρβ

ρ
l + γa0

ρ βρ
l

]
δ(l − m)

+
∑

ρ∈V

∑

l∈ri ϕρ

∑

k∈∆\τρ

[
γal

ρ (〈k, ρ〉 + 1)αk + γal
ρ βρ

k

]
δ(l + k − m). (4.8)

This yields rℓ(∆) constraints on the parameters, and if the equations are generic enough,

they should eliminate rℓ(∆) of the parameters.

4.2 The redefinitions

Having described the parameters and the constraint on them in terms of the combinatorics,

we will now do the same for the field redefinitions. The rescalings of Z0 and Γ0 are simple

enough, as are the GL(r, C) rotations of the Σa. Next, we turn to the redefinitions of the

Zρ. Using the decomposition of the ρ into vertices and other points leads to

Z ′
ρ =

{
(1 + ǫ0

ρ)Zρ +
∑

m∈ri ϕρ
ǫm
ρ

∏
ρ′ 6=ρ Z

〈m,ρ′〉
ρ′ , ρ ∈ V

(1 + ǫ0
ρ)Zρ otherwise.

(4.9)

The number of parameters contained in these is

#δZ = n +
∑

ϕ

ℓ∗(ϕ) =
∑

ρ

|Sρ| = dim ÃutV. (4.10)

Note that the non-linear redefinitions only affect the Zρ corresponding to the vertices of ∆◦.

Next, we consider the redefinitions of the Γρ. We again consider ρ 6∈ V and ρ ∈ V
separately and find

Γ′ρ = (1 + ηρ
0)Γρ for ρ 6∈ V, (4.11)

and when ρ ∈ V

Γ′ρ = (1 + ηρ
0)Γ

ρ +
∑

m∈ri ϕρ

∑

ρ′ 6=ρ

[
1 − δ(〈m,ρ′〉)

]
ηmρ

ρ′ Z−1
ρ′

∏

ρ′′ 6=ρ

Z
〈m,ρ′′〉
ρ′′ Γρ′ . (4.12)
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These redefinitions depend on

#δΓ = n +
∑

ρ∈V

∑

m∈ri ϕρ

∑

ρ′ 6=ρ

[
1 − δ(〈m,ρ′〉)

]
(4.13)

parameters. This can be recast as

#δΓ = #δZ +
∑

ϕ

∑

m∈ri ϕ

[
n − 2 −

∑

ρ

δ(〈m,ρ〉)
]

, (4.14)

showing that in general #δΓ ≥ #δZ. Note that when ∆◦ describes a product of projective

spaces, #δΓ = #δZ. This is easy to see by thinking about the monomials, and may also

be shown directly from the formula for #δΓ.

4.3 The number of deformations

We are now ready to count the deformations. In addition to the parameters described

above, we should also add in the r complexified Kähler deformations. Although naively

there are r such parameters, for each ρ contained in a relative interior of a facet of ∆◦, one

of the Kähler parameters should be redundant. Let us call the number of these redundant

Kähler parameters w. Adding these to the numbers described above, we have a count of

the deformations of the M-model GLSM:

N(M) = r − w + #P + r(1 + #δZ)︸ ︷︷ ︸
E

+#J

− r#P︸ ︷︷ ︸
SUSY

− (2 + r2 + #δZ + #δΓ − 1 − r)︸ ︷︷ ︸
redefinitions/gauge &U(1)L

= 1 − w − (r − 1)(r + #P − #δZ − 2) + #J − #δΓ. (4.15)

We will distinguish several different choices for the M-model: the minimal choice, where

w = 0; the maximal choice, where the ρ include every non-zero lattice point of ∆◦; and

the special situation where neither ∆ or ∆◦ has a facet with an interior lattice point. To

discuss these different choices it is convenient to define

X = ℓ(∆) − 1, X◦ = ℓ(∆◦) − 1,

W =
∑

ϕ

ℓ∗(ϕ), W ◦ =
∑

ϕ◦

ℓ∗(ϕ◦). (4.16)

In the case of the minimal M-model, where w = 0, the general expression reduces to

N(Mmin) = (d + 1)(X + X◦ − W − W ◦) − d(d + 2)

−
∑

ρ

ℓ(τρ) + W +
∑

ϕ

∑

m∈ri ϕ

∑

ρ

δ(〈m,ρ〉). (4.17)

While the first line is invariant under the exchange of ∆,∆◦, the second one is not invariant

in any obvious way. Indeed, computations in examples will show that the second line fails
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to be mirror symmetric. For the maximal M-model, where w = W ◦, we find

N(Mmax) = (d + 1)(X + X◦) − W − W ◦ − d(d + 2) −
∑

ρ

ℓ(τρ)

−(d − 1)W +
∑

ϕ

∑

m∈ri ϕ

∑

ρ

δ(〈m,ρ〉). (4.18)

In this case, the first line is mirror symmetric, since

∑

ρ

ℓ(τρ) =
∑

ρ∈∆◦\{0}

∑

m∈∆

δ(〈m,ρ〉 + 1) =
∑

m∈∆\{0}

∑

ρ∈∆◦

δ(〈m,ρ〉 + 1) =
∑

m

ℓ(τ◦
m). (4.19)

However, the second line is again not obviously mirror symmetric, and the difference be-

tween the model and its mirror is

N(Mmax) − N(M◦
max) = (d − 1)(W ◦ − W ) +

∑

ϕ

∑

m∈ri ϕ

∑

ρ6∈ϕ◦

δ(〈m,ρ〉)

−
∑

ϕ◦

∑

ρ∈ri ϕ◦

∑

m6∈ϕ

δ(〈m,ρ〉). (4.20)

Comparing N(Mmax) and N(Mmin), we note that the two are in general not the same:

N(Mmax) − N(Mmin) = (d − 1)W ◦ +
∑

ϕ

∑

m∈ri ϕ

∑

ϕ◦

∑

ρ∈ri ϕ◦

δ(〈m,ρ〉) ≥ 0. (4.21)

Contrary to the counting of (2,2)-preserving deformations, it appears that in general the

maximal GLSM yields more (0,2) deformations than the minimal one.

4.4 Reflexively plain pairs

It is clear that N(Mmax) = N(Mmin) when W ◦ = 0. Since in this case the polytope ∆◦ has

no interior lattice points in any facet, we will say the polytope ∆◦ is plain. When W = 0

as well, so that ∆ is also a plain polytope, we will call the pair (∆◦,∆) a reflexively plain

pair. In this case the counting of deformations is mirror symmetric:

N(M) = (d + 1)(X + X◦) − d(d + 2) −
∑

ρ

ℓ(τρ) = N(M◦). (4.22)

We can split this into the (2,2) and (0,2) parameters:

N (2,2)(M) = (X − d) + (X◦ − d),

N (0,2)(M) = d(X + X◦ − d) −
∑

ρ

ℓ(τρ). (4.23)

These theories are candidates for (0,2) GLSM mirror pairs. The reader may, as did the

authors, wonder how many such models exist. In four dimensions there is a classification

of reflexive polytopes [5, 26]. A scan through the PALP database of the 473, 800, 776

four-dimensional reflexive polytopes identified 6, 677, 743 reflexively plain pairs and 5518

self-dual plain polytopes. Although this amounts to just under 3% of the database, the
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absolute number is large enough that we can be sure of finding plenty of interesting ex-

amples! We intend to return to a study of the reflexively plain models in the near future;

for now, however, we will explore in some more detail the mismatch between the GLSM

deformations in more general theories. We will start by computing the discrepancy in a

number of examples.

4.5 Examples

A family of models that shows enough of the interesting structure consists of Calabi-Yau

hypersurfaces in P
n1 × P

n2 × · · · × P
nk . In this case the minimal and maximal GLSMs

are identical, d =
∑

α nα, and the rank of the gauge group is just r = k. Counting the

monomials in P, we find

#(P ) = ℓ(∆) =

k∏

α=1

(
2nα + 1

nα

)
≡ X + 1. (4.24)

The field redefinitions are also easy to count. Since the Sρ are linear in the fields

#δZ = #δΓ =

k∑

α=1

(nα + 1)2 = k + d + W, (4.25)

where, as above, W is the number of interior facet lattice points in ∆. It is not hard to see

that ∆ has
∑

α(nα + 1) facets, each of which has nα interior lattice points.

Finally, we need the number of J-parameters. Let ρ correspond to a coordinate of

P
nα . Then the number of monomials in Jρ is the number of monomials of multi-degree

(n1 + 1, . . . , nα, . . . nk + 1). Note that each ρ corresponding to P
nα has the same number

of monomials. Summing over the k P
nα factors yields

#(J) =

k∑

α=1

(nα + 1)

(
2nα

nα

) ∏

β 6=α

(
2nβ + 1

nβ

)
≡ Z. (4.26)

Putting these terms into the general expression, we conclude that

N(Mmin) = N(Mmax) = Z + d(k − 2) − (k − 1)X + (k − 2)W. (4.27)

As was noted in [23], for the case of the quintic in P
4 and bi-cubic in P

2 × P
2, the number

obtained here match h1,1 + h2,1 + dim H1(End TM ) computed in, for instance, [27].

Next, we turn to the minimal mirror. The fan has X −W one-dimensional cones, and

thus the rank of the gauge group is

r◦ = X − d − W. (4.28)

Since ∆◦ is plain, the automorphism group of the mirror toric variety is minimal, and

#δZ = #δΓ = X − W. (4.29)

Of course,

#P ◦ =
∑

α

(nα + 1) + 1 = 1 + k + d. (4.30)
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The counting of J◦ is easiest to do in two steps. First, note that the ρ = 0 monomial in

P ◦ contributes to every J◦
m, and therefore yields X −W parameters. Now suppose we pick

some monomial in P ◦ with ρ 6= 0. This contributes to every J◦
m with m that is not in the

face dual to ρ. This is just the number of monomials in P with m 6= 0 and m 6∈ riϕ for

any facet ϕ ⊂ ∆, that have at least one power of Zρ. If in the M-model ρ corresponds to

a coordinate on P
nα, then the ρ monomial in P ◦ appears in

∏

β

(
2nβ + 1

nβ

)
− 1 −

∑

β

nβ(nβ + 1) −



(

2nα

nα − 1

) ∏

β 6=α

(
2nβ + 1

nβ

)
− nα


 (4.31)

of the J◦
m. Summing over ρ ∈ ∆◦\{0}, we find

#(J◦) = Z + X − (d + k)(W + 1). (4.32)

Putting these ingredients into the general formula, we obtain

N(M◦
min) = Z + d(k − 2) − (k − 1)X − dW. (4.33)

Finally, we consider the maximal mirror model. The details are much the same as in

the minimal mirror model, and we find

w◦ = W, r◦ = X − d,

#P ◦ = d + k + 1, #δZ◦ = #δΓ◦ = X,

#J◦ = Z + X − d − k.

(4.34)

Putting this together,

N(M◦
max) = Z + d(k − 2) − (k − 1)X − W. (4.35)

Comparing the answers,

N(M) − N(M◦
max) = (k − 1)W,

N(M) − N(M◦
min) = (k − 2 + d)W. (4.36)

We see that unless k = 1 (the case of a single projective space), N(M) 6= N(M◦
max).

Another simple set of examples is constituted by hypersurfaces in d = 4 weighted

projective spaces with appropriately resolved singularities. Taking the h1,1 = 2 examples

studied in [28], we find the results given in table 2. Results for models with h1,1 = 3 are

given in table 3. Several qualitative features can be discerned from these numbers. First,

as expected N(Mmax) ≥ N(Mmin). Second, comparing the differences N(Mmin)−N(M◦
min)

and N(Mmax) − N(M◦
max), there is no sign of one being a “better match” than the other.

Finally, it is rather apparent that the discrepancies become more dramatic as the number

of lattice interior facet points increases.
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Model r #P #δZ #δΓ #J ℓ∗(ϕ) N(M)

P
4
1,1,2,2,2 2 105 23 35 380 17 264

min. mir. 83 7 87 87 376 0 208

max. mir. 100 7 104 104 478 0 259

P
4
1,1,2,2,6 2 171 46 118 664 40 422

maximal 3 171 47 149 834 40 435

min. mir. 126 8 131 240 717 1 353

max. mir. 166 8 171 310 997 1 483

P
4
1,2,2,3,4 2 89 20 33 320 14 219

min. mir. 70 7 74 74 318 0 176

max. mir. 84 7 88 88 402 0 218

P
4
1,2,2,2,7 2 141 35 78 512 29 329

maximal 4 141 37 123 792 29 350

min. mir. 107 9 113 282 692 2 305

max. mir. 136 9 142 354 924 2 407

P
4
1,1,1,6,9 2 376 105 331 1533 99 932

maximal 5 376 108 575 2658 99 997

min. mir. 272 10 279 1045 2133 3 818

max. mir. 371 10 378 1385 3024 3 1171

Table 2. Some weighted projective spaces with h1,1 = 2. Here ℓ∗(ϕ) is the number of lattice points

in the relative interior of facets of ∆.

As a final example, we consider one of the reflexively plain pairs identified by the search

through the database of four-dimensional reflexive polytopes. Here the plain polytopes

have vertices

∆◦ :




1 0 2 3 −6

0 1 4 3 −8

0 0 5 0 −5

0 0 0 5 −5


 , ∆ :




−1 −1 1 1

−1 −1 1 2

−1 −1 2 1

−1 4 −3 −2

4 −1 −1 −2




. (4.37)

∆◦ has a total of 26 lattice points, while ∆ has no additional non-zero lattice points. By

construction neither has facets with interior lattice points. Performing the count, we find

r = 21, r◦ = 1,

#P = 6, #P ◦ = 26,

#δZ = 25, #δZ◦ = 5,

#δΓ = 25, #δΓ◦ = 5,

#J = 90, #J◦ = 70,

N(M) = 66, N(M◦) = 66.

(4.38)
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Model r #P #δZ #δΓ #J ℓ∗(ϕ) N(M)

P
4
1,1,1,3,6 2 225 61 170 898 55 565

maximal 3 225 62 210 1122 55 584

min. mir. 165 8 170 315 954 1 476

max. mir. 220 8 225 409 1339 1 657

P
4
1,2,3,3,3 3 81 20 36 354 13 195

min. mir. 63 8 67 67 336 0 146

max. mir. 76 8 80 80 427 0 185

P
4
1,3,3,3,5 3 81 20 34 342 13 185

maximal 4 81 21 42 422 13 194

min. mir. 63 9 68 106 390 1 161

max. mir. 76 9 81 126 494 1 206

P
4
1,2,3,3,9 3 130 37 115 618 30 316

maximal 4 130 38 139 747 30 326

min. mir. 95 9 100 182 628 1 259

max. mir. 125 9 130 235 868 1 356

P
4
1,1,2,8,12 3 335 95 380 1692 88 831

maximal 6 335 98 598 2694 88 889

min. mir. 242 11 249 930 2138 3 727

max. mir. 330 11 337 1233 3018 3 1040

Table 3. Some weighted projective spaces with h1,1 = 3. Note that the first example has a

non-toric divisor. Here ℓ∗(ϕ) is the number of lattice points in the relative interior of facets of ∆.

5 Discussion

The simplest interpretation of our results is that (0,2) deformations expressible as param-

eters in the (0,2) superpotential or in the chirality constraint of the Fermi multiplets of

the GLSM are not in general mirror symmetric. In the case of GLSMs based on reflexively

plain pairs of polytopes, there is a possibility of mirror exchange at the level of GLSMs,

and this special class of theories certainly deserves further attention, since it may lead to

a relatively simple mirror map that includes (0,2) deformations.

Another possibility is that we have perhaps made some unwarranted assumptions about

parameters, field redefinitions, or the supersymmetry constraint, which may affect the

results. In this final section of the paper, we will comment on these possibilities.

5.1 Redundant parameters in (2,2) GLSMs

We have argued that the set of deformations of a GLSM can be thought of as the space of

holomorphic parameters modulo field redefinitions. This follows from the assumption that

the chiral and twisted chiral F-terms determine the properties of the IR fixed point. The

presence of non-toric and non-polynomial deformations of a (2,2) GLSM already indicates
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that this is not the entire story: in general the theory does have additional deformations.

Another caveat that deserves notice is that parameters can be redundant even if they

are not absorbable into a D-term by a field redefinition. While it is easy to see how

field redefinitions remove parameters from the chiral superpotential (i.e. complex structure

parameters), it is not so clear what happens to the redundant Kähler parameters in the

twisted chiral superpotential. We will now explore this point in detail.

Consider an A-twisted GLSM for a C-Y hypersurface M̃ ⊂ Ṽ , where the toric fan for

Ṽ is a maximal projective subdivision of the toric fan for a toric variety V . As our working

example we will take Ṽ to be a resolution of P
4
1,1,2,2,6, defined by ∆◦ with non-zero lattice

points given by columns of

∆◦ :




−1 1 0 0 0 0 0

−2 0 1 0 0 −1 0

−2 0 0 1 0 −1 0

−6 0 0 0 1 −3 −1


 . (5.1)

This polytope has a unique lattice interior facet point:

ρ7 =
1

6
ρ1 +

1

6
ρ2 +

1

3
ρ3 +

1

3
ρ4. (5.2)

The quotient group is G = (C∗)3, with charge matrix

Q =




0 0 1 1 0 1 −3

1 1 0 0 0 −2 0

0 0 0 0 1 0 1


 . (5.3)

The anti-canonical class of Ṽ is

− K =
∑

ρ

ξρ = 2η3, (5.4)

where in the second equality we expressed the ξρ in terms of a basis for H1,1(Ṽ ): ξρ =∑
a Qa

ρηa. In a smooth phase of the GLSM the exceptional set is

F = {Z1 = Z2 = 0} ∪ {Z3 = Z4 = Z6 = 0} ∪ {Z5 = Z7 = 0}, (5.5)

which leads to the Stanley-Reisner ideal with generating relations

η2
2 = 0, η2

1(η1 − 2η2) = 0, η3(η3 − 3η1) = 0. (5.6)

The last relation implies that −Kξ7 = 0, which is just the usual statement that the

hypersurface M̃ does not intersect the exceptional divisor associated to a lattice interior

facet point of ∆◦. It is not hard to show that this holds in general.

The situation is more involved once quantum corrections are taken into account. To

study the quantum cohomology of the M̃ model, we will use the quantum restriction

formula of [10], which relates the quantum cohomology of the M̃ model to that of the
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Ṽ model. The observables corresponding to ηa ∈ H1,1(Ṽ ) are the σa, and the relation

between the M̃ model and Ṽ model A-twisted correlators is

〈〈σa1
σa2

σa3
〉〉 = 〈σa1

σa2
σa3

−K

1 − K
〉. (5.7)

Here the left-hand side denotes a correlator in the M̃ model, while the right-hand side is

evaluated in the Ṽ model. Naively, the correlators depend on all three complexified Kähler

parameters qa, and it is not clear in what sense one of these is redundant. A little thought

suggests the proper point of view: some combination of the σa must decouple from the M̃

correlators. To see how this works, we note that the quantum cohomology relations of the

Ṽ model include −K(σ3 − 3σ1) = 2q3. Using quantum restriction we have

〈〈σa1
σa2

(σ3 − 3σ1)〉〉 = 〈σa1
σa2

2q3

1 − K
〉 = 4q3〈〈σa1

σa2
σ3〉〉. (5.8)

In the last equality we used the ghost number selection rule of the Ṽ model. Since this

holds for any a1, a2, σr = 3σ1 + (4q3 − 1)σ3 decouples from the M̃ model correlators.

Recall that in twisted (2,2) theories there is an intimate relation between local observ-

ables and deformations of the action, which in the A-twisted GLSM takes the form

σa ↔ δS = − 1

4π
√

2

∫
d2zdθ+dθ

− δqa

qa

Σa. (5.9)

Since σr decouples from the M̃ -model correlators, this relation shows that the theory

should be independent of the deformation parameter corresponding to σr. While this is a

nice explanation of what redundancy means on the A-model side, it is an example where

the redundancy cannot be understood by field redefinitions in the classical action, since a

conspiracy of instanton contributions is necessary to produce the decoupling.

It is clear that this discussion will generalize to any A-model computation with a redun-

dant σa. This is easily seen in the mirror B-model point of view. A redundant divisor Dρ in

the A-model corresponds to a monomial in the mirror polynomial P ◦ associated to an inte-

rior facet point ρ ∈ ∆◦, and each such monomial is accompanied by an extra B-model chiral

ring relation. These additional relations can always be used to eliminate the “redundant”

monomials in favor of the minimal ones, and the monomial-divisor mirror map will then

yield the redundant combinations of the σa. Although the computations are reasonably

simple, in general the results will not have the simple form in the example above.

5.2 Redundant deformations of (0,2) GLSMs

The main tool that makes the treatment of these redundant deformations reasonably

straightforward in the (2,2) case is the relation between topological field theory observ-

ables and deformations of the action. Unfortunately, this is precisely the tool we lack

in (0,2) theories: with only (0,2) supersymmetry there is no longer any obvious relation

between the σa and the deformations of the action governed by the qa. While it seems

reasonable to suspect that if the (2,2) theory contains w redundant qa parameters then the

deformed (0,2) theory will also have w redundant parameters that are not eliminated by

obvious redefinitions, we cannot prove the assertion.
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When compared with the minimal model, the maximal (0,2) model contains additional

parameters that involve the fields Zρ,Γ
ρ where ρ ∈ riϕ◦ for some facet ϕ◦. A priori, it

could be that these additional parameters are also redundant in some fashion that cannot

simply be seen by considering the field redefinitions. This is a question that could at

least be studied in terms of classical geometry: does the structure of the deformed bundle

actually depend on these parameters? It would be useful to study this point in detail.

5.3 The supersymmetry constraint

Another assumption made above is that the supersymmetry constraint imposes the correct

number of equations on the set of parameters. Could it be that the equations are some-

how not generic enough, and the number of constraints is not the expected number? We

believe not, and to illustrate the point, we will consider the parameters, redefinitions and

supersymmetry for a hypersurface in (P1)3 and its maximal mirror, which have

N(M) = 65, and N(M̃◦) = 59. (5.10)

Working with the original theory, the gauge charges are

Q =



−2 1 1 0 0 0 0

−2 0 0 1 1 0 0

−2 0 0 0 0 1 1


 . (5.11)

In this case the Eaρ =
∑

ρ′ E
aρρ′Z ′

ρ, and the field redefinitions consist of: GL(2, C)3 trans-

formations of the Zρ of like charges; GL(2, C)3 transformations of the Γρ of like charges; the

GL(3, C) rotations of the Σa; and, finally, rescalings of Γ0 and Z0. Of course, these should

be thought of modulo complexified gauge and U(1)L transformations. The latter allows

us to forget about the rescaling of Z0. We fix the remaining redefinitions in several steps.

First, we follow [9] and use some of the Zρ redefinitions to set to zero the coefficients of

monomials in P associated to lattice interior facet points of ∆. These monomials are just

Z2
1Z3Z4Z5Z6, Z2

2Z3Z4Z5Z6, Z1Z2Z
2
3Z5Z6,

Z1Z2Z
2
4Z5Z6, Z1Z2Z3Z4Z

2
5 , Z1Z2Z3Z4Z

2
6 . (5.12)

We use the remaining 3 non-gauge Zρ redefinitions and the rescaling of Γ0, to fix four of

the coefficients in P to 1:

P = Z2
1Z2

3Z2
5 + Z1Z2Z

2
3Z2

5 + Z1Z2Z
2
4Z2

5 + Z1Z2Z3Z4Z5Z6 + 17 more terms. (5.13)

To fix the Γρ rotations, we set some of the coefficients in Jρ to their (2, 2) values, taking,

J1 = 1 × Z2Z3Z4Z5Z6 + 0 × Z1Z3Z4Z5Z6 + . . . ,

J2 = 0 × Z2Z3Z4Z5Z6 + 1 × Z1Z3Z4Z5Z6 + . . . ,

(5.14)

and similarly for the pairs J3, J4 and J5, J6. Finally, we fix the Σa rotations by setting

Ea11, Ea22, and Ea33 to their (2,2) values.
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Having fixed all the redefinitions, we are left with 96 β parameters in J , 27 γ parameters

in Eaρ, and 3 δ parameters in Ea0. We collect these 126 parameters into a vector v. These

are subject to the supersymmetry constraint in eq. (4.8). Observe that the constraint takes

the general form Lv = M(v, v), where L is a linear operator that depends on the αm and

the charges, while M(w, v) is bilinear in its arguments. This form suggests that we look

for a perturbative solution,

v = tv1 + t2v2 + t3v3 + · · · . (5.15)

To first order in t, we just need a solution to the linear system Lv1 = 0. Thus, v1 is in the

kernel of L. To second order, we have Lv2 = M(v1, v1), which has a solution provided that

M(v1, v1) is in the image of L. Similarly, a solution to order k can be extended to order

k + 1 provided that
∑

a M(va, vk+1−a) is in the image of L.

Applying this to the example, we find that L : C
126 → C

81, and dim ker L = 45. Thus,

L is onto, and each element in ker L extends to a non-linear solution of the supersymmetry

constraint. So, at least in this example, the supersymmetry constraint system of equations

is generic enough. It is not hard to repeat the procedure in the mirror model. We will spare

the reader the details, but the final result is the same: the constraint eliminates exactly

the expected number of parameters. Since already in this example N(M) 6= N(M◦), the

supersymmetry constraint cannot by itself be the cause of the discrepancy.
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A (0,2) deformations of a toric GLSM

The main text has been devoted to the study of (0,2) deformations of linear sigma models

that are believed to flow to non-trivial IR fixed points. It is also interesting to consider

(0,2) deformations of massive theories, in which case the deformations are best of thought

of in terms of parameters of the associated half-twisted theory and its topological het-

erotic ring [29]—a deformation of the A-model topological theory. The simplest case of

this sort is a GLSM for a toric variety V . It is, in a sense, a simpler theory, having none of

the complications associated to the hypersurface and lacking any J-deformations; however,

precisely this simplicity is responsible for a number of subtleties in describing the param-

eter space. We will now explore these issues, elaborating and correcting the discussion

given in [22, 23].

We consider a V -model with a (0,2) Lagrangian constructed from the toric data for

a compact simplicial toric variety V . This theory depends on the Kähler parameters qa,
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as well as the E-parameters in D+Γρ = Eρ(Σ, Z). An important difference between the

V -model and the M -models studied above is the anomaly in the U(1)R/U(1)L symmetries.

The reader will have observed that in the M-model the U(1)R implies that the Eρ must

be linear in the Σ superfields. Since this symmetry is now broken by quantum effects, it is

not clear that the Eρ must remain linear in the Σs. We will not consider E-deformations

that are non-linear in the Σ, choosing to preserve the classical U(1)R symmetry.

A.1 Parameters and redefinitions

To discuss the V-model deformations and field redefinititions, it is convenient to split the

matter fields according to the gauge charges [22]:

{(Γρ, Zρ) | ρ ∈ ΣV (1)} → ∪k
α=1{(Γρα

(α), Z(α),ρα
) | ρα ∈ Iα}, (A.1)

such that any two fields belonging to the same set Iα have the same gauge charges Qa
(α).

7

The nα = |Iα| satisfy
∑

α nα = n. With this notation the most general Eρ takes the form

D+Γ(α) =

r∑

a=1

Σa{Ma
(α)Z(α) + Na

(α)(Z)}, (A.2)

where Ma
(α) is a field-independent nα×nα matrix, and Na

(α) is a column vector with entries

non-linear in the Zρ. The total number of parameters in the Ma
(α) and Na

(α) is r×dim ÃutV .

We will first V -models that do not allow non-linear terms in the Eρ. The field redefi-

nitions consistent with gauge invariance are

Γ(α) 7→ VαΓα, Zα 7→ UαZα, Σa 7→
r∑

b=1

ΣbG
b
a, (A.3)

where V(α) and U(α) are field-independent GL(nα, C) matrices, and G ∈ GL(r, C). These

act on the Ma
(α) by

Ma
(α) 7→

r∑

b=1

Ga
bV

−1
(α) M

b
(α)U(α). (A.4)

The redefinitions depend on 2 × dim ÃutV + r2 parameters; however, unlike in the M-

model, not all of these act effectively. This point was missed in an earlier analysis by two

of us [23]. First, the Eaρ set to their (2,2) values are left invariant by the (2,2) redefinitions

with U(α) = V(α). These redefinitions are just the complexification of the global symmetry

group
∏

α U(nα). Second, the (2,2) theory has a classical global U(1)L symmetry, which in a

product theory with a target space V1×· · ·×Vs is enhanced to [U(1)]s. Its complexification

also fixes the (2,2) locus. Putting this together, we expect that

N(V ) = r + r
∑

α

n2
α −

[
∑

α

n2
α + r2 − s

]

= r + (r − 1)
∑

α

n2
α − r2 + s. (A.5)

7If ΣV (1) does not generate the lattice N , so that the gauge group has an additional factor of a finite

discrete group H , the fields should be further split up according to representations of H .
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It is worthwhile to verify this by a more explicit analysis. Expanding to first order

around the (2,2) locus, it is clear that the redefinitions will fix the (2,2) locus provided that

r∑

b=1

δGa
bQ

b
(α)1(α) + (δU(α) − δV(α))Q

a
(α) = 0 for all a, α. (A.6)

This equation has solutions if and only if

δV(α) = δU(α) − δw(α)1(α) (A.7)

for some set of k constants δw(α) that satisfy

r∑

b=1

δGa
bQ

b
(α) = δw(α)Q

a
(α). (A.8)

When considered as an r× k matrix, Qa
(α) must have rank r. Suppose we arrange the Qa

(α)

so that Qa
(1), . . . , Q

a
(r) are linearly independent, while the rest can be expressed as

Qa
(µ) =

∑

b∈Rµ

τ b
µQa

(b), (A.9)

where Rµ ⊂ {1, . . . , r} such that τ b
µ 6= 0. Requiring that eq. (A.8) holds for α = 1, . . . , r

determines δGa
b in terms of the charges and the δw(a), while the remaining k− r equations

require δw(a) = δw(µ) for each a ∈ Rµ. The non-effective redefinitions are parametrized by

δU(α) and the δw(α) subject to the constraint just described. We conclude that a V-model

without non-linear E-parameters has at the linearized level

N(V ) = r︸︷︷︸
Kähler

+ r
∑

α

n2
α

︸ ︷︷ ︸
E

−
[
∑

α

n2
α + r2 − #δw

]

︸ ︷︷ ︸
effective redefinitions

. (A.10)

For each δw parameter in addition to the one associated to the overall U(1)L symmetry,

there must be a subset of matter fields charged under a subgroup G′ of the gauge group G

and neutral under G/G′. Thus, the (2,2) GLSM is actually a product theory with target

space a product of toric varieties, and each factor contains an independent U(1)L symmetry.

A δw parameter corresponds to a linearization of the complexified U(1)L rotation for the

factor. Thus, we reproduce the counting advertised above in eq. (A.5).

A.2 Non-linear E-deformations

Having described the situation where the Eρ are linear in the Zρ, we now turn to the more

general situation where Na
(α) are non-zero, and there are additional possible redefinitions

Γ(α) 7→ V(α)Γ(α) +
∑

β

V ′
(αβ)(Z)Γ(β), Z(α) 7→ U(α)Z(α) + U ′

(α)(Z). (A.11)

The (2,2) locus is fixed by transformations with V(α) = U(α) and

(V ′
(αβ))ραρβ

=
∂(U ′

(α))ρα

∂Zρβ

, (A.12)
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Figure 3. The polytope for F2.

as well as any R-symmetries. Thus, we expect that in any V-model GLSM with target

space V = V1 × · · · × Vs, the number of parameters is given by

N(V ) = r + (r − 1) dim ÃutV − r2 + s. (A.13)

A.3 Do non-linear parameters matter?

There is one more caveat that we should make. The preceding counting assumes that

the non-linear E-parameters do actually affect the A/2 half-twisted correlators. However,

at least as far as smooth theories are concerned, this is not entirely clear. For instance,

when we compute the correlators by summing over σ-vacua in a non-geometric phase, large

σ-vevs for a smooth V -model suppress any contributions from interactions involving the

Na
(α)(Z). Moreover, there are certainly models where the non-linear parameters do not

affect some crude features of the theory, such as the classical discriminant locus.

Let us elaborate on the last point in a simple example. We take V to be the Hirzebruch

surface F2, with polytope given in figure 3. The charges in this case are

Q =

(
1 1 1 −1

1 1 0 −2

)
, (A.14)

and the most general Eaρ is given by

Eaρ =

(
α1Z1 + β1Z2 δ1Z1 + ǫ1Z2 c1Z3 + fZ4 d1Z4

α2Z1 + β2Z2 δ2Z1 + ǫ2Z2 c2Z3 + gZ4 d2Z4

)
,

where f and g are degree two homogeneous functions of Z1, Z2. In the smooth phase of the

GLSM the excluded set is FΣ = {Z1 = Z2 = 0} ∪ {Z3 = Z4 = 0}. In general, the matrix

E defines a sheaf E over the toric variety V via the exact sequence

0 // Or E
// ⊕ρO(Dρ) // E // 0 . (A.15)

Away from the discriminant locus E is a rank 2 bundle, and with parameters set to their

(2,2) values, the bundle is just TV . To compute the classical discriminant locus, we can

study the conditions under which for some Z 6∈ FΣ the rank of Eaρ becomes less than 2.
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This is a straightforward computation, and the result is that the rank drops to 1 at some

point in V if and only if the parameters satisfy D1 = 0 or D2 = 0, with

D1 = c2
2∆11 − 2c1c2∆12 + c2

1∆22,

D2 = d2
2∆11 − 2d1d2∆12 + d2

1∆22, (A.16)

where

∆11 = α1ǫ1 − β1δ1,

2∆12 = α1ǫ2 − β1δ2 + α2ǫ1 − β2δ1,

∆22 = α2ǫ2 − β2δ2. (A.17)

As promised, D1 and D2 do not depend on the parameters in f and g. The non-linear

parameters do affect the set of points in V where the rank jumps. Namely, if D2 = 0 and

c1d2 − c2d1 = 0 (these two conditions also imply D1 = 0), if the non-linear parameters are

non-zero the rank continues to jump at points, while if they are set to zero, the rank jumps

on a curve.

While admittedly crude, this suggests that the non-linear deformations do not affect

the properties of the V-model away from the singularities. This should be contrasted with

the M -model, where the interplay between the E- and J- parameters via the supersymmetry

constraint should give the non-linear E-parameters a more significant role to play.
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