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Abstract

We present a characterization of the asymptotics of all asymptot-
ically flat stationary vacuum solutions of Einstein’s field equations.
This characterization is given in terms of two sequences of symmetric
trace free tensors (we call them the ‘null data’), which determine a
formal expansion of the solution, and which are in a one to one corre-
spondence to Hansen’s multipoles. We obtain necessary and sufficient
growth estimates on the null data to define an absolutely convergent
series in a neighbourhood of spatial infinity. This provides a complete
characterization of all asymptotically flat stationary vacuum solutions
to the field equations.

1 Introduction

A stationary vacuum spacetime is given by (M̃, g̃µν , ξ
µ), where M̃ is a four-

dimensional manifold, g̃µν is a Lorentzian metric with signature (+ − −−)
that satisfy Einstein’s vacuum equations (i.e. Ric[g̃] = 0), and ξµ is a time-
like Killing vector field with complete orbits. The metric can be written
locally as

g̃ = V (dt+ γadx̃
a)2 + V −1h̃abdx̃

adx̃b, a, b = 1, 2, 3, (1)

where V , γa and h̃ab depend only on the spatial coordinates x̃a. As shown
by Geroch [9] the description of this spacetime can be done in terms of fields
defined in an abstract three-dimensional manifold Ñ defined as the quotient
space of M̃ with respect to the trajectories of ξµ. The fields V , γa, h̃ab on M̃
can be obtained as pull-backs of fields on Ñ under the projection map. The
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latter will be denoted by the same symbols, being h̃ab the negative definite
metric on Ñ . In the following we shall only work on Ñ .
The vacuum Einstein’s field equations in M̃ imply that on Ñ the quantity

ωa = −V 2ǫ̃abcD̃
bγc

is curl-free, i.e.
D̃[aωb] = 0,

where D̃ is the covatiant derivative with respect to h̃ab and ǫ̃abc = ǫ̃[abc], ǫ̃123 =

| det h̃ab|
1

2 . We are interested in the asymptotics of the space-time at spatial
infinity, so it will be assumed that Ñ is diffeomorphic to the complement of a
closed ball B̄R(0) in R3. Thus Ñ is simply connected and hence there exists
a scalar field ω such that

D̃aω = ωa.

Instead of working with V and ω it is convenient to use the combinations

φ̃M =
V 2 + ω2 − 1

4V
,

φ̃S =
ω

2V
,

introduced by Hansen [10]. Einstein’s vacuum field equations in this setting
are equivalent to

∆h̃φ̃A = 2R[h̃]φ̃A, A = M, S, (2)

Rab[h̃] = 2[(D̃aφ̃M)(D̃bφ̃M) + (D̃aφ̃S)(D̃bφ̃S) − (D̃aφ̃K)(D̃bφ̃K)], (3)

where φ̃K =
(

1
4

+ φ̃2
M + φ̃2

S

)
1

2

. Equations (2), (3) will be referred to as the

stationary vacuum field equations. Having (M̃, g̃µν , ξ
µ) is equivalent to having

(Ñ , h̃ab, φ̃M , φ̃S). We are looking for solutions of (2) and (3).
The asymptotic flatness condition is usually stated by assuming (Ñ , h̃ab)
to admit a smooth conformal extension in the following way: there exist a
smooth Riemannian manifold (N, hab) and a function Ω ∈ C2(N) ∩ C∞(Ñ)
such that N = Ñ ∪ {i}, where i is a single point,

Ω > 0 on Ñ,

hab = Ω2h̃ab on Ñ ,

Ω|i = 0, DaΩ|i = 0, DaDbΩ|i = 2hab|i, (4)

where D is the covariant derivative operator defined by h. This makes N
diffeomorphic to an open ball in R3, with center at the point i, which rep-
resents space-like infinity. From now on we assume Ñ to be asymptotically
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flat in the stated sense.
Considering that Ñ is diffeomorphic to the complement of a closed ball B̄R(0)
in R

3 is natural in the present context. It corresponds to the idea of an iso-
lated system, where the material sources are confined to a bounded region
outside of which is vacuum. Lichnerowicz [13] has shown that if Ñ is diffeo-
morphic to R3 then Ñ is flat.
Reula [14] has shown existence and uniqueness of asymptotically flat solutions
to (2), (3), in terms of a boundary value problem, when data are prescribed
on the sphere ∂Ñ .
In order to be able to control the precise asymptotic behaviour of the space-
time it would be convenient to have a complete description of the asymp-
totically flat stationary vacuum solutions in terms of asymptotic quantities.
Candidates for this task are Hansen’s multipoles [10]. With the previous
assumptions Hansen proposes a definition of multipoles, which extends Ge-
roch’s definition of multipoles for asymptotically flat static space-times [8] to
the stationary case. He defines the conformal potentials

φA = Ω− 1

2 φ̃A, A = M, S, (5)

and two sequences of tensor fields near i through

PA = φA, P
A
a = DaP

A, PA
a2a1

= C
(

Da2
PA

a1
− 1

2
PARa2a1

)

, (6)

PA
as+1...a1

= C
[

Das+1
PA

as...a1
− 1

2
s(2s− 1)PA

as+1...a3
Ra2a1

]

, A = M, S, (7)

where Rab is the Ricci tensor of hab and C is the projector onto the symmetric
trace free part of the respective tensor fields. The multipole moments are
then defined as the tensors

νA = PA(i), νA
ap...a1

= PA
ap...a1

(i), A = M, S, p = 1, 2, 3, ... (8)

Keeping aside the monopoles, νA, we will denote the two sequences of re-
maining multipoles by

DA
mp = {νA

a1
, νA

a2a1
, νA

a3a2a1
, ...}, A = M, S.

The multipole moments are proposed as a way to characterize solutions of
(2), (3). So a natural question is to what extent do the multipoles determine
the metric h and the potentials φM , φS. For this to be the case the metric
and the potentials should be real analytic even at i in suitable coordinates
and conformal rescaling. Beig and Simon [3] and Kundu [12] have shown that
the metric and the potentials do extend in a suitable gauge as real analytic
fields to i if it is assumed that

(νM)2 + (νS)2 6= 0.
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As explained in [15] (cf. also [4]), in order for a solution of (2), (3) to lead
to an asymptotically flat space-time M̃ it is necessary that νS = 0. So, we
assume from now on that

νM 6= 0, νS = 0. (9)

In [3] and [12] it is also shown that for given multipoles there is a unique
formal expansion of a ‘formal solution’ to the stationary field equations, but
it is not touched upon the convergence of the expansion.
Bäckdahl and Herberthson [2] have found, assuming a given asymptotically
flat solution of the stationary field equations, necessary bounds on the mul-
tipoles.
The question that remains open is under which conditions a pair of sequences,
taken as the multipoles, do indeed determine a convergent expansion of a sta-
tionary solution. This question has been studied for the axisymmetric case
by Bäckdahl [1]. In the static case, where there is only one sequence of
multipoles, Friedrich [7] has used as data a sequence of trace-free symmetric
tensors, different but related to the multipoles. He has shown that imposing
certain types of estimates on the data he prescribes is necessary and sufficient
for the existence of asymptotically flat static space-times. However, so far
the question for the general case has never been answered.
The purpose of this work is to derive, under the assumption (9), necessary
and sufficient conditions for certain minimal sets of asymptotic data, differ-
ent to the multipoles, denoted collectively by Dφ

n, DS
n , and referred to as null

data, to determine (unique) real analytic solutions of (2) and (3) and thus
to provide a complete characterization of all possible asymptotically flat so-
lutions to the stationary vacuum field equations.
In the following we shall work in terms of the conformally rescalled fields,
the conformal factor will be specified in more detail later on.
For the same reasons that justify Ñ to be considered diffeomorphic to the
complement of a closed ball in R3, we shall treat the case in which N may
comprise a small neighbourhood of the point i, without worring about the
behaviour of the solution in the large (note that in terms of h̃ a neighbour-
hood of i cover an infinite domain extending to space-like infinity). This
work generalizes the work by Friedrich [7] from the static to the stationary
case in a way discussed later on this section.
The multipoles are defined for any conformal gauge, but for our analysis it
is convenient to remove the conformal gauge freedom and use, following Beig
and Simon [3],

Ω =
1

2
m−2

[

(

1 + 4φ̃2
M + 4φ̃2

S

)
1

2 − 1

]

. (10)
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With this conformal factor they derive fall-off conditions and then show that
under some assumptions the rescaled metric can be extended on a suitable
neighbourhood of space-like infinity and in suitable coordinates as a real
analytic metric at i. The potentials φM and φS are then also real analytic at
i, so that the multipoles are well defined. Using this gauge, and taking into
account that the angular momentum monopole vanish, we get

νM = m, νM
a = 0.

Instead of using the multipoles sequences, it will be convenient for our anal-
ysis to use, in the given gauge, the following two sequences

Dφ
n = {C(Da1

φ)(i), C(Da2
Da1

φ)(i), C(Da3
Da2

Da1
φ)(i), ...},

DS
n = {Sa2a1

(i), C(Da3
Sa2a1

)(i), C(Da4
Da3

Sa2a1
)(i), ...}, (11)

where φ = φS and Sab is the trace free part of the Ricci tensor of h.
We express now the tensors in Dφ

n,DS
n in terms of an h-orthonormal frame

field ca, a = 1, 2, 3, near i, which is h-parallelly propagated along the geodesics
through i, denoting by Da the covariant derivative in the direction of ca, and
write

Dφ∗
n = {C(Da1

φ)(i), C(Da2
Da1

φ)(i), C(Da3
Da2

Da1
φ)(i), ...}, (12)

DS∗
n = {Sa2a1

(i), C(Da3
Sa2a1

)(i), C(Da4
Da3

Sa2a1
)(i), ...}. (13)

These tensors are defined uniquely up to rigid rotations in R3. These two
series will be referrred to as the null data of h in the frame ca.
For a real analytic metric h near i there exist constants M, r > 0 such that
the components of these tensors satisfy the estimates

|C(Dap
...Da1

φ)(i)| ≤ Mp!

rp
, ap, ..., a1 = 1, 2, 3, p = 0, 1, 2, ...,

|C(Dap
...Da1

Sbc)(i)| ≤
Mp!

rp
, ap, ..., a1,b, c = 1, 2, 3, p = 0, 1, 2, .... (14)

Althoug these estimates have similar form to Cauchy estimates they are not
the same, the difference being that here the estimates are on the symmetric
trace free part of the derivatives instead of being directly on the derivatives.
These estimates are derived from Cauchy estimates in Section 3. Remark-
ably, the converse is also true. This consitutes our main result, given in the
following theorem.
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Theorem 1.1. Suppose m 6= 0 and

D̂φ
n = {ψa1

, ψa2a1
, ψa3a2a1

, ...}, (15)

D̂S
n = {Ψa2a1

,Ψa3a2a1
,Ψa4a3a2a1

, ...}, (16)

are two infinite sequences of symmetric, trace free tensors given in an or-
thonormal frame at the origin of a 3-dimensional Euclidean space. If there
exist constants M, r > 0 such that the components of these tensors satisfy
the estimates

|ψap...a2a1
| ≤ Mp!

rp
, ap, ..., a1 = 1, 2, 3, p = 1, 2, ...,

|Ψap...a2a1bc| ≤
Mp!

rp
, ap, ..., a1,b, c = 1, 2, 3, p = 0, 1, 2, ...,

then there exists an analytic, asymptotically flat, stationary vacuum solution
(h̃, φ̃M , φ̃S) with mass monopole m and zero angular momentum monopole,
unique up to isometries, so that the null data implied by h = 1

4
m−4[(1 +

4φ̃2
M + 4φ̃2

S)
1

2 − 1]2h̃ and φS = 2
1

2m[(1 + 4φ̃2
M + 4φ̃2

S)
1

2 − 1]−
1

2 φ̃S in a suitable
frame ca as described above satisfy

C(Daq
...Da1

φS)(i) = ψaq...a1
, aq, ..., a1 = 1, 2, 3, q = 1, 2, ...,

C(Daq
...Da3

Sa2a1
)(i) = Ψaq...a1

, aq, ..., a1 = 1, 2, 3, q = 2, 3, ....

Two sequences of data of the form (15), (16), not necessarily satisfying
any estimates, will be referred to as abstract null data.
The type of estimates imposed here on the abstract null data does not depend
on the orthonormal frame in which they are given. Since these estimates are
necessary as well as sufficient, all possible asymptotically flat solutions of the
stationary vacuum field equations are characterized by the null data.
In relation with the works of Corvino and Schoen [6] and Chruściel and De-
lay [5], as they need a family of asymptotically flat stationary solutions to
perform the gluing procedure, this result gives a complete survey of the pos-
sible stationary asymptotics that can be attained, beyond the known exact
solutions.
As both the multipoles and the null data determine the metric and the po-
tentials then there is a bijective map between them. Thus the sets Dφ

n, DS
n

and DM
mp, DS

mp contain the same information. We prefer to work with the
null data because the expressions are linear in φ and Sab.
This work contains the static case as a special case. Starting from (1) the
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static case can be attained by making γa = 0, which gives ω = 0, φ̃S = 0
and φS = 0. This implies that all tensors in Dφ

n are zero. Conversely, if all
tensors in Dφ

n are zero then all tensors in DS
mp are zero and by Xanthopoulos’

work [16] the space-time is static. So we are left with DS
n as the free data in

the static case.
Friedrich [7] has given the same result for the static case using a different
conformal metric. Let us assume for now that we are in the static case, then
Friedrich uses a metric h̆, wich is conformally related to our metric h by

h̆ = Ω̆2h, (17)

where

Ω̆ =
4
[

(1 +m2Ω)
1

2 +mΩ
1

2

]

[

(1 +m2Ω)
1

2 +mΩ
1

2 + 1
]2 .

Using h̆ he defines a sequence of symmetric trace-free tensors D̆n in the same
way as we defined DS

n (11). He shows that impossing estimates of the type
(14) on the tensors in D̆n is necessary and sufficient for the existence of an
asymptotically flat static vacuum solution of the Einstein’s equations. To see
that this result is equivalent to our result in the static case, we have to show
that having estimates of the type (14) on the tensors in DS

n imply estimates
of the same type on the tensors in D̆n and vice versa. This is done through
the theorem 1.1 and the relation (17). If the tensors in DS

n satisfy estimates
of the type (14) then there exist h and Ω analytic, and then h̆ given by (17)
is also analytic, thus the tensors in D̆n satisfy estimates of the type (14),
the converse is shown in the same way using Friedrich’s result. Hence this
work generalizes the work by Friedrich [7] from the static to the stationary
case. The procedure that we use in the present work follows similar steps
and several of the technics in [7] will be used. For completeness we include
them.
Theorem 1.1 will be proven in terms of the conformal metric h. Thus we
shall express in Section 2 the stationary vacuum field equations as ‘conformal
stationary vacuum field equations’. In Section 3 we show, by going to space-
spinor formalism, that the abstract null data indeed determine the expansion
coefficients of a formal expansion of a solution to the conformal stationary
vacuum field equations. Showing convergence in this way appears difficult,
and for this reason the problem is cast in a certain setting, which is necessarily
singular at a certain subset of the manifold, as a characteristic initial value
problem in Section 4. In Section 5 it is shown how to determine a formal
solution to a subset of the confomal field equations from a given set of abstract
null data. Then, in Section 6, the convegence of the obtained series is shown.
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In Section 7 it is shown that the obtained solution satisfy the full set of
conformal field equations. Finally, in Section 8, the convergence result is
translated into a gauge which is regular near i, allowing us to prove Theorem
1.1.

2 The stationary field equations in the con-

formal setting

The existence problem will be analyzed completely in terms of the confor-
mally rescaled metric h, so we need to express the stationary field equations
in terms of the conformal fields. If we directly transform the fields in (2)
and (3) we arrive at a system of equations that is singular at i. To overcome
this problem we follow the work of Beig and Simon [3]. Using (10) as the
conformal factor, where by a constant conformal rescaling it can allways be
achieved m = 1 and for simplicity we use this scale from now, and standard
formulae for conformal transformations they manipulate the stationary field
equations, arriving at the following equivalent system of equations:

Ω := φ2
M + φ2

S − 1, (18)

πab := DaφMDbφM +DaφSDbφS, (19)

∆φA = −1

2

[

R − 5

2
DaΩD

aΩ + 10(1 + Ω)πa
a

]

φA, A=M,S,

DaDbΩ = −ΩRab −
1

3
habR +

(

Ω +
2

3

)

habDcΩD
cΩ

−4

(

Ω +
2

3

)

(Ω + 1)habπc
c − 1

2
(Ω − 1)DaΩDbΩ + 2Ω2πab,

DaR = 7DbΩDaDbΩ + 3RabD
bΩ + 4(3Ω − 2)πb

bDaΩ

−3

2
DbΩD

bΩDaΩ − 6ΩπabD
bΩ − 2(7Ω + 4)Daπb

b,

D[cRb]a = 2(3Ω − 1)πd
dha[bDc]Ω − ha[bDc]ΩDdΩD

dΩ

−2(Ω − 1)ha[bπc]dD
dΩ − 2(2Ω + 1)ha[bDc]πd

d

+2ha[bDc]DdΩD
dΩ +

1

2
D[cΩDb]DaΩ − (Ω − 4)πa[bDc]Ω

+2ΩD[cπb]a +
1

2
Ra[bDc]Ω + ha[bRc]dD

dΩ.
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These equations are regular even at i. They form a quasi-linear, overde-
termined system of PDE’s which implies, by applying formal derivatives to
some of the equations, elliptic equations for all unknowns in a suitable gauge.
Considering the fall-off conditions on the fields Beig and Simon [3] deduced
a certain smoothness of the conformal fields at i. Invoking a general theorem
of Morrey on elliptic systems of this type they concluded that the solutions
are in fact real analytic at i. Later Kennefick and O’Murchadha [11] showed
that the fall-off conditions are reasonable, as they are implied by the space-
time being asymptotically flat. To avoid introducing additional constraints
by taking derivatives, we shall deal with the system as it is.
For our pourposes it is convenient to make some changes to this system. We
separate the Ricci tensor into its trace free part and the Ricci scalar,

Rab = Sab +
1

3
habR.

We also get rid of πab by using (19) in the other equations. From (18) we see
that Ω, φM and φS are not independent, we use this equation to get rid of
φM in the other equations. With these changes and the change of notation
φS → φ the system of equations takes the form

∆φ = −φ
{

1

2
R +

5

1 + Ω − φ2

[

1

4
φ2DaΩDaΩ (20)

− (1 + Ω)φDaΩDaφ+ (1 + Ω)2DaφDaφ
]}

,

DaDbΩ = −ΩSab −
1

3
(1 + Ω)habR (21)

+
1

1 + Ω − φ2

{

1

2

[

1 + (−1 + Ω)φ2
]

DaΩDbΩ

−1

3
(2 + 3Ω)φ2habD

cΩDcΩ − 2Ω2φD(aΩDb)φ

+
4

3
(1 + Ω)(2 + 3Ω)φhabD

cΩDcφ+ 2Ω2(1 + Ω)DaφDbφ

−4

3
(1 + Ω)2(2 + 3Ω)habD

cφDcφ

}

,
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DaR (22)

=
1

1 + Ω − φ2

{

2(4 + 7Ω)φDbΩDbDaφ− 4(1 + Ω)(4 + 7Ω)DbφDbDaφ

+
[

3 + (−3 + 7Ω)φ2
]

DbΩSba − 2Ω(4 + 7Ω)φDbφSba

+
1

3
(4 + 7Ω)φ2RDaΩ − 2

3
(1 + Ω)(4 + 7Ω)φRDaφ

}

+
1

3(1 + Ω − φ2)2

{

1

2
φ2

[

−12 + (40 + 21Ω)φ2
]

DbΩDbΩDaΩ

−2φ
[

−18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2
]

DbΩDbφDaΩ

+2(1 + Ω)
[

−24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2
]

DbφDbφDaΩ

−φ
[

12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2
]

DbΩDbΩDaφ

+4(1 + Ω)
[

6(1 + Ω) + (22 + 61Ω + 21Ω2)φ2
]

DbΩDbφDaφ

− 4(1 + Ω)2(28 + 61Ω + 21Ω2)φDbφDbφDaφ
}

,

D[cSb]a =
1

1 + Ω − φ2

{

ΩφDaD[bφDc]Ω − 2Ω(1 + Ω)DaD[bφDc]φ (23)

−2

3
(1 + Ω)φha[bDc]DdφD

dΩ +
4

3
(1 + Ω)2ha[bDc]DdφD

dφ

+
1

2
[1 + (−1 + Ω)φ2]Sa[bDc]Ω − Ω2φSa[bDc]φ

−1

3
Ωφ2ha[bSc]dD

dΩ +
2

3
Ω(1 + Ω)φha[bSc]dD

dφ

+
1

18
(−2 + Ω)φ2Rha[bDc]Ω − 1

9
(−2 + Ω)(1 + Ω)φRha[bDc]φ

+2φDaΩD[bΩDc]φ− 4(1 + Ω)DaφD[bΩDc]φ
}

+
1

9(1 + Ω − φ2)2

{

1

2
φ2[3 + 2(−5 + 3Ω)φ2]ha[bDc]ΩD

dΩDdΩ

−φ[6(1 + Ω) + (−13 − 4Ω + 6Ω2)φ2]ha[bDc]φD
dΩDdΩ

−2(−7 − 4Ω + 6Ω2)φ3ha[bDc]ΩD
dΩDdφ

+4(1 + Ω)2[3 + 2(−5 + 3Ω)φ2]ha[bDc]φD
dΩDdφ

+2(1 + Ω)[−3(1 + Ω) + (−4 − 4Ω + 6Ω2)φ2]ha[bDc]ΩD
dφDdφ

− 4(1 + Ω)2(−7 − 4Ω + 6Ω2)φha[bDc]φD
dφDdφ

}

.

Besides (20), (21), (22), (23) we need an equation for the metric or for the
frame field and the connection coefficients. This equation is

Rab[h] = Sab +
1

3
habR, (24)
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where the expression on the left hand side is understood as the Ricci operator
acting on the metric h.
The system of equations (24),(20),(21),(22),(23), together with conditions
(4), which imply

R|i = − (6 + 8DaφDaφ) |i, (25)

will be referred to as the conformal stationary vacuum field equations for the
unknown fields

hab, φ, Ω, R, Sab. (26)

3 The exact sets of equations argument

To see that it is possible to construct solutions to the conformal stationary
vacuum field equations from the null data we study expansions of the con-
formal fields (26) in normal coordinates.
We assume from now on N to be small enough to coincide with a convex
h-normal neighbourhood of i. Let ca, a = 1, 2, 3, be an h-orthonormal frame
field on N which is parallelly transported along the h-geodesics through i and
let xa denote normal coordinates centered at i so that cb a ≡ 〈dxb, ca〉 = δb

a

at i. We refer to such a frame as normal frame centered at i. Its dual frame
will be denoted by χc = χc

bdx
b. In the following all tensor fields, except

the frame field ca and the coframe field χc, will be expressed in terms of this
frame field, so that the metric is given by hab ≡ h(ca, cb) = −δab. With
Da ≡ Dca denoting the covariant derivative in the ca direction, the connec-
tion coefficients with respect to ca are defined by Dacc = Γa

b
ccb.

An analytic tensor field Ta1...ak
on N has in the normal coordinates xa a

normal expansion at i, which can be written

Ta1...ak
(x) =

∑

p≥0

1

p!
xcp...xc1Dcp

...Dc1
Ta1...ak

(i), (27)

where we assume from now on that the summation convention does not
distinguish between bold face and other indices.
Since hab = −δab it remains to be seen how to obtain normal expansions for

φ, Ω, R, Sab, (28)

using the field equations and the null data.
The algebra simplifies considerably in the space-spinor formalism. To do the
transition we introduce the constant van der Waerden symbols αAB

a, α
a

AB,
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a = 1, 2, 3, A,B = 0, 1, which are symmetric in AB and whose components,
if readed as matrices, are

αAB
1 = 1√

2

(

−1 0
0 1

)

, αAB
2 = 1√

2

(

−i 0
0 −i

)

, αAB
3 = 1√

2

(

0 1
1 0

)

,

α1
AB = 1√

2

(

−1 0
0 1

)

, α2
AB = 1√

2

(

i 0
0 i

)

, α3
AB = 1√

2

(

0 1
1 0

)

.

The relation between tensors given in the frame ca and space-spinors is made
by T a1...ap

b1...bq
→ TA1B1...ApBp

C1D1...CqDq
, where

TA1B1...ApBp
C1D1...CqDq

= T a1...ap
b1...bq

αA1B1
a1
...αbq

CqDq
.

With the summation rule also applying to capital indices we get

δb
a = αb

ABα
AB

a, −δabα
a

ABα
b

CD = −ǫA(CǫD)B ≡ hABCD,

a, b = 1, 2, 3, A,B, C,D = 0, 1,

where the constant ǫ-spinor satisfies ǫAB = −ǫBA, ǫ01 = 1. It is used to
move indices according to the rules ιB = ιAǫAB, ιA = ǫABιB, so that ǫA

B

corresponds to the Kronecker delta.
As the spinors are in general complex, we need a way to sort out those that
arise from real tensors. For this we define

τAA′

= ǫ0
Aǫ0

A′

+ ǫ1
Aǫ1

A′

.

Primed indices take values 0, 1 and the summation rule also applies to them.
A bar denotes complex conjugation and indices acquire a prime under com-
plex conjugation, an exception being ǫA′B′ , the complex conjugate of ǫAB.
We define

ξ+
A...H = τA

A′

..τH
H′

ξ̄A′...H′.

Then a space spinor field TA1B1...ApBp
= T(A1B1)...(ApBp) arises from a real

tensor field Ta1...ap
if and only if

TA1B1...ApBp
= (−1)pT+

A1B1...ApBp
. (29)

Any spinor field TA...H admits a decomposition into products of totally sym-
metric spinor fields and epsilon spinors which can be written schematically
in the form

TA...H = T(A...H) +
∑

ǫ′s × symmetrized contractions of T. (30)

12



It will be important that if TA1B1...ApBp
arises from Ta1...ap

then

T(A1B1...ApBp) = C(Ta1...ap
)αa1

A1B1
...αap

ApBp
.

To discuss vector analysis in terms of spinors, a complex frame field and its
dual 1-form field are defined by

cAB = αa
ABca, χ

AB = αAB
aχ

a,

so that h(cAB, cCD) = hABCD. From this one sees that c00 and c11 are null
vectors orthogonal to c01. The derivative of a function f in the direction of
cAB is denoted by cAB(f) = f,ac

a
AB and the spinor connection coefficients

are defined by

ΓAB
C

D = 1
2
Γa

b
cα

a
ABα

CH
bα

c
DH , ΓABCD = Γ(AB)(CD),

then the covariant derivative of a spinor field ιA is given by

DABι
C = cAB(ιC) + ΓAB

C
Bι

B.

If it is required to satisfy the Leibniz rule with respect to tensor products,
then covariant derivatives in the ca-frame formalism translate under contrac-
tions with the van de Waerden symbols into spinor covariant derivatives and
vice versa. We also have

(DCDDEF −DEFDCD)ιA = RA
BCDEF ι

B , (31)

RABCDEF = 1
2

[(

SABCE − 1
6
RhABCE

)

ǫDF +
(

SABDF − 1
6
RhABDF

)

ǫCE

]

,
(32)

where R is the Ricci scalar of h and SABCD = Sabα
a
ABα

b
CD = S(ABCD) repre-

sents the trace free part of the Ricci tensor of h.
Equations (20), (23) take in the space-spinor formalism the form

DP
BDAPφ = −1

4
ǫABφ

(

R +
10

1 + Ω − φ2

[

1

4
φ2DPQΩDPQΩ (33)

− (1 + Ω)φDPQΩDPQφ+ (1 + Ω)2DPQφD
PQφ

])

,

13



DP
ASBCDP (34)

=
1

1 + Ω − φ2

{

ΩφDA
PΩD(BCDD)Pφ− 2Ω(1 + Ω)DA

PφD(BCDD)Pφ

+(1 + Ω)φDPQΩD(BCD
PQφǫD)A − 2(1 + Ω)2DPQφD(BCD

PQφǫD)A

+
1

2

[

1 + (−1 + Ω)φ2
]

DA
PΩSPBCD − Ω2φDA

PφSPBCD

+
1

2
Ωφ2DPQΩSPQ(BCǫD)A − Ω(1 + Ω)φDPQφSPQ(BCǫD)A

+
1

6
(1 + Ω)φ2RD(BCΩǫD)A − 1

3
(1 + Ω)2φRD(BCφǫD)A

+2φ
(

DA
PφDP (BΩDCD)Ω −DA

P ΩDP (BΩDCD)φ
)

+4 (1 + Ω)
(

DA
P ΩDP (BφDCD)φ−DA

PφDP (BφDCD)Ω
)

}

+
1

(1 + Ω − φ2)2

{

1

24
φ2

[

−6 + (20 + 3Ω)φ2
]

DPQΩDPQΩD(BCΩǫD)A

−1

6
(14 + 23Ω + 3Ω2)φ3DPQΩDPQφD(BCΩǫD)A

+
1

6
(1 + Ω)

[

6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2
]

DPQφDPQφD(BCΩǫD)A

− 1

12
φ

[

−12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2
]

DPQΩDPQΩD(BCφǫD)A

+
1

3
(1 + Ω)2

[

−6 + (20 + 3Ω)φ2
]

DPQΩDPQφD(BCφǫD)A

−1

3
(1 + Ω)2

(

14 + 23Ω + 3Ω2
)

φDPQφDPQφD(BCφǫD)A

}

.

Equations (21), (22) are translated into the space-spinor formalism by making
the index replacements a→ AB, b → CD, c→ EF .
We use equations (33), (34), the spinor version of equations (21), (22) and
the theory of ‘exact sets of fields’ to prove the next result.

Lemma 3.1. Let there be two given sequences

D̂φ
n = {ψA1B1

, ψA2B2A1B1
, ψA3B3A2B2A1B1

, ...},
D̂S

n = {ΨA2B2A1B1
,ΨA3B3A2B2A1B1

,ΨA4B4A3B3A2B2A1B1
, ...},

of totally symmetric spinors satisfying the reality condition (29). Assume
that there exists a solution h, φ, Ω, R, SABCD to the conformal stationary
field equations (24),(20),(21),(22),(23) satisfying (4),(25) so that the spinors
given by D̂φ

n, D̂S
n coincide with the null data Dφ∗

n ,DS∗
n given by (12), (13) of

the metric h in terms of an h-orthonormal normal frame centered at i, i.e.,

ψApBp...A1B1
= D(ApBp

...DA1B1)φ(i), p ≥ 1, (35)

14



ΨApBp...A1B1
= D(ApBp

...DA3B3
SA2B2A1B1)(i), p ≥ 2. (36)

Then the coefficients of the normal expansions (27) of the fields (28),

DApBp
...DA1B1

φ, DApBp
...DA1B1

Ω, DApBp
...DA1B1

R,

DApBp
...DA1B1

SABCD(i), p ≥ 0,

are uniquely determined by the data D̂φ
n, D̂S

n and satisfy the reality conditions.

Proof. It holds φ(i) = 0, DABφ(i) = ψAB and SABCD(i) = ΨABCD by as-
sumption and the expansion coefficients for Ω and R of lowest order are
given by (4) and (25). Assume the expansion coefficients of φ and Ω up to
order p and the expansion coefficients of R and SABCD up to order p− 1 are
known.
To discuss the induction step we start with DAp+1Bp+1

...DA1B1
φ(i) and its de-

composition in the form (30). By assumption, the totally symmetric part of
it is given by ψAp+1Bp+1...A1B1

. The other terms in the decomposition contain
contractions. Let’s consider Ai contracted with Aj . We can commute the
operators DAiBi

and DAjBj
with other covariant derivatives, generating by

(31) and (32) only terms of lower order, until we have

DAp+1Bp+1
...DAi+1Bi+1

DAi−1Bi−1
...DAj+1Bj+1

DAj−1Bj−1
...DA1B1

DP
Bi
DPBj

φ(i).

Equation (33) then shows how to express the resulting term by quantities of
lower order that are already known.
For DAp+1Bp+1

...DA1B1
Ω(i) and DApBp

...DA1B1
R(i) we just use the spinor ver-

sions of (21) and (22) to express them by quantities of lower order.
Finally, dealing with DApBp

...DA1B1
SCDEF (i) is quite similar to

DAp+1Bp+1
...DA1B1

φ(i). The symmetric term is known by the data. If a con-
traction is performed between a derivative index and one of C,D,E, F then
(34) is used after interchanging derivatives. If the contraction is between two
derivatives, the general identities

DH(AD
H

B)SSDEF = −2SH(CDESF )
H

AB + 1
3
RSH(CDEhF )

H
AB,

DABD
ABSCDEF = −2DF

GDG
HSCDEH + 3SGH(CDSE)F

GH + 1
2
RSCDEF ,

implied by (31), (32), together with (34) show that the corresponding term
can be expressed in terms of quantities of lower order. The induction step is
completed.
That the expansion coefficients satisfy the reality condition is a consequence
of the formalism and the fact that they are satisfyed by the data.
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In order to show the convergence of the formal series determined in the
previous Lemma we need to impose estimates on the free coefficients given
by D̂φ

n, D̂S
n . For this we have the following result.

Lemma 3.2. A necessary condition for the formal series determined in
Lemma 3.1 to be absolutely convergent near the origin is that the data given
by D̂φ

n, D̂S
n satisfy estimates of the type

|ψApBp...A1B1
| ≤ p!M

rp
, p = 1, 2, 3, ..., (37)

|ΨApBp...A1B1CDEF | ≤
p!M

rp
, p = 0, 1, 2, ..., (38)

with some constants M, r > 0.

We skip the proof of this lemma because it uses the same argument as
the proof of Lemma 3.2 in [7].
Lemma 3.1 shows that the null data determines a formal solution to the
stationary field equations. As shown by Beig and Simon [3], the multipole
moments do the same. Thus there is a bijective map Θ from the null data to
the multipoles sequences, Θ : {Dφ

n,DS
n} → {DM

mp,DS
mp}. Instead of using this

argument, we can try to gain more information on the relation starting from
(6), (7). It is convenient to work in space-spinor form, that means that we are
using the h-orthonormal frame and normal coordinates previously defined.
We get the following result.

Lemma 3.3. The spinor fields PM
ApBp...A1B1

, P S
ApBp...A1B1

, near i, given by (6),
(7), are of the form

PM
ApBp...A1B1

(39)

= −1

2

(

1 + Ω − φ2
)− 1

2
(

1 + 2Ω − φ2
)

D(ApBp
...DA3B3

SA2B2A1B1)

−
(

1 + Ω − φ2
)− 1

2 φD(ApBp
...DA1B1)φ

+
(

1 + Ω − φ2
)− 3

2 φ
(

p− 2Ω2
)

D(ApBp
ΩDAp−1Bp−1

...DA1B1)φ

−
(

1 + Ω − φ2
)− 1

2 (1 + Ω)
(

p− 2Ω2
)

D(ApBp
φDAp−1Bp−1

...DA1B1)φ

+FM
ApBp...A1B1

, p ≥ 3,

P S
ApBp...A1B1

= D(ApBp
...DA1B1)φ+ F S

ApBp...A1B1
, p ≥ 2, (40)

with symmetric spinor-valued functions FM
ApBp...A1B1

and F S
ApBp...A1B1

. The

function FM
ApBp...A1B1

, p ≥ 3, is at each point a real linear combination of
symmetrized tensor products of

D(Aq−1Bq−1
...DA1B1)φ, D(AqBq

...DA3B3
SA2B2A1B1), DABΩ, 2 ≤ q ≤ p− 1,
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with coefficients that depend on Ω and φ. The function F S
ApBp...A1B1

, p ≥ 2,
is a real linear combination of symmetrized tensor products of

D(Aq−2Bq−2
...DA1B1)φ, D(AqBq

...DA3B3
SA2B2A1B1), 2 ≤ q ≤ p.

Proof. From (18) we get

φM =
(

1 + Ω − φ2
) 1

2 ,

and by direct calculations from (6), (7) we see that (39) is valid for p = 3
and that (40) is valid for p = 2, with the stated properties for FM

A3B3A2B2A1B1

and F S
A2B2A1B1

. Assuming that the lemma is true for p ≤ k, inserting (39)
and (40) into the recursion relation (7), and using the symmetrized spinor
version of (21), we see that the lemma is true for p = k + 1.

Using (6), (7), (8) and the identification (35), (36) we get for the lower
order multipoles

νM
A1B1

= 0, νM
A2B2A1B1

= −1
2
ΨA2B2A1B1

− ψ(A2B2
ψA1B1), (41)

νM
A3B3A2B2A1B1

= −1
2
ΨA3B3A2B2A1B1

− ψ(A3B3
ψA2B2A1B1), (42)

νS
A1B1

= ψA1B1
, νS

A2B2A1B1
= ψA2B2A1B1

. (43)

Also restricting (39) and (40) to i and with the identification (35), (36) we
get

νM
ApBp...A1B1

= −1

2
ΨApBp...A1B1

− pψ(ApBp
ψAp−1Bp−1...A1B1) (44)

+fM
ApBp...A1B1

, p ≥ 3,

νS
ApBp...A1B1

= ψApBp...A1B1
+ fS

ApBp...A1B1
, p ≥ 2, (45)

where fM
ApBp...A1B1

, p ≥ 3, is a real linear combination of symmetrized tensor
products of

ψAq−1Bq−1...A1B1
, ΨAqBq...A1B1

, 2 ≤ q ≤ p− 1,

and fS
ApBp...A1B1

, p ≥ 2, is a real linear combination of symmetrized tensor
products of

ψAq−2Bq−2...A1B1
, ΨAqBq ...A1B1

, 2 ≤ q ≤ p.

Equations (41), (42), (43), (44) and (45) give a nonlinear map Θ, that can
be read as a map

Θ : {D̂φ
n, D̂S

n} → {D̂M
mp, D̂S

mp}
of the set of abstract null data into the set of abstract multipoles (i.e., se-
quences of symmetric spinors not necessarily derived from a metric). Now is
fairly easy to show that the map can be inverted.
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Corollary 3.4. The map Θ that maps sequences of abstract null data {D̂φ
n, D̂S

n}
onto sequences of abstract multipoles {D̂M

mp, D̂S
mp} is bijective.

Proof. From (42), (43) we see that fM
A3B3A2B2A1B1

= 0, fS
A2B2A1B1

= 0, with
this and the stated properties for fM

ApBp...A1B1
and fS

ApBp...A1B1
an inverse for

Θ can be constructed inverting the relations (44) and (45) recursively.

Hence, for a given metric h, the sequences of multipoles and the sequences
of null data in a given standard frame carry the same information on h. As
said, we prefer to work with the null data because they are linear in φ and
SABCD.

4 The characteristic initial value problem

After showing that the null data determine the solution, one would have to
show that the estimates (37), (38) imply Cauchy estimates for the expansion
coefficients

|DApBp
...DA1B1

T (i)| ≤ p!M

rp
, Ap, Bp, ..., A1, B1 = 0, 1, p = 0, 1, 2, ...,

where T is any of φ, Ω, R, SABCD. This would ensure the convergence of the
normal expansion at i. The induction procedure used so far for calculating
the expansion coefficients from the null data generates additional non-linear
terms each time one interchanges a derivative or uses the conformal field
equations. Thus, it does not seem suited for deriving estimates. Instead, we
use the intrinsic geometric nature of the problem and the data to formulate
the problem as a boundary value problem to which Cauchy-Kowalevskaya
type arguments apply.
As the fields h, φ, Ω, R, SABCD are real analytic in the normal coordinates
xa and a standard frame cAB centered at i, they can be extended near i by
analyticity into the complex domain and considered as holomorphic fields on
a complex analytic manifold Nc. Choosing Nc to be a sufficiently small neigh-
bourhood of i, we can assume the extended coordinates, again denoted by
xa, to define a holomorphic coordinate system on Nc which identifies Nc with
an open neighbourhood of the origin in C. The original manifold N is then
a real, 3-dimensional, real analytic submanifold of the real, 6-dimensional,
real analytic manifold underlying Nc. Under the analytic extension the main
differential geometric concepts and formulas remain valid. The coordinates
xa and the extended frame, again denoted by cAB, satisfy the same defining
equations and the extended fields, denoted again by h, φ, Ω, R, SABCD, sat-
isfy the conformal stationary vacuum field equations as before.
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The analytic function Γ = δabx
axb on N extends to a holomorphic function

on Nc. On N it vanishes only at i, but the set

Ni = {p ∈ Nc|Γ(p) = 0},

is an irreducible analytical set such that Ni\{i} is a 2-dimensional complex
submanifold of Nc. It is the cone swept out by the complex null geodesics
through i and we will refer to it as the null cone at i.
Now let u → xa(u) be a null geodesic through i such that xa(0) = 0. Its
tangent vector is then of the form ẋAB = ιAιB with a spinor field ιA = ιA(u)
satisfying Dẋι

A = 0 along the geodesic. Then

φ(u) = φ(x(u)), (46)

S0(u) = ẋaẋbSab(x(u)) = ιAιBιCιDSABCD(x(u)), (47)

are analytic functions of u with Taylor expansion

φ(u) =

∞
∑

p=0

1

p!
upd

pφ

dup
(0), S0(u) =

∞
∑

p=0

1

p!
upd

pS0

dup
(0),

where

dpφ

dup
(0) = ẋap ...ẋa1Dap

...Da1
φ(0) = ιApιBp ...ιA1ιB1D(ApBp

...DA1B1)φ(i),

dpS0

dup
(0) = ιApιBp ...ιA1ιB1ιCιDιEιFD(ApBp

...DA1B1
SCDEF )(i).

This shows that knowing these expansion coefficients for initial null vectors
ιAιB covering an open subset of the null directions at i is equivalent to know-
ing the null data D̂φ

n, D̂S
n of the metric h.

Our problem can thus be formulated as the boundary value problem for the
conformal stationary vacuum equations with data given by the functions (46),
(47) on Ni, where the ιAιB are parallely propagated null vectors tangent to
Ni.
Ni is not a smooth hypersurface but an analytic set with a vertex at the
point i, and we need a setting in which the mechanism of calculating the
expansion coefficients allows us to derive estimates on the coefficients from
the conditions imposed on the data. That is done in the next subsections.

4.1 The geometric gauge

We need to choose a gauge suitably adapted to the singular set Ni. The
coordinates and the frame field will then necessarily be singular and the
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frame will no longer define a smooth lift to the bundle of frames but a subset
which becomes tangent to the fibres over some points.
We will use the principal bundle of normalized spin frames SU(N)

π−→ N
with structure group SU(2), which is the group of complex 2 × 2 matrices
(sA

B)A,B=0,1 satisfying

ǫABs
A

Cs
B

D = ǫCD, τAB′sA
C s̄

B′

D′ = τCD′ . (48)

The 2 : 1 covering homomorphism of SU(2) onto SO(3,R) is performed via

SU(2) ∋ sA
B → sa

b = αa
ABs

A
Cs

B
Dα

CD
b ∈ SO(3,R).

Under holomorphic extension the map above extends to a 2 : 1 covering ho-
momorphism of the group SL(2,C) onto the group SO(3,C), where SL(2,C)
denotes the group of complex 2 × 2 matrices satisfying only the first of con-
ditions (48).
A point δ ∈ SU(N) is given by a pair of spinors δ = (δA

0 , δ
A
1 ) at a given point

of N which satisfies

ǫ(δA, δB) = ǫAB, ǫ(δA, δ
+
B′) = τAB′ , (49)

and the action of the structure group is given for s ∈ SU(2) by

δ → δ · s where (δ · s)A = sB
AδB.

The projection π maps a frame δ into its base point in N . The bundle of spin
frames is mapped by a 2 : 1 bundle morphism SU(N)

p−→ SO(N) onto the

bundle SO(N)
π′

−→ N of oriented, orthonormal frames on N so that π′◦p = π.
For any spin frame δ we can identify by (49) the matrix (δA

B)A,B=0,1 with an
element of the group SU(2). With this reading the map p will be assumed
to be realized by

SU(N) ∋ δ → p(δ)AB = δE
Aδ

F
BcEF ∈ SO(N),

where cAB denotes the normal frame field on N introduced before. We refer
to p(δ) as the frame associated with the spin frame δ.
Under holomorphic extension the bundle SU(N)

π−→ N is extended to the
principal bundle SL(Nc)

π−→ Nc of spin frames δ = (δA
0 , δ

A
1 ) at given points

of Nc which satisfy only the first of conditions (49). Its structure group is
SL(2,C). The bundle SU(N)

π−→ N is embedded into SL(Nc)
π−→ Nc as a real

analytic subbundle. The bundle morphism p extends to a 2 : 1 bundle mor-

phism, again denoted by p, of SL(Nc)
π−→ Nc onto the bundle SO(Nc)

π′

−→ Nc

of oriented, normalized frames of Nc with structure group SO(3,C). We shall
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make use of several structures on SM(Nc).
With each α ∈ sl(2,C), i.e., α = (αA

B) with αAB = αBA, is associated a
vertical vector field Zα tangent to the fibres, which is given at δ ∈ SL(Nc)
by Zα(δ) = d

dv
(δ · exp(vα))|v=0, where v ∈ C and exp denotes the exponential

map sl(2,C) → SL(2,C).
The C3-valued soldering form σAB = σ(AB) maps a tangent vector X ∈
TδSL(Nc) onto the components of its projection Tδ(π)X ∈ Tπ(δ)Nc in the
frame p(δ) associated with δ so that Tδ(π)X = 〈σAB, X〉p(δ)AB. It follows
that 〈σAB, Zα〉 = 0 for any vertical vector field Zα.
The sl(2,C)-valued connection form ωA

B on SL(Nc) transforms with the
adjoint transformation under the action of SL(2,C) and maps any vertical
vector field Zα onto its generator so that 〈ωA

B, Zα〉 = αA
B.

With xAB = x(AB) ∈ C3 is associated the horizontal vector field Hx on
SL(Nc) which is horizontal in the sense that 〈ωA

B, Hx〉 = 0 and which sat-
isfies 〈σAB, Hx〉 = xAB. Denoting by HAB, A,B = 0, 1, the horizontal vector
fields satisfying 〈σAB, HCD〉 = hAB

CD, it follows that Hx = xABHAB. An
integral curve of a horizontal vector field projects onto an h-geodesic and rep-
resents a spin frame field which is parallelly transported along this geodesic.
A holomorphic spinor field ψ on Nc si represented on SL(Nc) by a holomor-
phic spinor-valued function ψA1...Aj

(δ) on SL(Nc), given by the components
of ψ in the frame δ. We shall use the notation ψk = ψ(A1...Aj)k

, k = 0, .., j,
where (......)k denotes the operation ‘symmetrize and set k indices equal to 1
the rest equal to 0’. These functions completely specify ψ if ψ is symmetric.
They are then referred to as the essential components of ψ.

4.2 The submanifold N̂ of SL(Nc)

Using the available geometrical structure we construct a three-dimensional
submanifold N̂ of SL(Nc) in such a way that it induces coordinates in Nc.
By the construction procedure the induced coordinates are suitable adapted
to the set Ni.
We start by choosing a spin frame δ∗ such that π(δ∗) = i and p(δ∗)AB = cAB.
The curve

C ∋ v → δ(v) = δ∗ · s(v) ∈ SL(Nc),

s(v) = exp(vα) =

(

1 0
v 1

)

, α =

(

0 0
1 0

)

∈ sl(2,C), (50)

defines a vertical, 1-dimensional, holomorphic submanifold I of SL(Nc) on
which v defines a coordinate. The associated family of frames eAB(v) at i is
given by eAB(v) = sC

A(v)sD
B(v)cCD, and explicitly by

e00 = c00 + 2vc01 + v2c11, e01(v) = c01 + vc11, e11(v) = c11.
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We perform the following construction in a neighbourhood of I. If it is chosen
small enough all the following statements will be correct.
The set I is moved with the flow of H11 to obtain a holomorphic 2-manifold
U0 of SL(Nc). We denote by w the parameter on the integral curves of H11

that vanishes on I, and we extend v to U0 by assuming it to be constant on
the integral curves of H11. All these integral curves are mapped by π onto the
null geodesic γ(w) with affine parameter w and tangent vector γ′(0) = c11
at γ(0) = i. The parameter v specifies which frame fields are parallelly
propagated along γ.
U0 is now moved with the flow of H00 to obtain a holomorphic 3-submanifold
N̂ of SL(Nc). We denote by u the parameter on the integral curves of H11

that vanishes on U0 and we extend v and w to N̂ by assuming them to be
constant along the integral curves of H00. The functions z1 = u, z2 = v, z3 =
w define holomorphic coordinates on N̂ . We denote again π the restiction of
the projection to N̂ .
The projections of the integral curves of H00 with a fixed value of w sweep
out, together with γ, the null cone Nγ(w) near γ(w), which is generated by
the null geodesics through the point γ(w). On the null geodesics u is an
affine parameter which vanishes at γ(w) while v parametrizes the different
generators. The set W0 = {w = 0} projects onto Ni\γ and will define
the initial data set for our problem. The map π induces a biholomorphic
diffeomorphism of N̂ ′ ≡ N̂\U0 onto π(N̂ ′). The singularity of the gauge at
points of U0 consists in π dropping rank on U0, where ∂v = Zα. The null
curve γ(w) will be referred to as the the singular generator of Ni in the gauge
determined by the spin frame δ∗ resp. the corresponding frame cAB at i.
The soldering an the connection form pull back to holomorphic 1-forms on
N̂ , which will be denoted again by σAB and ωA

B. If the pull back of the
curvature form ΩA

B = 1
2
rA

BCDEFσ
CD ∧σEF to N̂ is denoted again by ΩA

B,
then the soldering and the connection form satisfy the structural equations

dσAB = −ωA
C ∧ σCB − ωB

C ∧ σAC , dωA
B = −ωA

C ∧ ωC
B + ΩA

B.

Using the way in which N̂ is constructed, and in terms of the coordinates za,
we get σAB = σAB

adz
a on N̂ ′, where

(σAB
a) =





1 σ00
2 σ00

3

0 σ01
2 σ01

3

0 0 1



 =





1 O(u3) O(u2)
0 u+ O(u3) O(u2)
0 0 1



 as u→ 0.

On N̂ ′ there exist unique, holomorphic vector fields eAB which satisfy

〈σAB, eCD〉 = hAB
CD.

22



If one writes eAB = ea
AB∂za , then

(ea
AB) =





1 e1 01 e1 11

0 e2 01 e2 11

0 0 1



 =





1 O(u2) O(u2)
0 1

2u
+ O(u) O(u)

0 0 1



 as u→ 0.

We shall write
ea

AB = e∗a AB + êa
AB,

with singular part

e∗a AB = δa
1ǫA

0ǫB
0 + δa

2

1

u
ǫ(A

0ǫB)
1 + δa

3ǫA
1ǫB

1,

and holomorphic functions êa
AB on N̂ which satisfy

êa
AB = O(u) as u→ 0. (51)

We define the connection coefficients on N̂ ′ by ωA
B = ΓCD

A
Bσ

CD with
ΓCDAB ≡ 〈ωAB, eCD〉, so that ΓABCD = Γ(AB)(CD), and from the definition of
the frame

Γ00AB = 0 on N̂, Γ11AB = 0 on U0,

and it follows that
ΓABCD = Γ∗

ABCD + Γ̂ABCD,

with singular part

Γ∗
ABCD = −1

u
ǫ(A

0ǫB)
1ǫC

0ǫD
0,

and holomorphic functions Γ̂ABCD on N̂ which satisfy

Γ̂ABCD = O(u) as u→ 0. (52)

4.3 Tensoriality and expansion type

As the induced map π of N̂ into Nc is singular on U0, not every holomorphic
function of the za can arise as a pull-back to N̂ of a holomorphic function
on Nc. The latter must have a special type of expansion in terms of the
za which reflects the particular relation between the ‘angular’ corrdinate v
and the ‘radial’ coordinate u. We take from [7] the following definition and
lemma.
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Definition 4.1. A holomorphic function f on N̂ is said to be of v-finite
expansion type kf , with kf an integer, if it has in terms of the coordinates
u, v, and w a Taylor expansion at the origin of the form

f =
∞

∑

p=0

∞
∑

m=0

2m+kf
∑

n=0

fm,n,pu
mvnwp,

where it is assumed that fm,n,p = 0 if 2m+ kf < 0.

Lemma 4.1. Let φA1...Aj
be a holomorphic, symmetric, spinor-valued func-

tion on SL(Nc). Then the restrictions of its essential components φk =
φ(A1...Aj)k

, 0 ≤ k ≤ j, to N̂ satisfy

∂vφk = (j − k)φk+1, k = 0, ..., j, on U0,

(where we set φj+1 = 0) and φk is of expansion type j − k.

4.4 The null data on W0

As we have seen, prescribing the null data is equivalent to knowing φ and
S0 in the null cone. Now we need to know how this fit into our particular
gauge. For this we derive an expansion of the restriction of φ and S0 to the
hypersurface W0.
Consider the normal frame cAB on Nc near i which agrees at i with the frame
associated with δ∗ and denote the null data of h in this frame by

Dφ∗
n = {D∗

(ApBp
...D∗

A1B1)φ(i), p = 1, 2, 3, ...},

DS∗
n = {D∗

(ApBp
...D∗

A1B1
S∗

ABCD)(i), p = 0, 1, 2, 3, ...}.
Choose now a fixed value of v and consider s(v) as in (50), then the vector
H00(δ

∗ · s) projects onto the null vector e00 = sA
0s

B
0cAB at i and is tangent

to a null geodesic η = η(u, v) on Ni with affine parameter u, u = 0 at i. The
integral curve of H00 through δ∗ · s projects onto this null geodesic. Using
the explicit expression for s = s(v) follows that

φ(u, v) = φ|η(u,v) =

∞
∑

m=0

1

m!
umDm

00φ|η(0,v)

=
∞

∑

m=0

1

m!
umsAm

0s
Bm

0...s
A1

0s
B1

0D
∗
(AmBm

...D∗
A1B1)φ(i)

=
∞

∑

m=0

2m
∑

n=0

ψm,nu
mvn, (53)
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with

ψm,n =
1

m!

(

2m

n

)

D∗
(AmBm

...D∗
A1B1)n

φ(i), 0 ≤ n ≤ 2m.

In the same way

S0(u, v) = S0000|η(u,v) (54)

= sA
0s

B
0s

C
0s

D
0S

∗
ABCD|η(u,v) =

∞
∑

m=0

2m+4
∑

n=0

Ψm,nu
mvn,

with

Ψm,n =
1

m!

(

2m+ 4

n

)

D∗
(AmBm

...D∗
A1B1

S∗
ABCD)n

(i), 0 ≤ n ≤ 2m.

This shows how to determine φ(u, v), S0(u, v) from the null data Dφ∗
n ,DS∗

n

and vice versa.

5 The conformal stationary vacuum field equa-

tions on N̂

Now we can use the frame calculus in its standard form. Given the fields Ω,
φ, R and SABCD, and using the frame eAB and the connection coefficients
ΓABCD on N̂ , we set

rABCDEF ≡ eCD(ΓEFAB) − eEF (ΓCDAB) + ΓEF
K

CΓDKAB

+ΓEF
K

DΓCKAB − ΓCD
K

EΓKFAB − ΓCD
K

F ΓEKAB

+ΓEF
K

BΓCDAK − ΓCD
K

BΓEFAK − tCD
GH

EFΓGHAB,

and we define there the quantities tAB
EF

CD, RABCDEF , AAB, ΣAB, ΦAB,
ΠAB, ΣABCD and HABCD by

tAB
EF

CDe
a

EF ≡ 2ΓAB
E

(Ce
a

D)E − 2ΓCD
E

(Ae
a

B)E

−ea
CD,be

b
AB + ea

AB,be
b

CD,

RABCDEF ≡ rABCDEF − 1

2

[(

SABCE − 1

6
RhABCE

)

ǫDF

+

(

SABDF − 1

6
RhABDF

)

ǫCE

]

,

AAB ≡ DABφ− φAB,
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ΣAB ≡ DABΩ − ΩAB,

ΦAB ≡ DP
BφAP + 1

4
ǫABφ

(

R +
10

1 + Ω − φ2

[

1

4
φ2ΩPQΩPQ

−(1 + Ω)φΩPQφPQ + (1 + Ω)2φPQφ
PQ

])

,

ΠAB ≡ DABR− 1

1 + Ω − φ2

{

2(4 + 7Ω)φΩPQDABφPQ

−4(1 + Ω)(4 + 7Ω)φPQDABφPQ

+[3 + (−3 + 7Ω)φ2]ΩPQSPQAB − 2Ω(4 + 7Ω)φφPQSPQAB

+
1

3
(4 + 7Ω)φ2RΩAB − 2

3
(1 + Ω)(4 + 7Ω)φRφAB

}

− 1

3(1 + Ω − φ2)2

{

1

2
φ2

[

−12 + (40 + 21Ω)φ2
]

ΩPQΩPQΩAB

−2φ
[

−18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2
]

ΩPQφPQΩAB

+2(1 + Ω)
[

−24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2
]

φPQφPQΩAB

−φ
[

12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2
]

ΩPQΩPQφAB

+4(1 + Ω)
[

6(1 + Ω) + (22 + 61Ω + 21Ω2)φ2
]

ΩPQφPQφAB

−4(1 + Ω)2(7 + 3Ω)(4 + 7Ω)φφPQφPQφAB

}

,

ΣABCD ≡ DABΩCD + ΩSABCD +
1

3
(1 + Ω)RhABCD

− 1

1 + Ω − φ2

{

1

2

[

1 + (−1 + Ω)φ2
]

ΩABΩCD

−Ω2φ(ΩABφCD + ΩCDφAB) + 2Ω2(1 + Ω)φABφCD

−4

3
(2 + 3Ω)

[

1

4
φ2ΩPQΩPQ − (1 + Ω)φΩPQφ

PQ

+(1 + Ω)2φPQφ
PQ

]

hABCD

}

,
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HABCD ≡ DP
ASBCDP

− 1

1 + Ω − φ2

{

ΩφΩA
PD(BCφD)P − 2Ω(1 + Ω)φA

PD(BCφD)P

+(1 + Ω)φΩPQD(BCφ
PQǫD)A − 2(1 + Ω)2φPQD(BCφ

PQǫD)A

+
1

2

[

1 + (−1 + Ω)φ2
]

ΩA
PSPBCD − Ω2φφA

PSPBCD

+
1

2
Ωφ2ΩPQSPQ(BCǫD)A − Ω(1 + Ω)φφPQSPQ(BCǫD)A

+
1

6
(1 + Ω)φ2RΩ(BCǫD)A − 1

3
(1 + Ω)2φRφ(BCǫD)A

+2φ
(

φA
P ΩP (BΩCD) − ΩA

P ΩP (BφCD)

)

+4(1 + Ω)
(

ΩA
PφP (BφCD) − φA

PφP (BΩCD)

)

}

− 1

3(1 + Ω − φ2)2

{

1

8
φ2

[

−6 + (20 + 3Ω)φ2
]

ΩPQΩPQΩ(BCǫD)A

−1

2
(14 + 23Ω + 3Ω2)φ3ΩPQφPQΩ(BCǫD)A

+
1

2
(1 + Ω)

[

6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2
]

φPQφPQΩ(BCǫD)A

−1

4
φ

[

−12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2
]

ΩPQΩPQφ(BCǫD)A

+(1 + Ω)2
[

−6 + (20 + 3Ω)φ2
]

ΩPQφPQφ(BCǫD)A

−(1 + Ω)2 (7 + Ω) (2 + 3Ω)φφPQφPQφ(BCǫD)A

}

.

The tensor fields on the left hand side have been introduced as labels for
the equations and for discussing in an ordered manner the interdependencies
of the equations. In terms of these tensor fields, the conformal stationary
vacuum equations read

tAB
EF

CDe
a

EF = 0, RABCDEF = 0, AAB = 0, ΣAB = 0,

ΦAB = 0, ΠAB = 0, ΣABCD = 0, HABCD = 0.

The first equation is Cartan’s first structural equation with the requirement
that the metric conexion be torsion free. The second equation is Cartan’s
second structural equation, requiring the Ricci tensor to coincide with the
appropriate combination of the trace free tensor Sab and the scalar R. The
third and fourth equations define the symmetric spinors φAB and ΩAB re-
spectively. The rest of the equations have already been considered.
We want to calculate, using our particular gauge, a formal expansion of the
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conformal fields using the initial data in the form φ(u, v), S0(u, v). As the
system of conformal stationary vacuum field equations is an overdetermined
system, we have to choose a subsystem of it. In the rest of this section we
choose a particular subsystem, writing the chosen equations in our gauge, and
at the end we see how a formal expansion is determined by these equations
and the initial data.

5.1 The A00 = 0 equation

The first equation that needs particular attention is the equation A00 = 0.
In our gauge it reads

∂uφ = φ00.

This equation is used in the following to calculate φ00 each time we know φ
as a function of u. In particular, as φ will be prescribed on W0 as part of the
initial data, this equation allows us to calculate φ00 there inmediately.

5.2 The ‘∂u-equations’

We now present what we will refer to as the ‘∂u-equations’. These equations
are chosen because they have the following features. They are a system of
PDE’s for the set of functions êa

A1, Γ̂A1CD, Ω, ΩAB, φA1, R, S1, S2, S3 and
S4, which comprise all the unknowns with the exceptions of the free data
φ, S0 and the derived function φ00. They are all interior equations on the
hypersurfaces {w = w0} in the sense that only derivatives in the directions of
u and v are involved, in particular, if we consider the hypersurface {w = 0},
they are all inner equations in Ni. Also they split into a hierarchy that will
be presented in the next section.
The ∂u-equations:
Equations tAB

EF
00e

a
EF = 0 :

∂uê
1

01 +
1

u
ê1 01 = −2Γ̂0101 + 2Γ̂0100ê

1
01,

∂uê
2

01 +
1

u
ê2 01 =

1

u
Γ̂0100 + 2Γ̂0100ê

2
01,

∂uê
1

11 = −2Γ̂1101 + 2Γ̂1100ê
1

01,

∂uê
2

11 =
1

u
Γ̂1100 + 2Γ̂1100ê

2
01.
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Equations RAB00EF = 0 :

∂uΓ̂0100 +
2

u
Γ̂0100 − 2Γ̂2

0100 =
1

2
S0,

∂uΓ̂0101 +
1

u
Γ̂0101 − 2Γ̂0100Γ̂0101 =

1

2
S1,

∂uΓ̂0111 +
1

u
Γ̂0111 − 2Γ̂0100Γ̂0111 =

1

2
S2 −

1

12
R,

∂uΓ̂1100 +
1

u
Γ̂1100 − 2Γ̂0100Γ̂1100 = S1,

∂uΓ̂1101 − 2Γ̂1100Γ̂0101 = S2 +
1

12
R,

∂uΓ̂1111 − 2Γ̂1100Γ̂0111 = S3.

Equation Σ00 = 0 :

∂uΩ = Ω00.

Equations ΦA0 = 0 :

∂uφ01 =
1

2u
(∂vφ00 − 2φ01) + ê1 01∂uφ00 + ê2 01∂uφ00 − 2Γ̂0101φ00 + 2Γ̂0100φ01,

∂uφ11 −
1

2u
(∂vφ01 − φ11) − ê1 01∂uφ01 − ê2 01∂vφ01 = −Γ̂0111φ00 + Γ̂0100φ11

−1

4
φ

{

R +
10

1 + Ω − φ2

[

1

2
φ2Ω00Ω11 −

1

2
[φΩ01 − 2(1 + Ω)φ01]

2

−(1 + Ω)φ (Ω00φ11 + Ω11φ00) + 2(1 + Ω)2φ00φ11

]}

.

Equations Σ00CD = 0 :

∂uΩ00 = −ΩS0 +
1

1 + Ω − φ2

{

1

2

[

1 + (−1 + Ω)φ2
]

Ω2
00

−2Ω2φΩ00φ00 + 2Ω2(1 + Ω)φ2
00

}

,

∂uΩ01 = −ΩS1 +
1

1 + Ω − φ2

{

1

2

[

1 + (−1 + Ω)φ2
]

Ω00Ω01

−Ω2φ (Ω00φ01 + Ω01φ00) + 2Ω2(1 + Ω)φ00φ01

}

,
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∂uΩ11 = −ΩS2 −
1

3
(1 + Ω)R

+
1

3(1 + Ω − φ2)

{

1

2

[

3 − (11 + 9Ω)φ2
]

Ω00Ω11

+2(2 + 3Ω) [φΩ01 − 2(1 + Ω)φ01]
2

+(8 + 20Ω + 9Ω2) [φ(Ω00φ11 + Ω11φ00) − 2(1 + Ω)φ00φ11]

}

.

Equation Π00 = 0 :

∂uR− 1

1 + Ω − φ2

{

2(4 + 7Ω)φ(Ω11∂uφ00 − 2Ω01∂uφ01 + Ω00∂uφ11)

−4(1 + Ω)(4 + 7Ω)(φ11∂uφ00 − 2φ01∂uφ01 + φ00∂uφ11)

}

=
1

1 + Ω − φ2

{

[3 + (−3 + 7Ω)φ2](Ω11S0 − 2Ω01S1 + Ω00S2)

−2Ω(4 + 7Ω)φ(φ11S0 − 2φ01S1 + φ00S2)

+
1

3
(4 + 7Ω)φ [φΩ00 − 2(1 + Ω)φ00]R

}

+
1

3(1 + Ω − φ2)2

{

φ2
[

−12 + (40 + 21Ω)φ2
]

(Ω00Ω11 − Ω2
01)Ω00

−2φ
[

−18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2
]

(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω00

+4(1 + Ω)
[

−24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2
]

(φ00φ11 − φ2
01)Ω00

−2φ
[

12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2
]

(Ω00Ω11 − Ω2
01)φ00

+4(1 + Ω)
[

6(1 + Ω) + (22 + 61Ω + 21Ω2)φ2
]

(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ00

−8(1 + Ω)2(7 + 3Ω)(4 + 7Ω)φ(φ00φ11 − φ2
01)φ00

}

.

Equations H0(ABC)k
= 0, k=0,1,2,3 :

∂uS1 −
1

2u
(∂vS0 − 4S1) − ê1 01∂uS0 − ê2 01∂vS0

+
1

1 + Ω − φ2

{

Ω [φΩ01 − 2(1 + Ω)φ01] ∂uφ00 − Ω [φΩ00 − 2(1 + Ω)φ00] ∂uφ01

}

= −4Γ̂0101S0 + 4Γ̂0100S1

− 1

1 + Ω − φ2

{

1

2

[

1 + (−1 + Ω)φ2
]

(Ω01S0 − Ω00S1) − Ω2φ(φ01S0 − φ00S1)

+2 [φΩ00 − 2(1 + Ω)φ00] (Ω00φ01 − Ω01φ00)

}

,
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∂uS2 −
1

2u
(∂vS1 − 3S2) − ê1 01∂uS1 − ê2 01∂vS1

+
1

3(1 + Ω − φ2)

{

− (1 + Ω) [φΩ11 − 2(1 + Ω)φ11] ∂uφ00

+(2 + 5Ω) [φΩ01 − 2(1 + Ω)φ01] ∂uφ01 − (1 + 2Ω) [φΩ00 − 2(1 + Ω)φ00] ∂uφ11

−2Ω [φΩ00 − 2(1 + Ω)φ00]

[

1

2u
(∂vφ01 − φ11) + ê1 01∂uφ01 + ê2 01∂vφ01

]}

= −Γ̂0111S0 − 2Γ̂0101S1 + 3Γ̂0100S2

− 1

1 + Ω − φ2

{

2

3
Ω [φΩ00 − 2(1 + Ω)φ00]

[

Γ̂0111φ00 − Γ̂0100φ11

]

+
1

2

[

1 + (−1 + Ω)φ2
]

(Ω01S1 − Ω00S2) − Ω2φ(φ01S1 − φ00S2)

−1

6
Ωφ2(Ω11S0 − 2Ω01S1 + Ω00S2) +

1

3
Ω(1 + Ω)φ(φ11S0 − 2φ01S1 + φ00S2)

− 1

18
(1 + Ω)φ [φΩ00 − 2(1 + Ω)φ00]R

+2 [φΩ01 − 2(1 + Ω)φ01] (Ω00φ01 − Ω01φ00)

}

+
1

9(1 + Ω − φ2)2

{

1

4
φ2

[

−6 + (20 + 3Ω)φ2
]

(Ω00Ω11 − Ω2
01)Ω00

−1

2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω00

+(1 + Ω)
[

6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2
]

(φ00φ11 − φ2
01)Ω00

−1

2
φ

[

−12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2
]

(Ω00Ω11 − Ω2
01)φ00

+(1 + Ω)2
[

−6 + (20 + 3Ω)φ2
]

(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ00

−2(1 + Ω)2 (7 + Ω) (2 + 3Ω)φ(φ00φ11 − φ2
01)φ00

}

,
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∂uS3 −
1

2u
(∂vS2 − 2S3) − ê1 01∂uS2 − ê2 01∂vS2 +

1

3(1 + Ω − φ2)
{

− 2(1 + Ω) [φΩ11 − 2(1 + Ω)φ11] ∂uφ01 + Ω [φΩ01 − 2(1 + Ω)φ01] ∂uφ11

+2(2 + 3Ω) [φΩ01 − 2(1 + Ω)φ01]

[

1

2u
(∂vφ01 − φ11) + ê1 01∂uφ01 + ê2 01∂vφ01

]

−(2 + 5Ω) [φΩ00 − 2(1 + Ω)φ00]

[

1

2u
∂vφ11 + ê1 01∂uφ11 + ê2 01∂vφ11

]}

= −2Γ̂0111S1 + 2Γ̂0100S3

− 1

1 + Ω − φ2

{

− 2

3
(2 + 3Ω) [φΩ01 − 2(1 + Ω)φ01]

[

Γ̂0111φ00 − Γ̂0100φ11

]

+
2

3
(2 + 5Ω) [φΩ00 − 2(1 + Ω)φ00]

[

Γ̂0111φ01 − Γ̂0101φ11

]

+
1

2

[

1 + (−1 + Ω)φ2
]

(Ω01S2 − Ω00S3) − Ω2φ(φ01S2 − φ00S3)

−1

3
Ωφ2(Ω11S1 − 2Ω01S2 + Ω00S3) +

2

3
Ω(1 + Ω)φ(φ11S1 − 2φ01S2 + φ00S3)

−1

9
(1 + Ω)φ [φΩ01 − 2(1 + Ω)φ01]R

+ 2 [φΩ11 − 2(1 + Ω)φ11] (Ω00φ01 − Ω01φ00)
}

+
2

9(1 + Ω − φ2)2

{

1

4
φ2

[

−6 + (20 + 3Ω)φ2
]

(Ω00Ω11 − Ω2
01)Ω01

−1

2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω01

+(1 + Ω)
[

6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2
]

(φ00φ11 − φ2
01)Ω01

−1

2
φ

[

−12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2
]

(Ω00Ω11 − Ω2
01)φ01

+(1 + Ω)2
[

−6 + (20 + 3Ω)φ2
]

(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ01

−2(1 + Ω)2 (7 + Ω) (2 + 3Ω)φ(φ00φ11 − φ2
01)φ01

}

,
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∂uS4 −
1

2u
(∂vS3 − S4) − ê1 01∂uS3 − ê2 01∂vS3 +

1

1 + Ω − φ2

{

− (1 + Ω) [φΩ11 − 2(1 + Ω)φ11] ∂uφ11

+(2 + 3Ω) [φΩ01 − 2(1 + Ω)φ01]

[

1

2u
∂vφ11 + ê1 01∂uφ11 + ê2 01∂vφ11

]

−(1 + 2Ω) [φΩ00 − 2(1 + Ω)φ00]
(

ê1 11∂uφ11 + ê2 11∂vφ11 + ∂wφ11

)

}

= −3Γ̂0111S2 + 2Γ̂0101S3 + Γ̂0100S4

+
1

1 + Ω − φ2

{

2(2 + 3Ω) [φΩ01 − 2(1 + Ω)φ01]
[

Γ̂0111φ01 − Γ̂0101φ11

]

−2(1 + 2Ω) [φΩ00 − 2(1 + Ω)φ00]
[

Γ̂1111φ01 − Γ̂1101φ11

]

−1

2

[

1 + (−1 + Ω)φ2
]

(Ω01S3 − Ω00S4) + Ω2φ(φ01S3 − φ00S4)

+
1

2
Ωφ2(Ω11S2 − 2Ω01S3 + Ω00S4) − Ω(1 + Ω)φ(φ11S2 − 2φ01S3 + φ00S4)

+
1

6
(1 + Ω)φ [φΩ11 − 2(1 + Ω)φ11]R

−2φ
[

Ω11(Ω01φ01 − Ω11φ00) + φ11(Ω00Ω11 − Ω2
01)

]

+ 4(1 + Ω)
[

φ11(Ω01φ01 − Ω00φ11) + Ω11(φ00φ11 − φ2
01)

]

}

+
1

3(1 + Ω − φ2)2

{

1

4
φ2

[

−6 + (20 + 3Ω)φ2
]

(Ω00Ω11 − Ω2
01)Ω11

−1

2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω11

+(1 + Ω)
[

6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2
]

(φ00φ11 − φ2
01)Ω11

−1

2
φ

[

−12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2
]

(Ω00Ω11 − Ω2
01)φ11

+(1 + Ω)2
[

−6 + (20 + 3Ω)φ2
]

(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ11

−2(1 + Ω)2 (7 + Ω) (2 + 3Ω)φ(φ00φ11 − φ2
01)φ11

}

5.3 The ∂u-equations hierarchy

The system of ∂u-equations splits into two groups, referred to as G1 and G2.
Each of these groups splits into a hierarchy, which is seen as follows:

G1.1: R000001 = 0,
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G1.2: t01
EF

00e
2

EF = 0,
G1.3: t01

EF
00e

1
EF = 0, R010001 = 0,Σ00 = 0,Σ0000 = 0,Σ0001 = 0, H0000 = 0,

G1.4: R110001 = 0,Σ0011 = 0,Φ10 = 0,Π00 = 0, H0001 = 0,
G1.5: R000011 = 0,
G1.6: R010011 = 0,
G1.7: t11

EF
00e

1
EF = 0,

G1.8: t11
EF

00e
2

EF = 0,

G2.1: H0011 = 0,
G2.2: R110011 = 0,
G2.3: H0111 = 0.

For dealing with the unknowns we separate them into three groups, x1, x2

and x3. The unknowns involved in G1 are collected in x1, that is x1 = (ê1 01,
ê2 01, ê

1
11, ê

2
11, Γ̂0100, Γ̂0101, Γ̂0111, Γ̂1100, Γ̂1101, Ω, Ω00, Ω01, Ω11, φ01, φ11, R,

S1, S2). The set x2 consist of the unknowns of x1 plus φ, S0 and φ00. The
unknowns in G2 are collected in x3, that is x3 = (Γ̂1111, S3, S4). So all the
unknowns are included in the union of x2 and x3.
The hierarchy is defined because it makes the following procedure possible. If
φ and S0 are prescribed on {w = w0} then G1.1 reduces to an ODE. Once we
have its solution, G1.2 reduces to an ODE. Given its solution, G1.3 reduces
to a system of ODE’s, with coefficients that are calculated by operations in-
terior to {w = w0} from the previously known or calculated functions. This
procedure continues till G1.8. So, given φ and S0 on {w = w0} and the
appropriate inital data on U0 ∩ {w = w0}, the set x1 can be determined on
{w = w0} by solving a sequence of ODE’s in the independent variable u.
The process to be followed with G2 is very similar, with the exception that
to solve G2.3 it is necesary to know also ∂wφ11 on {w = w0}, this problem
can be overcome solving G1 recursively and then analysing G2.

5.4 The ‘∂w-equations’

Our initial data, φ and S0, is prescribed on W0, and to determine their
evolution off W0 we need the equation A11 = 0, which reads

∂wφ+ ê1 11∂uφ+ ê2 11∂vφ = φ11,
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and the equation H1(ABC)0 +H0(ABC)1 = 0, which is given by

∂wS0 − ∂uS2 + ê1 11∂uS0 + ê2 11∂vS0

− 1

3(1 + Ω − φ2)

{

(2 + 5Ω) [φΩ11 − 2(1 + Ω)φ11] ∂uφ00

−4(1 + Ω) [φΩ01 − 2(1 + Ω)φ01] ∂uφ01 + (2 + Ω) [φΩ00 − 2(1 + Ω)φ00] ∂uφ11

−2Ω [φΩ00 − 2(1 + Ω)φ00]

[

1

2u
(∂vφ01 − φ11) + ê101∂uφ01 + ê201∂vφ01

] }

= 4Γ̂1101S0 − 4Γ̂1100S1

+
1

1 + Ω − φ2

{

2

3
Ω [φΩ00 − 2(1 + Ω)φ00]

[

Γ̂0111φ00 − Γ̂0100φ11

]

+
1

2

[

1 + (−1 + Ω)φ2
]

(Ω11S0 − Ω00S2) − Ω2φ(φ11S0 − φ00S2)

+
1

3
Ωφ2(Ω11S0 − 2Ω01S1 + Ω00S2) −

2

3
Ω(1 + Ω)φ(φ11S0 − 2φ01S1 + φ00S2)

+
1

9
(1 + Ω)φ [φΩ00 − 2(1 + Ω)φ00]R

+2 [φΩ00 − 2(1 + Ω)φ00] (Ω00φ11 − Ω11φ00)

}

+
2

9(1 + Ω − φ2)2

{

1

4
φ2

[

−6 + (20 + 3Ω)φ2
]

(Ω00Ω11 − Ω2
01)Ω00

−1

2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω00

+(1 + Ω)
[

6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2
]

(φ00φ11 − φ2
01)Ω00

−1

2
φ

[

−12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2
]

(Ω00Ω11 − Ω2
01)φ00

+(1 + Ω)2
[

−6 + (20 + 3Ω)φ2
]

(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ00

−2(1 + Ω)2 (7 + Ω) (2 + 3Ω)φ(φ00φ11 − φ2
01)φ00

}

.

These two equations will be referred to as the ‘∂w-equations’.

5.5 The initial conditions for the ∂u-equations

The initial conditions for the ∂u-equations follow from our gauge conditions
(51), (52) which imply

êa
A1|I = 0, a = 1, 2, A = 0, 1,

Γ̂A1CD|I = 0, A, C,D = 0, 1.
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From (4) we get

Ω|I = 0,

ΩAB|I = 0, A,B = 0, 1,

R|I = −6 − 8∂uφ|I∂u∂
2
vφ|I + 4 (∂u∂vφ|I)2 ,

and from the required spinorial behaviour in order to have analytic solutions,
as discussed in Section 4.3,

φA1|I =
1

2
∂u∂

1+A
v φ|I , A = 0, 1, (55)

Sk|I =
(4 − k)!

4!
∂k

vS0|I ,

where A00 = 0 has been used.

5.6 Calculating the formal expansion

As the system of equations is overdetermined, we have chosen a subsystem
in order to calculate a formal expansion of the solution. It will be shown
later on that the expansion obtained using this subsystem lead to a formal
solution of the full system of equations.
We prescribe φ and S0 on W0 as our datum and the initial conditions on I
for the ∂u-equations are given in 5.5. Following what has been said in 5.3 we
successively integrate the subsystems on G1 to determine all components of
x1 on W0.
We give now an inductive argument involving G1 and the ∂w-equations to
show that ∂k

wx2|W0
can be determined for all k.

From our initial data and what has been said we know already ∂k
wx2|W0

for
k = 0. As inductive hypothesis we assume as known

∂p
wx2|W0

, 0 ≤ p ≤ k − 1, k ≥ 1.

Applying formally ∂k−1
w to the ∂w-equations, and restricting them to W0, we

find ∂k
wφ|W0

and ∂k
wS0|W0

in terms of known functions. We apply formaly ∂k
w

to G1. This is a system of PDE’s where the unknowns are ∂k
wx1. Keeping

the hierarchy and considering the functions that we already know on W0, it
agains becames a sequence of ODE’s, which can be integrated on W0 given
the appropriate initial conditions on I.
The initial conditions for the frame coefficients and the connection coefficients
are obtained from the gauge requirements (51), (52) which imply

∂k
wê

a
A1|I = 0, a = 1, 2, A = 0, 1,

∂k
wΓ̂A1CD|I = 0, A, C,D = 0, 1.
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From the spinorial behaviour as discussed in Section 4.3 we obtain the fol-
lowing set of initial conditions.

∂k
wφ01|I =

1

2
∂u∂v∂

k
wφ|I ,

∂k
wφ11|I =

1

2
∂u∂

2
v∂

k
wφ|I ,

∂k
wS1|I =

1

4
∂v∂

k
wS0|I ,

∂k
wS2|I =

1

12
∂2

v∂
k
wS0|I .

By restricting the equations Σ11 = 0, Σ11CD = 0 and Π11 = 0 to U0 and using
that Ω|I = 0, ΩAB|I = 0 we get

∂k
wΩ|I = 0,

∂k
wΩA1|I = 0, A = 0, 1,

∂wΩ00|U0
=

[

−1

3
R +

8

3(1 − φ2)
(φΩ00φ11 − 2φ00φ11 + 2φ2

01)

]∣

∣

∣

∣

U0

, (56)

∂wR|U0
=

[

3Ω00S4 +
8

3(1 − φ2)

{

(φΩ00 − 2φ00)∂wφ11 (57)

+4φ01∂wφ01 − 2φ11∂wφ00 −
1

3
φRφ11

}

+
8

3(1 − φ2)2
φ11

{

(3 + 11φ2)Ω00φ11 − 28φ(φ00φ11 − φ2
01)

}

]∣

∣

∣

∣

U0

.

Applying ∂k−1
w to (56), (57) and evaluating them at I by using the known

functions from the inductive hypothesis and the previously stated initial con-
ditions we get ∂k

wΩ00|I and ∂k
wR|I .

Now we have all the needed initial conditions, thus we know

∂k
wx2|W0

and the induction step is completed.
The procedure with G2 is quite similar. Once we know ∂k

wx2|W0
for all k, G2.1

reduces to an ODE, which can be integrated on U0 given the corresponding
initial condition. Once we know the solution of G2.1, G2.2 also reduces to
an ODE, and finally also G2.3 reduces to an ODE. The initial conditions for
G2 are given in Section 5.5.
The inductive step is very similar to the inductive step for x2. We assume

∂p
wx3|W0

, 0 ≤ p ≤ k − 1, k ≥ 1,
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to be known. We apply formaly ∂k
w to the equations in G2. If we stick to

the hierarchy this system again reduces in the prescribed order to a system
of ODE’s for ∂k

wx3, which can be integrated given the corresponding initial
conditions. Those are

∂k
wΓ̂1111|I = 0,

∂k
wS3|I =

1

24
∂3

v∂
k
wS0|I ,

∂k
wS4|I =

1

24
∂4

v∂
k
wS0|I ,

obtained from (52) and Section 4.3.
Now we know

∂k
wx3|W0

and the induction step is complete.
If we now call X any of the quantities included in x2 and x3, that is, X
comprises all the unknown quantities that we are solving for, the procedure
just stated shows that we know ∂k

wX|W0
for all k. Expanding these functions

around i = {u = 0, v = 0, w = 0} gives

∂m
u ∂

n
v ∂

p
wX|i ∀ m,n, p,

and the procedure gives a unique sequence of expansion coefficients for all
the functions in X.

Lemma 5.1. The procedure described above determines at the point O =
(u = 0, v = 0, w = 0) from the data φ, S0, given on W0 according to (53),
(54), a unique sequence of expansion coefficients

∂m
u ∂

n
v ∂

p
wf(O), m, n, p = 0, 1, 2, ...,

where f stands for any of the functions êa
AB,Γ̂ABCD,φ,φAB,Ω,ΩAB,R,Sk.

If the corresponding Taylor series are absolutely convergent in some neigh-
bourhood P of O, they define a solution to the equation A00 = 0, to the
∂u-equations and to the ∂w-equations on P which satisfies on P ∩ U0 equa-
tions (55) and Σ11 = 0, Σ11CD = 0, Π11 = 0.

By Lemma 4.1 we know that all spinor-valued functions should have a
specific v-finite expansion type. The following lemma, whose proof is quite
similiar to the proof in [7], will be important for the convergence proof.
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Lemma 5.2. If the data φ, S0 are given on W0 as in (53), (54), the for-
mal expansions of the fields obtained in Lemma 5.1 correspond to ones of
functions of v-finite expansion types given by

kê1
AB

= −A− B, kê2
AB

= 3 − A− B, AB = 01, 11,

kΓ̂01AB
= 2 − A− B, kΓ̂11AB

= 1 − A−B, A,B = 0, 1,

kφ = 0, kφAB
= 2 − A− B, A,B = 0, 1,

kΩ = 0, kΩAB
= 2 − A− B, A,B = 0, 1,

kR = 0,

kSj
= 4 − j, j = 0, 1, 2, 3, 4.

6 Convergence of the formal expansion

In the previous section we have seen how to calculate a formal expansion
for êa

AB, Γ̂ABCD, φ, φAB, Ω, ΩAB, R, Sk given φ|W0
and S0|W0

, or, what
is the same, given the null data. From Lemma 3.2 we know which are the
necessary conditions on the null data in order to have analytic solutions of
the conformal field equations. In this section we show that those conditions,
(37) and (38), are also sufficient for the formal expansion determined in the
previous section to be absolutely convergent.
So we start considering the abstract null data as given by two sequencies

D̂φ
n = {ψA1B1

, ψA2B2A1B1
, ψA3B3A2B2A1B1

, ...},

D̂S
n = {ΨA2B2A1B1

,ΨA3B3A2B2A1B1
,ΨA4B4A2A3B3A2B2A1B1

, ...},
of totally symmetric spinors satisfying the reality condition (29) and we con-
struct φ|W0

and S0|W0
, by setting in the expansions (53),(54)

D∗
(AmBm

...D∗
A1B1)φ(i) = ψAmBm...A1B1

, m ≥ 1,

D∗
(ApBp

...D∗
A1B1

S∗
ABCD)(i) = ΨAmBm...A1B1ABCD, m ≥ 0.

Observing Lemma 3.2, one finds as a necessary condition for the functions
φ, S0 on W0 to determine an analytic solution to the conformal static vacuum
field equations that its non-vanishing Taylor coefficients at the point O satisfy
estimates of the form

|∂m
u ∂

n
v φ(0)| ≤

(

2m

n

)

m!n!
M

rm
, m ≥ 0, 0 ≤ n ≤ 2m, (58)

|∂m
u ∂

n
v S0(0)| ≤

(

2m+ 4

n

)

m!n!
M

rm
, m ≥ 0, 0 ≤ n ≤ 2m+ 4. (59)
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This conditions are also sufficient for φ(u, v) and S0(u, v) to be holomorphic
functions on W0. So the null data gives rise to two analytic functions, φ and
S0, on W0.
From A00 = 0 we have φ00 = ∂uφ, so having φ|W0

we have φ00|W0
, which is

also an analytic function on W0.
Following Lemma 6.1 in [7], we can derive from (58),(59), slightly different
type of estimates for φ(u, v), S0(u, v), which are more convenient in our case.

Lemma 6.1. Let e be the Euler number. For given ρφ, ρS0
, both in R, such

that 0 < ρφ < e2, 0 < ρS0
< e2, there exist positive constants c̃φ, rφ, c̃S0

, rS0
,

so that (58),(59), imply estimates of the form

|∂m
u ∂

n
v φ| ≤ c̃φ

rm−1
φ m!ρn

φn!

(m+ 1)2(n+ 1)2
, m ≥ 0, 0 ≤ n ≤ 2m, (60)

|∂m
u ∂

n
v S0| ≤ c̃S0

rm
S0
m!ρn

S0
n!

(m+ 1)2(n+ 1)2
, m ≥ 0, 0 ≤ n ≤ 2m+ 4. (61)

We can present our estimates.

Lemma 6.2. Assume φ = φ(u, v), S0 = S0(u, v) are holomorphic funtions
defined on some open neighbourhood U of O = {u = 0, v = 0, w = 0} in
W0 = {w = 0} which have expansions of the form

φ(u, v) =
∞

∑

m=0

2m
∑

n=0

ψm,nu
mvn,

S0(u, v) =
∞

∑

m=0

2m+4
∑

n=0

Ψm,nu
mvn,

so that its Taylor coefficients at the point O satisfy estimates of the type
(60),(61) with some positive constants c̃φ, rφ, c̃S0

, rS0
, and ρφ <

1
3
, ρS0

< 1
3
.

Then there exist positive constants

r, ρ, cêa
AB
, cΓ̂ABCD

, cφ, cφAB
, cΩ, cΩAB

, cR, cSk

so that the expansion coefficients determined from φ and S0 in Lemma 5.1
satisfy for m,n, p = 0, 1, 2, ...

|∂m
u ∂

n
v ∂

p
wf(O)| ≤ cf

rm+p+qf (m+ p)!ρnn!

(m+ 1)2(n+ 1)2(p+ 1)2
, (62)

where f stands for any of the functions

êa
AB, Γ̂ABCD, φ, φAB, Ω, ΩAB, R, Sk,
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and

qêa
AB

= qΓ̂ABCD
= qφ = qΩ = qΩAB

= −1, qφAB
= qR = qSk

= 0.

Remark. Taking into account the v-finite expansion types of the functions f
(Lemma 5.2), we can replace the right hand sides in the estimates above by
zero if n is large enough relative to m. This will not be pointed out at each
step and for convenience the estimates will be written as above.

We take the following four lemmas from [7]. The first states the necessary
part of the estimates, and the other three are needed in order to manipulate
the estimates in the proof of Lemma 6.2.

Lemma 6.3. If f is holomorphic near O, there exist positive constants c, r0,
ρ0 such that

|∂m
u ∂

n
v ∂

p
wf(O)| ≤ c

rm+p(m+ p)!ρnn!

(m+ 1)2(n + 1)2(p+ 1)2
, m, n, p = 0, 1, 2, ...

for any r ≥ r0, ρ ≥ ρ0. If in addition f(0, v, 0) = 0, the constants can be
chosen such that

|∂m
u ∂

n
v ∂

p
wf(O)| ≤ c

rm+p−1(m+ p)!ρnn!

(m+ 1)2(n + 1)2(p+ 1)2
, m, n, p = 0, 1, 2, ...

for any r ≥ r0, ρ ≥ ρ0.

Lemma 6.4. For any non-negative integer n there is a positive constant C,
C > 1, independent of n so that

n
∑

k=0

1

(k + 1)2(n− k + 1)2
≤ C

1

(n+ 1)2
.

In the following C will always denote the constant above.

Lemma 6.5. For any integers m, n, k, j, with 0 ≤ k ≤ m, and 0 ≤ j ≤ n
resp. 0 ≤ j ≤ n− 1 holds

(

m

k

)(

n

j

)

≤
(

m+ n

k + j

)

resp.

(

m

k

)(

n− 1

j

)

≤
(

m+ n

k + j

)

.

Lemma 6.6. Let m, n, p be non-negative integers and fi, i = 1, ..., N , be
smooth complex valued functions of u, v, w on some neighbourhood U of O
whose derivatives satisfy on U (resp. at a given point p ∈ U) estimates of
the form

|∂j
u∂

k
v∂

l
wfi| ≤ ci

rj+l+qi(j + l)!ρkk!

(j + 1)2(k + 1)2(l + 1)2
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for 0 ≤ j ≤ m, 0 ≤ k ≤ n, 0 ≤ l ≤ p, with some positive constants ci, r, ρ
and some fixed integers qi (independent of j, k, l). Then one has on U (resp.
at p) the estimates

|∂m
u ∂

n
v ∂

p
w(f1 · ... · fN)| ≤ C3(N−1)c1 · ... · cN

rm+p+q1+...qN (m+ p)!ρnn!

(m+ 1)2(n+ 1)2(p+ 1)2
. (63)

Remark. This lemma remains true if m, n, p are replaced in (63) by integers
m′, n′, p′ with 0 ≤ m′ ≤ m, 0 ≤ n′ ≤ n, 0 ≤ p′ ≤ p.
The factor C3(N−1) in (63) can be replaced by C(3−r)(N−1) if r of the integers
m, n, p vanish.

Proof of Lemma 6.2. The proof is by induction, following the procedure which
led to Lemma 5.1. A general outline is as follows. We start leaving the choice
of the constants r, ρ, cf , open. We use the induction hypothesis and the equa-
tions that lead to Lemma 5.1 to derive estimates for the derivatives of the
next order. These estimates are of the form

|∂m
u ∂

n
v ∂

p
wf(O)| ≤ cf

rm+p+qf (m+ p)!ρnn!

(m+ 1)2(n+ 1)2(p+ 1)2
Af , (64)

with certain constans Af which depend on m, n, p and the constants cf , r
and ρ. Sometimes superscripts will indicate to which order of differentiability
particular constants Af refer. In the way we will have to make assumptions
on r to proceed with the induction step. We shall collect these conditions
and the constants Af , or estimates for them, and at the end it will be shown
that the constants cf , r and ρ can be adjusted so that all conditions are
satisfied and Af ≤ 1. This will complete the induction proof.
In order not to write long formulas that do not add to the understanding of
the procedure, we state here some properties that are used to simplify the
estimates:

• As a corollary of Lemma 6.6 we have:
If

|∂j
u∂

k
v∂

l
wg| ≤ cg

rj+l−1(j + l)!ρkk!

(j + 1)2(k + 1)2(l + 1)2

for 0 ≤ j ≤ m, 0 ≤ k ≤ n, 0 ≤ l ≤ p, where g is φ or Ω, and if
r > C3

2
[cΩ + (c2Ω + 4c2φ)

1

2 ], then
∣

∣

∣

∣

∂m
u ∂

n
v ∂

p
w

(

1

1 + Ω − φ2

)∣

∣

∣

∣

≤ 1

C3

1

1 − C3

r

(

cΩ + C3

r
c2φ

)

rm+p(m+ p)!ρnn!

(m+ 1)2(n+ 1)2(p+ 1)2
.
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• If r ≥ C3[cΩ + (c2Ω + 2c2φ)
1

2 ] then

1

1 − C3

r

(

cΩ + C3

r
c2φ

) ≤ 2. (65)

• After calculating the estimates and using (65) we find that all the A’s
satisfy inequalities of the form

A ≤ α +
9

∑

i=1

αi

ri
,

where α, αi are constants that don’t depend on r. If αi = 0 then we
have to show that we can make α ≤ 1. If the αi’s not zero we can take
a constant a, 0 < a < 1, and require that α ≤ a and then choose r
large enough such that

∑8
i=1

αi

ri ≤ 1− a. In the estimates that follows,
we shall not write the explicit expresions for the αi’s, as they do not
play any role if we are able to make r big enough at the end of the
procedure.

From now on we consider that a function in a modulus sign is evaluated at
the origin O.
From the analyticity of φ00(u, v) we also get that, for given ρφ00

∈ R, 0 <
ρφ00

< 1
3
, there exist positive constants cφ00

, rφ00
, such that

|∂m
u ∂

n
v φ00| ≤ cφ00

rm
φ00
m!ρn

φ00
n!

(m+ 1)2(n+ 1)2
, m ≥ 0, 0 ≤ n ≤ 2m+ 2.

As φ(0, v) = 0 the inequalities (60),(61) are mantained if we change the
constants for bigger constants. We choose

cφ = max{c̃φ, cφ00
}, (66)

cS0
= max

{

c̃S0
, 64

3
C3c2φ00

}

. (67)

Also we require the constants r, ρ to saisfy

r ≥ max{rφ, rS0
, rφ00

},
ρ ≥ max{ρφ, ρS0

, ρφ00
}, (68)

but we leave the choice of the precise value open. So we have

|∂m
u ∂

n
v ∂

0
wφ| ≤ cφ

rm−1m!ρnn!

(m+ 1)2(n+ 1)2
, m ≥ 0, 0 ≤ n ≤ 2m,
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|∂m
u ∂

n
v ∂

0
wS0| ≤ cS0

rmm!ρnn!

(m+ 1)2(n+ 1)2
, m ≥ 0, 0 ≤ n ≤ 2m+ 4,

|∂m
u ∂

n
v ∂

0
wφ00| ≤ cφ00

rmm!ρnn!

(m+ 1)2(n+ 1)2
, m ≥ 0, 0 ≤ n ≤ 2m+ 2.

From the frame properties êa
AB|U0

= 0, Γ̂ABCD|U0
= 0 follows

|∂0
u∂

n
v ∂

p
wΓ̂ABCD| = 0, |∂0

u∂
n
v ∂

p
wê

a
AB| = 0.

The conditions on the conformal factor, Ω|I = 0, ΩAB|I = 0, give

|∂0
u∂

n
v ∂

0
wΩ| = 0, |∂0

u∂
n
v ∂

0
wΩAB| = 0.

Using Lemma 4.1 we get the relations:

φA1|U0
=

1

2
∂1+A

v φ00|U0
, A = 0, 1, (69)

Sk|U0
=

(4 − k)!

4!
∂k

vS0|U0
, k = 1, 2, 3, 4, (70)

which imply

|∂0
u∂

n
v ∂

0
wφA1| ≤

{

1
2
cφ00

ρn+1+A(n+1+A)!
(n+2+A)2

, n ≤ 1 − A

0, n > 1 − A

}

= cφA1

ρnn!

(n + 1)2
Am=0,p=0

φA1
,

Am=0,p=0
φA1

=
1

2

cφ00

cφA1

ρ1+AhA,n ≤ 1

2

cφ00

cφA1

ρ1+A, (71)

hA,n =

{

(n+1+A)!
n!

(n+1)2

(n+2+A)2
, 0 ≤ n ≤ 1 − A

0, n > 1 − A

}

≤ 1,

and similarly

|∂0
u∂

n
v ∂

0
wSk| ≤ cSk

ρnn!

(n+ 1)2
Am=0,p=0

Sk
,

Am=0,p=0
Sk

≤ cS0

cSk

ρk. (72)

Taking into account that R is a scalar and the initial condition R|i = −6 −
16 (φ00φ11 − φ2

01) |i, we get

|∂0
u∂

n
v ∂

0
wR| ≤

{

6 + 73
36
ρ2c2φ00

, n = 0
0, n > 0

}

= cR
ρnn!

(n + 1)2
Am=0,p=0

R ,
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Am=0,p=0
R ≤ 1

cR

(

6 +
73

36
ρ2c2φ00

)

.

We have obtained so far the estimates for m = 0, p = 0 and general n. Now
we should consider the equations in G1 to get in an inductive form estimates
for the quantities in x1, that means, estimates for |∂m

u ∂
n
v ∂

0
wx1|, considering

as known estimates of this type for |∂l
u∂

n
v ∂

0
wx1| with 0 ≤ l < m. And once

we have this estimates we should do the same procedure with G2 to get
estimates for |∂m

u ∂
n
v ∂

0
wx3|. These estimates, i.e. estimates for p = 0, can be

obtained from the estimates for general p that appears later replacing C3 by
C2 and p by 0. The estimates for general p are also more restrictive, so we
are not going to enumerate the estimates for p = 0 here.
We continue with the induction procedure by considering that the estimates
are satisfied for |∂m

u ∂
n
v ∂

l
wX| for 0 ≤ l < p, and try to determine conditions

for performing the induction step.
We start by formally applying ∂m

u ∂
n
v ∂

p−1
w to the equation A11 = 0 and taking

the modulus at the origin. We get

|∂m
u ∂

n
v ∂

p
wφ| ≤ |∂m

u ∂
n
v ∂

p−1
w φ11| + |∂m

u ∂
n
v ∂

p−1
w (ê1 11∂uφ)| + |∂m

u ∂
n
v ∂

p−1
w (ê2 11∂vφ)|.

To estimate the terms in the r.h.s. of this inequality we have, using the
induction hypothesis,

|∂m
u ∂

n
v ∂

p−1
w φ11| ≤ cφ11

rm+p−1(m+ p− 1)!ρnn!

(m+ 1)2(n+ 1)2p2
,

|∂m
u ∂

n
v ∂

p−1
w (ê1 11∂uφ)|

≤
m

∑

j=0

n
∑

k=0

p−1
∑

l=0

(

m

j

)(

n

k

)(

p− 1

l

)

|∂j
u∂

k
v∂

l
wê

1
11||∂m−j+1

u ∂n−k
v ∂p−l−1

w φ|

≤
m

∑

j=0

n
∑

k=0

p−1
∑

l=0

(m
j )(

p−1

l )
(m+p

j+l )

× cê1
11
cφr

m+p−2(m+ p)!ρnn!

(j + 1)2(k + 1)2(l + 1)2(m− j + 2)2(n− k + 1)2(p− l)2

≤ C3cê1
11
cφ
rm+p−2(m+ p)!ρnn!

(m+ 2)2(n + 1)2p2
,

and similarly

|∂m
u ∂

n
v ∂

p−1
w (ê2 11∂vφ)| ≤ C3cê2

11
cφ
rm+p−3(m+ p− 1)!ρn(n+ 1)!

(m+ 1)2(n+ 2)2p2
.
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Using these inequalities and writting |∂m
u ∂

n
v ∂

p
wφ| in the form (64), we obtain

Ap≥1
φ =

1

cφ

[

(p+ 1)2

p2(m+ p)
cφ11

+
(p+ 1)2(m+ 1)2

p2(m+ 2)2

C3

r
cê1

11
cφ

(p+ 1)2(n+ 1)3

p2(m+ p)(n+ 2)2

C3

r2
ρcê2

11
cφ

]

.

Taking into account the v-finite expansion types of the terms involved, we
see that Ap≥1

φ = 0 if n > 2m, and thus

Ap≥1
φ ≤ 4

cφ

(

cφ11
+
C3

r
cê1

11
cφ + 2

C3

r2
ρcê2

11
cφ

)

= 4
cφ11

cφ
+

9
∑

i=1

(αp≥1
φ )i

ri
.

The procedure with the rest of the equations is similar to the one presented
for the equation A11 = 0, the only difference being that if an equation is
singular with u−1 terms we have first to multiply it by u, formally apply
∂m+1

u ∂n
v ∂

p−1
w , and then estimate the modulus. Therefore we shall not repeat

the details that led from the equations to the estimates, as we shall not state
the v-finite expansion type at each step. What we will state is which equation
is used for deriving that particular estimate.
Applying formally ∂m

u ∂
n
v ∂

p−1
w to the equation D11φ00 = D00φ11, which follows

from A00 = 0 and A11 = 0, we obtain

Ap≥1
φ00

≤ 4
cφ11

cφ00

+

9
∑

i=1

(αp≥1
φ00

)i

ri
.

Multiplying H1(ABC)0 +H0(ABC)1 = 0 by u and formaly aplying ∂m+1
u ∂n

v ∂
p−1
w

we get

Ap≥1
S0

≤ 4

cS0

[

cS2
+ 16

3
C3 (cφ00

cφ11
+ cφ01

cφ01
)
]

+
9

∑

i=1

(αp≥1
S0

)i

ri
.

In the same way as we used (69), (70) to obtain (71), (72) we get

Am=0,p≥1
φA1

≤ 1

2

cφ00

cφA1

ρ1+A,

Am=0,p≥1
Sk

≤ cS0

cSk

ρk.

Restricting Σ11 = 0 and Σ11CD = 0 to U0 we find that on U0

Ω = 0, Ω01 = 0, Ω11 = 0,

∂wΩ00 = −1
3
R + 8

3(1−φ2)
(φΩ00φ11 − 2φ00φ11 + 2φ2

01).
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Taking formal derivatives of these equations we get

Am=0
Ω = 0, Am=0

Ω01
= 0, Am=0

Ω11
= 0,

and

Am=0,p≥1
Ω00

≤ 4

3

1

cΩ00

[

cR + 32C2
(

cφ00
cφ11

+ c2φ01

)]

+
9

∑

i=1

(αm=0,p≥1
Ω00

)i

ri
.

Restricting Π11 = 0 to U0 gives

∂wR = 3Ω00S4 +
8

1 − φ2

[

− 2φ11∂wφ00 + 4φ01∂wφ01 + (φΩ00 − 2φ00)∂wφ11

−1

3
φRφ11

]

+
8

3(1 − φ2)2
φ11

[

(3 + 11φ2)Ω00φ11 − 28φ(φ00φ11 − φ2
01)

]

,

so that

Am=0,p≥1
R ≤ 64C2

cR
(cφ00

cφ11
+ c2φ01

) +

9
∑

i=1

(αm=0,p≥1
R )i

ri
.

We complete the calculation of the A’s by using the ∂u-equations. We have
to calculate the estimates in the order given by the hierarchy presented in
Section 5.3 but for simplicity we present the estimates in the order the ∂u-
equations were stated in Section 5.2.

tAB
EF

00e
a

EF = 0:

Am≥1
ê1

01
≤

9
∑

i=1

(αm≥1
ê1

01
)i

ri
,

Am≥1
ê2

01
≤ 1

2

cΓ̂0100

cê2
01

+
9

∑

i=1

(αm≥1
ê2

01
)i

ri
,

Am≥1
ê1

11
≤

9
∑

i=1

(αm≥1
ê1

11
)i

ri
,

Am≥1
ê2

11
≤ cΓ̂1100

cê2
11

+

9
∑

i=1

(αm≥1
ê2

11
)i

ri
.
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RAB00EF = 0:

Am≥1

Γ̂0100

≤ 2

3

cS0

cΓ̂0100

+
9

∑

i=1

(αm≥1

Γ̂0100

)i

ri
,

Am≥1

Γ̂0101

≤ cS1

cΓ̂0101

+
9

∑

i=1

(αm≥1

Γ̂0101

)i

ri
,

Am≥1

Γ̂0111

≤ cS2

cΓ̂0111

+
cR

6cΓ̂0111

+
9

∑

i=1

(αm≥1

Γ̂0111

)i

ri
,

Am≥1

Γ̂1100

≤ 2
cS1

cΓ̂1100

+
9

∑

i=1

(αm≥1

Γ̂1100

)i

ri
,

Am≥1

Γ̂1101

≤ 4

cΓ̂1101

(

cS2
+

1

12
cR

)

+
9

∑

i=1

(αm≥1

Γ̂1101

)i

ri
,

Am≥1

Γ̂1111

≤ 4cS3

cΓ̂1111

+
9

∑

i=1

(αm≥1

Γ̂1111

)i

ri
.

Σ00 = 0:

Am≥1
Ω ≤

9
∑

i=1

(αm≥1
Ω )i

ri
.

Φ00 = 0:

Am≥1
φ01

≤ cφ00

cφ01

ρ+
9

∑

i=1

(αm≥1
φ01

)i

ri
.

Φ10 = 0:

Am≥1
φ11

≤ cφ01

cφ11

ρ+
9

∑

i=1

(αm≥1
φ11

)i

ri
.

Σ00CD = 0:

Am≥1
Ω00

≤
9

∑

i=1

(αm≥1
Ω00

)i

ri
,

Am≥1
Ω01

≤
9

∑

i=1

(αm≥1
Ω01

)i

ri
,

Am≥1
Ω11

≤ 4

3cΩ11

[

cR + 32C3
(

cφ00
cφ11

+ c2φ01

)]

+

9
∑

i=1

(αm≥1
Ω11

)i

ri
.
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Π00 = 0:

Am≥1
R ≤ 64C3

cR
(cφ00

cφ11
+ c2φ01

) +
9

∑

i=1

(αm≥1
R )i

ri
.

H0(ABC)k
= 0:

Am≥1
S1

≤ cS0

cS1

ρ+
9

∑

i=1

(αm≥1
S1

)i

ri
,

Am≥1
S2

≤ 1

cS2

[

ρcS1
+ 8

3
C3 (cφ00

cφ11
+ cφ01

cφ01
)
]

+
9

∑

i=1

(αm≥1
S2

)i

ri
,

Am≥1
S3

≤ 1

cS3

{

ρcS2
+ 8

3
C3

[

ρ
(

cφ00
cφ11

+ 2c2φ01

)

+ 3
2
cφ01

cφ11

]}

+

9
∑

i=1

(αm≥1
S3

)i

ri
,

Am≥1
S4

≤ 1

cS4

[

ρcS3
+ 4C3cφ11

(

2ρcφ01
+ 8

3
cφ00

+ cφ11

)]

+

9
∑

i=1

(αm≥1
S4

)i

ri
.

We now have to show that all the constants can be chosen in a way that makes
all the A’s less or equal than 1. So, introducing a constant a, 0 < a < 1, the
following inequalities need to be satisfied:

1

2

cφ00

cφ01

ρ ≤ 1, (73)

1

2

cφ00

cφ11

ρ2 ≤ 1, (74)

cS0

cS1

ρ ≤ 1,
cS0

cS2

ρ2 ≤ 1,
cS0

cS3

ρ3 ≤ 1,
cS0

cS4

ρ4 ≤ 1, (75)

1

cR

(

6 + 73
36
ρ2c2φ00

)

≤ 1, (76)

4
cφ11

cφ
≤ a, 4

cφ11

cφ00

≤ a,
4

cS0

[

cS2
+ 16

3
C3

(

cφ00
cφ11

+ c2φ01

)]

≤ a, (77)

4

3

1

cΩ00

[

cR + 32C2
(

cφ00
cφ11

+ c2φ01

)]

≤ a, (78)

1

cR
64C2

(

cφ00
cφ11

+ c2φ01

)

≤ a, (79)

1

2

cΓ̂0100

cê2
01

≤ a,
cΓ̂1100

cê2
11

≤ a,
2

3

cS0

cΓ̂0100

≤ a,
cS1

cΓ̂0101

≤ a, (80)

49



1

cΓ̂0111

(

cS2
+ 1

6
cR

)

≤ a, 2
cS1

cΓ̂1100

≤ a, (81)

4

cΓ̂1101

(

cS2
+ 1

12
cR

)

≤ a, 4
cS3

cΓ̂1111

≤ a, (82)

cφ00

cφ01

ρ ≤ a, (83)

cφ01

cφ11

ρ ≤ a, (84)

4

3

1

cΩ11

[

cR + 32C3
(

cφ00
cφ11

+ c2φ01

)]

≤ a, (85)

1

cR
64C3

(

cφ00
cφ11

+ c2φ01

)

≤ a, (86)

cS0

cS1

ρ ≤ a,
1

cS2

[

cS1
ρ+ 8

3
C3

(

cφ00
cφ11

+ c2φ01

)]

≤ a, (87)

1

cS3

[

cS2
ρ+ 4

3
C3

(

2ρcφ00
cφ11

+ 4ρc2φ01
+ 3cφ01

cφ11

)]

≤ a, (88)

1

cS4

[

cS3
ρ+ 4

3
C3cφ11

(8cφ00
+ 6ρcφ01

+ 3cφ11
)
]

≤ a. (89)

Now we have to show that we can choose the constants such that these
inequalities will be satisfied.
We start by setting

cφ01
≡ ρ

a
cφ00

,

with which we satisfy (73) and (83). Next we set

cφ11
≡ ρ2

a2
cφ00

,

so that (74) and (84) are satisfied.
We continue by setting

cS1
≡ ρ

a
cS0
, cS2

≡ ρ2

a2

(

cS0
+

16

3

C3

a
c2φ00

)

,

cS3
≡ ρ3

a3

[

cS0
+

8

3

(

3 +
7

2a

)

C3c2φ00

]

,

cS4
≡ ρ4

a4

[

cS0
+

8

3

(

6 +
5

a
+ 4

a

ρ2

)

C3c2φ00

]

.

With this we satisfy (75), (87), (88) and (89).
Inequalities (76), (79) and (86) are satisfied with

cR ≡ max

{

128
ρ2

a3
C3c2φ00

, 6 +
73

36
ρ2c2φ00

}

.
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With this definition for cR we set

cΩ00
≡ 4

3a

(

cR + 64C2ρ
2

a2
c2φ00

)

, cΩ11
≡ 4

3a

(

cR + 64C3ρ
2

a2
c2φ00

)

,

so (78) and (85) are respectively satisfied.
Using the previous definitions we set also

cΓ̂0100
≡ 2

3a
cS0
, cΓ̂0101

≡ 1

a
cS1
,

cΓ̂0111
≡ 1

a

(

cS2
+

1

6
cR

)

, cΓ̂1100
≡ 2

a
cS1
,

cΓ̂1101
≡ 4

a

(

cS2
+

1

12
cR

)

, cΓ̂1111
≡ 4

a
cS3
,

cê2
01
≡ 1

3a2
cS0
, cê2

11
≡ 2

a2
cS1
,

and (80), (81) and (82) are satisfied.
There are three inequalities that we have not yet considered, (77). These are
now reduced to

4ρ2 cφ00

cφ
≤ a3,

4ρ2 ≤ a3,

4ρ2

[

1 +
1

cS0

16

3
C3c2φ00

(

2 +
1

a

)]

≤ a3.

Taking into consideration now (66), (67), (68) we see that these inequalities
can be satisfied if we define

ρ ≡ max{ρφ, ρS0
, ρφ00

} < 1

3
,

a ≡ max

{

1

2
, (8ρ2)

1

3

}

< 1.

Now we choose some positive constants cΩ, cΩ01
, cê1

01
, cê1

11
, that are not re-

stricted by the procedure.
Finally we choose r so large that

r > max
{

rφ, rS0
, rφ00

, C3
[

cΩ +
(

c2Ω + 2c2φ
)

1

2

]}

and that all the A’s are less or equal than 1. The induction proof is completed.
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The following lemma states the convergent result. The proof follows as
the one given in [7].

Lemma 6.7. The estimates (62) for the derivatives of the functions f and
the expansion types given in Lemma 5.2 imply that the associated Taylor
series are absolutely convergent in the domain |v| < 1

αρ
, |u| + |w| < α2

r
,

for any real number α, 0 < α ≤ 1. It follows that the formal expansion
determined in Lemma 5.1 defines indeed a (unique) holomorphic solution to
the conformal static vacuum field equations which induces the data φ, S0 on
W0.

7 The complete set of equations on N̂

We have seen in Section 5 how to calculate a formal expansion for our fields
using a subset of the conformal stationary vacuum field equations. In the
previous section we have shown that these formal expansions are convergent
in a neighbourhood of infinity. In this section we shall show that these fields
satisfy the complete system of conformal stationary vacuum field equations.
First, we prove that the conformal stationary vacuum field equations are
satisfied in the limit as u → 0. Second, we derive a subsidiary system of
equations, for which the first result provides the initial conditions, and which
allows us to prove that the complete system is satisfied.

Lemma 7.1. The functions êa
AB, Γ̂ABCD, φ, Ω, R, SABCD, whose expansion

coefficients are determined by Lemma 5.1, with expansions that converge on
an open neighbourhood of the point 0, neighbourhood that we assume to coin-
cide with N̂ , satisfy the complete set of conformal field equations on the set
U0 in the sense that the fields tAB

CD
EF , RABCDEF , AAB, ΣAB, ΦAB, ΠAB,

ΣABCD, HABCD calculated from these functions on Ŝ\U0 have vanishing limit
as u→ 0.

Proof. Taking into account which equations have already been used to de-
termine the formal expansions, and the symmetries of the equations, it is left
to show that t01

EF
11, RAB0111, A01,Σ01,Π01,Σ01CD, H1(BCD)k=1,2,3

, have van-

ishing limit on N̂\U0 as u→ 0, and that in the same limit ΦAB = −ΦBA.
Because 〈σAB, eEF 〉 = hAB

EF then

t01
EF

11 = 2Γ01
(E

1ǫ1
F ) − 2Γ11

(E
(0ǫ1)

F ) − σEF
a

(

ea
11,be

b
01 − ea

01,be
b

11

)

,

and using the way in which the coordinates and the frame field were con-
structed, we see that

t01
EF

11 = O(u), as u→ 0.
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We now consider

RAB0111 = −1

2

(

SAB11 −
1

6
RǫA1ǫB1

)

+
1

2u
∂vΓ̂11AB − 1

u
Γ̂111(AǫB)

0

+ǫA
0ǫB

0

(

− 1

2u2
ê1 11 +

1

u
Γ̂0111 −

1

u
t01

01
11

)

+O(u).

Using that

t01
01

11 = Γ̂0111 −
1

2
∂v ê

2
11 −

1

2u
ê1 11 +O(u2)

we get

RAB0111 =
1

2u

[

∂vΓ̂11AB − 2Γ̂111(AǫB)
0 +

ǫA
0ǫB

0

(

−2

u
ê1 11 − ∂v ê

2
11 + 4Γ̂0111

) ]

−1

2

(

SAB11 −
1

6
RǫA1ǫB1

)

+O(u),

so that

lim
u→0

RAB0111 =
1

2

[

∂u∂vΓ̂11AB − 2∂uΓ̂111(AǫB)
0

+ǫA
0ǫB

0
(

−∂2
uê

1
11 − ∂u∂v ê

2
11 + 4∂uΓ̂0111

)

− SAB11 +
1

6
RǫA1ǫB1

]∣

∣

∣

∣

u=0

.

For the case A = B = 0 we get from the ∂u-equations that

∂2
uê

1
11 = −2∂uΓ̂1101, ∂u∂v ê

2
11 = ∂u∂vΓ̂1100, ∂uΓ̂0111 =

1

4

(

S2 −
1

6
R

)

,

on U0, and so limu→0R000111 = 0.
Using the ∂u-equations and that ∂vS2 = 2S3 on U0,

∂uΓ̂1111 = S3, ∂u∂vΓ̂1101 = 2S3,

on U0, and so limu→0R010111 = 0. As ∂vS3 = S4 on U0, limu→0R110111 = 0.
We take now the limit of A01 as u goes to 0,

lim
u→0

A01 =

[

1

2
∂u∂vφ− φ01

]∣

∣

∣

∣

u=0

.

Using that φ01 = 1
2
∂vφ00 on U0 and that we have A00 = 0 as part of the

∂u-equations we get limu→0A01 = 0. With the same procedure we get
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limu→0 Σ01 = 0.
Now we consider ΦAB. As AAB = 0 on U0 then

DP
BφAP |U0

= −DP
AφBP |U0

,

so ΦAB|U0
= −ΦBA|U0

and as we already have Φ10 = 0 then ΦAB = 0 on U0.
We now take the limit as u goes to 0 of the combination Π01 − 1

2
∂vΠ00. For

the limits of the derivatives involved we have at {u = 0}
D00φAB = ∂uφAB,

D01φ01 =
1

2
(∂u∂vφ01 − ∂uφ11) ,

D01φ11 =
1

2
∂u∂vφ11,

D11φ11 = ∂wφ11,

D00R = ∂uR,

D01R =
1

2
∂u∂vR,

D11R = ∂wR.

We also use that on U0

∂vφk = (2 − k)φk+1,

∂vSk = (4 − k)Sk+1,

We have already used the equations Σ11 = 0,Σ11CD = 0 restricted to U0,
finding that Ω,ΩA1 are zero on U0.
Furthermore we use Φ00 = 0, that says that on U0

∂u∂vφ00 = 4∂uφ01.

So we get for the limit

lim
u→0

(

Π01 −
1

2
∂vΠ00

)

= 0.

Considering that from the ∂u-equations we already have Π00 = 0 we get

lim
u→0

Π01 = 0.

We apply a similar procedure to the Σ01AB equations. We take the limit as
u goes to zero of the combinations

Σ0100 − Σ0001,

2Σ0101 − ∂vΣ0001 + Σ0011,

2Σ0111 − ∂vΣ0011.
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Using what has already been said together with the following limits at {u =
0}

D00ΩAB = ∂uΩAB,

D01Ω01 =
1

2
(∂u∂vΩ01 − ∂uΩ11) ,

D01Ω11 =
1

2
∂u∂vΩ11,

D11Ω11 = ∂wΩ11,

we see that the limits vanishes, which imply

lim
u→0

Σ01AB = 0.

Finally we consider the limit as u goes to zero of the combinations

4H1(ABC)1 − ∂vH1(ABC)0 − ∂vH0(ABC)1 + 2H0(ABC)2 ,

12H1(ABC)2 − ∂2
vH1(ABC)0 − ∂2

vH0(ABC)1 − 2∂vH0(ABC)2 + 4H0(ABC)3 ,

24H1(ABC)3 − ∂3
vH1(ABC)0 − ∂3

vH0(ABC)1 − 2∂2
vH0(ABC)2 − 8∂vH0(ABC)3 ,

and using what has been said together with:
the limits

D00Sk = ∂uSk,

D01Sk =
1

2
[∂u∂vSk − (4 − k)∂uSk+1] ,

D11Sk = ∂wSk,

the equality on U0

∂vSk = (4 − k)Sk+1,

and the equations

ΦA0 = 0,

we find that those limits are all zero, and considering the equations that we
have used to calculate the unknowns we get

lim
u→0

H1(ABC)k
= 0, k = 1, 2, 3.

This completes the proof that the complete system of conformal field equa-
tions are satisfied in the limit as u→ 0.
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Lemma 7.2. The functions êa
AB, Γ̂ABCD, φ,Ω, R, SABCD corresponding to

the expansions determined in Lemma 5.1 satisfy the complete set of conformal
vacuum field equations on the set N̂ .

Proof. We have to show that on N̂ the quantities t01
EF

11 ,RAB0111, A01,
ΣA1, ΠA1 , ΣA1CD, H1(BCD)k=1,2,3

vanish, and that ΦAB = −ΦBA. For this
we derive a system of subsidiary equations for these fields. The values of the
fields at U0, given by Lemma 7.1, are the initial conditions for the subsidiary
system of equations, and they are used throughout the proof.
Using the definitions of AAB and ΦAB:

DABACD −DCDAAB = −tAB
EF

CDDEFφ+ ǫADΦBC + ǫBCΦDA,

and in particular
(

∂u +
1

u

)

A01 = 2Γ̂0100A01,

which implies A01 = 0, and from that AAB = 0. This also shows that
ΦAB = −ΦAB, and as we already know that Φ10 = 0 then ΦAB = 0.
Following the proof of Lemma 5.5 in [7] we find that

(

∂u +
1

u

)

t01
AB

11 = 2Γ̂0100t01
AB

11 + 2R(A
00111ǫ0

B), (90)

which directly shows that t01
11

11 = 0.
Also following the proof of Lemma 5.5 in [7] and taking into account that
SABCD and R satisfy the the contracted Bianchi identity then

(

∂u +
1

u

)

RAB0111 = 2Γ̂0100RAB0111 −
1

2

(

H1AB0 −
1

6
ΠAB

)

, (91)

from which R000111 = 0, wich also gives t01
01

11 = 0.
It is still left to show that

t01
00

11, RA10111, ΣA1, ΠA1, ΣA1CD, H1(BCD)k=1,2,3
(92)

vanish on N̂ .
Using the definitions of ΣAB and ΣABCD,

DABΣCD −DCDΣAB = −tAB
EF

CDDEFΩ − ΣABCD + ΣCDAB,

and from that

∂uΣA1 +
1

u
Σ01ǫA

0 = 2Γ̂A100Σ01 + ΣA100. (93)
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At this point the expressions became to long to be treated by hand, so we
resort to a computer progam for tensor manipulations.
For ΣABCD we obtain

DEFΣCDAB −DCDΣEFAB = tCD
PQ

EFDPQΩAB − 2ΩP
(ARB)PCDEF

+Ω (ǫDEHFABC + ǫCFHDABE) + SABCDΣEF − SABEF ΣCD

+
R

3
(hABCDΣEF − hABEF ΣCD) +

1

3
(1 + Ω) (hABCDΠEF − hABEF ΠCD)

+
1

6 (1 + Ω − φ2)

{

3
[

1 + (1 + Ω)φ2
] [

ΣABCDΩEF − ΣABEF ΩCD

−ΩAB (ΣCDEF − ΣEFCD)
]

−4 (2 + 3Ω)φ2
(

hABCDΣEFPQΩPQ − hABEF ΣCDPQΩPQ
)

−8 (1 + Ω) (2 + 3Ω)φ
(

hABCDΣEFPQφ
PQ − hABEF ΣCDPQφ

PQ
)

}

+
1

(1 + Ω − φ2)2

{

1

2

(

1 − φ2
)2

ΩAB (ΩCDΣEF − ΩEFΣCD)

+Ωφ
(

2 + Ω − 2φ2
) [

φAB (ΩCDΣEF − ΩEFΣCD)

+ΩAB (φCDΣEF − φEFΣCD)
]

−2Ω
[

2
(

1 + Ω2
)2 − (2 + 3Ω)φ2

]

φAB (φCDΣEF − φEFΣCD)

−1

3

[

φ2
(

−1 + 3φ2
)

ΩPQΩPQ + 4φ
[

3 (1 + Ω)2 − (5 + 6Ω)φ2
]

ΩPQφPQ

−4 (1 + Ω)
[

(1 + Ω) (5 + 6Ω) − (7 + 9Ω)φ2
]

φPQφPQ

]

(hABCDΣEF − hABEF ΣCD)

}

,
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which implies

∂uΣC1AB +
1

u
ǫC

0Σ01AB = 2Γ̂C100Σ01AB − Ωǫ0CH10AB − S00ABΣ1C (94)

−R
3
h00ABΣ1C − 1

3
(1 + Ω) h00ABΠ1C

+
1

6 (1 + Ω − φ2)

{

3
[

1 + (1 + Ω)φ2
]

(Σ1CABΩ00 + ΩABΣ1C00)

+4 (2 + 3Ω)φ2h00ABΣC1PQΩPQ + 8 (1 + Ω) (2 + 3Ω)φh00ABΣC1PQφ
PQ

}

+
1

(1 + Ω − φ2)2

{

− 1

2

(

1 − φ2
)2

ΩABΩ00Σ1C + ΩABφ00Σ1C

−Ωφ
(

2 + Ω − 2φ2
)

φABΩ00Σ1C

+2Ω
[

2
(

1 + Ω2
)2 − (2 + 3Ω)φ2

]

φABφ00Σ1C

+
1

3

[

φ2
(

−1 + 3φ2
)

ΩPQΩPQ + 4φ
[

3 (1 + Ω)2 − (5 + 6Ω)φ2
]

ΩPQφPQ

−4 (1 + Ω)
[

(1 + Ω) (5 + 6Ω) − (7 + 9Ω)φ2
]

φPQφPQ

]

h00ABΣ1C

}

.

Now with ΠAB

DCDΠAB −DABΠCD = tAB
EF

CDDEFR

+
1

1 + Ω − φ2

{

− 2 (4 + 7Ω)
[

φΩGH − 2(1 + Ω)φGH
]

DEFφGHtAB
EF

CD

−4 (4 + 7Ω)
[

φΩGH − 2(1 + Ω)φGH
]

φGER
E

HABCD

−
[(

3 − 3φ2 + 7Ωφ2
)

ΩEF − 2Ωφ (4 + 7Ω)φEF
]

(ǫBCHDAEF + ǫADHBCEF )

+
1

3
φ (4 + 7Ω) [φ (ΩCDΠAB − ΩABΠCD) − 2(1 + Ω) (φCDΠAB − φABΠCD)]

−1

3
φ2 (4 + 7Ω)R (ΣABCD − ΣCDAB) + 2 (4 + 7Ω)φ

(

DCDφ
EFΣABEF −DABφ

EFΣCDEF

)

+
(

3 − 3φ2 + 7Ωφ2
) (

SCD
EFΣABEF − SAB

EFΣCDEF

)

}

+
1

(1 + Ω − φ2)2

{

− 1

6
φ2

(

−12 + 40φ2 + 21Ωφ2
)

ΩEFΩEF

(ΣABCD − ΣCDAB)
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+
2

3
φ

[

−18(1 + Ω) +
(

46 + 61Ω + 21Ω2
)

φ2
]

ΩEFφEF (ΣABCD − ΣCDAB)

−2

3
(1 + Ω)

[

−24(1 + Ω) +
(

52 + 61Ω + 21Ω2
)

φ2
]

φEFφEF

(ΣABCD − ΣCDAB)

+
1

3
φ2

(

−12 + 40φ2 + 21Ωφ2
)

ΩEF (ΩCDΣABEF − ΩABΣCDEF )

−2

3
φ

[

18(1 + Ω) +
(

46 + 61Ω + 21Ω2
)

φ2
]

φEF (ΩCDΣABEF − ΩABΣCDEF )

−2

3
φ

[

12(1 + Ω) +
(

16 + 61Ω + 21Ω2
)

φ2
]

ΩEF (φCDΣABEF − φABΣCDEF )

+
4

3
(1 + Ω)

[

6(1 + Ω) +
(

22 + 61Ω + 21Ω2
)

φ2
]

φEF

(φCDΣABEF − φABΣCDEF )

+
1

3
φ2

(

−3 + 7φ2
)

R (ΩABΣCD − ΩCDΣAB)

−2

3
φ

[

−7(1 + Ω)2 + (11 + 14Ω)φ2
]

R (φABΣCD − φCDΣAB)

+2φ
(

−3 + 7φ2
)

ΩEF (DABφEFΣCD −DCDφEFΣAB)

−4
[

−7(1 + Ω)2 + (11 + 14Ω)φ2
]

φEF (DABφEFΣCD −DCDφEFΣAB)

+
(

−1 + φ2
) (

−3 + 7φ2
)

ΩEF (SEFABΣCD − SEFCDΣAB)

−2φ
[

−4 − 14Ω − 7Ω2 + 2(2 + 7Ω)φ2
]

φEF (SEFABΣCD − SEFCDΣAB)

}

+
1

3 (1 + Ω − φ2)3

{

1

2
φ2

[

−24 + (59 + 21Ω)φ2 + 21φ4
]

ΩEFΩEF

(ΩABΣCD − ΩCDΣAB)

−2φ
[

−18(1 + Ω) + (13 + 19Ω)φ2 + (61 + 42Ω)φ4
]

ΩEFφEF

(ΩABΣCD − ΩCDΣAB)

+2φ2
[

−3(1 + Ω)
(

19 + 14Ω + 7Ω2
)

+
(

113 + 164Ω + 63Ω2
)

φ2
]

φEFφEF

(ΩABΣCD − ΩCDΣAB)

−φ
[

12(1 + Ω) + (−17 + 19Ω)φ2 + (61 + 42Ω)φ4
]

ΩEFΩEF

(φABΣCD − φCDΣAB)

+4φ2
[

−3(1 + Ω)
(

9 + 14Ω + 7Ω2
)

+
(

83 + 164Ω + 63Ω2
)

φ2
]

ΩEFφEF

(φABΣCD − φCDΣAB)

+4φ(1 + Ω)
[

(1 + Ω)2(61 + 42Ω) − 3
(

39 + 75Ω + 28Ω2
)

φ2
]

φEFφEF

(φABΣCD − φCDΣAB)

}

,
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and we get

∂uΠA1 +
1

u
ǫA

0Π01 = 2Γ̂A101 (95)

+
1

1 + Ω − φ2

{

[(

3 − 3φ2 + 7Ωφ2
)

ΩEF − 2Ωφ (4 + 7Ω)φEF
]

ǫ0AH10EF

+
1

3
φ (4 + 7Ω) [φΩ00 − 2(1 + Ω)φ00] ΠA1 −

1

3
φ2 (4 + 7Ω)RΣA100

+ 2 (4 + 7Ω)φ∂uφ
EFΣA1EF +

(

3 − 3φ2 + 7Ωφ2
)

S00
EFΣA1EF

}

+
1

(1 + Ω − φ2)2

{

− 1

6
φ2

(

−12 + 40φ2 + 21Ωφ2
)

ΩEFΩEF ΣA100

+
2

3
φ

[

−18(1 + Ω) +
(

46 + 61Ω + 21Ω2
)

φ2
]

ΩEFφEFΣA100

−2

3
(1 + Ω)

[

−24(1 + Ω) +
(

52 + 61Ω + 21Ω2
)

φ2
]

φEFφEFΣA100

+
1

3
φ2

(

−12 + 40φ2 + 21Ωφ2
)

ΩEFΩ00ΣA1EF

−2

3
φ

[

18(1 + Ω) +
(

46 + 61Ω + 21Ω2
)

φ2
]

φEFΩ00ΣA1EF

−2

3
φ

[

12(1 + Ω) +
(

16 + 61Ω + 21Ω2
)

φ2
]

ΩEFφ00ΣA1EF

+
4

3
(1 + Ω)

[

6(1 + Ω) +
(

22 + 61Ω + 21Ω2
)

φ2
]

φEFφ00ΣA1EF

−1

3
φ2

(

−3 + 7φ2
)

RΩ00ΣA1 +
2

3
φ

[

−7(1 + Ω)2 + (11 + 14Ω)φ2
]

Rφ00ΣA1

−2φ
(

−3 + 7φ2
)

ΩEF∂uφEFΣA1

+4
[

−7(1 + Ω)2 + (11 + 14Ω)φ2
]

φEF∂uφEFΣA1

−
(

−1 + φ2
) (

−3 + 7φ2
)

ΩEFSEF00ΣA1

+2φ
[

−4 − 14Ω − 7Ω2 + 2(2 + 7Ω)φ2
]

φEFSEF00ΣA1

}

− 1

3 (1 + Ω − φ2)3

{

1

2
φ2

[

−24 + (59 + 21Ω)φ2 + 21φ4
]

ΩEF ΩEFΩ00ΣA1

−2φ
[

−18(1 + Ω) + (13 + 19Ω)φ2 + (61 + 42Ω)φ4
]

ΩEFφEFΩ00ΣA1

+2φ2
[

−3(1 + Ω)
(

19 + 14Ω + 7Ω2
)

+
(

113 + 164Ω + 63Ω2
)

φ2
]

φEFφEFΩ00ΣA1

−φ
[

12(1 + Ω) + (−17 + 19Ω)φ2 + (61 + 42Ω)φ4
]

ΩEFΩEFφ00ΣA1

+4φ2
[

−3(1 + Ω)
(

9 + 14Ω + 7Ω2
)

+
(

83 + 164Ω + 63Ω2
)

φ2
]

ΩEFφEFφ00ΣA1
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+4φ(1 + Ω)
[

(1 + Ω)2(61 + 42Ω) − 3
(

39 + 75Ω + 28Ω2
)

φ2
]

φEFφEFφ00ΣA1

}

.

Finally, with HABCD,

DEFHEFCD = −1

2
tEFHI

E
GDHISCDFG − 2SE(FGCR

E
D)

HF
H

G (96)

+
1

1 + Ω − φ2

{

[

φΩEF − 2(1 + Ω)φEF
]

[

− 1

3
(1 + Ω)DGHφEF t

I
C

GH
DI

−ΩDGHφFItE
IGH

CD − 2

3
(1 + Ω)φFGR

G
E

H
CDH + ΩφFGR

GH
EHCD

−ΩφGHRGFEHCD

]

+
1

3
φΩ

[

φΩEF − 2(1 + Ω)φEF
]

H(CD)EF

+
1

2

[(

1 − φ2 + Ωφ2
)

ΩEF − 2Ω2φφEF
]

HEFCD

+
1

18
(−2 + Ω)φ

[

φΩE
(CΠD)E − 2(1 + Ω)φE

(CΠD)E

]

+
1

18
(−2 + Ω)φ2RΣE(CD)

E + ΩφDCDφ
EFΣGEF

G

−2

3
(1 + Ω)φDE

(Cφ
FGΣD)EFG +

1

2

(

1 − φ2 + Ωφ2
)

SCD
EFΣGEF

G

−1

3
Ωφ2SEFG

(CΣD)EFG − 2 [φΩCD − 2(1 + Ω)φCD]φEFΣGEF
G

− 4φΩEFφCDΣGEF
G + 2φΩEFφF

GΣEGCD

}

+
1

(1 + Ω − φ2)2

{

1

18
φ2

(

3 − 10φ2 + 6Ωφ2
)

ΩEF

(

ΩEF ΣG(CD)
G + 2ΩG

(CΣD)GEF

)

+
2

9
φ3

(

7 + 4Ω − 6Ω2
)

φEF
(

ΩEF ΣG(CD)
G + ΩG

(CΣD)GEF

)

−2

9
φ

[

6(1 + Ω) −
(

13 + 4Ω − 6Ω2
)

φ2
]

ΩEFφG
(CΣD)GEF

−2

9
(1 + Ω)

[

3(1 + Ω) + 2
(

2 + 2Ω − 3Ω2
)

φ2
]

φEFφEFΣG(CD)
G

+
4

9
(1 + Ω)2

(

3 − 10φ2 + 6Ωφ2
)

φEFφG
(CΣD)GEF

− 1

18
φ2

(

−3 + φ2
)

RΩE
(CΣD)E − 1

9
φ

[

(1 + Ω)2 + (1 − 2Ω)φ2
]

RφE
(CΣD)E

+
2

3
φ3ΩEFD

G
(Cφ

EFΣD)G − φ
(

1 − φ2
)

ΩEFDCDφF
GΣEG
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+
4

3
(1 + Ω)

(

1 + Ω − 2φ2
)

φEFD
G

(Cφ
EFΣD)G + 2

[

(1 + Ω)2 − (1 + 2Ω)φ2
]

φEFDCDφF
GΣEG − 1

3

(

1 − φ2
)

φ2ΩEFSG
EF (CΣD)G

+
1

2

(

1 − φ2
)2

ΩEFSG
FCDΣEG

−2

3
φ

[

−(1 + Ω)2 + (1 + 2Ω)φ2
]

φEFSG
EF (CΣD)Gφ

EFSG
FCDΣEG

+Ωφ
(

2 + Ω − 2φ2
)

+ 2φ (ΩCD − 2φφCD) ΩE
FφEGΣFG

}

+
1

9 (1 + Ω − φ2)3

{

− φ2
(

3 − 13φ3 + 3Ωφ2 + 3φ4
)

ΩEF ΩEFΩG
(CΣD)G

−4φ3
(

5 + 8Ω + 2φ2 − 6Ωφ2
)

ΩEFφEFΩG
(CΣD)G

+4φ2
[

3(1 + Ω)3 +
(

4 − 2Ω − 9Ω2
)

φ2
]

φEFφEFΩG
(CΣD)G

+2φ
[

(1 + Ω)
(

3 − 8φ2
)

− 2(1 − 3Ω)φ4
]

ΩEF ΩEFφ
G

(CΣD)G

+8(1 + Ω)φ2
[

3Ω(2 + Ω) + (7 − 9Ω)φ2
]

ΩEFφEFφ
G

(CΣD)G

−8(1 + Ω)φ
[

2(1 + Ω)2(−1 + 3Ω) + 3
(

3 − 4Ω2
)

φ2
]

φEFφEFφ
G

(CΣD)G

}

where the l.h.s. is

DEFHEFCD = ∂uH11CD +
1

u

(

H11CD +H110(CǫD)
0
)

−
(

1

2u
∂v + êa

01∂a

)

H10CD − 2Γ̂0100H11CD − Γ̂010CH110D

−Γ̂010DH110C + Γ̂011CH100D + Γ̂011DH100C + Γ̂1100H10CD.

Equations (90), (91), (93), (94), (95), (96) are the system of subsidiary equa-
tions for the quantities (92). The expressions on the right hand sides of these
equations are homogeneous functions of the quantities (92). Together with
Lemma 7.1 this implies that all the expansion coefficients of the quantities
(92) vanish on U0. As the functions (92) are necessarily holomorphic, this
implies that they vanish on N̂ .

8 Analyticity at space-like infinity

Our gauge is singular and thus the holomorphic solution of Lemma 6.7 does
not cover a full neighbourhood of the point i. To show that we can indeed
get a holomorphic solution in a hole neighbourhood of i we go to a normal
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frame field based on the frame cAB at i and the corresponding normal co-
ordinates xa. The argument follows with some modifications the line of the
corresponding argument in [7].
The geodesic equation for za(u(s), v(s), w(s)), Dż ż = 0, can be written in
the form

ża = mABea
AB,

ṁAB = −2mCDΓCD
(A

Bm
B)E .

The initial conditions for the geodesics to start at i are

u|s=0 = 0, w|s=0 = 0,

and we have to prescribe
v0 = v|s=0 = v0,

in order to determine the ∂u-∂w-plane where the tangent vector is.
The components of the tangent vector to the geodesic at i are given by
mAB|s=0 = mAB

0 , and by regularity and the geodesic equations we have

m00
0 = u̇|s=0 ≡ u̇0, m01

0 = 0, m11
0 = ẇ|s=0 ≡ ẇ0.

We can identify the frame eAB with its projection into TiNc, then mAB
0 eAB =

m∗ABcAB = xaca, where as defined cAB = αa
ABca, and we get

x1 = 1√
2

(

ẇ0 + (v2
0 − 1)u̇0

)

, x2 = i√
2

(

ẇ0 + (v2
0 + 1)u̇0

)

, x3 =
√

2v0u̇0,

or, inverting the relations

u̇0(x
a) = −x

1 + ix2

√
2

, v0(x
a) = − x3

x1 + ix2
, ẇ0 =

δabx
axb

√
2(x1 + ix2)

.

Here we see that in order to have a well defined vector we need x1+ix2 6= 0, or,
what is the same, u̇0 6= 0. This correspond to the singular generator of Ni in
the cAB-gauge. The vectors xaca cover all directions at i except those tangent
to the complex null hyperplane (c1 + ic2)

⊥ = {a(c1 + ic2) + bc3|a, b ∈ C}.
As we have used a frame formalism, we need also to determine the normal
frame centered at i and based on the frame cAB at i. As we already have the
frame fields eAB, we write the equation for the normal frame cAB, DẋcAB = 0
as an equation for the transformacion tA B ∈ SL(2,C) that relates the frames
eAB and cAB, cAB = tC At

D
BeCD. The equation can be written as

ṫA B = −mDEΓDE
A

Ct
C

B, (97)
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and the initial condition cames from having to take eAB|i(v) to cAB|i,

tA B|s=0 = sA
B(−v0). (98)

Following the proofs of Lemma 7.1, Lemma 7.2 and Lemma 7.3 in [7] we
arrive at the following two lemmas.

Lemma 8.1. For any given initial data u̇0, v0, ẇ0, with u̇0 6= 0, there ex-
ist a number t = t(u̇0, v0, ẇ0) and unique holomorphic solutions zj(s) =
zj(s, u̇0, v0, ẇ0) of the initial value problem for the geodesic equations with
initial conditions as described above which is defined for |s| < 1/t. The func-
tions zj(s, u̇0, v0, ẇ0) are in fact holomorphic functions of all four variables
(s, u̇0, v0, ẇ0) in a certain P1/t(0)×U , where U is a compactly embedded subset
of (C\{0}) × C × C.

Lemma 8.2. Along te geodesic corresponding to s → zj(s, u̇0, v0, ẇ0) equa-
tions (97) have a unique holomorphic solution tA B(s) = tA B(s, u̇0, v0, ẇ0)
satisfying the initial conditions (98). The functions tA B(s) = tA B(s, u̇0, v0, ẇ0)
are holomorphic in all four variables in the domain where the zj(s, u̇0, v0, ẇ0)
are holomorphic.

Following the discussion in [7] it can be seen that, as |x| ≡
√
δabx̄axb → 0,

x1 + ix2 6= 0,

u(xc) = −x
1 + ix2

√
2

+ O(|x|3),

v(xc) = − x3

x1 + ix2
+ O(|x|2),

w(xc) =
δabx

axb

√
2(x1 + ix2)

+ O(|x|3).

This gives for the forms χAB = χAB
cdx

c dual to the normal frame cAB

χAB(xc) =
(

αAB
a + χ̂AB

a

)

dxa,

with holomorphic functions χ̂AB
a(x

c) which satisfy χ̂AB
a = O(|x|2) as |x| →

0. Also the coefficients ca AB = 〈dxa, cAB〉 of the normal frame in the normal
coordinates satisfy

ca AB(xc) = αa
AB + ĉa AB,

with holomorphic functions ĉa AB(xc) which satisfy ĉa AB = O(|x|2) as |x| →
0.
The three 1-forms αa

ABdx
a are linearly independent and thus for small |xc|
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the coordinate transformation xa → za(xc), where defined, is nondegenarate.
This means that all the tensor fields entering the conformal stationary vac-
uum field equations can be expressed in term of the normal coordinates xc

and the normal frame field cAB.
Now we can derive our main result.

Proof of Theorem 1.1. The coordinates xa cover a domain U in C3 on which
the frame vector fields cAB = ca AB∂/∂xa exist, are linearly independent and
holomorphic. Also in U the other tensor fields expressed in terms of the
xa and cAB are holomorphic. However U does not contain the hypersurface
x1 + ix2 = 0 but the boundary of U becames tangent to this hypersurface at
xa = 0.
We want to see that the solution indeed cover a domain containing an open
neighbourhood of the origin.
We still have the gauge freedom to perform with some tA B ∈ SU(2) a rotation
δ∗ → δ∗ · t of the spin frame. Whit this rotation is associated the rotation

cAB → ctAB = tC At
D

BcCD

of the frame cAB at i. The construction of the submanifold N̂ was done based
on the frame cAB, starting now with ctAB all the previous constructions and
derivations can be repeated as far as the estimates for the null data in the
cAB-gauge can be translated to the same type of estimates for the null data
in the ctAB-gauge.
We will denote u′, v′, w′ and et

AB the analogues in the new gauge of the
coordinates u, v, w and the frame eAB. The set Ni is invariant under this
rotation. The sets {w = 0} and {w′ = 0} are both lifts of the set Ni to the
bundle of spin frames. The coordinates u and u′ are both affine parameters
on the null generators of Ni, which vanish at i. The coordinats v, v′ both
label the null generators of Ni. The frame vectors e00 and et

00 are auto-
parallel vector fields tangent to the null generators.
If v and v′ label the same generator η of Ni, then et

00(v
′) = f 2e00(v) at i, with

some f 6= 0. Furthermore, as e00 and et
00 are auto-parallel, then et

00 = f 2e00
must hold along η, with f constant along the geodesic. This means that at i

sC
0(v

′)sD
0(v

′)tE Ct
F

DcEF = f 2sC
0(v)s

D
0(v)cCD,

and absorbing the undetermined sign in f ,

tE Cs
C

0(v
′) = fsE

0(v). (99)

We can write tA B ∈ SU(2) as

(tA B) =

(

a −c̄
c ā

)

, a, c ∈ C, |a|2 + |c|2 = 1. (100)
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This gives with (99)

v′ =
−c + av

ā+ c̄v
, f =

1

ā + c̄v
, resp. v =

c+ āv′

a− c̄v′
, f = a− c̄v′. (101)

As 〈du, e00〉 = 1 = 〈du′, et
00〉 we have for the affine parameter along η

u = f 2u′. (102)

With (101), (102) holds η(u′, v′) = η(u, v).
If c 6= 0 then v → ∞ as v′ → a/c̄. So the null generator in the cAB-gauge,
where we need information, is contained, excepting the origin, in the regular
domain of the ctAB-gauge.
Let us consider now the abstract null data given in the cAB-gauge D̂φ

n, D̂S
n

satisfying estimates of the form (37), (38). In the ctAB-gauge we have D̂φt
n ,

D̂St
n , with terms given by

ψt
AmBm...A1B1

= tGm
Am
tHm

Bm
...tG1

A1
tH1

B1
ψGmHm...G1H1

,

Ψt
AmBm...A1B1CDEF = tGm

Am
tHm

Bm
...tG1

A1
tH1

B1
tICt

J
Dt

K
Et

K
LΨGmHm...G1H1IJKL.

Using the essential components of ψ and ψt

ψt
(AmBm...A1B1)n

=

2m
∑

j=0

(

2m

j

)

t(Gm
(Am

tHm
Bm
...tG1

A1
tH1)j

B1)n
ψ(GmHm...G1H1)j

=

(

2m

n

)− 1

2
2m
∑

j=0

(

2m

j

)
1

2

T2m
j

n(t)ψ(GmHm...G1H1)j
.

The numbers

T2m
j

n(t) =

(

2m

n

)
1

2
(

2m

j

)
1

2

t(Gm
(Am

tHm
Bm
...tG1

A1
tH1)j

B1)n

satisfy

|T2m
j

n(t)| ≤ 1, m = 0, 1, 2, ..., 0 ≤ j ≤ 2m, 0 ≤ n ≤ 2m,

as they represent the matrix elements of a unitary representation of SU(2).
So we get

|ψt
AmBm...A1B1

| ≤ m!M

r′m
, m = 1, 2, 3, ...,

where r′ = r/4.
In the same way we get

|Ψt
AmBm...A1B1CDEF | ≤

m!M ′

r′m
, m = 0, 1, 2, 3, ...,
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where M ′ = 16M .
So the estimates for the null data on the cAB-gauge translate into the same
type of estimates for the null data on the ctAB-gauge.
Assuming now c 6= 0 in (100), we have two possibilities for getting the solution
in the ctAB-gauge:

i. Using the solution in the cAB-gauge we can determine, where possible,
the coordinate and frame transformation to the ctAB-gauge. In partic-
ular, the singular generator of Ni in the ctAB-gauge will coincide with
the regular generator of Ni in the cAB gauge on which v = −ā/c̄. We
are thus able to determine near the singular generator in the ctAB-gauge
the expansion of the solution in terms of the coordinates u′, v′, w′ and
the frame field et

AB.

ii. Using the null data D̂φt
n , D̂St

n in the ctAB-gauge, one can repeat all the
steps of the previous sections to show the existence of a solution to the
conformal stationary vacuum field equations in the coordinates u′, v′,
w′ of the ctAB-gauge. All the statements made about the solution in the
cAB-gauge apply also to this solution, in particular statements about
domains of convergence.

The formal expansions of the fields in terms of u′, v′, w′ are uniquely deter-
mined by the data D̂φt

n , D̂St
n , thus the solutions obtained by the two methods

are holomorphically related to each other on certain domains by the gauge
transformation obtained in (i). As done with the solution in the cAB-gauge,
the solution in the ctAB-gauge can be expressed in terms of the normal coor-
dinates xa

t and the normal frame field ctAB. The xa
t cover a certain domain

Ut ∈ C3 and the frame field ctAB is non-degenerate. All the tensor fields
expressed in terms of xa

t and ctAB are holomorphic on Ut. Then the solution
in the cAB-gauge and the solution in the ctAB-gauge are related on certain
domains by the transformation

xa
t = t−1a

bx
b, ctAB = tC At

D
BcCD,

which gives the transformation corresponding to the rotation of normal co-
ordinates. We can extend this as a coordinate and frame transformation
to the solution obtained in (ii) to express all fields in terms of xa and cAB.
With this extension all fields are defined and holomorphic on t−1Ut. Then
the solution obtained in the cAB-gauge and the solution in the ctAB-gauge
are genuine holomorphic extensions of each other, as one covers the singular
generator of the other one away from the origin in a regular way.
Let now xa

∗ 6= 0 be an arbitraty point in C3. We want to show that the
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solution extends in the coordinates xa to a domain which covers the set sxa
∗

for 0 < s < ǫ for some ǫ > 0. That is the case in the cAB-gauge as far as
xa
∗ 6= (α, iα, β), α, β ∈ C. We need to see what happens if xa

∗ = (α, iα, β),
with α 6= 0 or β 6= 0.
If xa

∗ = (α, iα, β) and α 6= 0, we consider the ct
′

AB-gauge, where t′AB is given
by (100) with a = 0, c = 1. The normal coordinates in the two gauges are
related by

x1
t′ = −x1, x2

t′ = x2, x3
t′ = −x3.

The holomorphic transformation (x1
t′ , x

2
t′ , x

3
t′) → (−x1, x2,−x3) maps Ut′ onto

a subset of C3, denoted by t′−1Ut′ , which has nonempty intersection with U .
After the transformation the two solutions coincide on t′−1Ut′ ∩ Ut.
Under this transformation, the singular set {x1 + ix2 = 0} in the cAB-gauge
correspond to the set {x1

t′ − ix2
t′ = 0}, which is covered in a regular way

in a neighbourhood of i in the ct
′

AB-gauge. So the set t′−1Ut′ ∪ Ut admits a
holomorphic extension of our solution in the coordinates xa and the frame
cAB. In this extension there exist ǫ such that sxa

∗, x
a
∗ = (α, iα, β) with α 6= 0,

is covered by the solution for 0 < s < ǫ.
We need also to consider the case α = 0, that is, xa

∗ = (0, 0, β), b 6= 0. In this
case we use the ct

′′

AB-gauge, where t′′AB is given by (100) with a = 1√
2
, c = i√

2
.

The normal coordinates are related by

x1
t′′ = x1, x2

t′′ = −x3, x3
t′′ = x2.

The argument follows the same lines as for the a 6= 0 case.
Thus the set U can be extended so that the points sxa

∗ with 0 < s < ǫ are cov-
ered by U and all fields are holomorphic on U in the coordinates xa. Then
it can be assumed U to contain a punctured neighbourhood of the origin
in which the solution is holomorphic in the normal coordinates xa and the
normal frame cAB. Then the solution is in fact holomorphic on a full neigh-
bourhood of the origin xa = 0, which represents the point i, as holomorphic
functions in more than one dimension cannot have isolated singularities.
By Lemma 3.1 we have from null data satisfying the reality conditions a
formal expansion of the solution with expansion coefficients satisfying the
reality conditions. By the various uniqueness statemets obtained in the lem-
mas, this expansion must coincide with the expansion in normal coordinates
of the solution obtained above. This implies the existence of a 3-dimensional
real slice on which the tensor fields satisfy the reality conditions. It is ob-
tained by requiring the coordinates xa to assume values in R3.
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9 Conclusions

We have seen how to determine a formal expansion of an asymptotically flat
stationary vacuum solution to Einstein’s field equations using a minimal set
of freely specifyable data, the null data. This data are given by two sequences
of symmetric trace free tensors at space-like infinity. We have obtained nec-
essary and sufficient conditions on the null data for the formal expansion to
be absolutely convergent, hence showing that the null data characterize all
asymptotically flat stationary vacuum solutions to the field equations.
This work contains the static case as a particular case, and is ageneralization
of Friedrich’s work [7] from the static to the stationary case.
In relation with the works of Corvino and Schoen [6] and Chruśiel and Delay
[5], where they are able to deform given vacuum initial data in an annu-
lus that encompasses the asymptotic end in order to glue that data to an
asymptotically flat vacuum stationary solution of the field equations, our
result shows that the null data provides a complete survey of all the asymp-
totics that can be attained. In particular, for performing the gluing they
need families of solutions, it would be interesting to see what are the restric-
tion imposed on the null data in order to form one of these families.
It is a long standing conjecture that Hansen‘s multipoles [10], which are rel-
evant because they have nice geometrical transformation properties under
change of conformal factor, do characterize an asymptotically flat station-
ary vacuum solutions to the field equations in the way we have shown the
null data do. This have been shown in the axisymmetric case [1] and some
steps have been achieved in the general case, like showing that the multipoles
determine a formal expansion of a solution [3] [12], or necessary bounds on
the multipoles if the solution exist [2], but general conditions on the multi-
poles for the expansion to be convergent has not been found yet. As there
is a bijective correspondence between the null data and Hansen’s multipoles,
although the relation is highly non linear, it would be nice if this correspon-
dence could be exploited to get necessary and sufficient conditions on the
multipoles to determine a convergent expansion.
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[2] Bäckdahl, Thomas and Herberthson, Magnus. Calculation of, and
bounds for, the multipole moments of stationary spacetimes. Class.
Quantum Grav., 23(20):5997–6006, 2006.

[3] R. Beig and W. Simon. On the Multipole Expansion for Stationay
Space-Times. Proc. R. Soc. Lond. A, 376:333–341, 1981.

[4] R. Beig and W. Simon. The multipole structure of stationary space-
times. J. Math. Phys., 24(5):1163–1171, 1983.
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