Ann. Henri Poincaré 10 (2009), 275-337

(© 2009 Birkhéuser Verlag Basel/Switzerland
1424-0637/020275-63, published online May 22, 2009 . R .
DOT 10.1007/s00023-009-0406-z I Annales Henri Poincaré

Convergent Null Data Expansions at Space-Like
Infinity of Stationary Vacuum Solutions

Andrés E. Acena

Abstract. We present a characterization of the asymptotics of all asymptot-
ically flat, stationary solutions with non-vanishing ADM mass to Einstein’s
vacuum field equations. This characterization is given in terms of two se-
quences of symmetric trace free tensors (we call them the ‘null data’), which
determine a formal expansion of the solution, and which are in a one to one
correspondence to Hansen’s multipoles. We obtain necessary and sufficient
growth estimates on the null data to define an absolutely convergent series in
a neighborhood of spatial infinity. This provides a complete characterization
of all asymptotically flat, stationary vacuum solutions to the field equations
with non-vanishing ADM mass.

1. Introduction

A stationary vacuum spacetime is given by a triplet (M s Guv, &), where M is a
four-dimensional manifold, g,, is a Lorentzian metric with signature (+ — ——)
that satisfy Einstein’s vacuum equations Ric[g] = 0, and & is a time-like Killing
vector field with complete orbits. The metric can be written locally as

= V(dt + v,di*)? + V  hepdz®dz®, a,b=1,2,3, (1)

where V', v, and R depend only on the spatial coordinates Z%. As shown by
Geroch [10] the description of this spacetime can be done in terms of fields defined
on an abstract three-dimensional manifold N which is obtained as the quotient
space of M with respect to the trajectories of £*. The fields V, 74, hep on M can
be considered as pull-backs under the projection map of fields on N. The latter
will be denoted by the same symbols. In the following we shall work in terms of
the fields V', ~,, hab on N where hab is a negatlve definite metric on N.
The vacuum Einstein’s field equations in M imply that on N the quantity

Wq = _VzgabcDb’yc
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is curl-free, i.e.

Dywy =0,
where D is the covariant derivative with respect to Bab and €upe = €[abe]; €123 =
| det Bab| 2. We are interestedNin the asymptotics of the spacetime at spatial infinity,
so it will be assumed that N is diffeomorphic to the complement of a closed ball
Bgr(0) in R3. Thus N is simply connected and there exists a scalar field w such
that

Dyw = w, .

Instead of working with V' and w it is convenient to use the combinations

qg 7V2+w2*1
M — 4V )
~ w
¢Sfﬁ7

introduced by Hansen [11]. In this setting Einstein’s vacuum field equations are
then equivalent to

Ajda=2R[oa, A=M,S, (2)
Rap[h] = 2[(Dadnr)(Dydar) + (Dadbs)(Dyds) — (Dadi)(Dodic)] (3)

where ¢ = (3 + %+ (Z)%)% Equations (2), (3) will be referred to as the sta-
tionary vacuum field equations. We are looking for solutions of (2) and (3). The
spacetime (M,g,“,,g#) can be reconstructed from (N, hqp, dar, ds) (cf. [7] for a
detailed discussion).

The asymptotic flatness condition is usually stated by assuming (N , izab) to
admit a smooth conformal extension in the following way: there exist a smooth
Riemannian manifold (N, hg;) and a function Q € C%(N) N C*(N) such that
N = N U {i}, where i is a single point,

Q>0 on N,
hap = Q%hey, on N,
Q; =0, D, =0, D.DyQ; = —2ha)i, (4)

where D is the covariant derivative operator defined by h. This makes N diffeomor-
phic to an open ball in R3, with center at the point i, which represents space-like
infinity. From now on we assume N to be asymptotically flat in the stated sense.

Considering N to be diffeomorphic to the complement of a closed ball B r(0)
in R3 is natural in the present context. It corresponds to the idea of an isolated
system, where the material sources are confined to a bounded region outside of
which is vacuum. Lichnerowicz [14] has shown that if N is diffeomorphic to R3
then N is flat.

Reula [15] has shown existence and uniqueness of asymptotically flat solutions
to (2), (3), in terms of a boundary value problem, when data are prescribed on the

sphere ON. In order to be able to control the precise asymptotic behavior of the
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spacetime, however, it would be convenient to have a complete description of the
asymptotically flat stationary vacuum solutions in terms of asymptotic quantities.

Candidates for this task are Hansen’s multipoles [11]. With the previous as-
sumptions Hansen proposes a definition of multipoles, which extends Geroch’s def-
inition of multipoles for asymptotically flat static spacetimes [9] to the stationary
case. He defines the conformal potentials

$a=Q"%ds, A=MS, (5)

and two sequences of tensor fields near ¢ through

aza] 2

1
PA=¢,, Pr=D,P* Pl =cC (Dangi - PARM) . (6)

, A=M,S, (7)

As41...Q1 As4+17 ag. As41...Q

1
PA =C|Dq,, P} . — 55(2s = NP2 o Rasa,

where R, is the Ricci tensor of hy, and C is the projector onto the symmetric
trace free part of the respective tensor fields. The multipole moments are then
defined as the tensors

vA=PA0), vl =Pl (), A=Ms, p=1,23,... (8)

a

4 we will denote the two sequences of remaining

Keeping aside the monopoles, v
multipoles by

Df}w = {y(ﬁ,uial,l/gawl,...}, A=M,S.
The multipole moments are proposed as a way to characterize solutions of (2), (3).
So a natural question is to what extent do the multipoles determine the metric h
and the potentials ¢ps, ¢g. For this to be the case the metric and the potentials
should be real analytic even at 4 in suitable coordinates and conformal rescaling.
Beig and Simon [3] and Kundu [13] have shown that the metric and the potentials

do extend in a suitable gauge as real analytic fields to ¢ if it is assumed that
W)+ (%) #0.
As explained in [16] (cf. also [4]), in order for a solution of (2), (3) to lead to an
asymptotically flat spacetime M it is necessary that v = 0. So, we assume from
now on that
vM 40, v9=0. 9)
In [3] and [13] it is also shown that for given multipoles there is a unique formal
expansion of a ‘formal solution’ to the stationary field equations, but it is not
touched upon the convergence of the expansion.
Béckdahl and Herberthson [2] have found, assuming a given asymptotically
flat solution of the stationary field equations, necessary bounds on the multipoles.
The question that remains open is under which conditions a pair of sequences,
taken as the multipoles, do indeed determine a convergent expansion of a stationary
solution. This question has been studied for the axisymmetric case by Bickdahl [1].
In the static case there is only one sequence of multipoles. Friedrich [8] has used
as data a sequence of trace-free symmetric tensors, referred to as null data, which
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are different but related to the multipoles. He has shown that imposing certain
types of estimates on the null data is necessary and sufficient for the existence of
asymptotically flat static spacetimes. However, so far the existence question has
never been answered for the general stationary case.

Using a conformal factor that is specified later on, we define the following
two sequences of trace-free symmetric tensors at infinity

D¢ = {C(Da;9)(), C(Day Doy §) (i), C(Day Day Day ) (4)s - .- }
{Sazm C(D%Sazm)(z)a C(DQ4DQSS(12@1)(Z)7 cee } s (10)

where ¢ = ¢g and Sy, is the trace free part of the Ricci tensor of h. These two
sequences are referred to again as the null data.

The purpose of this work is to derive, under the assumption (9), necessary
and sufficient conditions for the null data D, Dﬁ , to determine apart from gauge
conditions (unique) real analytic solutions of (2) and (3) and thus to provide
a complete characterization of all possible asymptotically flat solutions to the
stationary vacuum field equations. This generalizes the work by Friedrich [8] from
the static to the stationary case in a way discussed later on.

For the same reasons that justify N to be considered diffeomorphic to the
complement of a closed ball in R?, we shall treat the case in which N may comprise
a small neighborhood of the point ¢, without worrying about the behavior of the
solution in the large (note that in terms of ha neighborhood of 7 covers an infinite
domain extending to space-like infinity).

For our analysis it is convenient to remove the conformal gauge freedom and
use, following Beig and Simon [3],

1 ~ o\ 3
Q= m {(1 4¢3, + 4¢g) - 1} . (11)

With this conformal factor they derive fall-off conditions and then show that under
some assumptions the rescaled metric can be extended in suitable coordinates on a
suitable neighborhood of space-like infinity as a metric which is real analytic at .
The potentials ¢ and ¢g are then also real analytic at ¢, so that the multipoles are
well defined. Using this gauge, and taking into account that the angular momentum
monopole vanish, we get
M = m, I/M =0.

We express now the tensors in D¢, D in terms of an h-orthonormal frame c,, a =
1,2, 3, at i. Denoting by D, the covariant derivative in the direction of cj,

D¢ = {C(D ,C(DayDa,$)(i),C(Day Day Da, ¢) (i), ... } (12)
DS* - {58281 C(D83Sa2al)(z)7 C(D84D83Sa2al)(i)7 e } . (13)

These tensors, which are defined uniquely up to rigid rotations in R?3, will be
referred to as the null data of h in the frame c,.
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If the metric A and the potential ¢ are real analytic near i, then there exist
constants M, r > 0 such that the components of these tensors satisfy the estimates

Mp!
|C(Dap...Da1¢)(i)\§r—f, a, ... =123, p=012,...,
) Mp!
|C(Dap...Dalsbc)(z)\§r—p, a,,...,a;,b,c=1,23, p=0,1,2,.... (14)

Although these estimates are similar to the Cauchy estimates, known to hold for
the derivatives of analytic functions, they are not the same. The difference being
that here the estimates are on the symmetric trace free part of the derivatives
instead of being directly on the derivatives. These estimates are derived from
Cauchy estimates in Section 3. Remarkably, the statement that these estimates are
not only necessary but also sufficient to have an analytic solution of the stationary
field equations is also true. This constitutes our main result, given in the following
theorem.

Theorem 1.1. Suppose m # 0 and
’bg = {1/1a1 s 1/}3261?/1/16332317 .. } ’ (15)
Ds = {\IlaZal’ q:1333231 ? \Pa433a2al’ i '} ) (16)

are two infinite sequences of symmetric, trace free tensors given in an orthonormal
frame at the origin of a 3-dimensional Fuclidean space. If there exist constants
M,r > 0 such that the components of these tensors satisfy the estimates

Mp!
W)ap...alléripa ap,"'a31:1,2737 p:1727"'7
Mp!
|\Ilap...a1bc|§Tfa ap»"'aal,bvczla2737 p:O»]-,Qw"a

then there exists an analytic, asymptotically flat, stationary vacuum solution
(/~z, ng, q;s) with mass monopole m and zero angular momentum monopole, unique
up to isometries, so that the null data implied by h = im_4[(1+4<ﬁ[+4q3%)% —1]h
and ¢g = Q%m[(l + 463, + 4(5%)% - 1]_%<5S in a suitable frame cy as described
above satisfy

C(Daq...DaquS)(i)zl/)aq__.al, ag...,a1 =123, ¢g=1,2,...,
C(Da, ... Da;Sa,)(i) = Va,..a;, aq,-..,a1 =123, ¢=2,3,....

Two sequences of data of the form (15), (16), not necessarily satisfying any
estimates, will be referred to as abstract null data.

The type of estimates imposed here on the abstract null data does not de-
pend on the orthonormal frame in which they are given. Since these estimates
are necessary as well as sufficient, all possible asymptotically flat solutions of the
stationary vacuum field equations are characterized by the null data.

Corvino and Schoen [6] and Chrusciel and Delay [5] have proven that it is
possible to deform given general asymptotically flat vacuum data in an annulus
in order to glue that data to stationary vacuum data in the asymptotic region. In
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relation with those works, as they need a family of asymptotically flat stationary
solutions to perform the gluing procedure, our result gives a complete survey of
the possible stationary asymptotics that can be attained beyond the known exact
solutions.

As both, the multipoles and the null data, determine the metric and the
potentials, there is a bijective map between them. The sets D¢, Df and D%p, D;?W
thus contain the same information. We prefer to work with the null data because
the expressions are linear in ¢ and Sgp.

This work contains the static case as a special case. Starting from (1) the
static case can be attained by making v, = 0, which gives w = 0, és = 0 and
#s = 0. This implies that all tensors in D¢ are zero. Conversely, if all tensors in
D are zero then all tensors in D, are zero and by Xanthopoulos’ work [17] the
spacetime is static. So we are left with D3 as the free data in the static case.

Friedrich [8] has given the same result for the static case using a different
conformal metric. Let us assume for now that we are in the static case, then
Friedrich uses a metric 71, which is conformally related to our metric h by

h=0%h, (17)

where

5 4 [(1 +m2Q)2 + mQ%}
Q0=

{(1 +m2Q)z +mQ3 + 1}2 .

Using h he defines a sequence of symmetric trace-free tensors D,, in the same way
as we defined D in (10). He shows that imposing estimates of the type (14) on
the tensors in D,, is necessary and sufficient for the existence of an asymptotically
flat static vacuum solution of the Einstein’s equations. To see that this result is
equivalent to our result in the static case, we have to show that having estimates
of the type (14) on the tensors in D imply estimates of the same type on the
tensors in D,, and vice versa. This is done through Theorem 1.1 and relation (17).
If the tensors in DS satisfy estimates of the type (14) then there exist A and Q
analytic, and then h given by (17) is also analytic, thus the tensors in D, satisfy
estimates of the type (14), the converse is shown in the same way using Friedrich’s
result. Hence this work generalizes the work by Friedrich [8] from the static to
the stationary case. The procedure that we use in the present work follows similar
steps and several of the technics in [8] will be used. For completeness we include
them.

Theorem 1.1 will be proven in terms of the conformal metric h. Thus we shall
express in Section 2 the stationary vacuum field equations as ‘conformal station-
ary vacuum field equations’. In Section 3 we show, by going to the space-spinor
formalism, that the abstract null data indeed determine the expansion coeflicients
of a certain type of formal expansions of solutions to the conformal stationary vac-
uum field equations uniquely. Showing convergence in this way appears difficult,
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however. For this reason the underlying geometry of the problem is used in Sec-
tion 4 to cast the problem in a certain setting, where it becomes a characteristic
initial value problem. The setting is necessarily singular, as the set where data is
prescribed contains a vertex, but the convergence problem can now be handled. In
Section 5 it is shown how to determine a formal solution to a subset of the con-
formal field equations from a given set of abstract null data. Then, in Section 6,
the convergence of the series so obtained is shown. In Section 7 it is shown that
the obtained solution satisfy the full set of conformal field equations. Finally, in
Section 8, the convergence result is translated into a gauge which is regular near i,
allowing us to prove Theorem 1.1.

2. The stationary field equations in the conformal setting

The existence problem will be analyzed completely in terms of the conformally
rescaled metric h, so we need to express the stationary field equations in terms of
the conformal fields. By a constant conformal rescaling it can always be achieved
that m = 1. For simplicity we use this scale from now on.

If we directly transform the fields in (2) and (3) we arrive at a system of
equations that is singular at i. To overcome this problem we follow the work of
Beig and Simon [3]. Using (11) as the conformal factor, which together with (5)
imply

Q=g + 95— 1, (18)
and standard formulae for conformal transformations, they rewrite the stationary
field equations, arriving at the following equivalent system of equations:

1 )
A(ZSA = —5 |:R— §DGQD(ZQ+1O(1+Q)7TCL a:| ¢A7 A=M,S,

1 2
D,DyQ) = —QR,p, — ghabR + (Q + 3) hay DD QY

4 (Q + ;) (Q+ Dhgpme € — %(Q — 1)D QD + 2027,
DoR = TDQD,DyQ + 3R, D°Q + 4(3Q — 2)7m,° D,
— ngQDbQDaQ — 6Qm, DPQ — 2(7Q + 4) Doy ©
D Ryjq = 2(3Q — 1)74 “hapy DgQ — oy Dy QD QD0
— 2(Q — DhypmaaDQ — 2(2Q + 1)hgp Dygmg @
+ 2k, D DyQADY + %D[CQDZ,] Do — (Q = 4)m,, Dy 2

1
+ QQD[cﬂ'b]a + iRa[ch]Q + ha[bRC]dDdQ ,
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where
Tab = Dadrr Dodrr + Daps Dygs (19)

has been introduced just as a useful notation.

These equations are regular even at i. They form a quasi-linear, overdeter-
mined system of PDE’s which implies, by applying formal derivatives to some of
the equations, elliptic equations for all unknowns in a suitable gauge. Considering
the fall-off conditions on the fields, Beig and Simon [3] deduced a certain smooth-
ness of the conformal fields at i. Invoking a general theorem of Morrey on elliptic
systems of this type they concluded that the solutions are in fact real analytic
at i. Later Kennefick and O’Murchadha [12] showed that the fall-off conditions
are reasonable, as they are implied by the spacetime being asymptotically flat. To
avoid introducing additional constraints by taking derivatives, we shall deal with
the system as it is.

For our purposes it is convenient to make some changes to this system. We
separate the Ricci tensor into its trace free part and the Ricci scalar,

1
Rapy = Sap + ghabR . (20)

We also get rid of m,, by using (19) in the other equations. From (18) we see
that Q, ¢ and ¢g are not independent, we use this equation to get rid of ¢ in
the other equations. With these changes and the change of notation ¢g — ¢ the
system of equations takes the form

>
14+0Q—¢2

—(149)pD*QD,p + (1 + Q)ZD“ngaqS} } ,

Ap=—¢ {;R + [i¢2DaQDaQ (21)

1
D,DyQ) = —QS., — g(l + Q)habR (22)

1 1 )
+ To &2 {2 (14 (=1 + Q)¢ | DQDQ

1
- g(2 + 32)¢*hay D QD — 2Q°¢ D (,QDy)

+ 3(1 +O)(2 + 3Q)phay DVD o + 203(1 + Q) D, Dyp

_g(l + Q)32+ 3Q)habDC¢Dc¢} ;

D.R {2(4+7Q)¢DbQDbDa¢—4(1+Q)(4+7Q)qu§DbDa¢ (23)

T 1402
+ [3+ (=3 + 7Q)¢*| D*QSy, — 29(4 + TQ)pD $Sha
1

3

(4+7Q)¢*RD,Q — 2(1 +Q)(4+ m)(z)RDa(z)}
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+ m {;& [—12 + (40 + 21Q)¢*] D*QD,QD,Q
— 26 — 18(1 + Q) + (46 + 61Q + 2109%)$*] D*QDy¢ D,
+2(1+Q)[ - 24(1 + Q) + (52 + 61Q + 219%)¢*| D*¢ Dy D, Q2
— ¢[12(1 + Q) + (16 + 61Q + 210%)¢*| D*QDYQD, ¢

+4(1+ Q) [6(1+ Q) + (22 + 61Q + 210%)¢*| D’QDy¢ Dy
—4(14 Q)%(28 4+ 61Q + 2192)¢Db¢Db¢Da¢} :

B
14+ Q- ¢2

(1 + Q)@hap DDy D + — (1 + Q)2 Do Da¢ D%

DiSp)a = {Q¢DaD[b¢Dc]Q = 2Q(1 + Q) Dy DDy (24)

+ [T+ (=1 + Q)¢*| Sap D — ¢S, Dy

»—‘I\D\»—*cmw

fQ(b ha[bSc]dD Q+ 39(1 + Q)oh, bSc]dD 10}

,_.oo

1
+ 1—8(—2 + Q)¢* Rhyp, D — §(—2 + Q) (1 + Q)pRhqp Doy

+26D,QDEOD ¢ — 4(1 + Q)Da¢D[bQDC]¢}

; 1 2 _ 2 d
9(1 10— ¢2) {2¢ 3+ 2(=5 + 32)¢° | happ D QDD
— ¢[6(1+ Q) + (13 — 4Q + 6Q%)¢? | ho, D¢ D QDO

—2(=7 40+ 692)¢3 oD QDQD ¢
+4(1+ Q)% [3 + 2(=5 + 3Q)¢% | hop D¢ D*QDy ¢
+2(1+Q)[ =314 Q) + (—4 — 4Q + 69%)¢*| hop D Q2D ¢ D¢

—4(1 + Q)2(=7— 49 + 692)¢ha[ch]¢Dd¢Dd¢} .

Besides (21), (22), (23), (24) we need an equation for the metric or for the frame
field and the connection coefficients. This equation is just (20),

1
Rab[h] = Sab + ghabRa (25)

where the expression on the left hand side is understood as the Ricci operator
acting on the metric h.

The system of equations (25), (21), (22), (23), (24), together with condi-
tions (4) and the condition

R|; = = (64+8D"¢Dad) |, (26)
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implied by (4), will be referred to as the conformal stationary vacuum field equa-
tions for the unknown fields

hab7 ¢v Qa R7 Sab . (27)

3. The exact sets of equations argument

To see that it is possible to construct solutions to the conformal stationary vacuum
field equations from the null data we study expansions of the conformal fields (27)
in normal coordinates.

We assume from now on N to be small enough to coincide with a convex
h-normal neighborhood of i. Let c5, a = 1,2, 3, be an h-orthonormal frame field
on N which is parallelly transported along the h-geodesics through ¢ and let x®
denote normal coordinates centered at i so that c®, = (da’, ca) = 6%, at i. We
refer to such a frame as normal frame centered at i. Its dual frame will be denoted
by x© = x¢sdz’. In the following all tensor fields, except the frame field ¢, and
the coframe field x©, will be expressed in terms of this frame field, so that the
metric is given by hap = h(ca, ch) = —0ap. With D,y = D, denoting the covariant
derivative in the ¢, direction, the connection coefficients with respect to c, are
defined by Dace =T'a® ccp.

An analytic tensor field T,,  a, on N has in the normal coordinates z a
normal expansion at ¢, which can be written

1
Tay.ap (1) =Y =a%...2De, ... De,Ta, a, (i), (28)

where we assume from now on that the summation convention does not distinguish
between bold face and other indices.
Since hap, = —0dap, it remains to be seen how to obtain normal expansions for

¢a Q7 R7 Sab7 (29)

using the field equations and the null data. The algebra necessary for doing this
simplifies considerably in the space-spinor formalism. To do the transition we intro-
duce the constant van der Waerden symbols a?? ., a® 45,a=1,2,3, A,B =0, 1,
which are symmetric in AB and whose components, if read as matrices, are

aA311<_1o) aA321<—z' o_> aABgl<O 1>
NAUCUERYA Blo —i) NASEYA
. 1 /-1 0 ) 1 (i 0 5 1 (0 1
a0 1) e (0 V) e (V0)

The relation between tensors given in the frame c, and space-spinors is made by

Tal'“a” b A1 By b

A1B;...A,B = Tai-a
_, 7AiB » pCIDl..‘Cqu = T2 pbl.‘.bqa a .- CyDy -

1..-bg
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With the summation rule also applying to capital indices we get

b b AB b _
8o =a’ apa”” 4, 0" apa’ cp = —€a(c€p)B = hapop
a,b=1,2,3, AB,C,D=0,1,
where the constant e-spinor satisfies eap = —€pa, €p1 = 1. It is used to move

indices according to the rules tp = Aeap, 1 = 2B, so that e4 & corresponds

to the Kronecker delta.
As the spinors are in general complex, we need a way to sort out those that
arise from real tensors. For this we define

AA’

7 ’
T ZEQA60A+€1AE1A.

Primed indices take values 0, 1 and the summation rule also applies to them.
A bar denotes complex conjugation and indices acquire a prime under complex
conjugation, an exception being €4/p/, the complex conjugate of e4p. We define

A HF
&hog=mat e .

Then a space spinor field T, ,...a,B, = T(a,B,)...(4,B,) arises from a real tensor
field Ty, .. a, if and only if

Tapyays, = (“1PTh g A B, - (30)

Any spinor field T4y admits a decomposition into products of totally symmetric
spinor fields and epsilon spinors which can be written schematically in the form

Ta..m =T .m)+ Ze's X symmetrized contractions of T . (31)
It will be important that if T, B,..a,B, arises from Ty, _a, then

Ta,By..a,B,) = C(Ta,..a,)0" A,B, ... Q" 4B, -

To discuss vector analysis in terms of spinors, a complex frame field and its dual
1-form field are defined by

AB AB a
CAB :aaABCav X =« aX

so that h(cap,cop) = hapop. From this one sees that ¢op and ¢q1 are null vectors
orthogonal to ¢g1. The derivative of a function f in the direction of ¢4 is denoted
by cap(f) = fac® ap and the spinor connection coefficients are defined by

1 )
Tap“p= §Fa bea® qpa®® o py,  sothat Tapep =T (ap)cp) -

The covariant derivative of a spinor field ¢4 is then given by
DABLC = CAB(LC) +Tap ¢ DLD .

If it is required to satisfy the Leibniz rule with respect to tensor products, then
covariant derivatives in the cy-frame formalism translate under contractions with
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the van der Waerden symbols into spinor covariant derivatives and vice versa. We
also have
(DepDpp — DppDep)® =1 peprrl?, (32)
1

1
rABCDEF = 5 KSABCE - GRhABCE> €EDF (33)

1
+ <SABDF — 6RhABDF) ECE} )

where R is the Ricci scalar of h and Sapcp = SabajBal’CD = S(ABCD) represents
the trace free part of the Ricci tensor of h.
Equations (21), (24) take in the space-spinor formalism the form

1 10 1
DF gDapg = jeAqu <R + o & [4¢2DPQQDPQQ (34)

—(1+9Q)¢DFQDpge + (1 + Q)2DPQ¢DPQ¢D ,

DY 4Spcpp (35)
B 1
1+ Q -2

+ (1 +2)¢DpoQDpcD 2 ¢epya — 2(1 + Q)2 DpodDpc D% dep)a

{Q¢DA PQDpcDpyp¢ — 201 + Q) D4 ¢DpcDpypd

1
+3 (14 (=14 9Q)¢*| Da "QSppep — V?¢Da P ¢Sprcep

1
+ 500 D0 pgoen)a — A1+ Q8D ?6Spqpoen)4

1 1
+ 6(1 + Q)¢*RD(pcQepya — 5(1 + Q)2¢RD(pcdep)a
+2¢ (Da P ¢DppQDcpy — Da QD p5QDcp) o)

+ 4(14 Q) (DA PQDp(p¢Depyd — Da ¥ ¢DppdDepy ) }

1 1
Tara—)2 {24¢2 [ =6+ (20 + 32)¢%| DP2QD poQ2D 32 pya

1 ;
6(14 +23Q + 30%)¢° DPCQD po¢ D (pcQepya
1

+5(1+9) [6(1+ Q) + (8 +23Q + 39%)¢%] DP?$DpodpD(pcepa
1

= 150 [F12014 Q) + (26 + 230 + 30%)¢7] DPRQDpoQDpedep)a
1

+30+ Q)% [-6+ (20 4+ 3Q)¢*| DPQDpqéD(pcdep)a

1
- 5(1 +Q)? (14 4 23Q + 30?) ¢DP%DPQ¢D(BC¢6D)A} )
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Equations (22), (23) are translated into the space-spinor formalism by making the
index replacements a — AB, b — CD, ¢ — EF.

We use equations (34), (35), the spinor version of equations (22), (23) and
the theory of ‘exact sets of fields’ to prove the following result.

Lemma 3.1. Let there be two given sequences

N

Dn = {,(/)AIBI ) wAZBZAlBl’wA3B3A2BZA1B1’ . } ’

o
D; ={V4,8,4,81:VA,B5458:4:B1> Y Ay ByAs BsAsBaA1Bys- s

of totally symmetric spinors satisfying the reality condition (30). Assume that there
exists a solution h, ¢, Q, R, Sapcp to the conformal stationary field equations
(25), (21), (22), (23), (24) satisfying (4), (26) so that the spinors given by D¢, DS
coincide with the null data DE*, D3* given by (12), (13) of the metric h in terms
of an h-orthonormal normal frame centered at i, i.e.,

Ya,B,.. a8 = Da,p, - Da,pyo(i), p>1, (36)
Va,B,. .48 =Da,B, - DayBySa,pa (i), p>2. (37)
Then the coefficients of the normal expansions (28) of the fields (29), i.e.
Da,g,...Da,,¢(i), Da,g,...Da,p,Q%1),
Da,B, ... Da,B R(i), Da,B,...Da,B Sapcp(i), p=>0,

are uniquely determined by the data f)f: ,15;? and satisfy the reality conditions.

Proof. Tt holds ¢(i) =0, Dop¢(i) = tap and Sapcp(i) = Vapcp by assumption
and the expansion coefficients for 2 and R of lowest order are given by (4) and (26).
Assume the expansion coefficients of ¢ and € up to order p and the expansion
coefficients of R and Sypcp up to order p — 1 are known.

To discuss the induction step we start with Da ., p,,, ... Da, B, ¢(i) and its
decomposition in the form (31). By assumption, the totally symmetric part of it
is given by ©4,,,B,.,...A,B,- The other terms in the decomposition contain con-
tractions. Let us consider A; contracted with A;. We can commute the operators
Da,p; and Dy, p, with other covariant derivatives, generating by (32) and (33)
only terms of lower order, until we have

DAp+1Bp+1 e DAi+1Bi+1‘DAi—1Bi—1 s DA_;'+1B_1+1DA]‘—1B]‘—1
P .
~-~DAlBlD BiDPBj(b(Z)‘

Equation (34) then shows how to express the resulting term by quantities of lower
order that are already known.

For Da,, B, ---Da,, i) and D g, ... D, B, R(i) we just use the spinor
versions of (22) and (23) to express them by quantities of lower order.

Finally, dealing with D, p, ...Da,B Scper(i) is quite similar to
DA, By, - - Da,B,#(i). The symmetric term is known by the data. If a contrac-
tion is performed between a derivative index and one of C, D, E, F then (35) is
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used after interchanging derivatives. If the contraction is between two derivatives,
the general identities

1
DyaD" pyScper = —2SucpeSry 7 ap + gRSH(CDEhF) " 4B,
1
DapD*PScppr = —2Dr “De ™ Scpen + 3SancnSeyr “7 + iRSCDEF ;

implied by (32), (33), together with (35) show that the corresponding term can be

expressed in terms of quantities of lower order. The induction step is completed.
That the expansion coefficients satisfy the reality condition is a consequence

of the formalism and the fact that they are satisfied by the data. O

In order to show the convergence of the formal series determined in the
previous lemma we need to impose estimates on the free coefficients given by
D¢, D2 . For this we have the following result.

Lemma 3.2. A necessary condition for the formal series determined in Lemma 3.1
to be absolutely convergent near the origin is that the data given by D, Dg satisfy
estimates of the type
p!M
|¢AT)BP.A.A131| < rTv p= 172737"' ) (38)

M
|VA,B,..A,B,cDEF| < prT’ p=0,1,2..., (39)

with some constants M,r > 0.

We skip the proof of this lemma because it uses the same argument as the
proof of Lemma 3.2 in [8].

Lemma 3.1 shows that the null data determines a formal solution to the
stationary field equations. As shown by Beig and Simon [3], the multipole moments
do the same. Thus there is a bijective map © from the null data to the multipoles
sequences, © : {Dg,D;)} — {D) Dy }. Instead of using this argument, we can
try to gain more information on the relation starting from (6), (7). It is convenient
to work in space-spinor form, that means that we are using the h-orthonormal

frame and normal coordinates previously defined. We get the following result.

Lemma 3.3. The spinor fields P%,B,,...AlBlf Pjpo...AlBy near i, given by (6), (7),
are of the form

P,ﬁi/s’p.i.AlB1 (40)
1 _1
= —5 (1 +Q — ¢2) 2 (1 + 20 — ¢2) D(Apo ~-~DAngsAszAlBl)
~(14+9Q—¢%) *¢D,p,---Da,p,)o

1 _3
+5(1+92-96%) 7 ¢ (p—29°) D(a,5,2D4, 1B, - Da,po
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_3
—(1+9-¢%) 21+ Q) (p—29%) Da,,6Da, B, ---Da, 5o
+FY s A, P23,

Pj,,B,,..AﬂB1 =D,B, - -Dap)o+ Fj,,B,,..AﬂB1 , p=2, (41)

with symmetric spinor-valued functions F%Bp...AlBl and F;\ngp...AlBl' The func-

tion F%?Bp...AlBl; p > 3, is at each point a real linear combination of symmetrized
tensor products of

D, \Byr---Dayp®s Dy, -DasBsSaspya By, Dapfl, 2<qg<p-1,

with coefficients that depend on Q0 and ¢. The function ngBpu.AlBlf p>2,i5a

real linear combination of symmetrized tensor products of
D, 2By Dayp®, Da,p,---DasBsSa,B, a8y, 2<q<p.
Proof. From (18) we get
1
o= (14067}

and by direct calculations from (6), (7) we see that (40) is valid for p = 3 and

that (41) is valid for p = 2, with the stated properties for FAlp 1 5 4 p and

F3 5.4, B,- Assuming that the lemma is true for p < k, inserting (40) and (41)

into the recursion relation (7), and using the symmetrized spinor version of (22),
we see that the lemma is true for p = k + 1. O

Using (6), (7), (8) and the identification (36), (37) we get for the lower order
multipoles

1

M M
VAlBl = 07 VAQBQAlBl = _§WA2B2AIBI - ’(/}(AzBQwAlBl) J (42>
M 1
VAsB3AsBo A1 By — _§‘IlASB3A2B2AlBl - 3w(A333¢A232A131) ) (43)
S S
VaiB, = ¢A131 sy VAyB,A By = 1/)A2BZA1B1 . (44)
Also restricting (40) and (41) to ¢ and with the identification (36), (37) we get
M 1
VApo...AlBl = _ilI/Apo‘-'AlBl _pw(Apoz/)Aplep—l-uAlBl) (45)
M
+ fa,B,..4,8,, P=3,
S S
VAPBP...AlBl = wApomAlBl + prBp...AlBl , P22, (46)

where fﬁi B,..A,By» P = 3, is a real linear combination of symmetrized tensor
products of
’(/}Aqleqfl...AlBl ) \IquBq‘..AlBl 9 2 S q é pP— ]-’

and fip B,..A B, P = 2, 1s a real linear combination of symmetrized tensor prod-
ucts of

YA, 2By o..AB s YAB,.AB s 2<q<p.
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Equations (42), (43), (44), (45) and (46) give a nonlinear map O, that can be read
as a map

0 : (D}, D;} = {Dpips Dy}
of the set of abstract null data into the set of abstract multipoles (i.e., sequences
of symmetric spinors not necessarily derived from a metric). It is now possible to

show that the map can be inverted.

Corollary 3.4. The map © that maps sequences of abstract null data {252,155}

onto sequences of abstract multipoles {@%p,ﬁil,} 15 bijective.

Proof. From (43), (44) we see that fi 5 4 p 4 5 =0, f3,5,4,5, =0, with this
and the stated properties for f,{a\/,{Bp...AlBl and fipomAlBl an inverse for © can
be constructed inverting the relations (45) and (46) recursively. O

Hence, for a given metric h, the sequences of multipoles and the sequences
of null data in a given standard frame carry the same information on h. As said,
we prefer to work with the null data because they are linear in ¢ and Sapcp.

4. The characteristic initial value problem

After showing that the null data determine the solution, one would have to show
that the estimates (38), (39) imply Cauchy estimates for the expansion coefficients
p!M

|DApo : "DAIBIT(i)| < T‘T ’

Ap,Bp,...,Al,Ble,l, pZO,LQ,...,

where T'is any of ¢, ), R, Sapcp- This would ensure the convergence of the normal
expansion at i. The induction procedure used so far for calculating the expansion
coefficients from the null data generates additional non-linear terms each time one
interchanges a derivative or uses the conformal field equations. Thus, it does not
seem suited for deriving estimates. Instead, we use the intrinsic geometric nature
of the problem and the data to formulate the problem as a boundary value problem
to which Cauchy-Kowalevskaya type arguments apply.

As the fields h, ¢, Q, R, Sapcp are real analytic in the normal coordinates
% and a standard frame c4p centered at 7, they can be extended near i by analyt-
icity into the complex domain and considered as holomorphic fields on a complex
analytic manifold N.. Choosing N, to be a sufficiently small neighborhood of i,
we can assume the extended coordinates, again denoted by x®, to define a holo-
morphic coordinate system on N, which identifies N, with an open neighborhood
of the origin in C3. The original manifold N is then a real, 3-dimensional, real
analytic submanifold of the real, 6-dimensional, real analytic manifold underlying
N.. Under the analytic extension the main differential geometric concepts and for-
mulas remain valid. The coordinates £ and the extended frame, again denoted by
caAB, satisfy the same defining equations and the extended fields, denoted again
by h, ¢, Q, R, Sapcp, satisfy the conformal stationary vacuum field equations as
before.
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The analytic function I' = §4p2%2? on N extends to a holomorphic function
on N.. On N it vanishes only at 4, but the set

Ni={p € N|(p) =0},

is an irreducible analytical set such that N;\{i} is a 2-dimensional complex sub-
manifold of N.. It is the cone swept out by the complex null geodesics through i
and we will refer to it as the null cone at i.

Now let u — z%(u) be a null geodesic through 4 such that z%(0) = 0. Its

tangent vector is then of the form #4% = /4B with a spinor field 14 = 14 (u)
satisfying Dzt = 0 along the geodesic. Then

o(u) = qﬁ(x(u)) , (47)

So(u) = &3S,y (x(u)) =MBCPSagep (ac(u)) , (48)

are analytic functions of u with Taylor expansion

o) =3 2Ly sy =3 Lur L),

u
p:Op! duP pzop! duP
where
dr¢ .a saq Ap B A1, B ;
W(O):x”...x Dap...Dalfb(O):L L ) D(Apo--~DAlBl)¢(Z)7
dP Sy

A, B Ay B,,C,D EF .
" (0) = t%7u7r PP "0 Diay B, -+ - Day B Soper) (1) -

This shows that knowing these expansion coefficients for initial null vectors ¢4¢?
covering an open subset of the null directions at i is equivalent to knowing the null
data D?, DS of the metric h.

Our problem can thus be formulated as the boundary value problem for the
conformal stationary vacuum equations with data given by the functions (47), (48)
on Nj, where the 4.5 are parallelly propagated null vectors tangent to ;.

N; is not a smooth hypersurface but an analytic set with a vertex at the
point 7, and we need a setting in which the mechanism of calculating the expansion
coefficients allows us to derive estimates on the coefficients from the conditions
imposed on the data. That is done in the following subsections.

4.1. The geometric gauge

We need to choose a gauge suitably adapted to the singular set A;. The coordinates
and the frame field will then necessarily be singular and the frame will no longer
define a smooth lift to the bundle of frames but a subset which becomes tangent
to the fibres over some points.

We will use the principal bundle of normalized spin frames SU(N) = N with
structure group SU(2), which is the group of complex 2 x 2 matrices (s )4 p=0.1

satisfying

A B A -B’
€aps” ¢S” p=¢€cp, Taps ¢85 p =Tcp . (49)
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The 2 : 1 covering homomorphism of SU(2) onto SO(3,R) is performed via
SU(2) > sh g o s =a® aps? osP patP, € SO(3,R).

Under holomorphic extension the map above extends to a 2 : 1 covering homo-
morphism of the group SL(2,C) onto the group SO(3,C), where SL(2,C) denotes
the group of complex 2 x 2 matrices satisfying only the first of conditions (49).

A point § € SU(N) is given by a pair of spinors § = (53!, 01') at a given point
of N which satisfies

€(6a,08) = €ap, €(0a,04) ="Tap, (50)
and the action of the structure group is given for s € SU(2) by
§—0-s where (0-s)4=s" 40p.

The projection m maps a frame ¢ into its base point in IN. The bundle of spin
frames is mapped by a 2 : 1 bundle morphism SU(N) £ SO(N) onto the bundle

SO(N) ™, N of oriented, orthonormal frames on N so that 7’ o p = 7. For any
spin frame § we can identify by (50) the matrix (64)a p—o,1 with an element of
the group SU(2). With this reading the map p will be assumed to be realized by

SU(N) 36 — p(8)ap = 6265 cpr € SO(N),

where c4p denotes the normal frame field on N introduced before. We refer to
p(9) as the frame associated with the spin frame 4.

Under holomorphic extension the bundle SU(N) = N is extended to the
principal bundle SL(N.) = N, of spin frames § = (53!, 01') at given points of N,
which satisfy only the first of conditions (50). Its structure group is SL(2,C). The
bundle SU(N) = N is embedded into SL(N,) = N, as a real analytic subbundle.
The bundle morphism p extends to a 2 : 1 bundle morphism, again denoted by p,

of SL(N,.) = N, onto the bundle SO(N,) LR N, of oriented, normalized frames
of N, with structure group SO(3,C). We shall make use of several structures on
SM(N.).

With each a € si(2,C), ie., a = (a” g) with asp = apu, is associated a
vertical vector field Z, tangent to the fibres, which is given at 6 € SL(N.) by
Za(8) = (6 exp(va))|y—o, where v € C and exp denotes the exponential map
sl(2,C) — SL(2,0C).

The C3-valued soldering form o = oAB) maps a tangent vector X €
T5SL(N.) onto the components of its projection Ts(m)X € Ty N in the
frame p(8) associated with & so that T5(m)X = (048, X)p(6)ap. It follows that
(c4B | Z,) = 0 for any vertical vector field Z,.

The sl(2,C)-valued connection form w” g on SL(N,) transforms with the
adjoint transformation under the action of SL(2,C) and maps any vertical vector
field Z, onto its generator so that (w? g, Z,) = o 5.

With 248 = 2(4B) ¢ C3 is associated the horizontal vector field H, on
SL(N.) which is horizontal in the sense that (w* p, H,) = 0 and which satisfies

AB
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(4B H,) = 24P, Denoting by Hap, A, B = 0,1, the horizontal vector fields
satisfying (042, Hop) = hAB ¢p, it follows that H, = z4BH,p. An integral
curve of a horizontal vector field projects onto an h-geodesic and represents a spin
frame field which is parallelly transported along this geodesic.

A holomorphic spinor field ¢ on N, is represented on SL(N,) by a holomor-
phic spinor-valued function 14,...4,(0) on SL(N,.), given by the components of
¢ in the frame 0. We shall use the notation ¢x = ¥(a,..a,),,k = 0,..,j, where
(connn. )i denotes the operation ‘symmetrize and set k indices equal to 1 the rest
equal to 0’. These functions completely specify v if ¢ is symmetric. They are then
referred to as the essential components of 1.

4.2. The submanifold N of SL(N.)

Using the available geometrical structure we construct a three-dimensional sub-
manifold N of SL(N,) in such a way that it induces coordinates in N,. By the
construction procedure the induced coordinates are suitable adapted to the set N;.

We start by choosing a spin frame 6* such that 7(6*) =i and p(0*)ap = cap.
The curve

C 30— d(v) = 6" s(v) € SL(N,),

s(v)-exp(voz)-(i ‘1)> oz—<(1) 8)651(2,@), (51)

defines a vertical, 1-dimensional, holomorphic submanifold I of SL(N,) on which v
defines a coordinate. The associated family of frames esp(v) at i is given by

eap(v) = s¢ 4(v)s? g(v)eep, and explicitly by

2
eoo = coo + 2vcor +vicrr,  eo1(v) = cor +verr,  en(v) =ci-

We perform the following construction in a neighborhood of I. If it is chosen small
enough all the following statements will be correct.

The set I is moved with the flow of Hy; to obtain a holomorphic 2-manifold
Uy of SL(N.). We denote by w the parameter on the integral curves of Hy; that
vanishes on I, and we extend v to Uy by assuming it to be constant on the integral
curves of Hyp. All these integral curves are mapped by 7 onto the null geodesic
~v(w) with affine parameter w and tangent vector +/(0) = ¢11 at v(0) = i. The
parameter v specifies which frame fields are parallelly propagated along .

Uy is now moved with the flow of Hyg to obtain a holomorphic 3-submanifold
N of SL(N.). We denote by u the parameter on the integral curves of Hyg that
vanishes on Uy and we extend v and w to N by assuming them to be constant along

the integral curves of Hyg. The functions z! = u, 22 = v, 23 = w define holomorphic

coordinates on V. We denote again 7 the restriction of the projection to N.

The projections of the integral curves of Hyg with a fixed value of w sweep
out, together with ~, the null cone ./\fv(w) near y(w), which is generated by the null
geodesics through the point v(w). On the null geodesics w is an affine parameter
which vanishes at y(w) while v parametrizes the different generators. The set

Wy = {w = 0} projects onto N;\vy and will define the initial data set for our
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problem. The map 7 induces a biholomorphic diffeomorphism of N =N \Uo
onto W(N "). The singularity of the gauge at points of Uy consists in 7 dropping
rank on Uy, where 0, = Z,. The null curve y(w) will be referred to as the the
singular generator of N; in the gauge determined by the spin frame §* resp. the
corresponding frame cap at i.

The soldering an the connection form pull back to holomorphic 1-forms on N ,
which will be denoted again by ¢4Z and w? g. If the pull back of the curvature
form Q4 5 = L4 peppro®? A oPF to N is denoted again by Q4 5, then the
soldering and the connection form satisfy the structural equations

Ao = — AN —WB o AcAY, duip=—wr o AwC B+ Q5.

Using the way in which N is constructed, and in terms of the coordinates z%, we
get 048 = g4B 2% on N’, where

1 0%, oY%, 1 O(u? O(u?)
(UAB a) = 0 o9 2 o0t 3 = 0 uw+ O(ug) O(UQ) as u—0.
0 0 1 0 0 1

On N’ there exist unique, holomorphic vector fields e4p which satisfy

AB

(0?8 ecp) =h*P op.

If one writes eap = €* 4g0.a, then

1 61 01 61 11 1 O(u2) O(UQ)
(e“ap)= 0 €01 1 |=[ 0 +0@w O as u—0.
0 0 1 0 0 1

We shall write
e ap=¢e"ap+e" ap,
with singular part
1
e ap = 0es e + 05 —€a OeB) Y 6Sestep?,
u
and holomorphic functions é* 4p on N which satisfy
€4 =0w) as u—0. (52)
c

We define the connection coefficients on N byw? g =Tecp 4 go“P withTeopap =
(wap,ecp), so that Tapop = F(AB)(CD)7 and from the definition of the frame

Tooap =0 on N, Tyap=0 on U,

and it follows that
T'apep =Tpep +Tasep s
with singular part

Chpep = ——€a’ep) 'ec Yep
u
and holomorphic functions r ABCD On N which satisfy

fABCD:(’)(u) as u—0. (53)
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4.3. Tensoriality and expansion type

As the induced map 7 of N into N, is singular on Uy, not every holomorphic
function of the z® can arise as a pull-back to N of a holomorphic function on
N.. The latter must have a special type of expansion in terms of the z® which
reflects the particular relation between the ‘angular’ coordinate v and the ‘radial’
coordinate u. We take from [8] the following definition and lemma.

Definition 4.1. A holomorphic function f on N is said to be of v-finite expansion
type ks, with ky an integer, if it has in terms of the coordinates u, v, and w a
Taylor expansion at the origin of the form
oo oo 2mtky
F=2.20 2 fmngu™o"w”,
p=0m=0 n=0
where it is assumed that f,, ., = 0if 2m + kf < 0.

Lemma 4.1. Let ¢a,..4; be a holomorphic, symmetric, spinor-valued function on
SL(N.). Then the restrictions of its essential components ¢y, = G(Ar. A 0 <

k<j,to N satisfy

av¢k:(j_k)¢k+1v k:();"'ajv on U07
(where we set ¢j11 = 0) and ¢y, is of expansion type j — k.
4.4. The null data on W
As we have seen, prescribing the null data is equivalent to knowing ¢ and Sy in
the null cone. Now we need to know how this fit into our particular gauge. For
this we derive an expansion of the restriction of ¢ and Sy to the hypersurface Wj.

Consider the normal frame c4p on N, near i which agrees at ¢ with the frame
associated with ¢* and denote the null data of h in this frame by

Dy ={D{a,p, - Di,p,)o(), p=1,23,...},
D ={D{a,p, - D, p,Sapep (i), p=0,1,2,3,... }.

Choose now a fixed value of v and consider s(v) as in (51), then the vector
Hyo(6* - s) projects onto the null vector egg = s49s% gcap at i and is tangent
to a null geodesic n = n(u,v) on N; with affine parameter u, u = 0 at i. The inte-
gral curve of Hyg through 0* - s projects onto this null geodesic. Using the explicit
expression for s = s(v) follows that

oo

1 m ym
¢(U,U) = ¢|7](u,v) = Z mu DOO¢|7](O,’U)
m=0 ’
=1 . . . ,
= Z %U SA"" QSB"" 0--- SA1 OSBl OD(AmBm - DAlBl)d)(l)
m=0

= Z Z Y pu V", (54)
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with

1 /2m\ _, . ]
Ymn = ml< n >D(AmBm Dy gy, o), 0<n<2m.

In the same way

So(u, v) = 50000 (u,v) (55)
oo 2m—+4
A B .C D
= 5%05"05%05” 0Shpeplnuey = D Y, Tmnt™0",
m=0 n=0

with

1 /M2m+4\ _, " " .
\Ilm,n:W< n )D(AmBm"'DA1BlsABCD)n(Z)7 OSTLSQm

This shows how to determine ¢(u,v), So(u,v) from the null data DE*, DJ* and
vice versa.

5. The conformal stationary vacuum field equations on N

Now we can use the frame calculus in its standard form. Given the fields €2, ¢,
R and Sapcp, and using the frame esp and the connection coefficients I' 4pcop
on N, we set
rapcper = ecp(Terap) — epr(Tepap) + Ter ™ cTpkan
+Trr ™ pToxas —Tep ™ 6Tkrap —Tep ™ rFlErAB
+Trr® gTcpak —Tep ™ 5T rrax —tep “" grlcran
and we define there the quantities tas ¥ ¢p, Rapcper, Aar, Yan, ®as, Han,
Yapcp and Hapep by
tap "  cpe® Er =2Tap ¥ (ce® pyp — 2Lep ¥ (ae” Bym

a b a b
— € Db AB T € ABBE CD,

1 1
RaBcpEF =TABCDEF — 2 KSABCE - GRhABCE> €EDF

1
+ (SABDF — 6RhABDF) 6CE] ,

Aap =Dapd— daB,
Yap=DapQ—Qup,
10

1
dup =DF - R+ ————
AB B¢AP+46AB¢( + 70 &

1
jot0ron’?

— (1+ Q)27 %ppg + (1 + Q)2¢>PQ¢PQ]> ;
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= e PQ
Ilap = DapR 70— o {2(4+7Q)¢Q Dspopg

— 41+ Q)4+ 726" Dapdro
+ 3+ (=34 792)¢°]27?Spgas — 24 + TQ) ¢ Spoas

+ %(4 +70)$?RQap — %(1 +Q)(4+ 7Q)¢R¢AB}

— W{;& [— 124 (40 + 219)¢*| Q7°QpQap
—2¢[ — 18(1 4+ Q) + (46 + 61Q + 210%)¢*| Q%P poQup
+2(1+Q)[ - 24(1 + Q) + (52 + 61Q + 2109%)¢%| $" VP poQas
— ¢[12(1 + Q) + (16 + 612 + 210%)¢*| Q" Qpgdas

+ 41+ Q)[6(1+ Q) + (22 + 612 + 210%)8*| QP podap

A1+ Q)27+ 30)(4 + 7ﬂ>¢¢P%PQ¢AB} 7
1
Yapep = DapQcep +QSaBep + §(1 + Q)Rhapcp

1 1
— 1+Q_¢2{2 1+ (=1+92)¢*|QupQcp
— Q¢(Qapdep + Qepdan) + 202 (1L+ Q) dapdep

- %(2 +3Q) E&QPQQPQ — (14 2)¢QpgopT?

+(1+ Q)2¢PQ¢PQ} hABCD} )

Hapep = DY 4Spepp
1
— {094 "D —2Q(1+Q)ps D
1+Q— ¢2{ Q" Dpc¢pyp (1+Q)¢a" Dcopyp
+ (1+¢QpoDcd"epya — 2(1+ Q)2¢poDpcd” “epya

1
T 2 14 (—14+2)¢*|Qu P Sppep — Q¢da ¥ Sppep

1
+ §Q¢2QPQSPQ(BC€D)A — Q1+ Q)¢ Spo(pcen)a

1 1
+ 6(1 + Q)*RQY(poepya — 5(1 +Q)?pRe(pcep)a
+26¢ (¢4 " UppQcp) — Q4 FQpsocD))

+4(1+ Q) (4 "¢pmocn) — ¢4 opBReD)) }
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1 1
- 3(1+Q¢2)2{8¢2 [— 6+ (20 + 3Q)q/>2] QPQQPQQ(BCED)A

— —(14 +23Q + 30%)8*Q" 9P p QY poep)

1
2
1
+ 5(1 +Q)[6(1 + Q) + (8 + 23Q + 30%)¢%|¢" PP peen)a
1
— 1¢[ —12(1+ Q) + (26 + 23Q + 3Q%)*| 2" “Qpodpcep) a
+(1+ Q[ =6+ (20+32)¢*| 2 9P podrcep)a

S QP (T 9) (24 30) ¢¢P%pQ¢<BceDM} |

The tensor fields on the left hand side have been introduced as labels for the
equations and for discussing in an ordered manner the interdependencies of the
equations. In terms of these tensor fields, the conformal stationary vacuum equa-
tions read

EF

tap ™" cpe”Er =0, Rapcper =0, Aap =0, Yap =0,

Oap =0, Map =0, Xapcp =0, Hapcp=0.

The first equation is Cartan’s first structural equation with the requirement that
the metric connection be torsion free. The second equation is Cartan’s second
structural equation, requiring the Ricci tensor to coincide with the appropriate
combination of the trace free tensor S,; and the scalar R. The third and fourth
equations define the symmetric spinors ¢4 and €24 respectively. The rest of the
equations have already been considered.

We want to calculate, using our particular gauge, a formal expansion of the
conformal fields using the initial data in the form ¢(u,v), Sp(u,v). As the system
of conformal stationary vacuum field equations is an overdetermined system, we
have to choose a subsystem of it. In the rest of this section we choose a particular
subsystem, writing the chosen equations in our gauge, and at the end we see how
a formal expansion is determined by these equations and the initial data.

5.1. The Ayg = 0 equation
The first equation that needs particular attention is the equation Agy = 0. In our
gauge it reads

6u¢ = ¢00 .
This equation is used in the following to calculate ¢gg each time we know ¢ as a
function of u. In particular, as ¢ will be prescribed on Wy as part of the initial
data, this equation allows us to calculate ¢gy there immediately.

5.2. The ‘0,-equations’

We now present what we will refer to as the ‘0,-equations’. These equations are
chosen because they have the following features. They are a system of PDE’s for the
set of functions é® 41, 'a1cp, 2, Qap, ¢a1, R, S1, So, S3 and S4, which comprise
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all the unknowns with the exceptions of the free data ¢, Sy and the derived function
¢o0- They are all interior equations on the hypersurfaces {w = wg} in the sense
that only derivatives in the directions of u and v are involved, in particular, if we
consider the hypersurface {w = 0}, they are all inner equations in N;. Also they
split into a hierarchy that will be presented in the following section.

The J,-equations:

EF )
00 gr =0

. 1. - L
Dubt 01 + 561 01 = —2L0101 + 2L'0100€" 01,

1 1~ A
.2 .2 A2
0ué” 01 + L= aromo + 2T0100€° 01,

Equations tap

1 A s
Oue 11 = —2'1101 + 2I'1100€ 01,
A2

1. L
Oue’ 11 = arnoo + 20110062 01 -

Equations Raoopr =0 :

A 2 I 1
Oul’0100 + aromo — 218,00 = 550 ,
R 1. A ~ 1
Oul'0101 + aroml — 2T'01001 0101 = 551 ,
N 1~ N ~ 1 1
Oul'o111 + =To111 — 20100l 0111 = 52 — =R,
U 2 12

L1100 + %fnoo — 20910001100 = St
8ul'1101 — 20110000101 = So + %R,
8ul1111 — 21100L 0111 = S5
Equation g9 = 0:
0,2 = Qoo -

Equations ® 49 =0:

1 ~ ~ A, A~
Ouor = %(31;(1)00 — 2¢01) + €' 010u000 + €% 010udo0 — 2L'0101 00 + 2L0100001 5

1 A~ N A N

Oubr1 — % (Oupo1 — B11) — " 010udo1 — €% 019uP01 = —To111000 + Lo100011
1 10

- ¢{R Tiro-a

1 %¢2900911 - %MQM —2(1+ Q)¢01]2
— (1 4+ Q)¢ (Qoop11 + Q1doo) +2(1 + Q)2¢00¢11] } .
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Equations Yggcp =0 :

1 1
1+Q_¢2{2 [1+4 (—1+Q)¢*] %,

—202¢Qoopoo + 2Q%(1 + Q)ébgo} ;

Ouflop = —Q0Sy +

1 1
01 = —QS; + 1+Q—<z>2{2 [1+ (=1 + 2)6%] 2000001

— Q%0 (Qoopo1 + Qo1do0) + 2020%(1 + Q)¢00¢01} ;

a1 = —QS, — %(1 LR
1 1 )
+ W{2 [3 — (11 + 99)¢* | Q00011

+2(2 4+ 39) [6901 — 2(1 + )601]

+ (8 42092 + 99%) [¢(Qood11 + Q11600) — 2(1 + Q) boo 1] } :

Equation Ilpg =0 :

1
1+ Q-2
—4(1 4+ Q) (4 4 7)) (¢110ud00 — 2¢0010u001 + ¢003u¢11)}

1
= 1+Q_¢2{ [3+ (=3 +72)¢] (21150 — 220151 + Q00S2)

—2Q(4 + 7Q) (1150 — 260151 + H00S2)

+ %(4 + 7Q) ¢[00 — 2(1 + Q)¢OO]R}

1
S (e {62 = 12+ (40 + 212)6%] (Q001 — 951920
—2¢[ — 18(1 + Q) + (46 + 612 + 219%)¢?] (oo 11 — 220101 + Q11600) 00
+4(14+Q)[ —24(1 + Q) + (52 + 61Q + 210%)¢*] (Po0d11 — d51) 00
—2¢[12(1 + Q) + (16 + 61Q + 219%)$*] (o011 — 1) doo

+4(1+ Q) [6(1 + Q)+(22 + 61Q + 219%)6%] (o011 — 201 do1 + Q11d00) Poo
—8(1+Q2)*(7+3Q2)(4 + 7 (dood11 — ¢g1)¢00} .

d.R {204+ 79)6(Q110u00 — 2201 0u601 + Q00Du611)
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Equations HO(ABC)k =0,k=0,1,2,3 :

1
0uS1 — % (05So — 4S1) — €' 010450 — €% 010,S0

1
* m{ﬂ (6901 — 2(1+ 9)601] dudboo— [0 — 2(1 + )boo] dudor
= —41'010180 + 4010051
1+$(yFﬂ+(Hﬂwm%ﬁwﬂww—mdw&—%ﬁg

2[00 — 2(1 + Q)00 | (Qooor — Qouf)oo)} )

OuS2 — %(31;51 —385) — € 010,51 — €% 010,51

1
+NLH%¢@{O+mwmlzﬂ+m%ﬂ%%o

+ (24 5Q2) [¢Q01 — 2(1 + Q)do1 | dudor — (1 + 2€2) [¢Q00 — 2(1 + Q) 0| w11
—2Q[¢Q00 — 2(1 + Q) oo |:21u(81)¢01 — ¢11) + €' 010udor + € 013v¢01] }

= —T011150 — 20010151 + 3010052

:H_g)1¢2{ 2 [¢QOO (1 + Q)(boo] [f‘0111¢00 — f‘0100¢11]
* }[1 + (=14 Q"] (20151 — Q00S2) — V*¢(d0151 — P00 S2)

2
1 1
- 69¢2(QHSO — 200151 + Q0o S2) + 59(1 + Q)p(P1150 — 200151 + P00 S2)

(1 2060 — 21 + Qo] R

+2[¢01 — 2(1 + Q)01 (QooPor — Q01¢00)}

1 1
+ 9(1+Q¢2)2{4¢2 [ =6+ (20 + 32)¢°] (0011 — 231) 00

1(14 + 230 + 30%)0* (o P11 — 2201001 + Q11000) Q00
+(1+Q)[6(14 Q) + (8 + 232 + 30%)¢*] (dood11 — $51) 200
— —¢[ = 12(1 4 Q) + (26 + 232 + 3Q%)$*] (o011 — 1) oo

+ (1+9)%[ = 6+ (20 + 3Q2)$*] (Qood11 — 2Q01 001 + Q11000)Poo

—2(1+ Q)% (7T+ Q) (2 +3Q) ¢(pood11 — ¢31)¢oo} ;

[\)

l\D\H
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1 1 .9 1
auS3 - %(61152 - 253) —€ OIauSQ —€ OlauSQ + m

{ —2(1+ Q) [¢Q11 — 2(1 + Q)11 ] Dudor + Q201 — 2(1 + Q)do1]Dubr
+2(2 + 3Q) [0 —2(1 + Q)¢01]{ (Bvdbo1—d11) + €' 010udpo1 + € 01&;%1]

(24 59) [6200 — 2(1 + o] [1

2u3v¢11 + &' 010,011 + €2 018u¢11] }

= —2T011151 + 20010053
1
1+Q—¢?

+ 2(2+59) [¢Q00 — 2(1 + Q)do0] [Cot11601 — Lot01611]

{ - %(2 +39) [¢Q01 — 2(1 + Q)¢01] [Lo111¢000 — Lor00¢11]

+ 5 [1+ (=14 92)6%] (152 — Q0053) — V> P(do1.52 — P00 S3)

=N =W N

2
— =Q¢* (01181 — 200152 + Q0053) + 59(1 + Q)P(P1151 — 2¢01.52 + $0053)

@\HOJ

(1+9Q)6[¢Q01 — 2(1 + Q)¢ | R

+ 2[¢pQ11 — 2(1 + Q)11 ] (Qoodor — Qm%o)}

2 1
9(1+Q¢2){ ¢°[ = 6+ (20 + 32)¢*] (Qoo11 — 251)Q01
1
5(14 +23Q + 3Q%)¢° (Qoop11 — 2201 b01 + Q11600) Q01

+(1+Q)[6(1 4 Q) + (8 + 232 + 30%)¢%| (dood11 — $51) Q01
¢ — 12(1+ Q) + (26 + 232 + 32%)6?] (011 — 02101
+ (1+9)%[ = 6+ (20 + 3Q2)8*| (Qood11 — 2Q01d01 + L11600) P01

—2(1+ Q)% (7T+ Q) (2 + 3Q) ¢(pood11 — ¢31)¢01} ;

1
O0uSs — 27(31;53 —84) — &' 010,53 — €% 010,53
u

* 1_‘_91_¢2{ = (1+9Q)[¢1 — 2(1 + Q)¢11] Fudn

1 R
+ (2 +39) [¢Q01 — 2(1 + Q) o1 | [%31;92511 +é' 0104011 + €° 0131@11]

— (14 29) [¢Q00 — 2(1 + Q)doo] (' 110ud11 + &° 110uP11 + Owb11) }
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= —3001115% + 20010155 + Lo10054

1

+ 1+Q_¢2{2(2 +30) [¢Q01 — 2(1 + o1 ] [Torr1dor — Toro1¢11]

— 2(1 + 22)[¢00 — 2(1 + Q)00 ] [T1111601 — T1101011 ]

1
— 5[+ (-1 +2)¢°] (0185 — Q0051) + Q*(b01.55 — do0S1)
1
+ 59(/52(91152 — 200155 + Q00S1) — QUL + Q)d(P11.52 — 20153 + oo S4)

+ 20+ 060 201+ Qou] R
— 2¢[Q1(Qo1d01 — D1600) + ¢11(0011 — QF)]

+4(1 + Q) [h11(Qo1001 — Qood11) + Q11 (Pood11 — ¢31)]}

1 1
T o {4¢2 [ =6+ (20 + 32)¢?] (001 — Q1)1
— %(14 + 230 + 30%)¢* (Qood11 — 201001 + Q11000) Q11

+ (1+Q)[6(1+9Q)+ (8+ 2302+ 30%)¢] (dood11 — dg1 )1
1

_ 5(;5[ — 12(1 + Q) + (26 + 23Q + 3Q%)$%] (o1 — 1) d11

+ (1+9)*[ =6+ (20 + 3Q2)8*] (Qood11 — 2Q01d01 + L11600) P11

— 21+ Q) (7 + Q) (24 32) 6(doodn — ¢%1)¢11}

5.3. The 0,-equations hierarchy

The system of J,-equations splits into two groups, referred to as G1 and G2. Each
of these groups splits into a hierarchy, which is defined as follows:

Gl.l: R000001 = 07

G1.2: t01 BF 0062 EF — O,

G1.3: to1 PF goe! gp = 0, Roto001 = 0, Zoo = 0, Zoooo = 0, Sooo1 = 0, Poo = 0,
Hopoo = 0,

G1.4: Ri10001 = 0, Xoo11 = 0, @19 = 0, o = 0, Hogo1 = 0,

G1.5: R000011 = 07

G1.62 R010011 = 0,

G1.7Z t11 EF 0061 EF = O,

G18 tll ER 0062 EF — O7

G21 H0011 = 0,
G2.2: Riio011 =0,
G23 H0111 =0.
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For dealing with the unknowns we separate them into three groups, x1, 2
and x3. The unknowns involved in G1 are collected in x1, that is z1 = (é1 o1, €2 01,
et 11, €% 11, Lo100s Lo101, To111, T1100s L1101, €2, Qoo Qo1s Q11, do1, P11, R, S1, S2).
The set x5 consist of the unknowns of z1 plus ¢, Sy and ¢gp. The unknowns in G2
are collected in x3, that is z3 = (f‘nn, Ss3, S4). So all the unknowns are included
in the union of x5 and x3.

The defining property of the hierarchy is the following feature. If ¢ and Sy are
prescribed on {w = wp} then G1.1 reduces to an ODE. Once we have its solution,
G1.2 reduces to an ODE. Given its solution, G1.3 reduces to a system of ODE’s,
with coefficients that are calculated by operations interior to {w = wg} from the
previously known or calculated functions. This procedure continues till G1.8. So,
given ¢ and Sy on {w = wp} and the appropriate initial data on Uy N {w = wp},
the set 27 can be determined on {w = wp} by solving a sequence of ODE’s in the
independent variable wu.

The process to be followed with G2 is very similar, with the exception that
to solve G2.3 it is necessary to know also 0,,¢11 on {w = wp}, this problem can
be overcome solving G1 recursively and then analyzing G2.

5.4. The ‘0,-equations’

Our initial data, ¢ and Sy, is prescribed on Wy, and to determine their evolution
off Wy we need the equation A7 = 0, which reads

Ot + €' 11040 + €2 11000 = 11,
and the equation Hy4pc), + Hoapc), = 0, which is given by

0w S0 — 0uSa + €' 110,50 + €% 110,50

1
o W{(Q + 59) [¢Qll - 2(1 + Q)(ﬁu}@u(ﬁoo
—4(1 4+ Q) [¢Q01 — 2(1 + Q) 01| Budor + (2 + Q) [¢Q00 — 2(1 + Q) doo | Dud11
— 2[00 — 2(1 + Q) oo |:21u<av¢01 — ¢11) + &' 010udo1 + €2 01&@01] }
= 41110150 — 41110051
+ H_Ql_d)z{;QWQOO —2(1 + Q)¢oo] [f0111¢00 - f‘0100¢511]

+ %[1 + (=1 + Q)% (1150 — Qoo S2) — Q2¢($11.50 — P00S2)
+ %Q¢2(Q1150 — 200151 + Qoo S2) — %Q(l + Q)d(P1150 — 200151 + H00S2)
+ é(l + Q)¢[¢QOO - 2(1 + Q)(ﬁoo}R

+ 2[00 — 2(1 + Q) oo (Qood11 — Q11¢00)}
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2 1
e A B C RE T U AL
1
- 5(14 + 23Q + 3Q%)8° (Qoop11 — 2Q01001 + Q11000) Q00

1+ Q)[6(1+ Q) + (8 + 232 + 3Q22)6%] (doop11 — #21)Q00
¢ — 12(1 + Q) + (26 + 23Q + 302)62] (01 — 021 oo
1+ Q)2 [—6 + (20 + 32)¢°] (Qood11 — 2Q01d01 + Q11000)Poo

— 21+ Q)% (7 + Q) (24 32) 6(dood1r — ¢%l>¢oo} .

+

DO =

+

—~

These two equations will be referred to as the ‘0,-equations’.

5.5. The initial conditions for the 0,-equations

The initial conditions for the d,-equations follow from our gauge conditions (52),
(53) which imply

&l =0, a=12, A=0,1,
Parenl; =0, A,C,D=0,1.
From (4) we get
Qr=0,
Qapli =0, AB=0,1,
R|r = —6 — 80,0|18,020|1 +4(0.0,0|1)° .

and from the required spinorial behavior in order to have analytic solutions, as
discussed in Section 4.3,

1
¢A1|I = §8uai+A¢|Ia A= Oa 17 (56)

(4 — k)!

0 Solr, k=1,2,3,4,

Sklr =

where Agyp = 0 has been used.

5.6. Calculating the formal expansion

As the system of equations is overdetermined, we have chosen a subsystem in
order to calculate a formal expansion of the solution. It will be shown later on
that the expansion obtained using this subsystem lead to a formal solution of the
full system of equations.

We prescribe ¢ and Sy on Wy as our datum and the initial conditions on I
for the J,-equations are given in Section 5.5. Following what has been said in
Section 5.3 we successively integrate the subsystems on G1 to determine all com-
ponents of x; on W.

We give now an inductive argument involving G1 and the 9,,-equations to
show that OF x5y, can be determined for all k.
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From our initial data and what has been said we know already 0% zs|w, for
k = 0. As inductive hypothesis we assume as known

a5'7/‘2|VV()7 nggk_17 k’Zl

Applying formally 9%¥~! to the d,-equations, and restricting them to Wy, we find
ok ¢lw, and awSo|WO in terms of known functions. We apply formally 9% to G1.
This is a system of PDE’s where the unknowns are 9% x;. Keeping the hierarchy
and considering the functions that we already know on Wy, it again becomes a
sequence of ODE’s, which can be integrated on Wy given the appropriate initial

conditions on 1.
The initial conditions for the frame coefficients and the connection coefficients
are obtained from the gauge requirements (52), (53) which imply

oke* mlr=0, a=12, A=0,1,
6q]f;fAch|I:O, AC,D=0,1.

From the spinorial behavior as discussed in Section 4.3 we obtain the following set
of initial conditions.

1
o bor|1 = iauavaf,)(?h,

1
Duduilr = 50u0;0,01r,

1
ok S| = 43 ok Solr,

ok Sy|; = —826k80|1.

21}11)

By restricting the equations 317 = 0, ¥110p = 0 and II;; = 0 to Uy and using
that Q| =0, Qap|r =0 we get

okl =0,
okQalr=0, A=01,

1 8
0uwQooluy = |~ R+ = (60 -2 + 202 ] , 57
ool [ 3 30— ¢2)(¢ 00#11 — 2¢00¢11 + 265,) . (57)
OwR|v, = [390054 + 8¢ {(¢Qoo — 2¢00) 0w P11 (58)
+ 4¢010w P01 — 2¢110wd00 — ;¢R¢11}
+ 30 ¢2 5 P {3+ 116*)Qu0d11 — 286 (dood11 — ¢01)}]
Uo

Applying 98! to (57), (58) and evaluating them at I by using the known
functions from the inductive hypothesis and the previously stated initial conditions
we get 0% Qoo|r and 0% R|;.
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Now we have all the needed initial conditions, thus we know

O walw,

and the induction step is completed.

The procedure with G2 is quite similar. Once we know 9% zs|w, for all k,
G2.1 reduces to an ODE, which can be integrated on W} given the corresponding
initial condition. Once we know the solution of G2.1, G2.2 also reduces to an ODE,
and finally also G2.3 reduces to an ODE. The initial conditions for G2 are given
in Section 5.5.

The inductive step is very similar to the inductive step for x5. We assume

85£3|W07 ngék_la k217

to be known. We apply formally 0% to the equations in G2. If we stick to the
hierarchy this system again reduces in the prescribed order to a system of ODE’s
for OF x5, which can be integrated given the corresponding initial conditions. Those
are

Tl =0,

1
k _ 1 934k
OnSslr = 2480(91”&)&7
1
k _ L gdqk
Oy Sal1 = 245v5w50|17
obtained from (53) and Section 4.3.
Now we know
85,£3|W0

and the induction step is complete.

If we now call X any of the quantities included in x5 and x3, that is, X
comprises all the unknown quantities that we are solving for, the procedure just
stated shows that we know 0% X|yy, for all k. Expanding these functions around
i={u=0,v=0w=0} gives

0,050, X i Y om,n,p,

U

and the procedure gives a unique sequence of expansion coefficients for all the
functions in X.

Lemma 5.1. The procedure described above determines at the point O = (u =
0,v = 0,w = 0) from the data ¢, So, given on Wy according to (54), (55), a
unique sequence of expansion coefficients

070y ok f(O), m,n,p=0,1,2,...,

where [ stands for any of the functions é® AB,f‘ABCD,(;S,ngAB,Q,QAB,R,Sk.

If the corresponding Taylor series are absolutely convergent in some neigh-
borhood P of O, they define a solution to the equation Aygg = 0, to the 0, -equations
and to the 0,,-equations on P which satisfies on PNUy equations (56) and 311 = 0,
Y11cp =0, 1111 = 0.
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By Lemma 4.1 we know that all spinor-valued functions should have a specific
v-finite expansion type. The following lemma, whose proof is quite similar to the
proof in [8], will be important for the convergence proof.

Lemma 5.2. If the data ¢, Sy are given on Wy as in (54), (55), the formal ex-
pansions of the fields obtained in Lemma 5.1 correspond to ones of functions of
v-finite expansion types given by
k =—-A-B, kg,,=3-A-B, AB=01,11,

kg =2-A-DB, kg =1-A-B, A B=0,1,
01AB 11AB

k=0, k¢, =2—-A-B, A B=0,1,

ko=0, kq,,=2—-A—-B, A B=0,1,

kr =0,

ij:4_.ja j20717273a4'

él ap

6. Convergence of the formal expansion

In the previous section we have seen how to calculate a formal expansion for é* 4,

f‘ABCD, o, dap, Q, Qap, R, Sk given ¢|w, and Sp|w,, or, what is the same, given

the null data. From Lemma 3.2 we know which are the necessary conditions on the

null data in order to have analytic solutions of the conformal field equations. In

this section we show that those conditions, (38) and (39), are also sufficient for the

formal expansion determined in the previous section to be absolutely convergent.
So we start considering the abstract null data as given by two sequences

DY = {4, B,, V428241 B1» VA3 Bs A B2 AL By s - - -} »
Dy = {V4,5,4,8,> VA3 BsAs By Ay B> VAL ByAs A By As By A By - -} »
of totally symmetric spinors satisfying the reality condition (30) and we construct
olw, and Sp|w,, by setting in the expansions (54), (55)
Dis, B, - Dap)o(i) =va,B,..a8, m=>1,
Dia, b, - Da,,Sapcp)(i) =¥Ya,B,..4,Ba6cp, m=>0.

Observing Lemma 3.2, one finds as a necessary condition for the functions ¢, .Sy
on Wy to determine an analytic solution to the conformal static vacuum field
equations that its non-vanishing Taylor coefficients at the point O satisfy estimates
of the form

|00, p(0)] < (n m!n!T—m, m>0, 0<n<2m, (59)
2 4 M
|07 05 Sp(0)| < ( anr )m!n!r m>0, 0<n<2m+4. (60)

This conditions are also sufficient for ¢(u,v) and Sy(u, v) to be holomorphic func-
tions on Wy. So the null data gives rise to two analytic functions, ¢ and Sy, on Wj.
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From Agg = 0 we have ¢g9 = 0,0, so having ¢|w, we have ¢oo|w,, which is
also an analytic function on Wj.

Following Lemma 6.1 in [8], we can derive from (59), (60), slightly different
type of estimates for ¢(u,v), So(u,v), which are more convenient in our case.

Lemma 6.1. Let e be the Euler number. For given pg, ps,, both in R, such that
0<pp < €2, 0< ps, < €2, there exist positive constants C¢, Tg, CSy» TSy, SO that
(59), (60), imply estimates of the form

mflm!pgn!

T
oMl < Gy—2 >0, 0<n<2 61
‘u v¢‘—c¢(m+1)2(n+l)2a m=y, SN zam, ( )
rEmlp n!
1m0 S| < &g, — 20 P50 m>0, 0<n<2m+4. (62)

(m+1)2(n+1)2°

We can present our estimates.
Lemma 6.2. Assume ¢ = ¢(u,v), So = So(u,v) are holomorphic functions defined
on some open neighborhood U of O = {u = 0,v = 0,w = 0} in Wy = {w = 0}
which have expansions of the form

oo 2m

(b(ua U) _ Z Z wmmu’m”n ,

m=0n=0
oo 2m+4

So(u,v) = Z Z W, num o™,

m=0 n=0
so that its Taylor coefficients at the point O satisfy estimates of the type (61), (62)
with some positive constants €y, T4, €Sy, TSy, and py < %, Ps, < % Then there
exist positive constants
T Py Cev aps Cf ypopr €00 Coanr CQ» CQaps CR; €Sy

so that the expansion coefficients determined from ¢ and Sy in Lemma 5.1 satisfy
form,n,p=20,1,2,...

PP (i + p)lp"nl
(m+1)2(n+1)*(p+1)*"

where [ stands for any of the functions

€ aB, L'aBcp, &, daB, Q, Qap, R, Sk,

100,04, F(O)] < ¢ (63)

and
Geo ap =Gp ,pop =96 =40 =40ap = —1, dgap =qr=14qs, =0.

Remark. Taking into account the v-finite expansion types of the functions f
(Lemma 5.2), we can replace the right hand sides in the estimates above by zero
if n is large enough relative to m. This will not be pointed out at each step and
for convenience the estimates will be written as above.
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We take the following four lemmas from [8]. The first states the necessary
part of the estimates, and the other three are needed in order to manipulate the
estimates in the proof of Lemma 6.2.

Lemma 6.3. If f is holomorphic near O, there exist positive constants c, ro, po
such that
P (m + p)lpn)
onrondl f(O)] < =0,1,2,...
for any r > ro, p > po. If in addition f(0,v,0) = 0, the constants can be chosen
such that

m—+p—1 1 ATy |
AP F(0)] < et _mADltnt 012,

T (m+1)2(n+1)%(p+1)27
Jor any r > 1o, p > po.

Lemma 6.4. For any non-negative integer n there is a positive constant C, C' > 1,
independent of n so that

n

1 1
kzzo(k+1)2(n7k+1)2 SC(n+1)2'

In the following C' will always denote the constant above.

Lemma 6.5. For any integers m, n, k, 7, with 0 < k < m, and 0 < 57 < n resp.
0<j<n-—1 holds

W)= (i) me (D) <0))

Lemma 6.6. Let m, n, p be non-negative integers and f;, it =1,..., N, be smooth
complex valued functions of u, v, w on some neighborhood U of O whose derivatives
satisfy on U (resp. at a given point p € U) estimates of the form

PTG (5 4 1) pFk!
(G4 1)2(k+1)2(1 + 1)
for0<j<m,0<k<n,0<I<p, with some positive constants c;, r, p and

some fized integers q; (independent of j, k, l). Then one has on U (resp. at p) the
estimates

0,050, fil < ci

pmtPTaLt.gN (m —I—p)!p"n!
(m+1)2(n+1)2(p+1)2

MmO (fr- - - fn)| < C3WN=De ooy (64)
Remark. This lemma remains true if m, n, p are replaced in (64) by integers m/’,
n,p with0<m' <m,0<n <n,0<p <p.

The factor C3(N=1 in (64) can be replaced by C3~5)(N=1) if 5 of the integers
m, n, p vanish.
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Proof of Lemma 6.2. The proof is by induction, following the procedure which led
to Lemma 5.1. A general outline is as follows. We start leaving the choice of the
constants r, p, ¢y, open. We use the induction hypothesis and the equations that
lead to Lemma 5.1 to derive estimates for the derivatives of the next order. These
estimates are of the form
rMEPEas (m + p)lpTn)

(m+12(n+12(p+ 127
with certain constants Ay which depend on m, n, p and the constants cy, r and p.
Sometimes superscripts will indicate to which order of differentiability particular
constants Ay refer. In the way we will have to make assumptions on 7 to proceed
with the induction step. We shall collect these conditions and the constants Ay, or
estimates for them, and at the end it will be shown that the constants ¢y, r and p
can be adjusted so that all conditions are satisfied and Ay < 1. This will complete
the induction proof.

In order not to write long formulas that do not add to the understanding
of the procedure, we state here some properties that are used to simplify the
estimates:

10,0700, F(O)] < ¢y (65)

e As a corollary of Lemma 6.6 we have:
If
PTG 4+ )R k!
(J+1)2(k+1)*(1+1)
for 0 <7 <m,0<k<mn 0<1<p, where g is ¢ or Q, and if r >

1

3
Clea + (3 + 4c3)7], then

|04,050,,9] < ¢

P ( ) < 1 1 ™2 (m + p)lpn!
LT 1+Q—¢% )| 031_073 (CQJFCT?»C?)) (m+1)2(n+1)2(p+1)2"

o If r > C3eq + () + 202)%] then

1
. <2 (66)
- % (ca+ 5:3)

e After calculating the estimates and using (66) we find that all the A’s satisfy
inequalities of the form

9
o
A§a+27;7
i=1

where a, a; are constants that do not depend on r. If a; = 0 then we have to
show that we can make v < 1. If the «;’s are not zero we can take a constant
a, 0 < a < 1, and require that a < a and then choose r large enough such
that Zle ff— < 1 — a. In the estimates that follows, we shall not write the
explicit expressions for the «;’s, as they do not play any role if we are able
to make 7 big enough at the end of the procedure.
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From now on we consider that a function in a modulus sign is evaluated at the
origin O.

From the analyticity of ¢go(u,v) we also get that, for given pg,, € R, 0 <
P < %, there exist positive constants cg,,, 7., such that

Tgfmm!pzoon!
(m+1)2(n+1)%’

|03 0% dool < oo m>0, 0<n<2m-+2.

As ¢(0,v) = 0 the inequalities (61), (62) are maintained if we change the constants
for bigger constants. We choose

Cop = max{@,, C¢>oo} ) (67)

. 64
cs, = mazx {650, SC’ScéDD} . (68)
Also we require the constants r, p to satisfy

r > maz{re, TSy, Toeo ) 5

p = max{pti)vpso’p%o} ) (69)

but we leave the choice of the precise value open. So we have

r™ " Imlpnl
(m—|—1)2(n—|—1)2’ m>0, 0<n<2m,

™ an a0 rmlp"n!
<
|au av 8wSO| > €5, (m + 1)2(71 + 1)2 ’
rmmlp™n!
(m+1)2(n+1)2°

|00 0 Ol < ey

m>0, 0<n<2m+4,

0ma" 00 poo| < ¢ m>0, 0<n<2m+2.
u Yo Yuw $00

From the frame properties é* 45|y, = 0, fABCD|U0 = 0 follows
000 8T apep| =0, |00030e" apl = 0.
The conditions on the conformal factor, Q|; =0, Qap|r =0, give
om0 =0, 1000000 an| = 0.
Using Lemma 4.1 we get the relations:

1
585+A¢oo|uo , A=0,1, (70)

4 —k)!
Sk“Uo :%afstoa k:132a3747 (71)

datlv, =
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which imply

10,05 Oy pan |

IN

n+14+A +1+A'
%C¢00%7 n § 1—-A
0, n>1-—A

n
14 n! m=0,p=0

= Coar (n+1)2 ¢ )

Am 0,p=0

1lc 1 c
e P00 p1+Ah P00 p1+A (72)

2C¢'A1 B 2 Copar 7
_{(MHMIWMZ,OSnsl_A}

nl (n+2+A4)
0, n>1-—A

<1

— )

and similarly

1000700, < c5, LT 4m=04=0
u“v Yw = k(n+1)2 Sk ’

A=OP=0 < S0 i (73)
Csk_

Taking into account that R is a scalar and the initial condition R|; = —6 —
16 (¢ood11 — ¢31) |i» we get

73 2 _
1000700 R| < { 6+ 307G, =0 }

0, n>0
—c pnn! m=0,p=0
R( 1R ’
—0.p— 73
m=0,p=0 _ 2 .2
AR P P (6 + % Cd’oo) .

We have obtained so far the estimates for m = 0, p = 0 and general n. Now
we should consider the equations in G1 to get in an inductive form estimates
for the quantities in x7, that means, estimates for |09"0%x1|, considering as
known estimates of this type for |0}, 8"60z1| with 0 <[ < m. And once we have
this estimates we should do the same procedure with G2 to get estimates for
|0mor a0 x3]. These estimates, i.e. estimates for p = 0, can be obtained from the
estimates for general p that appears later replacing C2® by C? and p by 0. The
estimates for general p are also more restrictive, so we do not enumerate the
estimates for p = 0 here.

We continue with the induction procedure by considering that the estimates
are satisfied for |970n9! X| for 0 < I < p, and try to determine conditions for
performing the induction step.

We start by formally applying 9707971 to the equation A;; = 0 and taking
the modulus at the origin. We get

|00 0y Ot | < 1030 00 | + 1070 08 (€ 110u0)| + |03 O O (€2 11000)] -
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To estimate the terms in the r.h.s. of this inequality we have, using the induction
hypothesis,

rmTP=m +p —1)lp"n!
(m+1)2(n+1)2p2
|00 08 (e 110u0)

ZZ( >< )( >3f;81’ja£vél |[om it ignTkgp=i=ly)

—1
|67T8171La£1 ¢11| < Cop1q

<
j=0 k=0 1=0
o= (D)
= Z Z Z (m+p)
j=0 k=0 =0 Jj+l

" Cer 1, Co™ P2 (m + p)lp™n!
GH+12(k+1)2(1+1)2(m—Jj+2)2(n—k+1)2(p—1)?
rmTP=2(m + p)lpn!
(m +2)%(n +1)%p?

3
< CPcs1y,Cop

b

and similarly
rmtP=3(m+p — 1)lp"(n + 1)!
(m+1)2(n + 2)2p?
Using these inequalities and writing [9];"0'0F,¢| in the form (65), we obtain
1[ (p+1)? (p+1)*(m+1)C®
co | P?(m +p) on p%(m + 2)?
(p+1)2n+1)3 C3
D) 5 5 PCe2,Co
p?’(m+p)(n+2)2%r
Taking into account the v-finite expansion types of the terms involved, we see that
Agzl =0 if n > 2m, and thus

|09 0882 110,9)| < CPezz ey

p>1 _ 5
Ay = Cot 1, Co

1 e 3 c O (B2

A221 < & <C¢11 +— r 1lc¢+2 PCe2 1lc¢> :4:514—;((:”)
The procedure with the rest of the equations is similar to the one presented for
the equation A;; = 0, the only difference being that if an equation is singular with
u~! terms we have first to multiply it by u, formally apply 9719702~ and then
estimate the modulus. Therefore we shall not repeat the details that led from the
equations to the estimates, as we shall not state the v-finite expansion type at
each step. What we will state is which equation is used for deriving that particular
estimate.

Applying formally 99021 to the equation D1j¢oo = Doo¢11, which fol-
lows from Agg = 0 and A;; = 0, we obtain

p>1
> Z
Agool < 46:1;11 +Z ¢00 )
00 i=1
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Multiplying Hyapc), + Hoapcy, = 0 by u and formally applying omtigngr-1
we get
9 ( p>1
>1 4 16 (Oés )i
Ag’o_ < g cs, + ?Os(ctﬁoucﬁbu + Cim) + Z riol .
i=1
In the same way as we used (70), (71) to obtain (72), (73) we get

qm=0r>1 o L Cono 14a

)

@
At 2 Coar
m=0,p>1 €Sy k
Ask < —==pt.
Csk

Restricting 317 = 0 and X110p = 0 to Uy we find that on Uy

=0, Qu1=0, =0,
8

0l = 3R+ ST (¥ — 20mn +265).

Taking formal derivatives of these equations we get
=0 =0 =0
AGT =0, AGTT =0, AGT =0,
and

9 ( m:O,le)z

_ 4 1
m=0,p>1 2 2 Q
AQoo b S g o [CR + 32C (C¢00 Co1a + C¢01 )] + ; Uori

Restricting 1137 = 0 to Uy gives

8
OwR = 300054 + -2 [ — 2¢110wd00 + 4010w P01 + (000 — 2600) 0w P11
8

- ;¢R¢11} + W¢ll (3 + 11¢*) Q00011 — 286(dood11 — ¢51)] -

so that

64 2 9 (am:O,le)

—0,p>1 C 2
ATR? b < R (C¢ooc¢11 + C¢01) + Z
i=1

We complete the calculation of the A’s by using the 0,-equations. We have to
calculate the estimates in the order given by the hierarchy presented in Section 5.3
but for simplicity we present the estimates in the order the 0,-equations were
stated in Section 5.2.
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EF
tap ™" o0€” Er =0
m>1
(a 1 )z
A$21 g e 91 ,
01 Z ri
=1
9 m>1
Am=1 lcromo +§ :( €2 o1 )Z
é2 = R A y
VT2 ¢z, = T
m>1
(a 1 )z
A$21 g e '11 ,
11 Z ri
=1
(7))
52 i
AZ;>11 < T1100 + § é iu
Ce2 4, =1 r
Rapoorr = 0:
m>1 )
pm=1 2 €S, + Z F0100
Toi00 =~ 3 ca ’
o100 i=1
m>1 )
m>1 F0101
Af‘mm  Ca P Z ’
To101 i=1
m>1 )
Ale < CS, + _,'_Z F0111
To111 = ¢ 6 ’
To111 F0111 =1
9 (ainzl )i
>1 cs r !
AT <2 Loy § : 100
1100 Ca rt
T'1100 i=1
9 (a2,
>1 1 I11017"
AT < cs, +—cr | + E —=1io
101 = ea 52 12 R rt ’
Ti101 i=1
9 m>1
o“
Ale 4053 Z F1111)
DPii1r —
P i=1
200 =0:
9 m>1
i=1
(I)OO =0:
m>1)‘
m2>1 C¢00 2 : <;501 g
A 01— p+
(I)IO =0:
m>1

Ale p+ Z <Z511 i .

11 -
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Yoocp = 0:

m>1)4

e
m>1

gzt < 3 Ok

9 ( m>1)4

[CR + 3203(0%0 Coyy T+ 03501)] + Z L

ri
i=1

m>1
AQu

- 36911

HOO - 02

9 m>1
>1 6403 (CY - ) i
AZL— < CR (C¢ooc¢11 + 03501) + Z K -

ri
i=1

Hyapcy, =0:

m>1)4
m>1
A517 S P+ Z

- 1 9 ( m>1)
1 i
Ag;_ < — cs, {pcﬁ +2C° (C¢ooc¢11 + Cq501 ] + ; 77
1 8 3 m>1) )
>1
A?; < g {pCS2 + gcg |:p(c¢>ooc¢11 + 203501) + 20¢01C¢>11:| } + Z
1 8 m>1
>1 3

Aysri_ < g {0053 +4C%cq,, (2p6¢01 + §C¢oo + C¢11)] + Z
We now have to show that all the constants can be chosen in a way that makes all
the A’s less or equal than 1. So, introducing a constant a, 0 < a < 1, the following
inequalities need to be satisfied:

1 Cooo
—p <1, (74)
2 Cpy,
;cqﬁoo 2 <1, (75)
Co1a
Dop<cn, Doy, Bupcg Sptoy o (16)
Csy Cs,y Cs3 Csy
1 73
— |6 <1 7
CR( +36pc¢oo>— ) ( )
Co1a Coiy 4 16 3 2
421 < 421 < —_ —C < 78
Co = Cooo =" €Sy |:c»52 * 3 (C¢OOC¢H +C¢01) =@ ( )
4 1
- [CR + 3202 (CoooCoprs + cim)] <a, (79)

3 CQoo
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1
76402 (C¢ooc¢11 + Cim) <a,

CR
Lep cp 2 cg cs
— Lo < ¢ o <g0 2 0 <gq, L <aq,
2 Ce2 o Ce? 1, To100 Cf0101
1 Ccs
Csy+oer ) <a, 2-5 <q,
To111 6 P00
1 Cs
<052 +or) Sa, 4—=-<a,
f‘ll(]l Cfllll
c¢oop <a
— )
Coor
Cooa
oy < q,
Co1y
4

3 2
3o [cR + 32C° (Cppo Cpry + c¢01)] <a,

S

3 2
R 64C (C¢ooc¢11 + Cqu) <a,

CS, 1 8 3 2
2p<a, —leg,p+ =C%(cp, Co,. +C <a,
s, p < css |: S1P 3 ( b00Ch11 d01 )_

1 4
il [652;) + §C3(2pc¢goc¢u + 4,00201 + 3¢, Co11) | < a,

Ss

1 4
o [Cssp + §C3C¢11 (804500 + 6pcgo, + 3C¢11) <a.

Sy

(80)
(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)

(90)

Now we have to show that we can choose the constants such that these inequalities

will be satisfied.
We start by setting

_P
Copor = acd)oo )
with which we satisfy (74) and (84). Next we set

2
Co1y = ﬁc(ﬁoo ’

so that (75) and (85) are satisfied.
We continue by setting

iy _r 16 C° ,
s = CSon €5 = 5| G50t 5T mCh |

3
_r 8 7 3.2
‘/’SBZ@{%*?,(?’UQ)CCOO !

4
P 8 5 a
cs, = E |:CSO + g (6 + g + 4/)2) C3c?¢00:| .

With this we satisfy (76), (83), (89) and (90).
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Inequalities (77), (80) and (87) are satisfied with
2
— P~ A3 2 73 59
Cr = max {128(130 Coo0r 6+ %p C¢oo} .
With this definition for cg we set

4 5 4 ’
CQoo = % (CR + 6402220200> y  CQy = % (CR + 64CBZQCZOO> ’

so (79) and (86) are respectively satisfied.
Using the previous definitions we set also

2 1

Cf‘owo = 3aCSo ’ Cf‘0101 = Ecsl ’

1 1 2
cs, + ECR v P = ECS1 R

ot — a
4 1 4
1101 — a €S, + ECR ’ C12‘1111 = 5033 ’
1 2
Ce2 ), = @CS’O s Ce2,, = ?C‘S’l s

and (81), (82) and (83) are satisfied.
There are three inequalities that we have not yet considered, (78). These are
now reduced to

4p2c¢>00 < a3’

Co
4p2§a3,
1 16 1
402 14+ — =032 (24 =] <d®.
4 |: +CS()3 Céoo +a s a

Taking into consideration now (67), (68), (69) we see that these inequalities can
be satisfied if we define

. 1
p= mam{p(b’psmp(ﬁoo} < 37
1
amax{Q,(8p2)é} <1.

Now we choose some positive constants cq, co,, , Ce1,,» Cet 1, » that are not restricted
by the procedure.
Finally we choose r so large that

r > max {r¢, TSos oo » c? |:CQ + (& + 20@)%} }
and that all the A’s are less or equal than 1. The induction proof is completed. [

The following lemma states the convergence result. The proof follows as the
one given in [8].
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Lemma 6.7. The estimates (63) for the derivatives of the functions f and the
expansion types given in Lemma 5.2 imply that the associated Taylor series are
absolutely convergent in the domain |v| < (%p, |u] + Jw| < 0‘72, for any real number
a, 0 < a < 1. It follows that the formal expansion determined in Lemma 5.1
defines indeed a (unique) holomorphic solution to the conformal static vacuum
field equations which induces the data ¢, Sy on Wy.

7. The complete set of equations on N

We have seen in Section 5 how to calculate a formal expansion for our fields using a
subset of the conformal stationary vacuum field equations. In the previous section
we have shown that these formal expansions are convergent in a neighborhood of
infinity. In this section we shall show that these fields satisfy the complete system
of conformal stationary vacuum field equations. First, we prove that the conformal
stationary vacuum field equations are satisfied in the limit as w — 0. Second, we
derive a subsidiary system of equations, for which the first result provides the initial
conditions, and which allows us to prove that the complete system is satisfied.

Lemma 7.1. The functions é* ap, fABCD, O, dap, Q, Qap, R, Sk, whose ex-
pansion coefficients are determined by Lemma 5.1, with expansions that converge
on an open neighborhood of the point 0, neighborhood that we assume to coin-
cide with N, satisfy the complete set of conformal field equations on the set Uy in
the sense that the ﬁelds tAB ¢b EF, RABCDEF7 AAB; EAB7 q)AB; HAB, 2ABCD7
Hapcop calculated from these functions on N\Uo have vanishing limit as u — 0.

Proof. Taking into account which equations have already been used to determine
the formal expansions, and the symmetries of the equations, it is left to show
that t01 ER 11, RABOllla AOla 201, H()l, EOlCD, Hl(BCD)k=17213a have Vanishing limit
on N\Uj as u — 0, and that in the same limit ® 45 = —Pp4.
Because <O’AB,6EF> = hAB i then

tor P 11 = 2T B e ) — 21y B oeny ) =B 4 (e 115" 01 — € 01,0€” 11)
and using the way in which the coordinates and the frame field were constructed,
we see that

tor ¥ 11 =0(u), as u—0.

We now consider

1 1 1 . 1
Rapoin = —= | Sapii — =Rearept | + —0,l'11ap — —Tii1(a€p) °
2 6 2u U

1 1. 1
+ealep® <—2€1 1+ —Ton — —ter ™ 11) +O0(u) .
2u u U
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Using that
tor 1y =T - 18 é? 1— iél 11 + O(u2)
o1 11 0111 ~ 50v€1 2

we get

1], - - 2., ; 3
Rapoi1 = % |:avF11AB —211y(a€p) 4+ €aep” <_u "= 008 1+ 41“0111)]

1 1
~3 (SABll - 6R€A1€B1) +O(u),

so that

. 1. i
lim Rapoin = 5 |:auavF11AB = 20,111 (a6 °

+ealep(—026' 11 — 0,0,6% 11 + 48uf0111)

1
—Sapi1 + 6R€A15Blj|

u=0

For the case A = B = 0 we get from the 0,-equations that

1
(2-57)

>~

26l 11 = —20,T1101, 040,611 = 0,0,T1100, L0111 =

on UQ, and so limu_@ R000111 =0.
Using the d,-equations and that 9,5y = 253 on Uy,

auf‘llll = SS s 3u31;f1101 = 253 )

on Uy, and so lim,_,qg Ro10111 = 0. As 0,55 = S4 on Uy, lim,_,g R110111 = 0.
We take now the limit of Ap; as u goes to 0,

. 1
ilgb Ao = |:28u6v¢ - ¢01}

u=0

Using that ¢g; = %3,,(;500 on Uy and that we have Aoy = 0 as part of the 0,-
equations we get lim,_,g Ag; = 0. With the same procedure we get lim,,_.g X1 = 0.

Now we consider ® 45. As Ayp = 0 on Uy then

DY gpaplv, = —D" a¢rr|u,

s0 Paplu, = —Ppalu, and as we already have 15 = 0 then ® 45 = 0 on U.
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We now take the limit as u goes to 0 of the combination Ily; — %3UH00~ For
the limits of the derivatives involved we have at {u = 0}

Doopap = 0upanr,

1
Do1¢o1 = 3 (0uOvo1 — Ouhr1) ,

Do1¢11 = %6u3v¢11,
D11¢11 = Ouwr1,
DyR =0,R,
DR = %&ﬁvR,
D11 R=0,R.
We also use that on Uy

Ovdr, = (2 — k)brt1,
0vSk = (4 — k)Sk11,

We have already used the equations 17 = 0, X11¢p = 0 restricted to Up, finding
that ©, Q41 are zero on Uy.
Furthermore we use ®q59 = 0, that says that on Uy

040y P00 = 40y P01 -
So we get for the limit
1
li ITp; — =0,11 =0.
lm < 01 281) 00) 0
Considering that from the d,-equations we already have I1py = 0 we get
lim H01 =0.
u—0
We apply a similar procedure to the ¥4 45 equations. We take the limit as u goes
to zero of the combinations

20100 — 20001
2¥0101 — OvXooo1 + o011
2%0111 — OpXoo11 -

Using what has already been said together with the following limits at {u = 0}
DooQap = 0,045,

1
Do1§o1 = 3 (0u0uQ01 — 0ufi1) ,

1
Do1§211 = §5u3v911 )
D141 = 001,
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we see that the limits vanishes, which imply
iii% Y014 =0.
Finally we consider the limit as u goes to zero of the combinations
4H 1 aBc), — OuHi(aBc), — OuHoapc), +2HoaBc), »
12H)(apc), — OoHi(apc), — 02Hoancy, — 200Hoapc), + 4HoABC)s -
24H,(apcy, — OsHiapcy, — OsHoapco), — 200Hoapc), — 80y Hoapc)s -

and using what has been said together with:
the limits

DooSy = 0uSk

DouSic = 5005k — (4~ HouSia]
D11 Sy, = 0uSy
the equality on Uy
OuvSk = (4 — k)Sk+1,
and the equations

Doopar = Daidoo ,

we find that those limits are all zero, and considering the equations that we have
used to calculate the unknowns we get

hr%Hl(ABC)k:O7 k:1,2,3.

This completes the proof that the complete system of conformal field equations
are satisfied in the limit as u — 0. (]

Lemma 7.2. The functions é* a3, fABCD, o, dap, Q, Qap, R, Sk, corresponding
to the expansions determined in Lemma 5.1 satisfy the complete set of conformal
vacuum field equations on the set N.

Proof. We have to show that on N the quantities to1 £¥ 11, Ragoi11, Ao1, Eai,
a1, Xa10D, Hl(BCD)k:m,3 vanish, and that ® 45 = —®p 4. For this we derive a
system of subsidiary equations for these fields. The values of the fields at Uy, given
by Lemma 7.1, are the initial conditions for the subsidiary system of equations,
and they are used throughout the proof.

Using the definitions of A4p and ®4p:

DapAcp — DepAap = —tapPF cpDpr¢ + eap®pe + €sc®pa,
and in particular
1 .
<3u + u> Ag1 = 20100401,

which implies Ag; = 0, and from that Asp = 0. This also shows that ® 45 =
—® 4, and as we already know that ®19 = 0 then P45 = 0.



324 A.E. Acena Ann. Henri Poincaré

Following the proof of Lemma 5.5 in [8] we find that
1 ~
<5u + u) tor *% 11 = 20100t *7 11 + 2R por11160 (91)

which directly shows that tg; * 11 = 0.
Also following the proof of Lemma 5.5 in [8] and taking into account that
Sapcp and R satisfy the contracted Bianchi identity then

1 A 1 1
<5u + u) Rapoi1 = 2l'0100RaBo111 — 3 (HlABO - 6HAB> ; (92)

from which Rpgo111 = 0, which also gives to; ' 11 = 0.
It is still left to show that

tor 11, Ratornn, Sa1, i, Zaiep, HyBcD) 125 (93)

vanish on N.
Using the definitions of X a5 and X apcp,

Dap¥cp — DepSap = —tap " cpDprQ — Sapep + Xcpas
and from that
1 .
Ou2a1 + azoﬁA O = 2T 4100201 + S 4100 - (94)

At this point the expressions became to long to be treated by hand, so we resort
to a computer program for tensor manipulations.
For ZABCD we obtain
DrrYcpas — DopXerap = top F9 prDpoQap — 20F RBypPcDEF

+Q(eprHrpapc + ecrHpape) + SapcpXer — SaperEcD

+ ? (haBcpXEF —haBerXcp) + é (1+9Q) (hapecplgr —haperlcp)

+ ;{3[1 - (1-0¢*][QerScpas — QepEEras
6(1+Q—¢?)

+ Qup(Scper — erep)]

—69%¢[dprEcpas — dcpEEFAB + 0aB(EcpEF — SEFCD)]

+4(2+39) ¢* (hABCDZEFPQQPQ - hABEFECDPQQPQ)

—8(1+9Q)(24392) ¢ (hapcpZEerred’® — haperEcprod’?) }
" M{; (1-¢%) Qs (QepEer — QerSep)

+ Q¢ (24 Q —2¢°) [pap(QepSer — QerSep)

+ Qup(¢cpEEr — dEFScD))

—20[2(14+Q)* — (2+3Q)¢*|dan (9cpEEF — PEFSCD)
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— 2 [0 14867070000 + 49301+ )7 — (54 62)87] 0"
— 41+ Q)1+ Q)5+ 692) — (7+92)9%] ")
(hapcpXEF — hABEFECD)} )
which implies

1 .
OuXc1aB + - cc %0145 = 2I'c10020148 — QeocHioas — SooanXic (95)
R 1
- ghOOAle(J ~3 (14 Q) hooapIlic
1
— 131 - (1 - 0)¢*] (X Qupy
+6(1+Q—¢2){ 11— )% (QooX10a8 + QaBX1000)
— 6% (pooX1caB + PABE1000)
— 4(2+30) 9*hooaTc1p"? + 8 (1+ Q) (2 + 3Q) GhooasSerres”™ |

1 1
a2 () e

— Q¢ (24 Q —2¢%) (P40 + Qapdoo) T1c
+29[2(1+ 0)? - (2+39) ¢*|dapdooSic

+ % [¢2 (—1+43¢%) Q%0pg +46[3 (1 + Q)% — (5+6Q) ¢*] Q" Ypg
—4(14+ Q) [(1+Q)(546Q) — (T+99) ¢2]¢PQ¢pQ] hOOABzw} )

Now with 145

Depliap — Dapllep = tap ®F ¢cpDerR

1+Ql_¢2{ —2(4+79) [pQT =201+ Q)¢ " | Dproautan ® op

—4(4+79Q) [¢Q°H —2(1 4+ Q)¢ | pcERF Hacp
—[(3-3¢" + 7001)OQEE — 206(4 + 7Q)¢EF] (escHpagr + €apHpcEr)

20 (4479 [6(2enTlas ~ Qunllen) — 21+ 9) (epllap — dasllep)]

+

1
+56° (4+T0) R(Sapop — Sepap) +2(4+72) ¢

(Dcpo”™F Sappr — Dapd™ Scper)

+ (3=3¢° +79¢%) (Scp ¥ Saper — Sap " Scper) }
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1 1
* (1_|_Q_¢2)2{6¢2 (—12 + 40¢° 4 210¢%) Q" Qpr (Sapep — Zopas)

— §¢[ — 18(1 + Q) + (46 + 61Q + 210%)¢*| V¥  ppp (Sapcp — Scpan)
+ §(1 +Q)[ = 24(1 + Q) + (52 + 61Q + 210%)¢*| o"F e

(XaBcp —XcpAaB)

1
+ §¢2 (=12 + 409 + 219¢%) QFF (QepZasEr — QUEScDEF)
2 2 2 EF
— §¢[ — 18(1 4+ Q) + (46 + 61Q + 2102)?| ¢*F (UepSaprr — QuBXcpEF)
2 2 2 EF
- §¢[12(1 + Q) + (16 + 61Q + 210%)*| Q" (pcpZaprr — dapScpEF)

+ %(1 +Q)[6(1+ Q) + (22 + 61Q + 210%)¢*| "7

(¢pcDXABEF — OABECDEF)

1
+ §¢2 (=3+7¢%) R(QupScp — QepXan)

~ 26[ - T4 9) + (11 4+ MO R (GanSen — depSan)

+2¢ (=3 +7¢%) Q" (DapdrrScp — Depdpriap)
—4[ =71+ Q) + (11 + 149)¢*|¢"F (DapdrrScp — DepdrrSas)
+ (=14 ¢%) (=3 +17¢%) Q"F (SgrapXcp — SErcpXaB)

—2¢[ —4—14Q — 7Q% + 2(2 4+ 7Q)¢*| 6" (SprapScp — SErcpEan) }

N 1
3(14 Q- ¢2)°
(QaBYXcp — QepXaB)

—2¢[ - 18(1 + Q) + (13 + 19Q)¢? + (61 + 42Q)¢* | Q7 ¢ pr
(QaXcp — QepXan)

+2¢7[ — 3(1+ Q)(19 + 14Q + 7Q?) + (113 + 164Q + 63Q%)¢*| " F
(QaXep — QepXan)

— ¢[12(1+ Q) + (=17 + 19Q)¢* + (61 + 42Q)¢* | Q" Qpp
(paBXcp — dcpEAB)

+4¢°[ = 3(1+ Q)(9 + 14Q + 7Q%) + (83 + 164Q + 630%)¢* | Q" g pp
(paBXcp — dcpEAB)

{;gs? [— 24+ (59 4 21Q)¢* + 210" | Q" Qpp
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+4¢(1 4+ Q) [(1+ Q)*(61 + 42Q) — 3(39 + 75Q + 280%)¢*| 0" dpr

(paBXcD — dcpXaB) } ;

and we get
1, .
Ol a1 + ca o1 = 2T 4101 (96)
1
T 1+Q_¢2{ (3= 3¢% + 706°)Q7T — 2Q¢ (4 + 790) " |eoaHiomr

+ %¢ (44 7Q) [¢Q00 — 2(1 + Q) oo | a1 + %qbQ (4 + 7)) RY 4100

+2(4 4+ 7Q) $0, 0T S a1pr + (3 — 302 + 7Q0%)S0o EFzAlEF}

1 1 EF
+ 1_|_Q_¢2)2{6¢2(_12 + 409 + 21Q6*)QFF QprX a100

o[ — 18(1+ Q) + (46 + 61Q + 210%)¢*| Y  d 5 S 4100

—~

+S(1+Q)[—24(1 + Q) + (52 + 6192 + 210%)¢*| 9" F dprS a100

— Wl Wl N

+ §¢2(—12 +40¢% + 219¢6*)QFF QX a1F

2
- g‘ﬂ — 18(1+ Q) + (46 + 612 + 210%)¢*| " QoS 167

2
- g0,5[12(1 + Q) + (16 + 612 + 210%)6* | Q"  ¢oo S a1£F

+ %(1 +Q)[6(1+ Q) + (22 + 612 + 2100 6" b0 a1EF

- §¢2(—3 +76%) RQ00% a1 + §¢[ = 7(1+Q)* + (11 + 142)¢*] Rboo a1
—20(=3+7¢*)Q"" 0u0prEa1
+4[ = T(1+Q)* + (11 + 149)¢° |67 udprSa
— (=14 ¢%) (=34 7¢*)Q"F SprooS a1
+2¢] —4-14Q - TQ% +2(2 + 7Q)¢2]¢EFSEFOOEA1}
B 1

B+ 0=
—2¢[ — 18(1 + Q) + (13 + 190)¢” + (61 + 42Q)¢* | Q" F pprQoo S a1
+2¢°[ = 3(1+ Q)(19 + 14Q 4 7Q?) + (113 4 164Q + 63Q°)¢?]

"  prQooS a1

1
{2¢2 [ — 24+ (59 + 210)¢” + 21¢* | QFF QppQoeT a1
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— ¢[12(1 + Q) + (=17 + 190)¢? + (61 + 420)¢* | Q¥ F Qppdoo S a1
+4¢% [ = 3(1 4+ Q)(9 + 14Q 4 7Q?) + (83 + 164Q + 63Q%)¢?]

0P ppréonSar
+4¢(1 4+ Q) [(1+ Q)*(61 + 42Q) — 3(39 + 750 + 28Q%)¢?]
¢EF¢EF¢OOZA1} .
Finally, with Hapcp,
D Hgpep = *%tEFHI £“DurScpre — 2SpracRY py 7 u @ (97)
+ 1+Ql_¢2{ [0QFF —2(1+ Q)p""] | - %(1 + Q) Derdprt’ ¢ M pr

2
— QODguorite "M op — 5(1 + VoraeRC 2™ o + Qbra R prep

1
- Q¢GHRGFEHCD] + §¢Q [0QFF —2(1 + Q)¢"" | Hicpypr

+ %[(1 — ¢° + Q") —20200" | Hprop

(24 Q0[607 (Tpye — 21+ 26" (cllp)]
1718( 2+ Q)$*REpop) ¥ + QDepd® Lapr ©
%(1 +Q)¢DF (" Spypre + o L (1 — > +Q0*)Scp PP Sepr ¢
— 20675576 (oS pr — 2600 — 201+ Q)gen] " Sopr O

— 4¢QEF¢CDEGEF ¢ + 2¢QEF¢F GZEGCD}

1 L 5 2 NAEF
B BT S 0¢?)Q
* (1+Q¢2)2{18¢ (8= 1097 + 62¢°)

(QerScep) @ +29% cEpycEr)
+ 23T+ 49 — 60268 (QprSacp) € + QF (¢ Zpyarr)
P[6(1+Q) — (13 +4Q — 6Q%)*| VT 6 (Spyarr

2
*9
_2
9
2
§(1 +Q)[3(1+ Q) +2(2 +2Q - 30%)¢%| 6" pprSacop) ©
4
+ 51+ Q)73 106" + 620°)6"" 6 (¢Zp)arr

- 718 2(=3 + ¢*)RQF (oEp)p $¢[(1 +9)? + (1 - 20)9°| Ro” (o ¥p)
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2
+ §¢3QEFDG " Epye — ¢(1 — ¢*)Q" Depdr “Spa
4
+ 31+ )1+ - 20°)¢prD (" Sy +2[(1+ Q)2 — (1 +20Q)¢?]
1
¢"FDepor “Spa — 5(1 - ¢*)*QF S ppcEpya
1

+ 5(1 — ¢*)*QFFSY popSEG

2

- gﬁb[ — (14 9%+ (1+29)¢%] 677 S prcEp)a

+ Qo2+ Q —202)0PF S pepSpa + 26 (Qep — 20¢cp) Up F¢EGEFG}
1

+ 9(1+Q—¢>2)3{ — ¢ (3 - 13¢% + 30¢* + 3¢") Q" QprQY Ep)a

— 46%(5 4+ 82 + 2¢° — 6Q0*)VF pprQ Ty

+46°[3(1 4+ Q)% + (4 — 2Q — 99%)¢*| 67 $prQY (Zp)a

+26[(1+Q)(3 — 8¢%) — 2(1 — 3Q2)8* |V  Qpro® Epya

+8(1+ 2)¢?[32(2 + Q) + (7 — 90)¢* | ppro® (cEp)a

—8(1+Q)p[2(1 + Q)*(—1 +3Q) + 3(3 — 402)¢*| ¢"F ppro” (CZD)G} )
where the l.h.s. is

1
D*  Hgpep = 0uHuiop + u (Hiicp + Hiiocen) )

1, . .
- <2u<9u +é o1<9a) Hioep — 2l0100H11cp — TorocHii0p

— TotopH110¢ + Tor1cHioop + Lo11pHicoc + Ti100Hio0D -

Equations (91), (92), (94), (95), (96), (97) are the system of subsidiary equations
for the quantities (93). The expressions on the right hand sides of these equations
are homogeneous functions of the quantities (93). Together with Lemma 7.1 this
implies that all the expansion coefficients of the quantities (93) vanish on Uyp.
As the functions (93) are necessarily holomorphic, this implies that they vanish
on N. ]

8. Analyticity at space-like infinity

Our gauge is singular and thus the holomorphic solution of Lemma 6.7 does not
cover a full neighborhood of the point 7. To show that we can indeed get a holo-
morphic solution in a hole neighborhood of i we go to a normal frame field based
on the frame c4p at i and the corresponding normal coordinates x. The argument
follows with some modifications the line of the corresponding argument in [8].
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The geodesic equation for z%(s) = (u(s),v(s),w(s)), Dz = 0, can be written
in the form

a0 — mABea AB

mAB = —omCPTop (A ymPE .
The initial conditions for the geodesics to start at ¢ are
u|s:0:O, U)‘SZOZO,
and we have to prescribe
vy = V=0,
in order to determine the 0,-0,,-plane where the tangent vector is.
The components of the tangent vector to the geodesic at ¢ are given by
mAB|,_o = mj'B, and by regularity and the geodesic equations we have

00 _ - _ 01 1 _ _
my =Ulseo =Uo, my =0, my =wls—o = wo.

We can identify the frame esp with its projection into 7;N,, then m‘o“BeAB =

m*ABeap = x%4, where as defined cap = a® 4pca, and we get

1 i
1 . 2 . 2 : 2 . 3 .
T = wo + (vg — ug), z°= wo + (v + 1)ig), = =V 2uto,
or, inverting the relations

b +ix? a3 Saprtal

tug(z®) = Ta vo(r) = ——F—— w0:m~

b 4 ix?’
Here we see that in order to have a well defined vector we need x' + iz? # 0, or,
what is the same, 1y # 0. This correspond to the singular generator of A in the
cap-gauge. The vectors z%c, cover all directions at ¢ except those tangent to the
complex null hyperplane (c1 +ice)t = {a(c1 +ice) + besla, b € C}.

As we have used a frame formalism, we need also to determine the normal
frame centered at i and based on the frame cap at i. As we already have the
frame fields e 4p, we write the equation for the normal frame cap, Dicap = 0 as
an equation for the transformation t4 g € SL(2,C) that relates the frames e,p
and cap, cap = t€ atP gecp. The equation can be written as

" =-m"PIpp*ctp, (98)

and the initial condition comes from having to take eap|;(v) to capl:,
t4 Bls—o = s B(—v0). (99)
Following the proofs of Lemma 7.1, Lemma 7.2 and Lemma 7.3 in [8] we arrive at

the following two lemmas.

Lemma 8.1. For any given initial data g, v, Wo, with iy # 0, there exist a number
t = t(ug, v, wo) and unique holomorphic solutions z*(s) = z*(s, Ug, vy, Wo) of the
initial value problem for the geodesic equations with initial conditions as described
above which is defined for |s| < 1/t. The functions z(s,%g, vo, o) are in fact
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holomorphic functions of all four variables (s, 1, vo, o) in a certain P ;(0) x U,
where U is a compactly embedded subset of (C\{0}) x C x C.

Lemma 8.2. Along the geodesic corresponding to s — z%(s, g, vo, W) equations
(98) have a unique holomorphic solution t* (s) = t* g(s, o, vo, o) satisfying the
initial conditions (99). The functions t4 p(s) = t* (s, g, v, o) are holomorphic
in all four variables in the domain where the z°(s, g, vo, W) are holomorphic.

Following the discussion in [8] it can be seen that, as |z| = \/dapz%2® — 0,
xt +ix? £ 0,
x! +ia?
w(zf) = ———— + 0(|z]*),
() 7 (%)
(@) = = + O(af)
v(zf) = ——— x
xl +ix? ’
Sapxtat
w(a®) = —= +O(jaf).

V2(z! + iz2)
This gives for the forms Y42 = y4Z .dz¢ dual to the normal frame c4p
XAB(.’EC) _ (aAB ot )A(AB a) dx® ,

with holomorphic functions Y42 ,(2¢) which satisfy x48, = O(|z|?) as |z| —
0. Also the coefficients ¢* o5 = (dz% cap) of the normal frame in the normal
coordinates satisfy
c* ap(z°) = a" ap + ¢ aB,

with holomorphic functions é* 45 (2¢) which satisfy é* a4p = O(|z|?) as |z| — 0.

The three 1-forms a® g4pdx® are linearly independent and thus for small |2€|
the coordinate transformation x* — z%(z¢), where defined, is nondegenerate. This
means that all the tensor fields entering the conformal stationary vacuum field
equations can be expressed in terms of the normal coordinates ¢ and the normal
frame field cap.

Now we can derive our main result.

Proof of Theorem 1.1. The coordinates % cover a domain U in C? on which the
frame vector fields cap = ¢* 4p0/0,« exist, are linearly independent and holomor-
phic. Also in U the other tensor fields expressed in terms of the z* and cap are
holomorphic. However U does not contain the hypersurface z' 4 iz? = 0 but the
boundary of U becomes tangent to this hypersurface at ® = 0.

We want to see that the solution indeed cover a domain containing an open
neighborhood of the origin.

We still have the gauge freedom to perform with some t4 5 € SU(2) a rota-
tion §* — 0* -t of the spin frame. Whit this rotation is associated the rotation

=¢¢

t D
CAB — Cap At” Bcop

of the frame c 4 g at i. The construction of the submanifold N was done based on the
frame c4p, starting now with ¢4 5 all the previous constructions and derivations
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can be repeated as far as the estimates for the null data in the c4p-gauge can be
translated to the same type of estimates for the null data in the c!) 5;-gauge.

We will denote v/, v/, w’ and €'y, the analogues in the new gauge of the
coordinates u, v, w and the frame e 4 5. The set N is invariant under this rotation.
The sets {w = 0} and {w’ = 0} are both lifts of the set N; to the bundle of spin
frames. The coordinates u and v’ are both affine parameters on the null generators
of NV;, which vanish at i. The coordinates v, v’ both label the null generators of N;.
The frame vectors egp and ef), are auto-parallel vector fields tangent to the null
generators.

If v and v’ label the same generator n of N;, then ef,(v') = fZeqo(v) at i,
with some f # 0. Furthermore, as ego and ef, are auto-parallel, then ef, = fZego
must hold along 7, with f constant along the geodesic. This means that at ¢

s o(0")sP o (WE otf pepr = 25 o(v)s? o(v)cep ,
and absorbing the undetermined sign in f,
tE CSC 0 (’U,) = fSE (](U) . (100)

We can write t4 g € SU(2) as

<tAB>:(Z ‘) a,ceC, |af+]e?=1. (101)
This gives with (100)
, —c+av 1 ¢+ av’ &'
— — . = = - . 102
YT A ato P VT T f=a-e (102)

As (du, eqo) = 1 = {du’, el,) we have for the affine parameter along 7
u= f2u. (103)

With (102), (103) holds n(u’,v") = n(u,v).

If ¢ # 0 then v — oo as v’ — a/é. So the null generator in the c4p-gauge,
where we need information, is contained, excepting the origin, in the regular do-
main of the ¢!, 5-gauge.

Let us consider now the abstract null data given in the c4p-gauge lA)f;, 155
satisfying estimates of the form (38), (39). In the ¢!, 5-gauge we have D¢, DSt
with terms given by

t _ 4G H,, G1 Hy
wAmBm...AlBl =t Amt By, - -t Alt Blem,Hm»--GlHl )

\I/t
ApBy... A1BiCDEF

e H G 4Hi 40 0 K K
=tmy tmp, At g U et Dt Bt LY G, Ho. . GLHL TTK L
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Using the essential components of 1 and "

2m

2m\ (q H G1 4 Hy),
’L/JéAmBmu‘AlBl)n = Z ( J )t( (A By - U A 1)331)n¢(GmHm~-G1H1)j

Jj=0

1 oam 1
2m\ 2 2m\ 2 .
= < " ) ( i ) Tom? (VG Hn..CLHY),; -

Jj=0

The numbers

1 1
2 2m 2 )
< .] > t(GM(AthmBm st tGlAltHl)JBl)n

satisfy

|Tom? ()] <1, m=0,1,2,..., 0<j<2m, 0<n<2m,

as they represent the matrix elements of a unitary representation of SU(2). So we

get

m!M

t
|'(/)AmBm...AlBl| < m m=1,2,3,...,
where 7' = r/4.
In the same way we get
m!M’
t p—
WA, Bon... AL BiCDEF] < 0 M= 0,1,2,3,...,

where M’ = 16M.

So the estimates for the null data on the csp-gauge translate into the same

type of estimates for the null data on the ¢4 ;-gauge.

Assuming now ¢ # 0 in (101), we have two possibilities for getting the solution

in the ¢, z-gauge:

i.

Using the solution in the c4p-gauge we can determine, where possible, the
coordinate and frame transformation to the ¢!, z-gauge. In particular, the
singular generator of A; in the ¢!, 5-gauge will coincide with the regular gen-
erator of NV in the cap gauge on which v = —a/c. We are thus able to
determine near the singular generator in the ¢!y 5-gauge the expansion of the
solution in terms of the coordinates u’, v/, w" and the frame field e, 5.

ii. Using the null data 25,‘3’5, ﬁft in the ¢!, 5-gauge, one can repeat all the steps

of the previous sections to show the existence of a solution to the conformal
stationary vacuum field equations in the coordinates u’, v’, w’ of the ¢! 5-
gauge. All the statements made about the solution in the ¢4 p-gauge apply
also to this solution, in particular statements about domains of convergence.

The formal expansions of the fields in terms of v/, v/, w’ are uniquely determined
by the data Zﬁﬁt, ﬁft, thus the solutions obtained by the two methods are holo-
morphically related to each other on certain domains by the gauge transformation
obtained in (i). As done with the solution in the c4p-gauge, the solution in the
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¢!y g-gauge can be expressed in terms of the normal coordinates z{ and the nor-
mal frame field ¢!, ;. The z¢ cover a certain domain U; C C? and the frame field
¢ty 5 is non-degenerate. All the tensor fields expressed in terms of z¢ and ¢ ; are
holomorphic on U;. Then the solution in the c4p-gauge and the solution in the
!y p-gauge are related on certain domains by the transformation
¢ =t 12t g =19 4tP peop

which gives the transformation corresponding to the rotation of normal coordi-
nates. We can extend this as a coordinate and frame transformation to the solution
obtained in (ii) to express all fields in terms of 2% and c4p. With this extension
all fields are defined and holomorphic on ¢~!U;. Then the solution obtained in the
cap-gauge and the solution in the c!) ;-gauge are genuine holomorphic extensions
of each other, as one covers the singular generator of the other one away from the
origin in a regular way.

Let now 2% # 0 be an arbitrary point in C*. We want to show that the
solution extends in the coordinates xz® to a domain which covers the set sx? for
0 < s < e for some € > 0. That is the case in the c4 g-gauge as far as x¢ # («, ia, ),
a, 3 € C. We need to see what happens if ¢ = (o, ia, 3), with « # 0 or 5 # 0.

If 22 = (e, icr, B) and « # 0, we consider the cf:\B—gauge, where t/, 5 is given
by (101) with @ = 0, ¢ = 1. The normal coordinates in the two gauges are related
by

rp = —xt, i =27 a2} =-2>.
The holomorphic transformation (z},,z3,z}) — (—z!, 22, —2%) maps Uy onto a
subset of C3, denoted by ¢'~'U,s, which has nonempty intersection with U. After
the transformation the two solutions coincide on '~'Uy N U.

Under this transformation, the singular set {x! +iz? = 0} in the cp-gauge
correspond to the set {z}, —iz? = 0}, which is covered in a regular way in a
neighborhood of 7 in the ci; p-gauge. So the set t~'Upy UU admits a holomorphic
extension of our solution in the coordinates x* and the frame c4 . In this extension
there exist € such that sz¢, ¢ = (o, iq, §) with o # 0, is covered by the solution
for 0 < s <e.

We need also to consider the case o = 0, that is, ¢ = (0,0, 3), § # 0. In this
case we use the ch;/B—gauge, where ¢/} 5 is given by (101) with a = %, c= ﬁ The
normal coordinates are related by

vy =2t xi =2, a}, =27,

The argument follows the same lines as for the o # 0 case.

Thus the set U can be extended so that the points sz¢ with 0 < s < € are
covered by U and all fields are holomorphic on U in the coordinates x®. Then it
can be assumed U to contain a punctured neighborhood of the origin in which
the solution is holomorphic in the normal coordinates x* and the normal frame
cap- Then the solution is in fact holomorphic on a full neighborhood of the origin
x* = 0, which represents the point 4, as holomorphic functions in more than one
dimension cannot have isolated singularities.
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By Lemma 3.1 we have from null data satisfying the reality conditions a
formal expansion of the solution with expansion coefficients satisfying the reality
conditions. By the various uniqueness statements obtained in the lemmas, this
expansion must coincide with the expansion in normal coordinates of the solu-
tion obtained above. This implies the existence of a 3-dimensional real slice on
which the tensor fields satisfy the reality conditions. It is obtained by requiring
the coordinates 2% to assume values in R3. (]

9. Conclusions

We have seen how to determine a formal expansion of an asymptotically flat sta-
tionary vacuum solution to Einstein’s field equations using a minimal set of freely
specifiable data, the null data. These data are given by two sequences of symmetric
trace free tensors at space-like infinity. We have obtained necessary and sufficient
conditions on the null data for the formal expansion to be absolutely convergent,
hence showing that the null data characterize all asymptotically flat, stationary
vacuum solutions to the field equations with non-vanishing ADM mass. This work
contains the static case as a particular case, and is a generalization of Friedrich’s
work [8] from the static to the stationary case.

Corvino and Schoen [6] and Chrusciel and Delay [5] have shown that it is
possible to produce vacuum initial data that is fairly general in the interior region
and exactly static or stationary in the exterior region. The present work shows
which are the possible exteriors.

It is a long standing conjecture that Hansen‘s multipoles [11], which are rel-
evant because they have nice geometrical transformation properties under change
of conformal factor, do characterize an asymptotically flat stationary vacuum so-
lutions to the field equations in the way we have shown the null data do. This have
been shown in the axisymmetric case [1] and some steps have been achieved in the
general case, like showing that the multipoles determine a formal expansion of a
solution [3,13], or necessary bounds on the multipoles if the solution exist [2], but
general conditions on the multipoles for the expansion to be convergent has not
been found yet. As there is a bijective correspondence between the null data and
Hansen’s multipoles, although the relation is highly non linear, it would be nice if
this correspondence could be exploited to get necessary and sufficient conditions
on the multipoles to determine a convergent expansion.
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