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Convergent Null Data Expansions at Space-Like
Infinity of Stationary Vacuum Solutions

Andrés E. Aceña

Abstract. We present a characterization of the asymptotics of all asymptot-
ically flat, stationary solutions with non-vanishing ADM mass to Einstein’s
vacuum field equations. This characterization is given in terms of two se-
quences of symmetric trace free tensors (we call them the ‘null data’), which
determine a formal expansion of the solution, and which are in a one to one
correspondence to Hansen’s multipoles. We obtain necessary and sufficient
growth estimates on the null data to define an absolutely convergent series in
a neighborhood of spatial infinity. This provides a complete characterization
of all asymptotically flat, stationary vacuum solutions to the field equations
with non-vanishing ADM mass.

1. Introduction

A stationary vacuum spacetime is given by a triplet (M̃, g̃μν , ξμ), where M̃ is a
four-dimensional manifold, g̃μν is a Lorentzian metric with signature (+ − −−)
that satisfy Einstein’s vacuum equations Ric[g̃] = 0, and ξμ is a time-like Killing
vector field with complete orbits. The metric can be written locally as

g̃ = V (dt + γadx̃a)2 + V −1h̃abdx̃adx̃b , a, b = 1, 2, 3 , (1)

where V , γa and h̃ab depend only on the spatial coordinates x̃a. As shown by
Geroch [10] the description of this spacetime can be done in terms of fields defined
on an abstract three-dimensional manifold Ñ which is obtained as the quotient
space of M̃ with respect to the trajectories of ξμ. The fields V , γa, h̃ab on M̃ can
be considered as pull-backs under the projection map of fields on Ñ . The latter
will be denoted by the same symbols. In the following we shall work in terms of
the fields V , γa, h̃ab on Ñ , where h̃ab is a negative definite metric on Ñ .

The vacuum Einstein’s field equations in M̃ imply that on Ñ the quantity

ωa = −V 2ε̃abcD̃
bγc
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is curl-free, i.e.
D̃[aωb] = 0 ,

where D̃ is the covariant derivative with respect to h̃ab and ε̃abc = ε̃[abc], ε̃123 =
|det h̃ab|

1
2 . We are interested in the asymptotics of the spacetime at spatial infinity,

so it will be assumed that Ñ is diffeomorphic to the complement of a closed ball
B̄R(0) in R

3. Thus Ñ is simply connected and there exists a scalar field ω such
that

D̃aω = ωa .

Instead of working with V and ω it is convenient to use the combinations

φ̃M =
V 2 + ω2 − 1

4V
,

φ̃S =
ω

2V
,

introduced by Hansen [11]. In this setting Einstein’s vacuum field equations are
then equivalent to

Δh̃φ̃A = 2R[h̃]φ̃A , A = M, S , (2)

Rab[h̃] = 2
[
(D̃aφ̃M )(D̃bφ̃M ) + (D̃aφ̃S)(D̃bφ̃S) − (D̃aφ̃K)(D̃bφ̃K)

]
, (3)

where φ̃K =
(

1
4 + φ̃2

M + φ̃2
S

) 1
2 . Equations (2), (3) will be referred to as the sta-

tionary vacuum field equations. We are looking for solutions of (2) and (3). The
spacetime (M̃, g̃μν , ξμ) can be reconstructed from (Ñ , h̃ab, φ̃M , φ̃S) (cf. [7] for a
detailed discussion).

The asymptotic flatness condition is usually stated by assuming (Ñ , h̃ab) to
admit a smooth conformal extension in the following way: there exist a smooth
Riemannian manifold (N,hab) and a function Ω ∈ C2(N) ∩ C∞(Ñ) such that
N = Ñ ∪ {i}, where i is a single point,

Ω > 0 on Ñ ,

hab = Ω2h̃ab on Ñ ,

Ω|i = 0 , DaΩ|i = 0 , DaDbΩ|i = −2hab|i , (4)

where D is the covariant derivative operator defined by h. This makes N diffeomor-
phic to an open ball in R

3, with center at the point i, which represents space-like
infinity. From now on we assume Ñ to be asymptotically flat in the stated sense.

Considering Ñ to be diffeomorphic to the complement of a closed ball B̄R(0)
in R

3 is natural in the present context. It corresponds to the idea of an isolated
system, where the material sources are confined to a bounded region outside of
which is vacuum. Lichnerowicz [14] has shown that if Ñ is diffeomorphic to R

3

then Ñ is flat.
Reula [15] has shown existence and uniqueness of asymptotically flat solutions

to (2), (3), in terms of a boundary value problem, when data are prescribed on the
sphere ∂Ñ . In order to be able to control the precise asymptotic behavior of the
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spacetime, however, it would be convenient to have a complete description of the
asymptotically flat stationary vacuum solutions in terms of asymptotic quantities.

Candidates for this task are Hansen’s multipoles [11]. With the previous as-
sumptions Hansen proposes a definition of multipoles, which extends Geroch’s def-
inition of multipoles for asymptotically flat static spacetimes [9] to the stationary
case. He defines the conformal potentials

φA = Ω− 1
2 φ̃A , A = M, S , (5)

and two sequences of tensor fields near i through

PA = φA , PA
a = DaPA , PA

a2a1
= C

(
Da2P

A
a1

− 1
2
PARa2a1

)
, (6)

PA
as+1...a1

= C
[
Das+1P

A
as...a1

− 1
2
s(2s − 1)PA

as+1...a3
Ra2a1

]
, A = M, S , (7)

where Rab is the Ricci tensor of hab and C is the projector onto the symmetric
trace free part of the respective tensor fields. The multipole moments are then
defined as the tensors

νA = PA(i) , νA
ap...a1

= PA
ap...a1

(i) , A = M, S , p = 1, 2, 3, . . . (8)

Keeping aside the monopoles, νA, we will denote the two sequences of remaining
multipoles by

DA
mp = {νA

a1
, νA

a2a1
, νA

a3a2a1
, . . .} , A = M, S .

The multipole moments are proposed as a way to characterize solutions of (2), (3).
So a natural question is to what extent do the multipoles determine the metric h
and the potentials φM , φS . For this to be the case the metric and the potentials
should be real analytic even at i in suitable coordinates and conformal rescaling.
Beig and Simon [3] and Kundu [13] have shown that the metric and the potentials
do extend in a suitable gauge as real analytic fields to i if it is assumed that

(νM )2 + (νS)2 �= 0 .

As explained in [16] (cf. also [4]), in order for a solution of (2), (3) to lead to an
asymptotically flat spacetime M̃ it is necessary that νS = 0. So, we assume from
now on that

νM �= 0 , νS = 0 . (9)
In [3] and [13] it is also shown that for given multipoles there is a unique formal
expansion of a ‘formal solution’ to the stationary field equations, but it is not
touched upon the convergence of the expansion.

Bäckdahl and Herberthson [2] have found, assuming a given asymptotically
flat solution of the stationary field equations, necessary bounds on the multipoles.

The question that remains open is under which conditions a pair of sequences,
taken as the multipoles, do indeed determine a convergent expansion of a stationary
solution. This question has been studied for the axisymmetric case by Bäckdahl [1].
In the static case there is only one sequence of multipoles. Friedrich [8] has used
as data a sequence of trace-free symmetric tensors, referred to as null data, which
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are different but related to the multipoles. He has shown that imposing certain
types of estimates on the null data is necessary and sufficient for the existence of
asymptotically flat static spacetimes. However, so far the existence question has
never been answered for the general stationary case.

Using a conformal factor that is specified later on, we define the following
two sequences of trace-free symmetric tensors at infinity

Dφ
n =

{
C(Da1φ)(i), C(Da2Da1φ)(i), C(Da3Da2Da1φ)(i), . . .

}
,

DS
n =

{
Sa2a1(i), C(Da3Sa2a1)(i), C(Da4Da3Sa2a1)(i), . . .

}
, (10)

where φ = φS and Sab is the trace free part of the Ricci tensor of h. These two
sequences are referred to again as the null data.

The purpose of this work is to derive, under the assumption (9), necessary
and sufficient conditions for the null data Dφ

n, DS
n , to determine apart from gauge

conditions (unique) real analytic solutions of (2) and (3) and thus to provide
a complete characterization of all possible asymptotically flat solutions to the
stationary vacuum field equations. This generalizes the work by Friedrich [8] from
the static to the stationary case in a way discussed later on.

For the same reasons that justify Ñ to be considered diffeomorphic to the
complement of a closed ball in R

3, we shall treat the case in which N may comprise
a small neighborhood of the point i, without worrying about the behavior of the
solution in the large (note that in terms of h̃ a neighborhood of i covers an infinite
domain extending to space-like infinity).

For our analysis it is convenient to remove the conformal gauge freedom and
use, following Beig and Simon [3],

Ω =
1
2
m−2

[(
1 + 4φ̃2

M + 4φ̃2
S

) 1
2 − 1

]
. (11)

With this conformal factor they derive fall-off conditions and then show that under
some assumptions the rescaled metric can be extended in suitable coordinates on a
suitable neighborhood of space-like infinity as a metric which is real analytic at i.
The potentials φM and φS are then also real analytic at i, so that the multipoles are
well defined. Using this gauge, and taking into account that the angular momentum
monopole vanish, we get

νM = m, νM
a = 0 .

We express now the tensors in Dφ
n, DS

n in terms of an h-orthonormal frame ca, a =
1, 2, 3, at i. Denoting by Da the covariant derivative in the direction of ca,

Dφ∗
n =

{
C(Da1φ)(i), C(Da2Da1φ)(i), C(Da3Da2Da1φ)(i), . . .

}
, (12)

DS∗
n =

{
Sa2a1(i), C(Da3Sa2a1)(i), C(Da4Da3Sa2a1)(i), . . .

}
. (13)

These tensors, which are defined uniquely up to rigid rotations in R
3, will be

referred to as the null data of h in the frame ca.
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If the metric h and the potential φ are real analytic near i, then there exist
constants M, r > 0 such that the components of these tensors satisfy the estimates

|C(Dap
. . . Da1φ)(i)| ≤ Mp!

rp
, ap, . . . ,a1 = 1, 2, 3 , p = 0, 1, 2, . . . ,

|C(Dap
. . . Da1Sbc)(i)| ≤

Mp!
rp

, ap, . . . ,a1,b, c = 1, 2, 3 , p = 0, 1, 2, . . . . (14)

Although these estimates are similar to the Cauchy estimates, known to hold for
the derivatives of analytic functions, they are not the same. The difference being
that here the estimates are on the symmetric trace free part of the derivatives
instead of being directly on the derivatives. These estimates are derived from
Cauchy estimates in Section 3. Remarkably, the statement that these estimates are
not only necessary but also sufficient to have an analytic solution of the stationary
field equations is also true. This constitutes our main result, given in the following
theorem.

Theorem 1.1. Suppose m �= 0 and

D̂φ
n = {ψa1 , ψa2a1 , ψa3a2a1 , . . .} , (15)

D̂S
n = {Ψa2a1 ,Ψa3a2a1 ,Ψa4a3a2a1 , . . .} , (16)

are two infinite sequences of symmetric, trace free tensors given in an orthonormal
frame at the origin of a 3-dimensional Euclidean space. If there exist constants
M, r > 0 such that the components of these tensors satisfy the estimates

|ψap...a1 | ≤
Mp!
rp

, ap, . . . ,a1 = 1, 2, 3 , p = 1, 2, . . . ,

|Ψap...a1bc| ≤
Mp!
rp

, ap, . . . ,a1,b, c = 1, 2, 3 , p = 0, 1, 2, . . . ,

then there exists an analytic, asymptotically flat, stationary vacuum solution
(h̃, φ̃M , φ̃S) with mass monopole m and zero angular momentum monopole, unique
up to isometries, so that the null data implied by h = 1

4m−4[(1+4φ̃2
M +4φ̃2

S)
1
2 −1]2h̃

and φS = 2
1
2 m[(1 + 4φ̃2

M + 4φ̃2
S)

1
2 − 1]−

1
2 φ̃S in a suitable frame ca as described

above satisfy

C(Daq
. . . Da1φS)(i) = ψaq...a1 , aq, . . . ,a1 = 1, 2, 3 , q = 1, 2, . . . ,

C(Daq
. . . Da3Sa2a1)(i) = Ψaq...a1 , aq, . . . ,a1 = 1, 2, 3 , q = 2, 3, . . . .

Two sequences of data of the form (15), (16), not necessarily satisfying any
estimates, will be referred to as abstract null data.

The type of estimates imposed here on the abstract null data does not de-
pend on the orthonormal frame in which they are given. Since these estimates
are necessary as well as sufficient, all possible asymptotically flat solutions of the
stationary vacuum field equations are characterized by the null data.

Corvino and Schoen [6] and Chruściel and Delay [5] have proven that it is
possible to deform given general asymptotically flat vacuum data in an annulus
in order to glue that data to stationary vacuum data in the asymptotic region. In
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relation with those works, as they need a family of asymptotically flat stationary
solutions to perform the gluing procedure, our result gives a complete survey of
the possible stationary asymptotics that can be attained beyond the known exact
solutions.

As both, the multipoles and the null data, determine the metric and the
potentials, there is a bijective map between them. The sets Dφ

n, DS
n and DM

mp, DS
mp

thus contain the same information. We prefer to work with the null data because
the expressions are linear in φ and Sab.

This work contains the static case as a special case. Starting from (1) the
static case can be attained by making γa = 0, which gives ω = 0, φ̃S = 0 and
φS = 0. This implies that all tensors in Dφ

n are zero. Conversely, if all tensors in
Dφ

n are zero then all tensors in DS
mp are zero and by Xanthopoulos’ work [17] the

spacetime is static. So we are left with DS
n as the free data in the static case.

Friedrich [8] has given the same result for the static case using a different
conformal metric. Let us assume for now that we are in the static case, then
Friedrich uses a metric h̆, which is conformally related to our metric h by

h̆ = Ω̆2h , (17)

where

Ω̆ =
4
[
(1 + m2Ω)

1
2 + mΩ

1
2

]

[
(1 + m2Ω)

1
2 + mΩ

1
2 + 1

]2 .

Using h̆ he defines a sequence of symmetric trace-free tensors D̆n in the same way
as we defined DS

n in (10). He shows that imposing estimates of the type (14) on
the tensors in D̆n is necessary and sufficient for the existence of an asymptotically
flat static vacuum solution of the Einstein’s equations. To see that this result is
equivalent to our result in the static case, we have to show that having estimates
of the type (14) on the tensors in DS

n imply estimates of the same type on the
tensors in D̆n and vice versa. This is done through Theorem 1.1 and relation (17).
If the tensors in DS

n satisfy estimates of the type (14) then there exist h and Ω
analytic, and then h̆ given by (17) is also analytic, thus the tensors in D̆n satisfy
estimates of the type (14), the converse is shown in the same way using Friedrich’s
result. Hence this work generalizes the work by Friedrich [8] from the static to
the stationary case. The procedure that we use in the present work follows similar
steps and several of the technics in [8] will be used. For completeness we include
them.

Theorem 1.1 will be proven in terms of the conformal metric h. Thus we shall
express in Section 2 the stationary vacuum field equations as ‘conformal station-
ary vacuum field equations’. In Section 3 we show, by going to the space-spinor
formalism, that the abstract null data indeed determine the expansion coefficients
of a certain type of formal expansions of solutions to the conformal stationary vac-
uum field equations uniquely. Showing convergence in this way appears difficult,
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however. For this reason the underlying geometry of the problem is used in Sec-
tion 4 to cast the problem in a certain setting, where it becomes a characteristic
initial value problem. The setting is necessarily singular, as the set where data is
prescribed contains a vertex, but the convergence problem can now be handled. In
Section 5 it is shown how to determine a formal solution to a subset of the con-
formal field equations from a given set of abstract null data. Then, in Section 6,
the convergence of the series so obtained is shown. In Section 7 it is shown that
the obtained solution satisfy the full set of conformal field equations. Finally, in
Section 8, the convergence result is translated into a gauge which is regular near i,
allowing us to prove Theorem 1.1.

2. The stationary field equations in the conformal setting

The existence problem will be analyzed completely in terms of the conformally
rescaled metric h, so we need to express the stationary field equations in terms of
the conformal fields. By a constant conformal rescaling it can always be achieved
that m = 1. For simplicity we use this scale from now on.

If we directly transform the fields in (2) and (3) we arrive at a system of
equations that is singular at i. To overcome this problem we follow the work of
Beig and Simon [3]. Using (11) as the conformal factor, which together with (5)
imply

Ω = φ2
M + φ2

S − 1 , (18)

and standard formulae for conformal transformations, they rewrite the stationary
field equations, arriving at the following equivalent system of equations:

ΔφA = −1
2

[
R − 5

2
DaΩDaΩ + 10(1 + Ω)πa

a

]
φA , A=M,S ,

DaDbΩ = −ΩRab −
1
3
habR +

(
Ω +

2
3

)
habDcΩDcΩ

− 4
(

Ω +
2
3

)
(Ω + 1)habπc

c − 1
2
(Ω − 1)DaΩDbΩ + 2Ω2πab ,

DaR = 7DbΩDaDbΩ + 3RabD
bΩ + 4(3Ω − 2)πb

bDaΩ

− 3
2
DbΩDbΩDaΩ − 6ΩπabD

bΩ − 2(7Ω + 4)Daπb
b ,

D[cRb]a = 2(3Ω − 1)πd
dha[bDc]Ω − ha[bDc]ΩDdΩDdΩ

− 2(Ω − 1)ha[bπc]dD
dΩ − 2(2Ω + 1)ha[bDc]πd

d

+ 2ha[bDc]DdΩDdΩ +
1
2
D[cΩDb]DaΩ − (Ω − 4)πa[bDc]Ω

+ 2ΩD[cπb]a +
1
2
Ra[bDc]Ω + ha[bRc]dD

dΩ ,
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where
πab ≡ DaφMDbφM + DaφSDbφS (19)

has been introduced just as a useful notation.
These equations are regular even at i. They form a quasi-linear, overdeter-

mined system of PDE’s which implies, by applying formal derivatives to some of
the equations, elliptic equations for all unknowns in a suitable gauge. Considering
the fall-off conditions on the fields, Beig and Simon [3] deduced a certain smooth-
ness of the conformal fields at i. Invoking a general theorem of Morrey on elliptic
systems of this type they concluded that the solutions are in fact real analytic
at i. Later Kennefick and O’Murchadha [12] showed that the fall-off conditions
are reasonable, as they are implied by the spacetime being asymptotically flat. To
avoid introducing additional constraints by taking derivatives, we shall deal with
the system as it is.

For our purposes it is convenient to make some changes to this system. We
separate the Ricci tensor into its trace free part and the Ricci scalar,

Rab = Sab +
1
3
habR . (20)

We also get rid of πab by using (19) in the other equations. From (18) we see
that Ω, φM and φS are not independent, we use this equation to get rid of φM in
the other equations. With these changes and the change of notation φS → φ the
system of equations takes the form

Δφ = −φ

{
1
2
R +

5
1 + Ω − φ2

[
1
4
φ2DaΩDaΩ (21)

−(1 + Ω)φDaΩDaφ + (1 + Ω)2DaφDaφ

]}
,

DaDbΩ = −ΩSab −
1
3
(1 + Ω)habR (22)

+
1

1 + Ω − φ2

{
1
2
[
1 + (−1 + Ω)φ2

]
DaΩDbΩ

− 1
3
(2 + 3Ω)φ2habD

cΩDcΩ − 2Ω2φD(aΩDb)φ

+
4
3
(1 + Ω)(2 + 3Ω)φhabD

cΩDcφ + 2Ω2(1 + Ω)DaφDbφ

−4
3
(1 + Ω)2(2 + 3Ω)habD

cφDcφ

}
,

DaR =
1

1+Ω−φ2

{
2(4+7Ω)φDbΩDbDaφ−4(1+Ω)(4+7Ω)DbφDbDaφ (23)

+
[
3 + (−3 + 7Ω)φ2

]
DbΩSba − 2Ω(4 + 7Ω)φDbφSba

+
1
3
(4 + 7Ω)φ2RDaΩ − 2

3
(1 + Ω)(4 + 7Ω)φRDaφ

}
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+
1

3(1 + Ω − φ2)2

{
1
2
φ2

[
−12 + (40 + 21Ω)φ2

]
DbΩDbΩDaΩ

− 2φ
[
− 18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2

]
DbΩDbφDaΩ

+ 2(1 + Ω)
[
− 24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2

]
DbφDbφDaΩ

− φ
[
12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2

]
DbΩDbΩDaφ

+ 4(1 + Ω)
[
6(1 + Ω) + (22 + 61Ω + 21Ω2)φ2

]
DbΩDbφDaφ

−4(1 + Ω)2(28 + 61Ω + 21Ω2)φDbφDbφDaφ

}
,

D[cSb]a =
1

1 + Ω − φ2

{
ΩφDaD[bφDc]Ω − 2Ω(1 + Ω)DaD[bφDc]φ (24)

− 2
3
(1 + Ω)φha[bDc]DdφDdΩ +

4
3
(1 + Ω)2ha[bDc]DdφDdφ

+
1
2
[
1 + (−1 + Ω)φ2

]
Sa[bDc]Ω − Ω2φSa[bDc]φ

− 1
3
Ωφ2ha[bSc]dD

dΩ +
2
3
Ω(1 + Ω)φha[bSc]dD

dφ

+
1
18

(−2 + Ω)φ2Rha[bDc]Ω − 1
9
(−2 + Ω)(1 + Ω)φRha[bDc]φ

+2φDaΩD[bΩDc]φ − 4(1 + Ω)DaφD[bΩDc]φ

}

+
1

9(1 + Ω − φ2)2

{
1
2
φ2

[
3 + 2(−5 + 3Ω)φ2

]
ha[bDc]ΩDdΩDdΩ

− φ
[
6(1 + Ω) + (−13 − 4Ω + 6Ω2)φ2

]
ha[bDc]φDdΩDdΩ

− 2(−7 − 4Ω + 6Ω2)φ3ha[bDc]ΩDdΩDdφ

+ 4(1 + Ω)2
[
3 + 2(−5 + 3Ω)φ2

]
ha[bDc]φDdΩDdφ

+ 2(1 + Ω)
[
− 3(1 + Ω) + (−4 − 4Ω + 6Ω2)φ2

]
ha[bDc]ΩDdφDdφ

−4(1 + Ω)2(−7 − 4Ω + 6Ω2)φha[bDc]φDdφDdφ

}
.

Besides (21), (22), (23), (24) we need an equation for the metric or for the frame
field and the connection coefficients. This equation is just (20),

Rab[h] = Sab +
1
3
habR , (25)

where the expression on the left hand side is understood as the Ricci operator
acting on the metric h.

The system of equations (25), (21), (22), (23), (24), together with condi-
tions (4) and the condition

R|i = − (6 + 8DaφDaφ) |i , (26)
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implied by (4), will be referred to as the conformal stationary vacuum field equa-
tions for the unknown fields

hab, φ, Ω, R, Sab . (27)

3. The exact sets of equations argument

To see that it is possible to construct solutions to the conformal stationary vacuum
field equations from the null data we study expansions of the conformal fields (27)
in normal coordinates.

We assume from now on N to be small enough to coincide with a convex
h-normal neighborhood of i. Let ca, a = 1, 2, 3, be an h-orthonormal frame field
on N which is parallelly transported along the h-geodesics through i and let xa

denote normal coordinates centered at i so that cb
a ≡ 〈dxb, ca〉 = δb

a at i. We
refer to such a frame as normal frame centered at i. Its dual frame will be denoted
by χc = χc

bdxb. In the following all tensor fields, except the frame field ca and
the coframe field χc, will be expressed in terms of this frame field, so that the
metric is given by hab ≡ h(ca, cb) = −δab. With Da ≡ Dca denoting the covariant
derivative in the ca direction, the connection coefficients with respect to ca are
defined by Dacc = Γa

b
ccb.

An analytic tensor field Ta1...ak
on N has in the normal coordinates xa a

normal expansion at i, which can be written

Ta1...ak
(x) =

∑

p≥0

1
p!

xcp . . . xc1Dcp
. . . Dc1Ta1...ak

(i) , (28)

where we assume from now on that the summation convention does not distinguish
between bold face and other indices.

Since hab = −δab, it remains to be seen how to obtain normal expansions for

φ, Ω, R, Sab , (29)

using the field equations and the null data. The algebra necessary for doing this
simplifies considerably in the space-spinor formalism. To do the transition we intro-
duce the constant van der Waerden symbols αAB

a, αa
AB , a = 1, 2, 3, A,B = 0, 1,

which are symmetric in AB and whose components, if read as matrices, are

αAB
1 =

1√
2

(
−1 0
0 1

)
, αAB

2 =
1√
2

(
−i 0
0 −i

)
, αAB

3 =
1√
2

(
0 1
1 0

)
,

α1
AB =

1√
2

(
−1 0
0 1

)
, α2

AB =
1√
2

(
i 0
0 i

)
, α3

AB =
1√
2

(
0 1
1 0

)
.

The relation between tensors given in the frame ca and space-spinors is made by

T a1...ap
b1...bq

→ TA1B1...ApBp
C1D1...CqDq

≡ T a1...ap
b1...bq

αA1B1
a1 . . . αbq

CqDq
.
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With the summation rule also applying to capital indices we get

δb
a = αb

ABαAB
a , −δabα

a
ABαb

CD = −εA(CεD)B ≡ hABCD ,

a, b = 1, 2, 3 , A,B,C,D = 0, 1 ,

where the constant ε-spinor satisfies εAB = −εBA, ε01 = 1. It is used to move
indices according to the rules ιB = ιAεAB , ιA = εABιB , so that εA

B corresponds
to the Kronecker delta.

As the spinors are in general complex, we need a way to sort out those that
arise from real tensors. For this we define

τAA′
= ε0

Aε0
A′

+ ε1
Aε1

A′
.

Primed indices take values 0, 1 and the summation rule also applies to them.
A bar denotes complex conjugation and indices acquire a prime under complex
conjugation, an exception being εA′B′ , the complex conjugate of εAB . We define

ξ+
A...H = τA

A′
..τH

H′
ξ̄A′...H′ .

Then a space spinor field TA1B1...ApBp
= T(A1B1)...(ApBp) arises from a real tensor

field Ta1...ap
if and only if

TA1B1...ApBp
= (−1)pT+

A1B1...ApBp
. (30)

Any spinor field TA...H admits a decomposition into products of totally symmetric
spinor fields and epsilon spinors which can be written schematically in the form

TA...H = T(A...H) +
∑

ε′s × symmetrized contractions of T . (31)

It will be important that if TA1B1...ApBp
arises from Ta1...ap

then

T(A1B1...ApBp) = C(Ta1...ap
)αa1

A1B1 . . . αap
ApBp

.

To discuss vector analysis in terms of spinors, a complex frame field and its dual
1-form field are defined by

cAB = αa
ABca , χAB = αAB

aχa ,

so that h(cAB , cCD) = hABCD. From this one sees that c00 and c11 are null vectors
orthogonal to c01. The derivative of a function f in the direction of cAB is denoted
by cAB(f) = f,aca

AB and the spinor connection coefficients are defined by

ΓAB
C

D =
1
2
Γa

b
cα

a
ABαCH

bα
c

DH , so that ΓABCD = Γ(AB)(CD) .

The covariant derivative of a spinor field ιA is then given by

DABιC = cAB(ιC) + ΓAB
C

DιD .

If it is required to satisfy the Leibniz rule with respect to tensor products, then
covariant derivatives in the ca-frame formalism translate under contractions with
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the van der Waerden symbols into spinor covariant derivatives and vice versa. We
also have

(DCDDEF − DEF DCD)ιA = rA
BCDEF ιB , (32)

rABCDEF =
1
2

[(
SABCE − 1

6
RhABCE

)
εDF (33)

+
(

SABDF − 1
6
RhABDF

)
εCE

]
,

where R is the Ricci scalar of h and SABCD = Sabαa
ABαb

CD = S(ABCD) represents
the trace free part of the Ricci tensor of h.

Equations (21), (24) take in the space-spinor formalism the form

DP
BDAP φ = −1

4
εABφ

(
R +

10
1 + Ω − φ2

[
1
4
φ2DPQΩDPQΩ (34)

−(1 + Ω)φDPQΩDPQφ + (1 + Ω)2DPQφDPQφ

])
,

DP
ASBCDP (35)

=
1

1 + Ω − φ2

{
ΩφDA

P ΩD(BCDD)P φ − 2Ω(1 + Ω)DA
P φD(BCDD)P φ

+ (1 + Ω)φDPQΩD(BCDPQφεD)A − 2(1 + Ω)2DPQφD(BCDPQφεD)A

+
1
2
[
1 + (−1 + Ω)φ2

]
DA

P ΩSPBCD − Ω2φDA
P φSPBCD

+
1
2
Ωφ2DPQΩSPQ(BCεD)A − Ω(1 + Ω)φDPQφSPQ(BCεD)A

+
1
6
(1 + Ω)φ2RD(BCΩεD)A − 1

3
(1 + Ω)2φRD(BCφεD)A

+ 2φ
(
DA

P φDP (BΩDCD)Ω − DA
P ΩDP (BΩDCD)φ

)

+ 4(1 + Ω)
(
DA

P ΩDP (BφDCD)φ − DA
P φDP (BφDCD)Ω

)
}

+
1

(1 + Ω − φ2)2

{
1
24

φ2
[
− 6 + (20 + 3Ω)φ2

]
DPQΩDPQΩD(BCΩεD)A

− 1
6
(14 + 23Ω + 3Ω2)φ3DPQΩDPQφD(BCΩεD)A

+
1
6
(1 + Ω)

[
6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2

]
DPQφDPQφD(BCΩεD)A

− 1
12

φ
[
−12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2

]
DPQΩDPQΩD(BCφεD)A

+
1
3
(1 + Ω)2

[
−6 + (20 + 3Ω)φ2

]
DPQΩDPQφD(BCφεD)A

− 1
3
(1 + Ω)2

(
14 + 23Ω + 3Ω2

)
φDPQφDPQφD(BCφεD)A

}
.
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Equations (22), (23) are translated into the space-spinor formalism by making the
index replacements a → AB, b → CD, c → EF .

We use equations (34), (35), the spinor version of equations (22), (23) and
the theory of ‘exact sets of fields’ to prove the following result.

Lemma 3.1. Let there be two given sequences

D̂φ
n = {ψA1B1 , ψA2B2A1B1 , ψA3B3A2B2A1B1 , . . .} ,

D̂S
n = {ΨA2B2A1B1 ,ΨA3B3A2B2A1B1 ,ΨA4B4A3B3A2B2A1B1 , . . .} ,

of totally symmetric spinors satisfying the reality condition (30). Assume that there
exists a solution h, φ, Ω, R, SABCD to the conformal stationary field equations
(25), (21), (22), (23), (24) satisfying (4), (26) so that the spinors given by D̂φ

n, D̂S
n

coincide with the null data Dφ∗
n ,DS∗

n given by (12), (13) of the metric h in terms
of an h-orthonormal normal frame centered at i, i.e.,

ψApBp...A1B1 = D(ApBp
. . . DA1B1)φ(i) , p ≥ 1 , (36)

ΨApBp...A1B1 = D(ApBp
. . . DA3B3SA2B2A1B1)(i) , p ≥ 2 . (37)

Then the coefficients of the normal expansions (28) of the fields (29), i.e.

DApBp
. . . DA1B1φ(i) , DApBp

. . . DA1B1Ω(i) ,

DApBp
. . . DA1B1R(i) , DApBp

. . . DA1B1SABCD(i) , p ≥ 0 ,

are uniquely determined by the data D̂φ
n, D̂S

n and satisfy the reality conditions.

Proof. It holds φ(i) = 0, DABφ(i) = ψAB and SABCD(i) = ΨABCD by assumption
and the expansion coefficients for Ω and R of lowest order are given by (4) and (26).
Assume the expansion coefficients of φ and Ω up to order p and the expansion
coefficients of R and SABCD up to order p − 1 are known.

To discuss the induction step we start with DAp+1Bp+1 . . . DA1B1φ(i) and its
decomposition in the form (31). By assumption, the totally symmetric part of it
is given by ψAp+1Bp+1...A1B1 . The other terms in the decomposition contain con-
tractions. Let us consider Ai contracted with Aj . We can commute the operators
DAiBi

and DAjBj
with other covariant derivatives, generating by (32) and (33)

only terms of lower order, until we have

DAp+1Bp+1 . . . DAi+1Bi+1DAi−1Bi−1 . . . DAj+1Bj+1DAj−1Bj−1

. . . DA1B1D
P

Bi
DPBj

φ(i) .

Equation (34) then shows how to express the resulting term by quantities of lower
order that are already known.

For DAp+1Bp+1 . . . DA1B1Ω(i) and DApBp
. . . DA1B1R(i) we just use the spinor

versions of (22) and (23) to express them by quantities of lower order.
Finally, dealing with DApBp

. . . DA1B1SCDEF (i) is quite similar to
DAp+1Bp+1 . . . DA1B1φ(i). The symmetric term is known by the data. If a contrac-
tion is performed between a derivative index and one of C,D,E, F then (35) is
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used after interchanging derivatives. If the contraction is between two derivatives,
the general identities

DH(ADH
B)SCDEF = −2SH(CDESF )

H
AB +

1
3
RSH(CDEhF )

H
AB ,

DABDABSCDEF = −2DF
GDG

HSCDEH + 3SGH(CDSE)F
GH +

1
2
RSCDEF ,

implied by (32), (33), together with (35) show that the corresponding term can be
expressed in terms of quantities of lower order. The induction step is completed.

That the expansion coefficients satisfy the reality condition is a consequence
of the formalism and the fact that they are satisfied by the data. �

In order to show the convergence of the formal series determined in the
previous lemma we need to impose estimates on the free coefficients given by
D̂φ

n, D̂S
n . For this we have the following result.

Lemma 3.2. A necessary condition for the formal series determined in Lemma 3.1
to be absolutely convergent near the origin is that the data given by D̂φ

n, D̂S
n satisfy

estimates of the type

|ψApBp...A1B1 | ≤
p!M
rp

, p = 1, 2, 3, . . . , (38)

|ΨApBp...A1B1CDEF | ≤
p!M
rp

, p = 0, 1, 2, . . . , (39)

with some constants M, r > 0.

We skip the proof of this lemma because it uses the same argument as the
proof of Lemma 3.2 in [8].

Lemma 3.1 shows that the null data determines a formal solution to the
stationary field equations. As shown by Beig and Simon [3], the multipole moments
do the same. Thus there is a bijective map Θ from the null data to the multipoles
sequences, Θ : {Dφ

n,DS
n} → {DM

mp,DS
mp}. Instead of using this argument, we can

try to gain more information on the relation starting from (6), (7). It is convenient
to work in space-spinor form, that means that we are using the h-orthonormal
frame and normal coordinates previously defined. We get the following result.

Lemma 3.3. The spinor fields PM
ApBp...A1B1

, PS
ApBp...A1B1

, near i, given by (6), (7),
are of the form

PM
ApBp...A1B1

(40)

= −1
2

(
1 + Ω − φ2

)− 1
2

(
1 + 2Ω − φ2

)
D(ApBp

. . . DA3B3SA2B2A1B1)

−
(
1 + Ω − φ2

)− 1
2 φD(ApBp

. . . DA1B1)φ

+
1
2

(
1 + Ω − φ2

)− 3
2 φ

(
p − 2Ω2

)
D(ApBp

ΩDAp−1Bp−1 . . . DA1B1)φ



Vol. 10 (2009) Null Data Expansions of Stationary Vacuum Solutions 289

−
(
1 + Ω−φ2

)− 3
2 (1 + Ω)

(
p−2Ω2

)
D(ApBp

φDAp−1Bp−1 . . . DA1B1)φ

+ FM
ApBp...A1B1

, p ≥ 3 ,

PS
ApBp...A1B1

= D(ApBp
. . . DA1B1)φ + FS

ApBp...A1B1
, p ≥ 2 , (41)

with symmetric spinor-valued functions FM
ApBp...A1B1

and FS
ApBp...A1B1

. The func-
tion FM

ApBp...A1B1
, p ≥ 3, is at each point a real linear combination of symmetrized

tensor products of

D(Aq−1Bq−1 . . . DA1B1)φ , D(AqBq
. . . DA3B3SA2B2A1B1) , DABΩ , 2≤q ≤p−1 ,

with coefficients that depend on Ω and φ. The function FS
ApBp...A1B1

, p ≥ 2, is a
real linear combination of symmetrized tensor products of

D(Aq−2Bq−2 . . . DA1B1)φ , D(AqBq
. . . DA3B3SA2B2A1B1) , 2 ≤ q ≤ p .

Proof. From (18) we get

φM =
(
1 + Ω − φ2

) 1
2 ,

and by direct calculations from (6), (7) we see that (40) is valid for p = 3 and
that (41) is valid for p = 2, with the stated properties for FM

A3B3A2B2A1B1
and

FS
A2B2A1B1

. Assuming that the lemma is true for p ≤ k, inserting (40) and (41)
into the recursion relation (7), and using the symmetrized spinor version of (22),
we see that the lemma is true for p = k + 1. �

Using (6), (7), (8) and the identification (36), (37) we get for the lower order
multipoles

νM
A1B1

= 0 , νM
A2B2A1B1

= −1
2
ΨA2B2A1B1 − ψ(A2B2ψA1B1) , (42)

νM
A3B3A2B2A1B1

= −1
2
ΨA3B3A2B2A1B1 − 3ψ(A3B3ψA2B2A1B1) , (43)

νS
A1B1

= ψA1B1 , νS
A2B2A1B1

= ψA2B2A1B1 . (44)

Also restricting (40) and (41) to i and with the identification (36), (37) we get

νM
ApBp...A1B1

= −1
2
ΨApBp...A1B1 − pψ(ApBp

ψAp−1Bp−1...A1B1) (45)

+ fM
ApBp...A1B1

, p ≥ 3 ,

νS
ApBp...A1B1

= ψApBp...A1B1 + fS
ApBp...A1B1

, p ≥ 2 , (46)

where fM
ApBp...A1B1

, p ≥ 3, is a real linear combination of symmetrized tensor
products of

ψAq−1Bq−1...A1B1 , ΨAqBq...A1B1 , 2 ≤ q ≤ p − 1 ,

and fS
ApBp...A1B1

, p ≥ 2, is a real linear combination of symmetrized tensor prod-
ucts of

ψAq−2Bq−2...A1B1 , ΨAqBq...A1B1 , 2 ≤ q ≤ p .
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Equations (42), (43), (44), (45) and (46) give a nonlinear map Θ, that can be read
as a map

Θ : {D̂φ
n, D̂S

n} → {D̂M
mp, D̂S

mp}
of the set of abstract null data into the set of abstract multipoles (i.e., sequences
of symmetric spinors not necessarily derived from a metric). It is now possible to
show that the map can be inverted.

Corollary 3.4. The map Θ that maps sequences of abstract null data {D̂φ
n, D̂S

n}
onto sequences of abstract multipoles {D̂M

mp, D̂S
mp} is bijective.

Proof. From (43), (44) we see that fM
A3B3A2B2A1B1

= 0, fS
A2B2A1B1

= 0, with this
and the stated properties for fM

ApBp...A1B1
and fS

ApBp...A1B1
an inverse for Θ can

be constructed inverting the relations (45) and (46) recursively. �

Hence, for a given metric h, the sequences of multipoles and the sequences
of null data in a given standard frame carry the same information on h. As said,
we prefer to work with the null data because they are linear in φ and SABCD.

4. The characteristic initial value problem

After showing that the null data determine the solution, one would have to show
that the estimates (38), (39) imply Cauchy estimates for the expansion coefficients

|DApBp
. . . DA1B1T (i)| ≤ p!M

rp
, Ap, Bp, . . . , A1, B1 = 0, 1 , p = 0, 1, 2, . . . ,

where T is any of φ, Ω, R, SABCD. This would ensure the convergence of the normal
expansion at i. The induction procedure used so far for calculating the expansion
coefficients from the null data generates additional non-linear terms each time one
interchanges a derivative or uses the conformal field equations. Thus, it does not
seem suited for deriving estimates. Instead, we use the intrinsic geometric nature
of the problem and the data to formulate the problem as a boundary value problem
to which Cauchy-Kowalevskaya type arguments apply.

As the fields h, φ, Ω, R, SABCD are real analytic in the normal coordinates
xa and a standard frame cAB centered at i, they can be extended near i by analyt-
icity into the complex domain and considered as holomorphic fields on a complex
analytic manifold Nc. Choosing Nc to be a sufficiently small neighborhood of i,
we can assume the extended coordinates, again denoted by xa, to define a holo-
morphic coordinate system on Nc which identifies Nc with an open neighborhood
of the origin in C

3. The original manifold N is then a real, 3-dimensional, real
analytic submanifold of the real, 6-dimensional, real analytic manifold underlying
Nc. Under the analytic extension the main differential geometric concepts and for-
mulas remain valid. The coordinates xa and the extended frame, again denoted by
cAB , satisfy the same defining equations and the extended fields, denoted again
by h, φ, Ω, R, SABCD, satisfy the conformal stationary vacuum field equations as
before.
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The analytic function Γ = δabx
axb on N extends to a holomorphic function

on Nc. On N it vanishes only at i, but the set

Ni =
{
p ∈ Nc|Γ(p) = 0

}
,

is an irreducible analytical set such that Ni\{i} is a 2-dimensional complex sub-
manifold of Nc. It is the cone swept out by the complex null geodesics through i
and we will refer to it as the null cone at i.

Now let u → xa(u) be a null geodesic through i such that xa(0) = 0. Its
tangent vector is then of the form ẋAB = ιAιB with a spinor field ιA = ιA(u)
satisfying DẋιA = 0 along the geodesic. Then

φ(u) = φ
(
x(u)

)
, (47)

S0(u) = ẋaẋbSab

(
x(u)

)
= ιAιBιCιDSABCD

(
x(u)

)
, (48)

are analytic functions of u with Taylor expansion

φ(u) =
∞∑

p=0

1
p!

up dpφ

dup
(0) , S0(u) =

∞∑

p=0

1
p!

up dpS0

dup
(0) ,

where
dpφ

dup
(0) = ẋap . . . ẋa1Dap

. . . Da1φ(0) = ιApιBp . . . ιA1ιB1D(ApBp
. . . DA1B1)φ(i) ,

dpS0

dup
(0) = ιApιBp . . . ιA1ιB1ιCιDιEιF D(ApBp

. . . DA1B1SCDEF )(i) .

This shows that knowing these expansion coefficients for initial null vectors ιAιB

covering an open subset of the null directions at i is equivalent to knowing the null
data D̂φ

n, D̂S
n of the metric h.

Our problem can thus be formulated as the boundary value problem for the
conformal stationary vacuum equations with data given by the functions (47), (48)
on Ni, where the ιAιB are parallelly propagated null vectors tangent to Ni.

Ni is not a smooth hypersurface but an analytic set with a vertex at the
point i, and we need a setting in which the mechanism of calculating the expansion
coefficients allows us to derive estimates on the coefficients from the conditions
imposed on the data. That is done in the following subsections.

4.1. The geometric gauge

We need to choose a gauge suitably adapted to the singular set Ni. The coordinates
and the frame field will then necessarily be singular and the frame will no longer
define a smooth lift to the bundle of frames but a subset which becomes tangent
to the fibres over some points.

We will use the principal bundle of normalized spin frames SU(N) π−→ N with
structure group SU(2), which is the group of complex 2×2 matrices (sA

B)A,B=0,1

satisfying
εABsA

CsB
D = εCD , τAB′sA

C s̄B′
D′ = τCD′ . (49)
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The 2 : 1 covering homomorphism of SU(2) onto SO(3, R) is performed via

SU(2)  sA
B → sa

b = αa
ABsA

CsB
DαCD

b ∈ SO(3, R) .

Under holomorphic extension the map above extends to a 2 : 1 covering homo-
morphism of the group SL(2, C) onto the group SO(3, C), where SL(2, C) denotes
the group of complex 2 × 2 matrices satisfying only the first of conditions (49).

A point δ ∈ SU(N) is given by a pair of spinors δ = (δA
0 , δA

1 ) at a given point
of N which satisfies

ε(δA, δB) = εAB , ε(δA, δ+
B′) = τAB′ , (50)

and the action of the structure group is given for s ∈ SU(2) by

δ → δ · s where (δ · s)A = sB
AδB .

The projection π maps a frame δ into its base point in N . The bundle of spin
frames is mapped by a 2 : 1 bundle morphism SU(N)

p−→ SO(N) onto the bundle

SO(N) π′
−→ N of oriented, orthonormal frames on N so that π′ ◦ p = π. For any

spin frame δ we can identify by (50) the matrix (δA
B)A,B=0,1 with an element of

the group SU(2). With this reading the map p will be assumed to be realized by

SU(N)  δ → p(δ)AB = δE
AδF

BcEF ∈ SO(N) ,

where cAB denotes the normal frame field on N introduced before. We refer to
p(δ) as the frame associated with the spin frame δ.

Under holomorphic extension the bundle SU(N) π−→ N is extended to the
principal bundle SL(Nc)

π−→ Nc of spin frames δ = (δA
0 , δA

1 ) at given points of Nc

which satisfy only the first of conditions (50). Its structure group is SL(2, C). The
bundle SU(N) π−→ N is embedded into SL(Nc)

π−→ Nc as a real analytic subbundle.
The bundle morphism p extends to a 2 : 1 bundle morphism, again denoted by p,

of SL(Nc)
π−→ Nc onto the bundle SO(Nc)

π′
−→ Nc of oriented, normalized frames

of Nc with structure group SO(3, C). We shall make use of several structures on
SM(Nc).

With each α ∈ sl(2, C), i.e., α = (αA
B) with αAB = αBA, is associated a

vertical vector field Zα tangent to the fibres, which is given at δ ∈ SL(Nc) by
Zα(δ) = d

dv (δ · exp(vα))|v=0, where v ∈ C and exp denotes the exponential map
sl(2, C) → SL(2, C).

The C
3-valued soldering form σAB = σ(AB) maps a tangent vector X ∈

TδSL(Nc) onto the components of its projection Tδ(π)X ∈ Tπ(δ)Nc in the
frame p(δ) associated with δ so that Tδ(π)X = 〈σAB ,X〉p(δ)AB . It follows that
〈σAB , Zα〉 = 0 for any vertical vector field Zα.

The sl(2, C)-valued connection form ωA
B on SL(Nc) transforms with the

adjoint transformation under the action of SL(2, C) and maps any vertical vector
field Zα onto its generator so that 〈ωA

B , Zα〉 = αA
B .

With xAB = x(AB) ∈ C
3 is associated the horizontal vector field Hx on

SL(Nc) which is horizontal in the sense that 〈ωA
B ,Hx〉 = 0 and which satisfies
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〈σAB ,Hx〉 = xAB . Denoting by HAB , A,B = 0, 1, the horizontal vector fields
satisfying 〈σAB ,HCD〉 = hAB

CD, it follows that Hx = xABHAB . An integral
curve of a horizontal vector field projects onto an h-geodesic and represents a spin
frame field which is parallelly transported along this geodesic.

A holomorphic spinor field ψ on Nc is represented on SL(Nc) by a holomor-
phic spinor-valued function ψA1...Aj

(δ) on SL(Nc), given by the components of
ψ in the frame δ. We shall use the notation ψk = ψ(A1...Aj)k

, k = 0, .., j, where
(. . . . . .)k denotes the operation ‘symmetrize and set k indices equal to 1 the rest
equal to 0’. These functions completely specify ψ if ψ is symmetric. They are then
referred to as the essential components of ψ.

4.2. The submanifold N̂ of SL(Nc)
Using the available geometrical structure we construct a three-dimensional sub-
manifold N̂ of SL(Nc) in such a way that it induces coordinates in Nc. By the
construction procedure the induced coordinates are suitable adapted to the set Ni.

We start by choosing a spin frame δ∗ such that π(δ∗) = i and p(δ∗)AB = cAB .
The curve

C  v → δ(v) = δ∗ · s(v) ∈ SL(Nc) ,

s(v) = exp(vα) =
(

1 0
v 1

)
, α =

(
0 0
1 0

)
∈ sl(2, C) , (51)

defines a vertical, 1-dimensional, holomorphic submanifold I of SL(Nc) on which v
defines a coordinate. The associated family of frames eAB(v) at i is given by
eAB(v) = sC

A(v)sD
B(v)cCD, and explicitly by

e00 = c00 + 2vc01 + v2c11 , e01(v) = c01 + vc11 , e11(v) = c11 .

We perform the following construction in a neighborhood of I. If it is chosen small
enough all the following statements will be correct.

The set I is moved with the flow of H11 to obtain a holomorphic 2-manifold
U0 of SL(Nc). We denote by w the parameter on the integral curves of H11 that
vanishes on I, and we extend v to U0 by assuming it to be constant on the integral
curves of H11. All these integral curves are mapped by π onto the null geodesic
γ(w) with affine parameter w and tangent vector γ′(0) = c11 at γ(0) = i. The
parameter v specifies which frame fields are parallelly propagated along γ.

U0 is now moved with the flow of H00 to obtain a holomorphic 3-submanifold
N̂ of SL(Nc). We denote by u the parameter on the integral curves of H00 that
vanishes on U0 and we extend v and w to N̂ by assuming them to be constant along
the integral curves of H00. The functions z1 = u, z2 = v, z3 = w define holomorphic
coordinates on N̂ . We denote again π the restriction of the projection to N̂ .

The projections of the integral curves of H00 with a fixed value of w sweep
out, together with γ, the null cone Nγ(w) near γ(w), which is generated by the null
geodesics through the point γ(w). On the null geodesics u is an affine parameter
which vanishes at γ(w) while v parametrizes the different generators. The set
W0 = {w = 0} projects onto Ni\γ and will define the initial data set for our
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problem. The map π induces a biholomorphic diffeomorphism of N̂ ′ ≡ N̂\U0

onto π(N̂ ′). The singularity of the gauge at points of U0 consists in π dropping
rank on U0, where ∂v = Zα. The null curve γ(w) will be referred to as the the
singular generator of Ni in the gauge determined by the spin frame δ∗ resp. the
corresponding frame cAB at i.

The soldering an the connection form pull back to holomorphic 1-forms on N̂ ,
which will be denoted again by σAB and ωA

B . If the pull back of the curvature
form ΩA

B = 1
2rA

BCDEF σCD ∧ σEF to N̂ is denoted again by ΩA
B , then the

soldering and the connection form satisfy the structural equations

dσAB = −ωA
C ∧ σCB − ωB

C ∧ σAC , dωA
B = −ωA

C ∧ ωC
B + ΩA

B .

Using the way in which N̂ is constructed, and in terms of the coordinates za, we
get σAB = σAB

adza on N̂ ′, where

(σAB
a) =

⎛

⎝
1 σ00

2 σ00
3

0 σ01
2 σ01

3

0 0 1

⎞

⎠ =

⎛

⎝
1 O(u3) O(u2)
0 u + O(u3) O(u2)
0 0 1

⎞

⎠ as u → 0 .

On N̂ ′ there exist unique, holomorphic vector fields eAB which satisfy

〈σAB , eCD〉 = hAB
CD .

If one writes eAB = ea
AB∂za , then

(ea
AB) =

⎛

⎝
1 e1

01 e1
11

0 e2
01 e2

11

0 0 1

⎞

⎠ =

⎛

⎝
1 O(u2) O(u2)
0 1

2u + O(u) O(u)
0 0 1

⎞

⎠ as u → 0 .

We shall write
ea

AB = e∗a
AB + êa

AB ,

with singular part

e∗a
AB = δa

1 εA
0εB

0 + δa
2

1
u

ε(A
0εB)

1 + δa
3 εA

1εB
1 ,

and holomorphic functions êa
AB on N̂ which satisfy

êa
AB = O(u) as u → 0 . (52)

We define the connection coefficients on N̂ ′ by ωA
B = ΓCD

A
BσCD with ΓCDAB ≡

〈ωAB , eCD〉, so that ΓABCD = Γ(AB)(CD), and from the definition of the frame

Γ00AB = 0 on N̂ , Γ11AB = 0 on U0 ,

and it follows that
ΓABCD = Γ∗

ABCD + Γ̂ABCD ,

with singular part

Γ∗
ABCD = − 1

u
ε(A

0εB)
1εC

0εD
0 ,

and holomorphic functions Γ̂ABCD on N̂ which satisfy

Γ̂ABCD = O(u) as u → 0 . (53)
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4.3. Tensoriality and expansion type

As the induced map π of N̂ into Nc is singular on U0, not every holomorphic
function of the za can arise as a pull-back to N̂ of a holomorphic function on
Nc. The latter must have a special type of expansion in terms of the za which
reflects the particular relation between the ‘angular’ coordinate v and the ‘radial’
coordinate u. We take from [8] the following definition and lemma.

Definition 4.1. A holomorphic function f on N̂ is said to be of v-finite expansion
type kf , with kf an integer, if it has in terms of the coordinates u, v, and w a
Taylor expansion at the origin of the form

f =
∞∑

p=0

∞∑

m=0

2m+kf∑

n=0

fm,n,pu
mvnwp ,

where it is assumed that fm,n,p = 0 if 2m + kf < 0.

Lemma 4.1. Let φA1...Aj
be a holomorphic, symmetric, spinor-valued function on

SL(Nc). Then the restrictions of its essential components φk = φ(A1...Aj)k
, 0 ≤

k ≤ j, to N̂ satisfy

∂vφk = (j − k)φk+1 , k = 0, . . . , j , on U0 ,

(where we set φj+1 = 0) and φk is of expansion type j − k.

4.4. The null data on W0

As we have seen, prescribing the null data is equivalent to knowing φ and S0 in
the null cone. Now we need to know how this fit into our particular gauge. For
this we derive an expansion of the restriction of φ and S0 to the hypersurface W0.

Consider the normal frame cAB on Nc near i which agrees at i with the frame
associated with δ∗ and denote the null data of h in this frame by

Dφ∗
n =

{
D∗

(ApBp
. . . D∗

A1B1)
φ(i), p = 1, 2, 3, . . .

}
,

DS∗
n =

{
D∗

(ApBp
. . . D∗

A1B1
S∗

ABCD)(i), p = 0, 1, 2, 3, . . .
}

.

Choose now a fixed value of v and consider s(v) as in (51), then the vector
H00(δ∗ · s) projects onto the null vector e00 = sA

0s
B

0cAB at i and is tangent
to a null geodesic η = η(u, v) on Ni with affine parameter u, u = 0 at i. The inte-
gral curve of H00 through δ∗ · s projects onto this null geodesic. Using the explicit
expression for s = s(v) follows that

φ(u, v) = φ|η(u,v) =
∞∑

m=0

1
m!

umDm
00φ|η(0,v)

=
∞∑

m=0

1
m!

umsAm
0s

Bm
0 . . . sA1

0s
B1

0D
∗
(AmBm

. . . D∗
A1B1)

φ(i)

=
∞∑

m=0

2m∑

n=0

ψm,numvn , (54)
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with

ψm,n =
1
m!

(
2m

n

)
D∗

(AmBm
. . . D∗

A1B1)n
φ(i) , 0 ≤ n ≤ 2m.

In the same way

S0(u, v) = S0000|η(u,v) (55)

= sA
0s

B
0s

C
0s

D
0S

∗
ABCD|η(u,v) =

∞∑

m=0

2m+4∑

n=0

Ψm,numvn ,

with

Ψm,n =
1
m!

(
2m + 4

n

)
D∗

(AmBm
. . . D∗

A1B1
S∗

ABCD)n
(i) , 0 ≤ n ≤ 2m.

This shows how to determine φ(u, v), S0(u, v) from the null data Dφ∗
n ,DS∗

n and
vice versa.

5. The conformal stationary vacuum field equations on N̂

Now we can use the frame calculus in its standard form. Given the fields Ω, φ,
R and SABCD, and using the frame eAB and the connection coefficients ΓABCD

on N̂ , we set

rABCDEF ≡ eCD(ΓEFAB) − eEF (ΓCDAB) + ΓEF
K

CΓDKAB

+ ΓEF
K

DΓCKAB − ΓCD
K

EΓKFAB − ΓCD
K

F ΓEKAB

+ ΓEF
K

BΓCDAK − ΓCD
K

BΓEFAK − tCD
GH

EF ΓGHAB ,

and we define there the quantities tAB
EF

CD, RABCDEF , AAB , ΣAB , ΦAB , ΠAB ,
ΣABCD and HABCD by

tAB
EF

CDea
EF ≡ 2ΓAB

E
(Cea

D)E − 2ΓCD
E

(Aea
B)E

− ea
CD,be

b
AB + ea

AB,be
b

CD ,

RABCDEF ≡ rABCDEF − 1
2

[(
SABCE − 1

6
RhABCE

)
εDF

+
(

SABDF − 1
6
RhABDF

)
εCE

]
,

AAB ≡ DABφ − φAB ,

ΣAB ≡ DABΩ − ΩAB ,

ΦAB ≡ DP
BφAP +

1
4
εABφ

(
R +

10
1 + Ω − φ2

[
1
4
φ2ΩPQΩPQ

− (1 + Ω)φΩPQφPQ + (1 + Ω)2φPQφPQ

])
,
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ΠAB ≡ DABR − 1
1 + Ω − φ2

{
2(4 + 7Ω)φΩPQDABφPQ

− 4(1 + Ω)(4 + 7Ω)φPQDABφPQ

+
[
3 + (−3 + 7Ω)φ2

]
ΩPQSPQAB − 2Ω(4 + 7Ω)φφPQSPQAB

+
1
3
(4 + 7Ω)φ2RΩAB − 2

3
(1 + Ω)(4 + 7Ω)φRφAB

}

− 1
3(1 + Ω − φ2)2

{
1
2
φ2

[
− 12 + (40 + 21Ω)φ2

]
ΩPQΩPQΩAB

− 2φ
[
− 18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2

]
ΩPQφPQΩAB

+ 2(1 + Ω)
[
− 24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2

]
φPQφPQΩAB

− φ
[
12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2

]
ΩPQΩPQφAB

+ 4(1 + Ω)
[
6(1 + Ω) + (22 + 61Ω + 21Ω2)φ2

]
ΩPQφPQφAB

− 4(1 + Ω)2(7 + 3Ω)(4 + 7Ω)φφPQφPQφAB

}
,

ΣABCD ≡ DABΩCD + ΩSABCD +
1
3
(1 + Ω)RhABCD

− 1
1 + Ω − φ2

{
1
2
[
1 + (−1 + Ω)φ2

]
ΩABΩCD

− Ω2φ(ΩABφCD + ΩCDφAB) + 2Ω2(1 + Ω)φABφCD

− 4
3
(2 + 3Ω)

[
1
4
φ2ΩPQΩPQ − (1 + Ω)φΩPQφPQ

+ (1 + Ω)2φPQφPQ

]
hABCD

}
,

HABCD ≡ DP
ASBCDP

− 1
1 + Ω − φ2

{
ΩφΩA

P D(BCφD)P − 2Ω(1 + Ω)φA
P D(BCφD)P

+ (1 + Ω)φΩPQD(BCφPQεD)A − 2(1 + Ω)2φPQD(BCφPQεD)A

+
1
2
[
1 + (−1 + Ω)φ2

]
ΩA

P SPBCD − Ω2φφA
P SPBCD

+
1
2
Ωφ2ΩPQSPQ(BCεD)A − Ω(1 + Ω)φφPQSPQ(BCεD)A

+
1
6
(1 + Ω)φ2RΩ(BCεD)A − 1

3
(1 + Ω)2φRφ(BCεD)A

+ 2φ
(
φA

P ΩP (BΩCD) − ΩA
P ΩP (BφCD)

)

+ 4(1 + Ω)
(
ΩA

P φP (BφCD) − φA
P φP (BΩCD)

)
}
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− 1
3(1 + Ω−φ2)2

{
1
8
φ2

[
− 6 + (20 + 3Ω)φ2

]
ΩPQΩPQΩ(BCεD)A

− 1
2
(14 + 23Ω + 3Ω2)φ3ΩPQφPQΩ(BCεD)A

+
1
2
(1 + Ω)

[
6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2

]
φPQφPQΩ(BCεD)A

− 1
4
φ
[
− 12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2

]
ΩPQΩPQφ(BCεD)A

+ (1 + Ω)2
[
− 6 + (20 + 3Ω)φ2

]
ΩPQφPQφ(BCεD)A

− (1 + Ω)2 (7 + Ω) (2 + 3Ω) φφPQφPQφ(BCεD)A

}
.

The tensor fields on the left hand side have been introduced as labels for the
equations and for discussing in an ordered manner the interdependencies of the
equations. In terms of these tensor fields, the conformal stationary vacuum equa-
tions read

tAB
EF

CDea
EF = 0 , RABCDEF = 0 , AAB = 0 , ΣAB = 0 ,

ΦAB = 0 , ΠAB = 0 , ΣABCD = 0 , HABCD = 0 .

The first equation is Cartan’s first structural equation with the requirement that
the metric connection be torsion free. The second equation is Cartan’s second
structural equation, requiring the Ricci tensor to coincide with the appropriate
combination of the trace free tensor Sab and the scalar R. The third and fourth
equations define the symmetric spinors φAB and ΩAB respectively. The rest of the
equations have already been considered.

We want to calculate, using our particular gauge, a formal expansion of the
conformal fields using the initial data in the form φ(u, v), S0(u, v). As the system
of conformal stationary vacuum field equations is an overdetermined system, we
have to choose a subsystem of it. In the rest of this section we choose a particular
subsystem, writing the chosen equations in our gauge, and at the end we see how
a formal expansion is determined by these equations and the initial data.

5.1. The A00 = 0 equation

The first equation that needs particular attention is the equation A00 = 0. In our
gauge it reads

∂uφ = φ00 .

This equation is used in the following to calculate φ00 each time we know φ as a
function of u. In particular, as φ will be prescribed on W0 as part of the initial
data, this equation allows us to calculate φ00 there immediately.

5.2. The ‘∂u-equations’

We now present what we will refer to as the ‘∂u-equations’. These equations are
chosen because they have the following features. They are a system of PDE’s for the
set of functions êa

A1, Γ̂A1CD, Ω, ΩAB , φA1, R, S1, S2, S3 and S4, which comprise
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all the unknowns with the exceptions of the free data φ, S0 and the derived function
φ00. They are all interior equations on the hypersurfaces {w = w0} in the sense
that only derivatives in the directions of u and v are involved, in particular, if we
consider the hypersurface {w = 0}, they are all inner equations in Ni. Also they
split into a hierarchy that will be presented in the following section.

The ∂u-equations:
Equations tAB

EF
00e

a
EF = 0 :

∂uê1
01 +

1
u

ê1
01 = −2Γ̂0101 + 2Γ̂0100ê

1
01 ,

∂uê2
01 +

1
u

ê2
01 =

1
u

Γ̂0100 + 2Γ̂0100ê
2

01 ,

∂uê1
11 = −2Γ̂1101 + 2Γ̂1100ê

1
01 ,

∂uê2
11 =

1
u

Γ̂1100 + 2Γ̂1100ê
2

01 .

Equations RAB00EF = 0 :

∂uΓ̂0100 +
2
u

Γ̂0100 − 2Γ̂2
0100 =

1
2
S0 ,

∂uΓ̂0101 +
1
u

Γ̂0101 − 2Γ̂0100Γ̂0101 =
1
2
S1 ,

∂uΓ̂0111 +
1
u

Γ̂0111 − 2Γ̂0100Γ̂0111 =
1
2
S2 −

1
12

R ,

∂uΓ̂1100 +
1
u

Γ̂1100 − 2Γ̂0100Γ̂1100 = S1 ,

∂uΓ̂1101 − 2Γ̂1100Γ̂0101 = S2 +
1
12

R ,

∂uΓ̂1111 − 2Γ̂1100Γ̂0111 = S3 .

Equation Σ00 = 0 :

∂uΩ = Ω00 .

Equations ΦA0 = 0 :

∂uφ01 =
1
2u

(∂vφ00 − 2φ01) + ê1
01∂uφ00 + ê2

01∂uφ00 − 2Γ̂0101φ00 + 2Γ̂0100φ01 ,

∂uφ11 −
1
2u

(∂vφ01 − φ11) − ê1
01∂uφ01 − ê2

01∂vφ01 = −Γ̂0111φ00 + Γ̂0100φ11

− 1
4
φ

{
R +

10
1 + Ω − φ2

[
1
2
φ2Ω00Ω11 −

1
2
[
φΩ01 − 2(1 + Ω)φ01

]2

− (1 + Ω)φ (Ω00φ11 + Ω11φ00) + 2(1 + Ω)2φ00φ11

]}
.
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Equations Σ00CD = 0 :

∂uΩ00 = −ΩS0 +
1

1 + Ω − φ2

{
1
2
[
1 + (−1 + Ω)φ2

]
Ω2

00

− 2Ω2φΩ00φ00 + 2Ω2(1 + Ω)φ2
00

}
,

∂uΩ01 = −ΩS1 +
1

1 + Ω − φ2

{
1
2
[
1 + (−1 + Ω)φ2

]
Ω00Ω01

− Ω2φ (Ω00φ01 + Ω01φ00) + 2Ω2(1 + Ω)φ00φ01

}
,

∂uΩ11 = −ΩS2 −
1
3
(1 + Ω)R

+
1

3(1 + Ω − φ2)

{
1
2
[
3 − (11 + 9Ω)φ2

]
Ω00Ω11

+ 2(2 + 3Ω)
[
φΩ01 − 2(1 + Ω)φ01

]2

+ (8 + 20Ω + 9Ω2)
[
φ(Ω00φ11 + Ω11φ00) − 2(1 + Ω)φ00φ11

]
}

.

Equation Π00 = 0 :

∂uR − 1
1 + Ω − φ2

{
2(4 + 7Ω)φ(Ω11∂uφ00 − 2Ω01∂uφ01 + Ω00∂uφ11)

− 4(1 + Ω)(4 + 7Ω)(φ11∂uφ00 − 2φ01∂uφ01 + φ00∂uφ11)
}

=
1

1 + Ω − φ2

{
[
3 + (−3 + 7Ω)φ2

]
(Ω11S0 − 2Ω01S1 + Ω00S2)

− 2Ω(4 + 7Ω)φ(φ11S0 − 2φ01S1 + φ00S2)

+
1
3
(4 + 7Ω)φ

[
φΩ00 − 2(1 + Ω)φ00

]
R

}

+
1

3(1 + Ω − φ2)2
{
φ2

[
− 12 + (40 + 21Ω)φ2

]
(Ω00Ω11 − Ω2

01)Ω00

− 2φ
[
− 18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2

]
(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω00

+ 4(1 + Ω)
[
− 24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2

]
(φ00φ11 − φ2

01)Ω00

− 2φ
[
12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2

]
(Ω00Ω11 − Ω2

01)φ00

+ 4(1 + Ω)
[
6(1 + Ω)+(22 + 61Ω + 21Ω2)φ2

]
(Ω00φ11−2Ω01φ01 + Ω11φ00)φ00

− 8(1 + Ω)2(7 + 3Ω)(4 + 7Ω)φ(φ00φ11 − φ2
01)φ00

}
.
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Equations H0(ABC)k
= 0, k=0,1,2,3 :

∂uS1 −
1
2u

(∂vS0 − 4S1) − ê1
01∂uS0 − ê2

01∂vS0

+
1

1 + Ω−φ2

{
Ω

[
φΩ01 − 2(1 + Ω)φ01

]
∂uφ00− Ω

[
φΩ00 − 2(1 + Ω)φ00

]
∂uφ01

}

= −4Γ̂0101S0 + 4Γ̂0100S1

− 1
1 + Ω − φ2

{
1
2
[
1 + (−1 + Ω)φ2

]
(Ω01S0 − Ω00S1) − Ω2φ(φ01S0 − φ00S1)

+ 2
[
φΩ00 − 2(1 + Ω)φ00

]
(Ω00φ01 − Ω01φ00)

}
,

∂uS2 −
1
2u

(∂vS1 − 3S2) − ê1
01∂uS1 − ê2

01∂vS1

+
1

3(1 + Ω − φ2)

{
− (1 + Ω)

[
φΩ11 − 2(1 + Ω)φ11

]
∂uφ00

+ (2 + 5Ω)
[
φΩ01 − 2(1 + Ω)φ01

]
∂uφ01−(1 + 2Ω)

[
φΩ00 − 2(1 + Ω)φ00

]
∂uφ11

− 2Ω
[
φΩ00 − 2(1 + Ω)φ00

]
[

1
2u

(∂vφ01 − φ11) + ê1
01∂uφ01 + ê2

01∂vφ01

]}

= −Γ̂0111S0 − 2Γ̂0101S1 + 3Γ̂0100S2

− 1
1 + Ω − φ2

{
2
3
Ω

[
φΩ00 − 2(1 + Ω)φ00

][
Γ̂0111φ00 − Γ̂0100φ11

]

+
1
2
[
1 + (−1 + Ω)φ2

]
(Ω01S1 − Ω00S2) − Ω2φ(φ01S1 − φ00S2)

− 1
6
Ωφ2(Ω11S0 − 2Ω01S1 + Ω00S2) +

1
3
Ω(1 + Ω)φ(φ11S0 − 2φ01S1 + φ00S2)

− 1
18

(1 + Ω)φ
[
φΩ00 − 2(1 + Ω)φ00

]
R

+ 2
[
φΩ01 − 2(1 + Ω)φ01

]
(Ω00φ01 − Ω01φ00)

}

+
1

9(1 + Ω − φ2)2

{
1
4
φ2

[
− 6 + (20 + 3Ω)φ2

]
(Ω00Ω11 − Ω2

01)Ω00

− 1
2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω00

+ (1 + Ω)
[
6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2

]
(φ00φ11 − φ2

01)Ω00

− 1
2
φ
[
− 12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2

]
(Ω00Ω11 − Ω2

01)φ00

+ (1 + Ω)2
[
− 6 + (20 + 3Ω)φ2

]
(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ00

− 2(1 + Ω)2 (7 + Ω) (2 + 3Ω) φ(φ00φ11 − φ2
01)φ00

}
,



302 A. E. Aceña Ann. Henri Poincaré

∂uS3 −
1
2u

(∂vS2 − 2S3) − ê1
01∂uS2 − ê2

01∂vS2 +
1

3(1 + Ω − φ2)
{
− 2(1 + Ω)

[
φΩ11 − 2(1 + Ω)φ11

]
∂uφ01 + Ω

[
φΩ01 − 2(1 + Ω)φ01

]
∂uφ11

+ 2(2 + 3Ω)
[
φΩ01−2(1 + Ω)φ01

]
[

1
2u

(∂vφ01−φ11) + ê1
01∂uφ01 + ê2

01∂vφ01

]

− (2 + 5Ω)
[
φΩ00 − 2(1 + Ω)φ00

]
[

1
2u

∂vφ11 + ê1
01∂uφ11 + ê2

01∂vφ11

]}

= −2Γ̂0111S1 + 2Γ̂0100S3

− 1
1 + Ω − φ2

{
− 2

3
(2 + 3Ω)

[
φΩ01 − 2(1 + Ω)φ01

][
Γ̂0111φ00 − Γ̂0100φ11

]

+
2
3
(2 + 5Ω)

[
φΩ00 − 2(1 + Ω)φ00

][
Γ̂0111φ01 − Γ̂0101φ11

]

+
1
2
[
1 + (−1 + Ω)φ2

]
(Ω01S2 − Ω00S3) − Ω2φ(φ01S2 − φ00S3)

− 1
3
Ωφ2(Ω11S1 − 2Ω01S2 + Ω00S3) +

2
3
Ω(1 + Ω)φ(φ11S1 − 2φ01S2 + φ00S3)

− 1
9
(1 + Ω)φ

[
φΩ01 − 2(1 + Ω)φ01

]
R

+ 2
[
φΩ11 − 2(1 + Ω)φ11

]
(Ω00φ01 − Ω01φ00)

}

+
2

9(1 + Ω − φ2)2

{
1
4
φ2

[
− 6 + (20 + 3Ω)φ2

]
(Ω00Ω11 − Ω2

01)Ω01

− 1
2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω01

+ (1 + Ω)
[
6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2

]
(φ00φ11 − φ2

01)Ω01

− 1
2
φ
[
− 12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2

]
(Ω00Ω11 − Ω2

01)φ01

+ (1 + Ω)2
[
− 6 + (20 + 3Ω)φ2

]
(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ01

− 2(1 + Ω)2 (7 + Ω) (2 + 3Ω) φ(φ00φ11 − φ2
01)φ01

}
,

∂uS4 −
1
2u

(∂vS3 − S4) − ê1
01∂uS3 − ê2

01∂vS3

+
1

1 + Ω − φ2

{
− (1 + Ω)

[
φΩ11 − 2(1 + Ω)φ11

]
∂uφ11

+ (2 + 3Ω)
[
φΩ01 − 2(1 + Ω)φ01

]
[

1
2u

∂vφ11 + ê1
01∂uφ11 + ê2

01∂vφ11

]

− (1 + 2Ω)
[
φΩ00 − 2(1 + Ω)φ00

] (
ê1

11∂uφ11 + ê2
11∂vφ11 + ∂wφ11

)
}
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= −3Γ̂0111S2 + 2Γ̂0101S3 + Γ̂0100S4

+
1

1 + Ω − φ2

{
2(2 + 3Ω)

[
φΩ01 − 2(1 + Ω)φ01

][
Γ̂0111φ01 − Γ̂0101φ11

]

− 2(1 + 2Ω)
[
φΩ00 − 2(1 + Ω)φ00

][
Γ̂1111φ01 − Γ̂1101φ11

]

− 1
2
[
1 + (−1 + Ω)φ2

]
(Ω01S3 − Ω00S4) + Ω2φ(φ01S3 − φ00S4)

+
1
2
Ωφ2(Ω11S2 − 2Ω01S3 + Ω00S4) − Ω(1 + Ω)φ(φ11S2 − 2φ01S3 + φ00S4)

+
1
6
(1 + Ω)φ

[
φΩ11 − 2(1 + Ω)φ11

]
R

− 2φ
[
Ω11(Ω01φ01 − Ω11φ00) + φ11(Ω00Ω11 − Ω2

01)
]

+ 4(1 + Ω)
[
φ11(Ω01φ01 − Ω00φ11) + Ω11(φ00φ11 − φ2

01)
]
}

+
1

3(1 + Ω − φ2)2

{
1
4
φ2

[
− 6 + (20 + 3Ω)φ2

]
(Ω00Ω11 − Ω2

01)Ω11

− 1
2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω11

+ (1 + Ω)
[
6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2

]
(φ00φ11 − φ2

01)Ω11

− 1
2
φ
[
− 12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2

]
(Ω00Ω11 − Ω2

01)φ11

+ (1 + Ω)2
[
− 6 + (20 + 3Ω)φ2

]
(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ11

− 2(1 + Ω)2 (7 + Ω) (2 + 3Ω) φ(φ00φ11 − φ2
01)φ11

}

5.3. The ∂u-equations hierarchy

The system of ∂u-equations splits into two groups, referred to as G1 and G2. Each
of these groups splits into a hierarchy, which is defined as follows:

G1.1: R000001 = 0,
G1.2: t01

EF
00e

2
EF = 0,

G1.3: t01
EF

00e
1

EF = 0, R010001 = 0, Σ00 = 0, Σ0000 = 0, Σ0001 = 0, Φ00 = 0,
H0000 = 0,

G1.4: R110001 = 0, Σ0011 = 0, Φ10 = 0, Π00 = 0, H0001 = 0,
G1.5: R000011 = 0,
G1.6: R010011 = 0,
G1.7: t11

EF
00e

1
EF = 0,

G1.8: t11
EF

00e
2

EF = 0,

G2.1: H0011 = 0,
G2.2: R110011 = 0,
G2.3: H0111 = 0.
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For dealing with the unknowns we separate them into three groups, x1, x2

and x3. The unknowns involved in G1 are collected in x1, that is x1 = (ê1
01, ê2

01,
ê1

11, ê2
11, Γ̂0100, Γ̂0101, Γ̂0111, Γ̂1100, Γ̂1101, Ω, Ω00, Ω01, Ω11, φ01, φ11, R, S1, S2).

The set x2 consist of the unknowns of x1 plus φ, S0 and φ00. The unknowns in G2
are collected in x3, that is x3 = (Γ̂1111, S3, S4). So all the unknowns are included
in the union of x2 and x3.

The defining property of the hierarchy is the following feature. If φ and S0 are
prescribed on {w = w0} then G1.1 reduces to an ODE. Once we have its solution,
G1.2 reduces to an ODE. Given its solution, G1.3 reduces to a system of ODE’s,
with coefficients that are calculated by operations interior to {w = w0} from the
previously known or calculated functions. This procedure continues till G1.8. So,
given φ and S0 on {w = w0} and the appropriate initial data on U0 ∩ {w = w0},
the set x1 can be determined on {w = w0} by solving a sequence of ODE’s in the
independent variable u.

The process to be followed with G2 is very similar, with the exception that
to solve G2.3 it is necessary to know also ∂wφ11 on {w = w0}, this problem can
be overcome solving G1 recursively and then analyzing G2.

5.4. The ‘∂w-equations’

Our initial data, φ and S0, is prescribed on W0, and to determine their evolution
off W0 we need the equation A11 = 0, which reads

∂wφ + ê1
11∂uφ + ê2

11∂vφ = φ11 ,

and the equation H1(ABC)0 + H0(ABC)1 = 0, which is given by

∂wS0 − ∂uS2 + ê1
11∂uS0 + ê2

11∂vS0

− 1
3(1 + Ω − φ2)

{
(2 + 5Ω)

[
φΩ11 − 2(1 + Ω)φ11

]
∂uφ00

− 4(1 + Ω)
[
φΩ01 − 2(1 + Ω)φ01

]
∂uφ01 + (2 + Ω)

[
φΩ00 − 2(1 + Ω)φ00

]
∂uφ11

− 2Ω
[
φΩ00 − 2(1 + Ω)φ00

]
[

1
2u

(∂vφ01 − φ11) + ê1
01∂uφ01 + ê2

01∂vφ01

] }

= 4Γ̂1101S0 − 4Γ̂1100S1

+
1

1 + Ω − φ2

{
2
3
Ω

[
φΩ00 − 2(1 + Ω)φ00

][
Γ̂0111φ00 − Γ̂0100φ11

]

+
1
2
[
1 + (−1 + Ω)φ2

]
(Ω11S0 − Ω00S2) − Ω2φ(φ11S0 − φ00S2)

+
1
3
Ωφ2(Ω11S0 − 2Ω01S1 + Ω00S2) −

2
3
Ω(1 + Ω)φ(φ11S0 − 2φ01S1 + φ00S2)

+
1
9
(1 + Ω)φ

[
φΩ00 − 2(1 + Ω)φ00

]
R

+ 2
[
φΩ00 − 2(1 + Ω)φ00

]
(Ω00φ11 − Ω11φ00)

}
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+
2

9(1 + Ω − φ2)2

{
1
4
φ2

[
− 6 + (20 + 3Ω)φ2

]
(Ω00Ω11 − Ω2

01)Ω00

− 1
2
(14 + 23Ω + 3Ω2)φ3(Ω00φ11 − 2Ω01φ01 + Ω11φ00)Ω00

+ (1 + Ω)
[
6(1 + Ω) + (8 + 23Ω + 3Ω2)φ2

]
(φ00φ11 − φ2

01)Ω00

− 1
2
φ
[
− 12(1 + Ω) + (26 + 23Ω + 3Ω2)φ2

]
(Ω00Ω11 − Ω2

01)φ00

+ (1 + Ω)2
[
−6 + (20 + 3Ω)φ2

]
(Ω00φ11 − 2Ω01φ01 + Ω11φ00)φ00

− 2(1 + Ω)2 (7 + Ω) (2 + 3Ω) φ(φ00φ11 − φ2
01)φ00

}
.

These two equations will be referred to as the ‘∂w-equations’.

5.5. The initial conditions for the ∂u-equations

The initial conditions for the ∂u-equations follow from our gauge conditions (52),
(53) which imply

êa
A1|I = 0 , a = 1, 2 , A = 0, 1 ,

Γ̂A1CD|I = 0 , A,C,D = 0, 1 .

From (4) we get

Ω|I = 0 ,

ΩAB |I = 0 , A,B = 0, 1 ,

R|I = −6 − 8∂uφ|I∂u∂2
vφ|I + 4 (∂u∂vφ|I)2 ,

and from the required spinorial behavior in order to have analytic solutions, as
discussed in Section 4.3,

φA1|I =
1
2
∂u∂1+A

v φ|I , A = 0, 1 , (56)

Sk|I =
(4 − k)!

4!
∂k

v S0|I , k = 1, 2, 3, 4 ,

where A00 = 0 has been used.

5.6. Calculating the formal expansion

As the system of equations is overdetermined, we have chosen a subsystem in
order to calculate a formal expansion of the solution. It will be shown later on
that the expansion obtained using this subsystem lead to a formal solution of the
full system of equations.

We prescribe φ and S0 on W0 as our datum and the initial conditions on I
for the ∂u-equations are given in Section 5.5. Following what has been said in
Section 5.3 we successively integrate the subsystems on G1 to determine all com-
ponents of x1 on W0.

We give now an inductive argument involving G1 and the ∂w-equations to
show that ∂k

wx2|W0 can be determined for all k.
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From our initial data and what has been said we know already ∂k
wx2|W0 for

k = 0. As inductive hypothesis we assume as known

∂p
wx2|W0 , 0 ≤ p ≤ k − 1 , k ≥ 1 .

Applying formally ∂k−1
w to the ∂w-equations, and restricting them to W0, we find

∂k
wφ|W0 and ∂k

wS0|W0 in terms of known functions. We apply formally ∂k
w to G1.

This is a system of PDE’s where the unknowns are ∂k
wx1. Keeping the hierarchy

and considering the functions that we already know on W0, it again becomes a
sequence of ODE’s, which can be integrated on W0 given the appropriate initial
conditions on I.

The initial conditions for the frame coefficients and the connection coefficients
are obtained from the gauge requirements (52), (53) which imply

∂k
wêa

A1|I = 0 , a = 1, 2 , A = 0, 1 ,

∂k
wΓ̂A1CD|I = 0 , A,C,D = 0, 1 .

From the spinorial behavior as discussed in Section 4.3 we obtain the following set
of initial conditions.

∂k
wφ01|I =

1
2
∂u∂v∂k

wφ|I ,

∂k
wφ11|I =

1
2
∂u∂2

v∂k
wφ|I ,

∂k
wS1|I =

1
4
∂v∂

k
wS0|I ,

∂k
wS2|I =

1
12

∂2
v∂k

wS0|I .

By restricting the equations Σ11 = 0, Σ11CD = 0 and Π11 = 0 to U0 and using
that Ω|I = 0, ΩAB |I = 0 we get

∂k
wΩ|I = 0 ,

∂k
wΩA1|I = 0 , A = 0, 1 ,

∂wΩ00|U0 =
[
−1

3
R +

8
3(1 − φ2)

(φΩ00φ11 − 2φ00φ11 + 2φ2
01)

]∣
∣
∣
∣
U0

, (57)

∂wR|U0 =
[
3Ω00S4 +

8
1 − φ2

{
(φΩ00 − 2φ00)∂wφ11 (58)

+ 4φ01∂wφ01 − 2φ11∂wφ00 −
1
3
φRφ11

}

+
8

3(1 − φ2)2
φ11

{
(3 + 11φ2)Ω00φ11 − 28φ(φ00φ11 − φ2

01)
}
]∣
∣
∣
∣
U0

.

Applying ∂k−1
w to (57), (58) and evaluating them at I by using the known

functions from the inductive hypothesis and the previously stated initial conditions
we get ∂k

wΩ00|I and ∂k
wR|I .
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Now we have all the needed initial conditions, thus we know

∂k
wx2|W0

and the induction step is completed.
The procedure with G2 is quite similar. Once we know ∂k

wx2|W0 for all k,
G2.1 reduces to an ODE, which can be integrated on W0 given the corresponding
initial condition. Once we know the solution of G2.1, G2.2 also reduces to an ODE,
and finally also G2.3 reduces to an ODE. The initial conditions for G2 are given
in Section 5.5.

The inductive step is very similar to the inductive step for x2. We assume

∂p
wx3|W0 , 0 ≤ p ≤ k − 1 , k ≥ 1 ,

to be known. We apply formally ∂k
w to the equations in G2. If we stick to the

hierarchy this system again reduces in the prescribed order to a system of ODE’s
for ∂k

wx3, which can be integrated given the corresponding initial conditions. Those
are

∂k
wΓ̂1111|I = 0 ,

∂k
wS3|I =

1
24

∂3
v∂k

wS0|I ,

∂k
wS4|I =

1
24

∂4
v∂k

wS0|I ,

obtained from (53) and Section 4.3.
Now we know

∂k
wx3|W0

and the induction step is complete.
If we now call X any of the quantities included in x2 and x3, that is, X

comprises all the unknown quantities that we are solving for, the procedure just
stated shows that we know ∂k

wX|W0 for all k. Expanding these functions around
i = {u = 0, v = 0, w = 0} gives

∂m
u ∂n

v ∂p
wX|i ∀ m,n, p ,

and the procedure gives a unique sequence of expansion coefficients for all the
functions in X.

Lemma 5.1. The procedure described above determines at the point O = (u =
0, v = 0, w = 0) from the data φ, S0, given on W0 according to (54), (55), a
unique sequence of expansion coefficients

∂m
u ∂n

v ∂p
wf(O) , m, n, p = 0, 1, 2, . . . ,

where f stands for any of the functions êa
AB,Γ̂ABCD,φ,φAB,Ω,ΩAB,R,Sk.

If the corresponding Taylor series are absolutely convergent in some neigh-
borhood P of O, they define a solution to the equation A00 = 0, to the ∂u-equations
and to the ∂w-equations on P which satisfies on P∩U0 equations (56) and Σ11 = 0,
Σ11CD = 0, Π11 = 0.



308 A. E. Aceña Ann. Henri Poincaré

By Lemma 4.1 we know that all spinor-valued functions should have a specific
v-finite expansion type. The following lemma, whose proof is quite similar to the
proof in [8], will be important for the convergence proof.

Lemma 5.2. If the data φ, S0 are given on W0 as in (54), (55), the formal ex-
pansions of the fields obtained in Lemma 5.1 correspond to ones of functions of
v-finite expansion types given by

kê1
AB

= −A − B , kê2
AB

= 3 − A − B , AB = 01, 11 ,

kΓ̂01AB
= 2 − A − B , kΓ̂11AB

= 1 − A − B , A,B = 0, 1 ,

kφ = 0 , kφAB
= 2 − A − B , A,B = 0, 1 ,

kΩ = 0 , kΩAB
= 2 − A − B , A,B = 0, 1 ,

kR = 0 ,

kSj
= 4 − j , j = 0, 1, 2, 3, 4 .

6. Convergence of the formal expansion

In the previous section we have seen how to calculate a formal expansion for êa
AB ,

Γ̂ABCD, φ, φAB , Ω, ΩAB , R, Sk given φ|W0 and S0|W0 , or, what is the same, given
the null data. From Lemma 3.2 we know which are the necessary conditions on the
null data in order to have analytic solutions of the conformal field equations. In
this section we show that those conditions, (38) and (39), are also sufficient for the
formal expansion determined in the previous section to be absolutely convergent.

So we start considering the abstract null data as given by two sequences

D̂φ
n = {ψA1B1 , ψA2B2A1B1 , ψA3B3A2B2A1B1 , . . .} ,

D̂S
n = {ΨA2B2A1B1 ,ΨA3B3A2B2A1B1 ,ΨA4B4A2A3B3A2B2A1B1 , . . .} ,

of totally symmetric spinors satisfying the reality condition (30) and we construct
φ|W0 and S0|W0 , by setting in the expansions (54), (55)

D∗
(AmBm

. . . D∗
A1B1)

φ(i) = ψAmBm...A1B1 , m ≥ 1 ,

D∗
(AmBm

. . . D∗
A1B1

S∗
ABCD)(i) = ΨAmBm...A1B1ABCD , m ≥ 0 .

Observing Lemma 3.2, one finds as a necessary condition for the functions φ, S0

on W0 to determine an analytic solution to the conformal static vacuum field
equations that its non-vanishing Taylor coefficients at the point O satisfy estimates
of the form

|∂m
u ∂n

v φ(0)| ≤
(

2m

n

)
m!n!

M

rm
, m ≥ 0 , 0 ≤ n ≤ 2m, (59)

|∂m
u ∂n

v S0(0)| ≤
(

2m + 4
n

)
m!n!

M

rm
, m ≥ 0 , 0 ≤ n ≤ 2m + 4 . (60)

This conditions are also sufficient for φ(u, v) and S0(u, v) to be holomorphic func-
tions on W0. So the null data gives rise to two analytic functions, φ and S0, on W0.
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From A00 = 0 we have φ00 = ∂uφ, so having φ|W0 we have φ00|W0 , which is
also an analytic function on W0.

Following Lemma 6.1 in [8], we can derive from (59), (60), slightly different
type of estimates for φ(u, v), S0(u, v), which are more convenient in our case.

Lemma 6.1. Let e be the Euler number. For given ρφ, ρS0 , both in R, such that
0 < ρφ < e2, 0 < ρS0 < e2, there exist positive constants c̃φ, rφ, c̃S0 , rS0 , so that
(59), (60), imply estimates of the form

|∂m
u ∂n

v φ| ≤ c̃φ

rm−1
φ m!ρn

φn!
(m + 1)2(n + 1)2

, m ≥ 0 , 0 ≤ n ≤ 2m, (61)

|∂m
u ∂n

v S0| ≤ c̃S0

rm
S0

m!ρn
S0

n!
(m + 1)2(n + 1)2

, m ≥ 0 , 0 ≤ n ≤ 2m + 4 . (62)

We can present our estimates.

Lemma 6.2. Assume φ = φ(u, v), S0 = S0(u, v) are holomorphic functions defined
on some open neighborhood U of O = {u = 0, v = 0, w = 0} in W0 = {w = 0}
which have expansions of the form

φ(u, v) =
∞∑

m=0

2m∑

n=0

ψm,numvn ,

S0(u, v) =
∞∑

m=0

2m+4∑

n=0

Ψm,numvn ,

so that its Taylor coefficients at the point O satisfy estimates of the type (61), (62)
with some positive constants c̃φ, rφ, c̃S0 , rS0 , and ρφ < 1

3 , ρS0 < 1
3 . Then there

exist positive constants

r, ρ, cêa
AB

, cΓ̂ABCD
, cφ, cφAB

, cΩ, cΩAB
, cR, cSk

so that the expansion coefficients determined from φ and S0 in Lemma 5.1 satisfy
for m,n, p = 0, 1, 2, . . .

|∂m
u ∂n

v ∂p
wf(O)| ≤ cf

rm+p+qf (m + p)!ρnn!
(m + 1)2(n + 1)2(p + 1)2

, (63)

where f stands for any of the functions

êa
AB , Γ̂ABCD, φ, φAB , Ω, ΩAB , R, Sk,

and

qêa
AB

= qΓ̂ABCD
= qφ = qΩ = qΩAB

= −1 , qφAB
= qR = qSk

= 0 .

Remark. Taking into account the v-finite expansion types of the functions f
(Lemma 5.2), we can replace the right hand sides in the estimates above by zero
if n is large enough relative to m. This will not be pointed out at each step and
for convenience the estimates will be written as above.
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We take the following four lemmas from [8]. The first states the necessary
part of the estimates, and the other three are needed in order to manipulate the
estimates in the proof of Lemma 6.2.

Lemma 6.3. If f is holomorphic near O, there exist positive constants c, r0, ρ0

such that

|∂m
u ∂n

v ∂p
wf(O)| ≤ c

rm+p(m + p)!ρnn!
(m + 1)2(n + 1)2(p + 1)2

, m, n, p = 0, 1, 2, . . .

for any r ≥ r0, ρ ≥ ρ0. If in addition f(0, v, 0) = 0, the constants can be chosen
such that

|∂m
u ∂n

v ∂p
wf(O)| ≤ c

rm+p−1(m + p)!ρnn!
(m + 1)2(n + 1)2(p + 1)2

, m, n, p = 0, 1, 2, . . .

for any r ≥ r0, ρ ≥ ρ0.

Lemma 6.4. For any non-negative integer n there is a positive constant C, C > 1,
independent of n so that

n∑

k=0

1
(k + 1)2(n − k + 1)2

≤ C
1

(n + 1)2
.

In the following C will always denote the constant above.

Lemma 6.5. For any integers m, n, k, j, with 0 ≤ k ≤ m, and 0 ≤ j ≤ n resp.
0 ≤ j ≤ n − 1 holds

(
m

k

)(
n

j

)
≤

(
m + n

k + j

)
resp.

(
m

k

)(
n − 1

j

)
≤

(
m + n

k + j

)
.

Lemma 6.6. Let m, n, p be non-negative integers and fi, i = 1, . . . , N , be smooth
complex valued functions of u, v, w on some neighborhood U of O whose derivatives
satisfy on U (resp. at a given point p ∈ U) estimates of the form

|∂j
u∂k

v ∂l
wfi| ≤ ci

rj+l+qi(j + l)!ρkk!
(j + 1)2(k + 1)2(l + 1)2

for 0 ≤ j ≤ m, 0 ≤ k ≤ n, 0 ≤ l ≤ p, with some positive constants ci, r, ρ and
some fixed integers qi (independent of j, k, l). Then one has on U (resp. at p) the
estimates

|∂m
u ∂n

v ∂p
w(f1 · · · · · fN )| ≤ C3(N−1)c1 · · · · · cN

rm+p+q1+...qN (m + p)!ρnn!
(m + 1)2(n + 1)2(p + 1)2

. (64)

Remark. This lemma remains true if m, n, p are replaced in (64) by integers m′,
n′, p′ with 0 ≤ m′ ≤ m, 0 ≤ n′ ≤ n, 0 ≤ p′ ≤ p.

The factor C3(N−1) in (64) can be replaced by C(3−s)(N−1) if s of the integers
m, n, p vanish.
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Proof of Lemma 6.2. The proof is by induction, following the procedure which led
to Lemma 5.1. A general outline is as follows. We start leaving the choice of the
constants r, ρ, cf , open. We use the induction hypothesis and the equations that
lead to Lemma 5.1 to derive estimates for the derivatives of the next order. These
estimates are of the form

|∂m
u ∂n

v ∂p
wf(O)| ≤ cf

rm+p+qf (m + p)!ρnn!
(m + 1)2(n + 1)2(p + 1)2

Af , (65)

with certain constants Af which depend on m, n, p and the constants cf , r and ρ.
Sometimes superscripts will indicate to which order of differentiability particular
constants Af refer. In the way we will have to make assumptions on r to proceed
with the induction step. We shall collect these conditions and the constants Af , or
estimates for them, and at the end it will be shown that the constants cf , r and ρ
can be adjusted so that all conditions are satisfied and Af ≤ 1. This will complete
the induction proof.

In order not to write long formulas that do not add to the understanding
of the procedure, we state here some properties that are used to simplify the
estimates:

• As a corollary of Lemma 6.6 we have:
If

|∂j
u∂k

v ∂l
wg| ≤ cg

rj+l−1(j + l)!ρkk!
(j + 1)2(k + 1)2(l + 1)2

for 0 ≤ j ≤ m, 0 ≤ k ≤ n, 0 ≤ l ≤ p, where g is φ or Ω, and if r >
C3

2 [cΩ + (c2
Ω + 4c2

φ)
1
2 ], then

∣
∣
∣
∣∂

m
u ∂n

v ∂p
w

(
1

1 + Ω − φ2

)∣
∣
∣
∣ ≤

1
C3

1

1 − C3

r

(
cΩ + C3

r c2
φ

)
rm+p(m + p)!ρnn!

(m + 1)2(n + 1)2(p + 1)2
.

• If r ≥ C3[cΩ + (c2
Ω + 2c2

φ)
1
2 ] then

1

1 − C3

r

(
cΩ + C3

r c2
φ

) ≤ 2 . (66)

• After calculating the estimates and using (66) we find that all the A’s satisfy
inequalities of the form

A ≤ α +
9∑

i=1

αi

ri
,

where α, αi are constants that do not depend on r. If αi = 0 then we have to
show that we can make α ≤ 1. If the αi’s are not zero we can take a constant
a, 0 < a < 1, and require that α ≤ a and then choose r large enough such
that

∑8
i=1

αi

ri ≤ 1 − a. In the estimates that follows, we shall not write the
explicit expressions for the αi’s, as they do not play any role if we are able
to make r big enough at the end of the procedure.
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From now on we consider that a function in a modulus sign is evaluated at the
origin O.

From the analyticity of φ00(u, v) we also get that, for given ρφ00 ∈ R, 0 <
ρφ00 < 1

3 , there exist positive constants cφ00 , rφ00 , such that

|∂m
u ∂n

v φ00| ≤ cφ00

rm
φ00

m!ρn
φ00

n!
(m + 1)2(n + 1)2

, m ≥ 0 , 0 ≤ n ≤ 2m + 2 .

As φ(0, v) = 0 the inequalities (61), (62) are maintained if we change the constants
for bigger constants. We choose

cφ = max{c̃φ, cφ00} , (67)

cS0 = max

{
c̃S0 ,

64
3

C3c2
φ00

}
. (68)

Also we require the constants r, ρ to satisfy

r ≥ max{rφ, rS0 , rφ00} ,

ρ ≥ max{ρφ, ρS0 , ρφ00} , (69)

but we leave the choice of the precise value open. So we have

|∂m
u ∂n

v ∂0
wφ| ≤ cφ

rm−1m!ρnn!
(m + 1)2(n + 1)2

, m ≥ 0 , 0 ≤ n ≤ 2m,

|∂m
u ∂n

v ∂0
wS0| ≤ cS0

rmm!ρnn!
(m + 1)2(n + 1)2

, m ≥ 0 , 0 ≤ n ≤ 2m + 4 ,

|∂m
u ∂n

v ∂0
wφ00| ≤ cφ00

rmm!ρnn!
(m + 1)2(n + 1)2

, m ≥ 0 , 0 ≤ n ≤ 2m + 2 .

From the frame properties êa
AB |U0 = 0, Γ̂ABCD|U0 = 0 follows

|∂0
u∂n

v ∂p
wΓ̂ABCD| = 0 , |∂0

u∂n
v ∂p

wêa
AB | = 0 .

The conditions on the conformal factor, Ω|I = 0, ΩAB |I = 0, give

|∂0
u∂n

v ∂0
wΩ| = 0 , |∂0

u∂n
v ∂0

wΩAB | = 0 .

Using Lemma 4.1 we get the relations:

φA1|U0 =
1
2
∂1+A

v φ00|U0 , A = 0, 1 , (70)

Sk|U0 =
(4 − k)!

4!
∂k

v S0|U0 , k = 1, 2, 3, 4 , (71)
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which imply

|∂0
u∂n

v ∂0
wφA1| ≤

{
1
2cφ00

ρn+1+A(n+1+A)!
(n+2+A)2 , n ≤ 1 − A

0, n > 1 − A

}

= cφA1

ρnn!
(n + 1)2

Am=0,p=0
φA1

,

Am=0,p=0
φA1

=
1
2

cφ00

cφA1

ρ1+AhA,n ≤ 1
2

cφ00

cφA1

ρ1+A , (72)

hA,n =

{
(n+1+A)!

n!
(n+1)2

(n+2+A)2 , 0 ≤ n ≤ 1 − A

0, n > 1 − A

}

≤ 1 ,

and similarly

|∂0
u∂n

v ∂0
wSk| ≤ cSk

ρnn!
(n + 1)2

Am=0,p=0
Sk

,

Am=0,p=0
Sk

≤ cS0

cSk

ρk . (73)

Taking into account that R is a scalar and the initial condition R|i = −6 −
16

(
φ00φ11 − φ2

01

)
|i, we get

|∂0
u∂n

v ∂0
wR| ≤

{
6 + 73

36ρ2c2
φ00

, n = 0
0, n > 0

}

= cR
ρnn!

(n + 1)2
Am=0,p=0

R ,

Am=0,p=0
R ≤ 1

cR

(
6 +

73
36

ρ2c2
φ00

)
.

We have obtained so far the estimates for m = 0, p = 0 and general n. Now
we should consider the equations in G1 to get in an inductive form estimates
for the quantities in x1, that means, estimates for |∂m

u ∂n
v ∂0

wx1|, considering as
known estimates of this type for |∂l

u∂n
v ∂0

wx1| with 0 ≤ l < m. And once we have
this estimates we should do the same procedure with G2 to get estimates for
|∂m

u ∂n
v ∂0

wx3|. These estimates, i.e. estimates for p = 0, can be obtained from the
estimates for general p that appears later replacing C3 by C2 and p by 0. The
estimates for general p are also more restrictive, so we do not enumerate the
estimates for p = 0 here.

We continue with the induction procedure by considering that the estimates
are satisfied for |∂m

u ∂n
v ∂l

wX| for 0 ≤ l < p, and try to determine conditions for
performing the induction step.

We start by formally applying ∂m
u ∂n

v ∂p−1
w to the equation A11 = 0 and taking

the modulus at the origin. We get

|∂m
u ∂n

v ∂p
wφ| ≤ |∂m

u ∂n
v ∂p−1

w φ11| + |∂m
u ∂n

v ∂p−1
w (ê1

11∂uφ)| + |∂m
u ∂n

v ∂p−1
w (ê2

11∂vφ)| .
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To estimate the terms in the r.h.s. of this inequality we have, using the induction
hypothesis,

|∂m
u ∂n

v ∂p−1
w φ11| ≤ cφ11

rm+p−1(m + p − 1)!ρnn!
(m + 1)2(n + 1)2p2

,

|∂m
u ∂n

v ∂p−1
w (ê1

11∂uφ)|

≤
m∑

j=0

n∑

k=0

p−1∑

l=0

(
m

j

)(
n

k

)(
p−1

l

)
|∂j

u∂k
v ∂l

wê1
11||∂m−j+1

u ∂n−k
v ∂p−l−1

w φ|

≤
m∑

j=0

n∑

k=0

p−1∑

l=0

(
m
j

)(
p−1

l

)

(
m+p
j+l

)

× cê1 11cφrm+p−2(m + p)!ρnn!
(j + 1)2(k + 1)2(l + 1)2(m − j + 2)2(n − k + 1)2(p − l)2

≤ C3cê1 11cφ
rm+p−2(m + p)!ρnn!
(m + 2)2(n + 1)2p2

,

and similarly

|∂m
u ∂n

v ∂p−1
w (ê2

11∂vφ)| ≤ C3cê2 11cφ
rm+p−3(m + p − 1)!ρn(n + 1)!

(m + 1)2(n + 2)2p2
.

Using these inequalities and writing |∂m
u ∂n

v ∂p
wφ| in the form (65), we obtain

Ap≥1
φ =

1
cφ

[
(p + 1)2

p2(m + p)
cφ11 +

(p + 1)2(m + 1)2

p2(m + 2)2
C3

r
cê1 11cφ

(p + 1)2(n + 1)3

p2(m + p)(n + 2)2
C3

r2
ρcê2 11cφ

]
.

Taking into account the v-finite expansion types of the terms involved, we see that
Ap≥1

φ = 0 if n > 2m, and thus

Ap≥1
φ ≤ 4

cφ

(
cφ11 +

C3

r
cê1 11cφ + 2

C3

r2
ρcê2 11cφ

)
= 4

cφ11

cφ
+

9∑

i=1

(αp≥1
φ )i

ri
.

The procedure with the rest of the equations is similar to the one presented for
the equation A11 = 0, the only difference being that if an equation is singular with
u−1 terms we have first to multiply it by u, formally apply ∂m+1

u ∂n
v ∂p−1

w , and then
estimate the modulus. Therefore we shall not repeat the details that led from the
equations to the estimates, as we shall not state the v-finite expansion type at
each step. What we will state is which equation is used for deriving that particular
estimate.

Applying formally ∂m
u ∂n

v ∂p−1
w to the equation D11φ00 = D00φ11, which fol-

lows from A00 = 0 and A11 = 0, we obtain

Ap≥1
φ00

≤ 4
cφ11

cφ00

+
9∑

i=1

(αp≥1
φ00

)i

ri
.
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Multiplying H1(ABC)0 + H0(ABC)1 = 0 by u and formally applying ∂m+1
u ∂n

v ∂p−1
w

we get

Ap≥1
S0

≤ 4
cS0

[
cS2 +

16
3

C3(cφ00cφ11 + c2
φ01

)
]

+
9∑

i=1

(αp≥1
S0

)i

ri
.

In the same way as we used (70), (71) to obtain (72), (73) we get

Am=0,p≥1
φA1

≤ 1
2

cφ00

cφA1

ρ1+A ,

Am=0,p≥1
Sk

≤ cS0

cSk

ρk .

Restricting Σ11 = 0 and Σ11CD = 0 to U0 we find that on U0

Ω = 0 , Ω01 = 0 , Ω11 = 0 ,

∂wΩ00 = −1
3
R +

8
3(1 − φ2)

(φΩ00φ11 − 2φ00φ11 + 2φ2
01) .

Taking formal derivatives of these equations we get

Am=0
Ω = 0 , Am=0

Ω01
= 0 , Am=0

Ω11
= 0 ,

and

Am=0,p≥1
Ω00

≤ 4
3

1
cΩ00

[
cR + 32C2(cφ00cφ11 + c2

φ01
)
]
+

9∑

i=1

(αm=0,p≥1
Ω00

)i

ri
.

Restricting Π11 = 0 to U0 gives

∂wR = 3Ω00S4 +
8

1 − φ2

[
− 2φ11∂wφ00 + 4φ01∂wφ01 + (φΩ00 − 2φ00)∂wφ11

− 1
3
φRφ11

]
+

8
3(1 − φ2)2

φ11

[
(3 + 11φ2)Ω00φ11 − 28φ(φ00φ11 − φ2

01)
]
,

so that

Am=0,p≥1
R ≤ 64C2

cR
(cφ00cφ11 + c2

φ01
) +

9∑

i=1

(αm=0,p≥1
R )i

ri
.

We complete the calculation of the A’s by using the ∂u-equations. We have to
calculate the estimates in the order given by the hierarchy presented in Section 5.3
but for simplicity we present the estimates in the order the ∂u-equations were
stated in Section 5.2.
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tAB
EF

00e
a

EF = 0:

Am≥1
ê1 01

≤
9∑

i=1

(αm≥1
ê1 01

)i

ri
,

Am≥1
ê2 01

≤ 1
2

cΓ̂0100

cê2 01

+
9∑

i=1

(αm≥1
ê2 01

)i

ri
,

Am≥1
ê1 11

≤
9∑

i=1

(αm≥1
ê1 11

)i

ri
,

Am≥1
ê2 11

≤
cΓ̂1100

cê2 11

+
9∑

i=1

(αm≥1
ê2 11

)i

ri
.

RAB00EF = 0:

Am≥1

Γ̂0100
≤ 2

3
cS0

cΓ̂0100

+
9∑

i=1

(αm≥1

Γ̂0100
)i

ri
,

Am≥1

Γ̂0101
≤ cS1

cΓ̂0101

+
9∑

i=1

(αm≥1

Γ̂0101
)i

ri
,

Am≥1

Γ̂0111
≤ cS2

cΓ̂0111

+
cR

6cΓ̂0111

+
9∑

i=1

(αm≥1

Γ̂0111
)i

ri
,

Am≥1

Γ̂1100
≤ 2

cS1

cΓ̂1100

+
9∑

i=1

(αm≥1

Γ̂1100
)i

ri
,

Am≥1

Γ̂1101
≤ 4

cΓ̂1101

(
cS2 +

1
12

cR

)
+

9∑

i=1

(αm≥1

Γ̂1101
)i

ri
,

Am≥1

Γ̂1111
≤ 4cS3

cΓ̂1111

+
9∑

i=1

(αm≥1

Γ̂1111
)i

ri
.

Σ00 = 0:

Am≥1
Ω ≤

9∑

i=1

(αm≥1
Ω )i

ri
.

Φ00 = 0:

Am≥1
φ01

≤ cφ00

cφ01

ρ +
9∑

i=1

(αm≥1
φ01

)i

ri
.

Φ10 = 0:

Am≥1
φ11

≤ cφ01

cφ11

ρ +
9∑

i=1

(αm≥1
φ11

)i

ri
.
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Σ00CD = 0:

Am≥1
Ω00

≤
9∑

i=1

(αm≥1
Ω00

)i

ri
,

Am≥1
Ω01

≤
9∑

i=1

(αm≥1
Ω01

)i

ri
,

Am≥1
Ω11

≤ 4
3cΩ11

[
cR + 32C3(cφ00cφ11 + c2

φ01
)
]
+

9∑

i=1

(αm≥1
Ω11

)i

ri
.

Π00 = 0:

Am≥1
R ≤ 64C3

cR
(cφ00cφ11 + c2

φ01
) +

9∑

i=1

(αm≥1
R )i

ri
.

H0(ABC)k
= 0:

Am≥1
S1

≤ cS0

cS1

ρ +
9∑

i=1

(αm≥1
S1

)i

ri
,

Am≥1
S2

≤ 1
cS2

[
ρcS1 +

8
3
C3(cφ00cφ11 + c2

φ01
)
]

+
9∑

i=1

(αm≥1
S2

)i

ri
,

Am≥1
S3

≤ 1
cS3

{
ρcS2 +

8
3
C3

[
ρ(cφ00cφ11 + 2c2

φ01
) +

3
2
cφ01cφ11

]}
+

9∑

i=1

(αm≥1
S3

)i

ri
,

Am≥1
S4

≤ 1
cS4

[
ρcS3 + 4C3cφ11

(
2ρcφ01 +

8
3
cφ00 + cφ11

)]
+

9∑

i=1

(αm≥1
S4

)i

ri
.

We now have to show that all the constants can be chosen in a way that makes all
the A’s less or equal than 1. So, introducing a constant a, 0 < a < 1, the following
inequalities need to be satisfied:

1
2

cφ00

cφ01

ρ ≤ 1 , (74)

1
2

cφ00

cφ11

ρ2 ≤ 1 , (75)

cS0

cS1

ρ ≤ 1 ,
cS0

cS2

ρ2 ≤ 1 ,
cS0

cS3

ρ3 ≤ 1 ,
cS0

cS4

ρ4 ≤ 1 , (76)

1
cR

(
6 +

73
36

ρ2c2
φ00

)
≤ 1 , (77)

4
cφ11

cφ
≤ a , 4

cφ11

cφ00

≤ a ,
4

cS0

[
cS2 +

16
3

C3(cφ00cφ11 + c2
φ01

)
]
≤ a , (78)

4
3

1
cΩ00

[
cR + 32C2(cφ00cφ11 + c2

φ01
)
]
≤ a , (79)
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1
cR

64C2(cφ00cφ11 + c2
φ01

) ≤ a , (80)

1
2

cΓ̂0100

cê2 01

≤ a ,
cΓ̂1100

cê2 11

≤ a ,
2
3

cS0

cΓ̂0100

≤ a ,
cS1

cΓ̂0101

≤ a , (81)

1
cΓ̂0111

(
cS2 +

1
6
cR

)
≤ a , 2

cS1

cΓ̂1100

≤ a , (82)

4
cΓ̂1101

(
cS2 +

1
12

cR

)
≤ a , 4

cS3

cΓ̂1111

≤ a , (83)

cφ00

cφ01

ρ ≤ a , (84)

cφ01

cφ11

ρ ≤ a , (85)

4
3

1
cΩ11

[
cR + 32C3(cφ00cφ11 + c2

φ01
)
]
≤ a , (86)

1
cR

64C3(cφ00cφ11 + c2
φ01

) ≤ a , (87)

cS0

cS1

ρ ≤ a ,
1

cS2

[
cS1ρ +

8
3
C3(cφ00cφ11 + c2

φ01
)
]
≤ a , (88)

1
cS3

[
cS2ρ +

4
3
C3(2ρcφ00cφ11 + 4ρc2

φ01
+ 3cφ01cφ11)

]
≤ a , (89)

1
cS4

[
cS3ρ +

4
3
C3cφ11(8cφ00 + 6ρcφ01 + 3cφ11)

]
≤ a . (90)

Now we have to show that we can choose the constants such that these inequalities
will be satisfied.

We start by setting
cφ01 ≡ ρ

a
cφ00 ,

with which we satisfy (74) and (84). Next we set

cφ11 ≡ ρ2

a2
cφ00 ,

so that (75) and (85) are satisfied.
We continue by setting

cS1 ≡ ρ

a
cS0 , cS2 ≡ ρ2

a2

(
cS0 +

16
3

C3

a
c2
φ00

)
,

cS3 ≡ ρ3

a3

[
cS0 +

8
3

(
3 +

7
2a

)
C3c2

φ00

]
,

cS4 ≡ ρ4

a4

[
cS0 +

8
3

(
6 +

5
a

+ 4
a

ρ2

)
C3c2

φ00

]
.

With this we satisfy (76), (88), (89) and (90).
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Inequalities (77), (80) and (87) are satisfied with

cR ≡ max

{
128

ρ2

a3
C3c2

φ00
, 6 +

73
36

ρ2c2
φ00

}
.

With this definition for cR we set

cΩ00 ≡ 4
3a

(
cR + 64C2 ρ2

a2
c2
φ00

)
, cΩ11 ≡ 4

3a

(
cR + 64C3 ρ2

a2
c2
φ00

)
,

so (79) and (86) are respectively satisfied.
Using the previous definitions we set also

cΓ̂0100
≡ 2

3a
cS0 , cΓ̂0101

≡ 1
a
cS1 ,

cΓ̂0111
≡ 1

a

(
cS2 +

1
6
cR

)
, cΓ̂1100

≡ 2
a
cS1 ,

cΓ̂1101
≡ 4

a

(
cS2 +

1
12

cR

)
, cΓ̂1111

≡ 4
a
cS3 ,

cê2 01 ≡ 1
3a2

cS0 , cê2 11 ≡ 2
a2

cS1 ,

and (81), (82) and (83) are satisfied.
There are three inequalities that we have not yet considered, (78). These are

now reduced to

4ρ2 cφ00

cφ
≤ a3 ,

4ρ2 ≤ a3 ,

4ρ2

[
1 +

1
cS0

16
3

C3c2
φ00

(
2 +

1
a

)]
≤ a3 .

Taking into consideration now (67), (68), (69) we see that these inequalities can
be satisfied if we define

ρ ≡ max{ρφ, ρS0 , ρφ00} <
1
3

,

a ≡ max

{
1
2
, (8ρ2)

1
3

}
< 1 .

Now we choose some positive constants cΩ, cΩ01 , cê1 01 , cê1 11 , that are not restricted
by the procedure.

Finally we choose r so large that

r > max
{

rφ, rS0 , rφ00 , C
3
[
cΩ + (c2

Ω + 2c2
φ)

1
2

]}

and that all the A’s are less or equal than 1. The induction proof is completed. �

The following lemma states the convergence result. The proof follows as the
one given in [8].
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Lemma 6.7. The estimates (63) for the derivatives of the functions f and the
expansion types given in Lemma 5.2 imply that the associated Taylor series are
absolutely convergent in the domain |v| < 1

αρ , |u| + |w| < α2

r , for any real number
α, 0 < α ≤ 1. It follows that the formal expansion determined in Lemma 5.1
defines indeed a (unique) holomorphic solution to the conformal static vacuum
field equations which induces the data φ, S0 on W0.

7. The complete set of equations on N̂

We have seen in Section 5 how to calculate a formal expansion for our fields using a
subset of the conformal stationary vacuum field equations. In the previous section
we have shown that these formal expansions are convergent in a neighborhood of
infinity. In this section we shall show that these fields satisfy the complete system
of conformal stationary vacuum field equations. First, we prove that the conformal
stationary vacuum field equations are satisfied in the limit as u → 0. Second, we
derive a subsidiary system of equations, for which the first result provides the initial
conditions, and which allows us to prove that the complete system is satisfied.

Lemma 7.1. The functions êa
AB, Γ̂ABCD, φ, φAB, Ω, ΩAB, R, Sk, whose ex-

pansion coefficients are determined by Lemma 5.1, with expansions that converge
on an open neighborhood of the point 0, neighborhood that we assume to coin-
cide with N̂ , satisfy the complete set of conformal field equations on the set U0 in
the sense that the fields tAB

CD
EF , RABCDEF , AAB, ΣAB, ΦAB, ΠAB, ΣABCD,

HABCD calculated from these functions on N̂\U0 have vanishing limit as u → 0.

Proof. Taking into account which equations have already been used to determine
the formal expansions, and the symmetries of the equations, it is left to show
that t01

EF
11, RAB0111, A01,Σ01,Π01,Σ01CD,H1(BCD)k=1,2,3 , have vanishing limit

on N̂\U0 as u → 0, and that in the same limit ΦAB = −ΦBA.
Because 〈σAB , eEF 〉 = hAB

EF then

t01
EF

11 = 2Γ01
(E

1ε1
F ) − 2Γ11

(E
(0ε1)

F ) − σEF
a

(
ea

11,be
b

01 − ea
01,be

b
11

)
,

and using the way in which the coordinates and the frame field were constructed,
we see that

t01
EF

11 = O(u) , as u → 0 .

We now consider

RAB0111 = −1
2

(
SAB11 −

1
6
RεA1εB1

)
+

1
2u

∂vΓ̂11AB − 1
u

Γ̂111(AεB)
0

+ εA
0εB

0

(
− 1

2u2
ê1

11 +
1
u

Γ̂0111 −
1
u

t01
01

11

)
+ O(u) .
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Using that

t01
01

11 = Γ̂0111 −
1
2
∂v ê2

11 −
1
2u

ê1
11 + O(u2)

we get

RAB0111 =
1
2u

[
∂vΓ̂11AB − 2Γ̂111(AεB)

0 + εA
0εB

0

(
− 2

u
ê1

11 − ∂v ê2
11 + 4Γ̂0111

)]

− 1
2

(
SAB11 −

1
6
RεA1εB1

)
+ O(u) ,

so that

lim
u→0

RAB0111 =
1
2

[
∂u∂vΓ̂11AB − 2∂uΓ̂111(AεB)

0

+ εA
0εB

0(−∂2
uê1

11 − ∂u∂v ê
2

11 + 4∂uΓ̂0111)

− SAB11 +
1
6
RεA1εB1

]∣
∣
∣
∣
u=0

.

For the case A = B = 0 we get from the ∂u-equations that

∂2
uê1

11 = −2∂uΓ̂1101 , ∂u∂v ê2
11 = ∂u∂vΓ̂1100 , ∂uΓ̂0111 =

1
4

(
S2 −

1
6
R

)
,

on U0, and so limu→0 R000111 = 0.
Using the ∂u-equations and that ∂vS2 = 2S3 on U0,

∂uΓ̂1111 = S3 , ∂u∂vΓ̂1101 = 2S3 ,

on U0, and so limu→0 R010111 = 0. As ∂vS3 = S4 on U0, limu→0 R110111 = 0.
We take now the limit of A01 as u goes to 0,

lim
u→0

A01 =
[
1
2
∂u∂vφ − φ01

]∣
∣
∣
∣
u=0

.

Using that φ01 = 1
2∂vφ00 on U0 and that we have A00 = 0 as part of the ∂u-

equations we get limu→0 A01 = 0. With the same procedure we get limu→0 Σ01 = 0.
Now we consider ΦAB . As AAB = 0 on U0 then

DP
BφAP |U0 = −DP

AφBP |U0 ,

so ΦAB |U0 = −ΦBA|U0 and as we already have Φ10 = 0 then ΦAB = 0 on U0.
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We now take the limit as u goes to 0 of the combination Π01 − 1
2∂vΠ00. For

the limits of the derivatives involved we have at {u = 0}
D00φAB = ∂uφAB ,

D01φ01 =
1
2

(∂u∂vφ01 − ∂uφ11) ,

D01φ11 =
1
2
∂u∂vφ11 ,

D11φ11 = ∂wφ11 ,

D00R = ∂uR ,

D01R =
1
2
∂u∂vR ,

D11R = ∂wR .

We also use that on U0

∂vφk = (2 − k)φk+1 ,

∂vSk = (4 − k)Sk+1 ,

We have already used the equations Σ11 = 0,Σ11CD = 0 restricted to U0, finding
that Ω,ΩA1 are zero on U0.

Furthermore we use Φ00 = 0, that says that on U0

∂u∂vφ00 = 4∂uφ01 .

So we get for the limit

lim
u→0

(
Π01 −

1
2
∂vΠ00

)
= 0 .

Considering that from the ∂u-equations we already have Π00 = 0 we get

lim
u→0

Π01 = 0 .

We apply a similar procedure to the Σ01AB equations. We take the limit as u goes
to zero of the combinations

Σ0100 − Σ0001 ,

2Σ0101 − ∂vΣ0001 + Σ0011 ,

2Σ0111 − ∂vΣ0011 .

Using what has already been said together with the following limits at {u = 0}
D00ΩAB = ∂uΩAB ,

D01Ω01 =
1
2

(∂u∂vΩ01 − ∂uΩ11) ,

D01Ω11 =
1
2
∂u∂vΩ11 ,

D11Ω11 = ∂wΩ11 ,
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we see that the limits vanishes, which imply

lim
u→0

Σ01AB = 0 .

Finally we consider the limit as u goes to zero of the combinations

4H1(ABC)1 − ∂vH1(ABC)0 − ∂vH0(ABC)1 + 2H0(ABC)2 ,

12H1(ABC)2 − ∂2
vH1(ABC)0 − ∂2

vH0(ABC)1 − 2∂vH0(ABC)2 + 4H0(ABC)3 ,

24H1(ABC)3 − ∂3
vH1(ABC)0 − ∂3

vH0(ABC)1 − 2∂2
vH0(ABC)2 − 8∂vH0(ABC)3 ,

and using what has been said together with:
the limits

D00Sk = ∂uSk ,

D01Sk =
1
2
[
∂u∂vSk − (4 − k)∂uSk+1

]
,

D11Sk = ∂wSk ,

the equality on U0

∂vSk = (4 − k)Sk+1 ,

and the equations

D00φA1 = DA1φ00 ,

we find that those limits are all zero, and considering the equations that we have
used to calculate the unknowns we get

lim
u→0

H1(ABC)k
= 0 , k = 1, 2, 3 .

This completes the proof that the complete system of conformal field equations
are satisfied in the limit as u → 0. �

Lemma 7.2. The functions êa
AB, Γ̂ABCD, φ, φAB, Ω, ΩAB, R, Sk, corresponding

to the expansions determined in Lemma 5.1 satisfy the complete set of conformal
vacuum field equations on the set N̂ .

Proof. We have to show that on N̂ the quantities t01
EF

11, RAB0111, A01, ΣA1,
ΠA1 , ΣA1CD, H1(BCD)k=1,2,3 vanish, and that ΦAB = −ΦBA. For this we derive a
system of subsidiary equations for these fields. The values of the fields at U0, given
by Lemma 7.1, are the initial conditions for the subsidiary system of equations,
and they are used throughout the proof.

Using the definitions of AAB and ΦAB :

DABACD − DCDAAB = −tAB
EF

CDDEF φ + εADΦBC + εBCΦDA ,

and in particular (
∂u +

1
u

)
A01 = 2Γ̂0100A01 ,

which implies A01 = 0, and from that AAB = 0. This also shows that ΦAB =
−ΦAB , and as we already know that Φ10 = 0 then ΦAB = 0.
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Following the proof of Lemma 5.5 in [8] we find that
(

∂u +
1
u

)
t01

AB
11 = 2Γ̂0100t01

AB
11 + 2R(A

00111ε0
B) , (91)

which directly shows that t01
11

11 = 0.
Also following the proof of Lemma 5.5 in [8] and taking into account that

SABCD and R satisfy the contracted Bianchi identity then
(

∂u +
1
u

)
RAB0111 = 2Γ̂0100RAB0111 −

1
2

(
H1AB0 −

1
6
ΠAB

)
, (92)

from which R000111 = 0, which also gives t01
01

11 = 0.
It is still left to show that

t01
00

11 , RA10111 , ΣA1 , ΠA1 , ΣA1CD , H1(BCD)k=1,2,3 (93)

vanish on N̂ .
Using the definitions of ΣAB and ΣABCD,

DABΣCD − DCDΣAB = −tAB
EF

CDDEF Ω − ΣABCD + ΣCDAB ,

and from that

∂uΣA1 +
1
u

Σ01εA
0 = 2Γ̂A100Σ01 + ΣA100 . (94)

At this point the expressions became to long to be treated by hand, so we resort
to a computer program for tensor manipulations.

For ΣABCD we obtain

DEF ΣCDAB − DCDΣEFAB = tCD
PQ

EF DPQΩAB − 2ΩP
(ARB)PCDEF

+ Ω(εDEHFABC + εCF HDABE) + SABCDΣEF − SABEF ΣCD

+
R

3
(hABCDΣEF − hABEF ΣCD) +

1
3

(1 + Ω) (hABCDΠEF − hABEF ΠCD)

+
1

6 (1 + Ω − φ2)

{
3
[
1 − (1 − Ω)φ2

][
ΩEF ΣCDAB − ΩCDΣEFAB

+ ΩAB(ΣCDEF − ΣEFCD)
]

− 6Ω2φ
[
φEF ΣCDAB − φCDΣEFAB + φAB(ΣCDEF − ΣEFCD)

]

+ 4 (2 + 3Ω) φ2
(
hABCDΣEFPQΩPQ − hABEF ΣCDPQΩPQ

)

− 8 (1 + Ω) (2 + 3Ω) φ
(
hABCDΣEFPQφPQ − hABEF ΣCDPQφPQ

) }

+
1

(1 + Ω − φ2)2

{
1
2

(
1 − φ2

)2
ΩAB (ΩCDΣEF − ΩEF ΣCD)

+ Ωφ
(
2 + Ω − 2φ2

) [
φAB(ΩCDΣEF − ΩEF ΣCD)

+ ΩAB(φCDΣEF − φEF ΣCD)
]

− 2Ω
[
2(1 + Ω)2 − (2 + 3Ω)φ2

]
φAB (φCDΣEF − φEF ΣCD)
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− 1
3

[
φ2(−1 + 3φ2)ΩPQΩPQ + 4φ

[
3(1 + Ω)2 − (5 + 6Ω)φ2

]
ΩPQφPQ

− 4(1 + Ω)
[
(1 + Ω)(5 + 6Ω) − (7 + 9Ω)φ2

]
φPQφPQ

]

(hABCDΣEF − hABEF ΣCD)
}

,

which implies

∂uΣC1AB +
1
u

εC
0Σ01AB = 2Γ̂C100Σ01AB − Ωε0CH10AB − S00ABΣ1C (95)

− R

3
h00ABΣ1C − 1

3
(1 + Ω) h00ABΠ1C

+
1

6 (1 + Ω − φ2)

{
3
[
1 − (1 − Ω)φ2

]
(Ω00Σ1CAB + ΩABΣ1C00)

− 6Ω2φ (φ00Σ1CAB + φABΣ1C00)

− 4 (2 + 3Ω) φ2h00ABΣC1PQΩPQ + 8 (1 + Ω) (2 + 3Ω) φh00ABΣC1PQφPQ
}

+
1

(1 + Ω − φ2)2

{
− 1

2
(
1 − φ2

)2
ΩABΩ00Σ1C

− Ωφ
(
2 + Ω − 2φ2

)
(φABΩ00 + ΩABφ00) Σ1C

+ 2Ω
[
2 (1 + Ω)2 − (2 + 3Ω) φ2

]
φABφ00Σ1C

+
1
3

[
φ2

(
−1 + 3φ2

)
ΩPQΩPQ + 4φ

[
3 (1 + Ω)2 − (5 + 6Ω) φ2

]
ΩPQφPQ

− 4 (1 + Ω)
[
(1 + Ω) (5 + 6Ω) − (7 + 9Ω) φ2

]
φPQφPQ

]
h00ABΣ1C

}
.

Now with ΠAB

DCDΠAB − DABΠCD = tAB
EF

CDDEF R

+
1

1 + Ω − φ2

{
− 2 (4 + 7Ω)

[
φΩGH − 2(1 + Ω)φGH

]
DEF φGHtAB

EF
CD

− 4 (4 + 7Ω)
[
φΩGH − 2(1 + Ω)φGH

]
φGERE

HABCD

−
[
(3 − 3φ2 + 7Ωφ2)ΩEF − 2Ωφ(4 + 7Ω)φEF

]
(εBCHDAEF + εADHBCEF )

+
1
3
φ (4 + 7Ω)

[
φ (ΩCDΠAB − ΩABΠCD) − 2(1 + Ω) (φCDΠAB − φABΠCD)

]

+
1
3
φ2 (4 + 7Ω) R (ΣABCD − ΣCDAB) + 2 (4 + 7Ω) φ

(
DCDφEF ΣABEF − DABφEF ΣCDEF

)

+
(
3 − 3φ2 + 7Ωφ2

) (
SCD

EF ΣABEF − SAB
EF ΣCDEF

)
}
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+
1

(1 + Ω − φ2)2

{
1
6
φ2

(
−12 + 40φ2 + 21Ωφ2

)
ΩEF ΩEF (ΣABCD − ΣCDAB)

− 2
3
φ
[
− 18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2

]
ΩEF φEF (ΣABCD − ΣCDAB)

+
2
3
(1 + Ω)

[
− 24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2

]
φEF φEF

(ΣABCD − ΣCDAB)

+
1
3
φ2

(
−12 + 40φ2 + 21Ωφ2

)
ΩEF (ΩCDΣABEF − ΩABΣCDEF )

− 2
3
φ
[
− 18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2

]
φEF (ΩCDΣABEF − ΩABΣCDEF )

− 2
3
φ
[
12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2

]
ΩEF (φCDΣABEF − φABΣCDEF )

+
4
3
(1 + Ω)

[
6(1 + Ω) + (22 + 61Ω + 21Ω2)φ2

]
φEF

(φCDΣABEF − φABΣCDEF )

+
1
3
φ2

(
−3 + 7φ2

)
R (ΩABΣCD − ΩCDΣAB)

− 2
3
φ
[
− 7(1 + Ω)2 + (11 + 14Ω)φ2

]
R (φABΣCD − φCDΣAB)

+ 2φ
(
−3 + 7φ2

)
ΩEF (DABφEF ΣCD − DCDφEF ΣAB)

− 4
[
− 7(1 + Ω)2 + (11 + 14Ω)φ2

]
φEF (DABφEF ΣCD − DCDφEF ΣAB)

+
(
−1 + φ2

) (
−3 + 7φ2

)
ΩEF (SEFABΣCD − SEFCDΣAB)

− 2φ
[
− 4 − 14Ω − 7Ω2 + 2(2 + 7Ω)φ2

]
φEF (SEFABΣCD − SEFCDΣAB)

}

+
1

3 (1 + Ω − φ2)3

{
1
2
φ2

[
− 24 + (59 + 21Ω)φ2 + 21φ4

]
ΩEF ΩEF

(ΩABΣCD − ΩCDΣAB)

− 2φ
[
− 18(1 + Ω) + (13 + 19Ω)φ2 + (61 + 42Ω)φ4

]
ΩEF φEF

(ΩABΣCD − ΩCDΣAB)

+ 2φ2
[
− 3(1 + Ω)(19 + 14Ω + 7Ω2) + (113 + 164Ω + 63Ω2)φ2

]
φEF φEF

(ΩABΣCD − ΩCDΣAB)

− φ
[
12(1 + Ω) + (−17 + 19Ω)φ2 + (61 + 42Ω)φ4

]
ΩEF ΩEF

(φABΣCD − φCDΣAB)

+ 4φ2
[
− 3(1 + Ω)(9 + 14Ω + 7Ω2) + (83 + 164Ω + 63Ω2)φ2

]
ΩEF φEF

(φABΣCD − φCDΣAB)
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+ 4φ(1 + Ω)
[
(1 + Ω)2(61 + 42Ω) − 3(39 + 75Ω + 28Ω2)φ2

]
φEF φEF

(φABΣCD − φCDΣAB)
}

,

and we get

∂uΠA1 +
1
u

εA
0Π01 = 2Γ̂A101 (96)

+
1

1 + Ω − φ2

{
[
(3 − 3φ2 + 7Ωφ2)ΩEF − 2Ωφ (4 + 7Ω) φEF

]
ε0AH10EF

+
1
3
φ (4 + 7Ω)

[
φΩ00 − 2(1 + Ω)φ00

]
ΠA1 +

1
3
φ2 (4 + 7Ω) RΣA100

+ 2 (4 + 7Ω) φ∂uφEF ΣA1EF + (3 − 3φ2 + 7Ωφ2)S00
EF ΣA1EF

}

+
1

(1 + Ω − φ2)2

{
1
6
φ2(−12 + 40φ2 + 21Ωφ2)ΩEF ΩEF ΣA100

− 2
3
φ
[
− 18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2

]
ΩEF φEF ΣA100

+
2
3
(1 + Ω)

[
− 24(1 + Ω) + (52 + 61Ω + 21Ω2)φ2

]
φEF φEF ΣA100

+
1
3
φ2(−12 + 40φ2 + 21Ωφ2)ΩEF Ω00ΣA1EF

− 2
3
φ
[
− 18(1 + Ω) + (46 + 61Ω + 21Ω2)φ2

]
φEF Ω00ΣA1EF

− 2
3
φ
[
12(1 + Ω) + (16 + 61Ω + 21Ω2)φ2

]
ΩEF φ00ΣA1EF

+
4
3
(1 + Ω)

[
6(1 + Ω) + (22 + 61Ω + 21Ω2)φ2

]
φEF φ00ΣA1EF

− 1
3
φ2(−3 + 7φ2)RΩ00ΣA1 +

2
3
φ
[
− 7(1 + Ω)2 + (11 + 14Ω)φ2

]
Rφ00ΣA1

− 2φ(−3 + 7φ2)ΩEF ∂uφEF ΣA1

+ 4
[
− 7(1 + Ω)2 + (11 + 14Ω)φ2

]
φEF ∂uφEF ΣA1

−
(
−1 + φ2

)
(−3 + 7φ2)ΩEF SEF00ΣA1

+ 2φ
[
− 4 − 14Ω − 7Ω2 + 2(2 + 7Ω)φ2

]
φEF SEF00ΣA1

}

− 1
3(1 + Ω − φ2)3

{
1
2
φ2

[
− 24 + (59 + 21Ω)φ2 + 21φ4

]
ΩEF ΩEF Ω00ΣA1

− 2φ
[
− 18(1 + Ω) + (13 + 19Ω)φ2 + (61 + 42Ω)φ4

]
ΩEF φEF Ω00ΣA1

+ 2φ2
[
− 3(1 + Ω)(19 + 14Ω + 7Ω2) + (113 + 164Ω + 63Ω2)φ2

]

φEF φEF Ω00ΣA1
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− φ
[
12(1 + Ω) + (−17 + 19Ω)φ2 + (61 + 42Ω)φ4

]
ΩEF ΩEF φ00ΣA1

+ 4φ2
[
− 3(1 + Ω)(9 + 14Ω + 7Ω2) + (83 + 164Ω + 63Ω2)φ2

]

ΩEF φEF φ00ΣA1

+ 4φ(1 + Ω)
[
(1 + Ω)2(61 + 42Ω) − 3(39 + 75Ω + 28Ω2)φ2

]

φEF φEF φ00ΣA1

}
.

Finally, with HABCD,

DEF HEFCD = −1
2
tEFHI

E
GDHISCDFG − 2SE(FGCRE

D)
HF

H
G (97)

+
1

1 + Ω − φ2

{
[
φΩEF − 2(1 + Ω)φEF

]
[
− 1

3
(1 + Ω)DGHφEF tI C

GH
DI

− ΩDGHφFItE
IGH

CD − 2
3
(1 + Ω)φFGRG

E
H

CDH + ΩφFGRGH
EHCD

− ΩφGHRGFEHCD

]
+

1
3
φΩ

[
φΩEF − 2(1 + Ω)φEF

]
H(CD)EF

+
1
2
[
(1 − φ2 + Ωφ2)ΩEF − 2Ω2φφEF

]
HEFCD

+
1
18

(−2 + Ω)φ
[
φΩE

(CΠD)E − 2(1 + Ω)φE
(CΠD)E

]

+
1
18

(−2 + Ω)φ2RΣE(CD)
E + ΩφDCDφEF ΣGEF

G

− 2
3
(1 + Ω)φDE

(CφFGΣD)EFG +
1
2
(1 − φ2 + Ωφ2)SCD

EF ΣGEF
G

− 1
3
Ωφ2SEFG

(CΣD)EFG − 2
[
φΩCD − 2(1 + Ω)φCD

]
φEF ΣGEF

G

− 4φΩEF φCDΣGEF
G + 2φΩEF φF

GΣEGCD

}

+
1

(1 + Ω − φ2)2

{
1
18

φ2(3 − 10φ2 + 6Ωφ2)ΩEF

(
ΩEF ΣG(CD)

G + 2ΩG
(CΣD)GEF

)

+
2
9
φ3(7 + 4Ω − 6Ω2)φEF

(
ΩEF ΣG(CD)

G + ΩG
(CΣD)GEF

)

− 2
9
φ
[
6(1 + Ω) − (13 + 4Ω − 6Ω2)φ2

]
ΩEF φG

(CΣD)GEF

− 2
9
(1 + Ω)

[
3(1 + Ω) + 2(2 + 2Ω − 3Ω2)φ2

]
φEF φEF ΣG(CD)

G

+
4
9
(1 + Ω)2(3 − 10φ2 + 6Ωφ2)φEF φG

(CΣD)GEF

− 1
18

φ2(−3 + φ2)RΩE
(CΣD)E − 1

9
φ
[
(1 + Ω)2 + (1 − 2Ω)φ2

]
RφE

(CΣD)E
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+
2
3
φ3ΩEF DG

(CφEF ΣD)G − φ(1 − φ2)ΩEF DCDφF
GΣEG

+
4
3
(1 + Ω)(1 + Ω − 2φ2)φEF DG

(CφEF ΣD)G + 2
[
(1 + Ω)2 − (1 + 2Ω)φ2

]

φEF DCDφF
GΣEG − 1

3
(1 − φ2)φ2ΩEF SG

EF (CΣD)G

+
1
2
(1 − φ2)2ΩEF SG

FCDΣEG

− 2
3
φ
[
− (1 + Ω)2 + (1 + 2Ω)φ2

]
φEF SG

EF (CΣD)G

+ Ωφ(2 + Ω − 2φ2)φEF SG
FCDΣEG + 2φ (ΩCD − 2φφCD) ΩE

F φEGΣFG

}

+
1

9(1 + Ω − φ2)3

{
− φ2

(
3 − 13φ3 + 3Ωφ2 + 3φ4

)
ΩEF ΩEF ΩG

(CΣD)G

− 4φ3(5 + 8Ω + 2φ2 − 6Ωφ2)ΩEF φEF ΩG
(CΣD)G

+ 4φ2
[
3(1 + Ω)3 + (4 − 2Ω − 9Ω2)φ2

]
φEF φEF ΩG

(CΣD)G

+ 2φ
[
(1 + Ω)(3 − 8φ2) − 2(1 − 3Ω)φ4

]
ΩEF ΩEF φG

(CΣD)G

+ 8(1 + Ω)φ2
[
3Ω(2 + Ω) + (7 − 9Ω)φ2

]
ΩEF φEF φG

(CΣD)G

− 8(1 + Ω)φ
[
2(1 + Ω)2(−1 + 3Ω) + 3(3 − 4Ω2)φ2

]
φEF φEF φG

(CΣD)G

}
,

where the l.h.s. is

DEF HEFCD = ∂uH11CD +
1
u

(
H11CD + H110(CεD)

0
)

−
(

1
2u

∂v + êa
01∂a

)
H10CD − 2Γ̂0100H11CD − Γ̂010CH110D

− Γ̂010DH110C + Γ̂011CH100D + Γ̂011DH100C + Γ̂1100H10CD .

Equations (91), (92), (94), (95), (96), (97) are the system of subsidiary equations
for the quantities (93). The expressions on the right hand sides of these equations
are homogeneous functions of the quantities (93). Together with Lemma 7.1 this
implies that all the expansion coefficients of the quantities (93) vanish on U0.
As the functions (93) are necessarily holomorphic, this implies that they vanish
on N̂ . �

8. Analyticity at space-like infinity

Our gauge is singular and thus the holomorphic solution of Lemma 6.7 does not
cover a full neighborhood of the point i. To show that we can indeed get a holo-
morphic solution in a hole neighborhood of i we go to a normal frame field based
on the frame cAB at i and the corresponding normal coordinates xa. The argument
follows with some modifications the line of the corresponding argument in [8].
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The geodesic equation for za(s) = (u(s), v(s), w(s)), Dż ż = 0, can be written
in the form

ża = mABea
AB ,

ṁAB = −2mCDΓCD
(A

BmB)E .

The initial conditions for the geodesics to start at i are

u|s=0 = 0 , w|s=0 = 0 ,

and we have to prescribe
v0 = v|s=0 ,

in order to determine the ∂u-∂w-plane where the tangent vector is.
The components of the tangent vector to the geodesic at i are given by

mAB |s=0 = mAB
0 , and by regularity and the geodesic equations we have

m00
0 = u̇|s=0 ≡ u̇0 , m01

0 = 0 , m11
0 = ẇ|s=0 ≡ ẇ0 .

We can identify the frame eAB with its projection into TiNc, then mAB
0 eAB =

m∗ABcAB = xaca, where as defined cAB = αa
ABca, and we get

x1 =
1√
2

(
ẇ0 + (v2

0 − 1)u̇0

)
, x2 =

i√
2

(
ẇ0 + (v2

0 + 1)u̇0

)
, x3 =

√
2v0u̇0 ,

or, inverting the relations

u̇0(xa) = −x1 + ix2

√
2

, v0(xa) = − x3

x1 + ix2
, ẇ0 =

δabx
axb

√
2(x1 + ix2)

.

Here we see that in order to have a well defined vector we need x1 + ix2 �= 0, or,
what is the same, u̇0 �= 0. This correspond to the singular generator of Ni in the
cAB-gauge. The vectors xaca cover all directions at i except those tangent to the
complex null hyperplane (c1 + ic2)⊥ = {a(c1 + ic2) + bc3|a, b ∈ C}.

As we have used a frame formalism, we need also to determine the normal
frame centered at i and based on the frame cAB at i. As we already have the
frame fields eAB , we write the equation for the normal frame cAB , DẋcAB = 0 as
an equation for the transformation tA B ∈ SL(2, C) that relates the frames eAB

and cAB , cAB = tC AtD BeCD. The equation can be written as

ṫA B = −mDEΓDE
A

CtC B , (98)

and the initial condition comes from having to take eAB |i(v) to cAB |i,
tA B |s=0 = sA

B(−v0) . (99)

Following the proofs of Lemma 7.1, Lemma 7.2 and Lemma 7.3 in [8] we arrive at
the following two lemmas.

Lemma 8.1. For any given initial data u̇0, v0, ẇ0, with u̇0 �= 0, there exist a number
t = t(u̇0, v0, ẇ0) and unique holomorphic solutions za(s) = za(s, u̇0, v0, ẇ0) of the
initial value problem for the geodesic equations with initial conditions as described
above which is defined for |s| < 1/t. The functions za(s, u̇0, v0, ẇ0) are in fact
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holomorphic functions of all four variables (s, u̇0, v0, ẇ0) in a certain P1/t(0)×U ,
where U is a compactly embedded subset of (C\{0}) × C × C.

Lemma 8.2. Along the geodesic corresponding to s → za(s, u̇0, v0, ẇ0) equations
(98) have a unique holomorphic solution tA B(s) = tA B(s, u̇0, v0, ẇ0) satisfying the
initial conditions (99). The functions tA B(s) = tA B(s, u̇0, v0, ẇ0) are holomorphic
in all four variables in the domain where the za(s, u̇0, v0, ẇ0) are holomorphic.

Following the discussion in [8] it can be seen that, as |x| ≡
√

δabx̄axb → 0,
x1 + ix2 �= 0,

u(xc) = −x1 + ix2

√
2

+ O(|x|3) ,

v(xc) = − x3

x1 + ix2
+ O(|x|2) ,

w(xc) =
δabx

axb

√
2(x1 + ix2)

+ O(|x|3) .

This gives for the forms χAB = χAB
cdxc dual to the normal frame cAB

χAB(xc) =
(
αAB

a + χ̂AB
a

)
dxa ,

with holomorphic functions χ̂AB
a(xc) which satisfy χ̂AB

a = O(|x|2) as |x| →
0. Also the coefficients ca

AB = 〈dxa, cAB〉 of the normal frame in the normal
coordinates satisfy

ca
AB(xc) = αa

AB + ĉa
AB ,

with holomorphic functions ĉa
AB(xc) which satisfy ĉa

AB = O(|x|2) as |x| → 0.
The three 1-forms αa

ABdxa are linearly independent and thus for small |xc|
the coordinate transformation xa → za(xc), where defined, is nondegenerate. This
means that all the tensor fields entering the conformal stationary vacuum field
equations can be expressed in terms of the normal coordinates xc and the normal
frame field cAB .

Now we can derive our main result.

Proof of Theorem 1.1. The coordinates xa cover a domain U in C
3 on which the

frame vector fields cAB = ca
AB∂/∂xa exist, are linearly independent and holomor-

phic. Also in U the other tensor fields expressed in terms of the xa and cAB are
holomorphic. However U does not contain the hypersurface x1 + ix2 = 0 but the
boundary of U becomes tangent to this hypersurface at xa = 0.

We want to see that the solution indeed cover a domain containing an open
neighborhood of the origin.

We still have the gauge freedom to perform with some tA B ∈ SU(2) a rota-
tion δ∗ → δ∗ · t of the spin frame. Whit this rotation is associated the rotation

cAB → ct
AB = tC AtD BcCD

of the frame cAB at i. The construction of the submanifold N̂ was done based on the
frame cAB , starting now with ct

AB all the previous constructions and derivations
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can be repeated as far as the estimates for the null data in the cAB-gauge can be
translated to the same type of estimates for the null data in the ct

AB-gauge.
We will denote u′, v′, w′ and et

AB the analogues in the new gauge of the
coordinates u, v, w and the frame eAB . The set Ni is invariant under this rotation.
The sets {w = 0} and {w′ = 0} are both lifts of the set Ni to the bundle of spin
frames. The coordinates u and u′ are both affine parameters on the null generators
of Ni, which vanish at i. The coordinates v, v′ both label the null generators of Ni.
The frame vectors e00 and et

00 are auto-parallel vector fields tangent to the null
generators.

If v and v′ label the same generator η of Ni, then et
00(v

′) = f2e00(v) at i,
with some f �= 0. Furthermore, as e00 and et

00 are auto-parallel, then et
00 = f2e00

must hold along η, with f constant along the geodesic. This means that at i

sC
0(v′)sD

0(v′)tE CtF DcEF = f2sC
0(v)sD

0(v)cCD ,

and absorbing the undetermined sign in f ,

tE CsC
0(v′) = fsE

0(v) . (100)

We can write tA B ∈ SU(2) as

(tA B) =
(

a −c̄
c ā

)
, a, c ∈ C , |a|2 + |c|2 = 1 . (101)

This gives with (100)

v′ =
−c + av

ā + c̄v
, f =

1
ā + c̄v

, resp. v =
c + āv′

a − c̄v′ , f = a − c̄v′ . (102)

As 〈du, e00〉 = 1 = 〈du′, et
00〉 we have for the affine parameter along η

u = f2u′ . (103)

With (102), (103) holds η(u′, v′) = η(u, v).
If c �= 0 then v → ∞ as v′ → a/c̄. So the null generator in the cAB-gauge,

where we need information, is contained, excepting the origin, in the regular do-
main of the ct

AB-gauge.
Let us consider now the abstract null data given in the cAB-gauge D̂φ

n, D̂S
n

satisfying estimates of the form (38), (39). In the ct
AB-gauge we have D̂φt

n , D̂St
n ,

with terms given by

ψt
AmBm...A1B1

= tGm
Am

tHm
Bm

. . . tG1
A1t

H1
B1ψGmHm...G1H1 ,

Ψt
AmBm...A1B1CDEF

= tGm
Am

tHm
Bm

. . . tG1
A1t

H1
B1t

I
CtJDtKEtKLΨGmHm...G1H1IJKL.
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Using the essential components of ψ and ψt

ψt
(AmBm...A1B1)n

=
2m∑

j=0

(
2m

j

)
t(Gm

(Am
tHm

Bm
. . . tG1

A1t
H1)j

B1)n
ψ(GmHm...G1H1)j

=
(

2m

n

)− 1
2 2m∑

j=0

(
2m

j

) 1
2

T2m
j

n(t)ψ(GmHm...G1H1)j
.

The numbers

T2m
j

n(t) =
(

2m

n

) 1
2
(

2m

j

) 1
2

t(Gm
(Am

tHm
Bm

. . . tG1
A1t

H1)j
B1)n

satisfy

|T2m
j

n(t)| ≤ 1 , m = 0, 1, 2, . . . , 0 ≤ j ≤ 2m, 0 ≤ n ≤ 2m,

as they represent the matrix elements of a unitary representation of SU(2). So we
get

|ψt
AmBm...A1B1

| ≤ m!M
r′m

, m = 1, 2, 3, . . . ,

where r′ = r/4.
In the same way we get

|Ψt
AmBm...A1B1CDEF | ≤

m!M ′

r′m
, m = 0, 1, 2, 3, . . . ,

where M ′ = 16M .
So the estimates for the null data on the cAB-gauge translate into the same

type of estimates for the null data on the ct
AB-gauge.

Assuming now c �= 0 in (101), we have two possibilities for getting the solution
in the ct

AB-gauge:
i. Using the solution in the cAB-gauge we can determine, where possible, the

coordinate and frame transformation to the ct
AB-gauge. In particular, the

singular generator of Ni in the ct
AB-gauge will coincide with the regular gen-

erator of Ni in the cAB gauge on which v = −ā/c̄. We are thus able to
determine near the singular generator in the ct

AB-gauge the expansion of the
solution in terms of the coordinates u′, v′, w′ and the frame field et

AB .
ii. Using the null data D̂φt

n , D̂St
n in the ct

AB-gauge, one can repeat all the steps
of the previous sections to show the existence of a solution to the conformal
stationary vacuum field equations in the coordinates u′, v′, w′ of the ct

AB-
gauge. All the statements made about the solution in the cAB-gauge apply
also to this solution, in particular statements about domains of convergence.

The formal expansions of the fields in terms of u′, v′, w′ are uniquely determined
by the data D̂φt

n , D̂St
n , thus the solutions obtained by the two methods are holo-

morphically related to each other on certain domains by the gauge transformation
obtained in (i). As done with the solution in the cAB-gauge, the solution in the
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ct
AB-gauge can be expressed in terms of the normal coordinates xa

t and the nor-
mal frame field ct

AB . The xa
t cover a certain domain Ut ⊂ C

3 and the frame field
ct
AB is non-degenerate. All the tensor fields expressed in terms of xa

t and ct
AB are

holomorphic on Ut. Then the solution in the cAB-gauge and the solution in the
ct
AB-gauge are related on certain domains by the transformation

xa
t = t−1a

bx
b , ct

AB = tC AtD BcCD ,

which gives the transformation corresponding to the rotation of normal coordi-
nates. We can extend this as a coordinate and frame transformation to the solution
obtained in (ii) to express all fields in terms of xa and cAB . With this extension
all fields are defined and holomorphic on t−1Ut. Then the solution obtained in the
cAB-gauge and the solution in the ct

AB-gauge are genuine holomorphic extensions
of each other, as one covers the singular generator of the other one away from the
origin in a regular way.

Let now xa
∗ �= 0 be an arbitrary point in C

3. We want to show that the
solution extends in the coordinates xa to a domain which covers the set sxa

∗ for
0 < s < ε for some ε > 0. That is the case in the cAB-gauge as far as xa

∗ �= (α, iα, β),
α, β ∈ C. We need to see what happens if xa

∗ = (α, iα, β), with α �= 0 or β �= 0.
If xa

∗ = (α, iα, β) and α �= 0, we consider the ct′

AB-gauge, where t′AB is given
by (101) with a = 0, c = 1. The normal coordinates in the two gauges are related
by

x1
t′ = −x1 , x2

t′ = x2 , x3
t′ = −x3 .

The holomorphic transformation (x1
t′ , x

2
t′ , x

3
t′) → (−x1, x2,−x3) maps Ut′ onto a

subset of C
3, denoted by t′−1Ut′ , which has nonempty intersection with U . After

the transformation the two solutions coincide on t′−1Ut′ ∩ U .
Under this transformation, the singular set {x1 + ix2 = 0} in the cAB-gauge

correspond to the set {x1
t′ − ix2

t′ = 0}, which is covered in a regular way in a
neighborhood of i in the ct′

AB-gauge. So the set t′−1Ut′ ∪ U admits a holomorphic
extension of our solution in the coordinates xa and the frame cAB . In this extension
there exist ε such that sxa

∗, xa
∗ = (α, iα, β) with α �= 0, is covered by the solution

for 0 < s < ε.
We need also to consider the case α = 0, that is, xa

∗ = (0, 0, β), β �= 0. In this
case we use the ct′′

AB-gauge, where t′′AB is given by (101) with a = 1√
2
, c = i√

2
. The

normal coordinates are related by

x1
t′′ = x1 , x2

t′′ = −x3 , x3
t′′ = x2 .

The argument follows the same lines as for the α �= 0 case.
Thus the set U can be extended so that the points sxa

∗ with 0 < s < ε are
covered by U and all fields are holomorphic on U in the coordinates xa. Then it
can be assumed U to contain a punctured neighborhood of the origin in which
the solution is holomorphic in the normal coordinates xa and the normal frame
cAB . Then the solution is in fact holomorphic on a full neighborhood of the origin
xa = 0, which represents the point i, as holomorphic functions in more than one
dimension cannot have isolated singularities.
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By Lemma 3.1 we have from null data satisfying the reality conditions a
formal expansion of the solution with expansion coefficients satisfying the reality
conditions. By the various uniqueness statements obtained in the lemmas, this
expansion must coincide with the expansion in normal coordinates of the solu-
tion obtained above. This implies the existence of a 3-dimensional real slice on
which the tensor fields satisfy the reality conditions. It is obtained by requiring
the coordinates xa to assume values in R

3. �

9. Conclusions

We have seen how to determine a formal expansion of an asymptotically flat sta-
tionary vacuum solution to Einstein’s field equations using a minimal set of freely
specifiable data, the null data. These data are given by two sequences of symmetric
trace free tensors at space-like infinity. We have obtained necessary and sufficient
conditions on the null data for the formal expansion to be absolutely convergent,
hence showing that the null data characterize all asymptotically flat, stationary
vacuum solutions to the field equations with non-vanishing ADM mass. This work
contains the static case as a particular case, and is a generalization of Friedrich’s
work [8] from the static to the stationary case.

Corvino and Schoen [6] and Chruściel and Delay [5] have shown that it is
possible to produce vacuum initial data that is fairly general in the interior region
and exactly static or stationary in the exterior region. The present work shows
which are the possible exteriors.

It is a long standing conjecture that Hansen‘s multipoles [11], which are rel-
evant because they have nice geometrical transformation properties under change
of conformal factor, do characterize an asymptotically flat stationary vacuum so-
lutions to the field equations in the way we have shown the null data do. This have
been shown in the axisymmetric case [1] and some steps have been achieved in the
general case, like showing that the multipoles determine a formal expansion of a
solution [3,13], or necessary bounds on the multipoles if the solution exist [2], but
general conditions on the multipoles for the expansion to be convergent has not
been found yet. As there is a bijective correspondence between the null data and
Hansen’s multipoles, although the relation is highly non linear, it would be nice if
this correspondence could be exploited to get necessary and sufficient conditions
on the multipoles to determine a convergent expansion.
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94 (2003), vi–103.

[6] J. Corvino and R. Schoen, On the asymptotics for the vacuum Einstein constraint
equations, J. Differ. Geom. 73 (2) (2006), 185–217.

[7] S. Dain, Initial data for stationary spacetimes near spacelike infinity, Class. Quantum
Grav. 18 (20) (2001), 4329–4338.

[8] H. Friedrich, Static vacuum solutions from convergent null data expansions at space-
like infinity, Ann. Henri Poincaré 8 (5) (2007), 817–884.
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