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1 Introduction

Hermann Günther Grassmann, a citizen of Stettin/Szczecin during all of his life, was a deeply original
thinker. Although a ‘late starter’, he created many concepts fundamental to modern mathematics. He was
basically the inventor of Linear Algebra as it is taught nowadays (even in high schools), that is, the calculus
of vectors (and tensors) as objects not only having a ‘size’ (length) but also a ‘direction’ (in some multi-
dimensional space). Grassmann enriched mathematics also in other areas; most importantly for this talk,
the fundamental idea of anticommuting numbers and the notion of an anticommuting algebra (Grassmann
algebra) that is the basis of supersymmetry originated with him. Grassmann was active in many other
areas of human and intellectual endeavour. He knew many languages, wrote a book on botany, conducted
a choir and fathered eleven children. Equally remarkably (and perhaps out of frustration with the lack of

Fig. 1 Hermann Günther Grassmann (1809–1877).
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recognition for his mathematical work, see below) he started learning Sanskrit in his forties, and produced
the first translation of the Rigveda. As a result, Grassmann is not only famous as a mathematician, but also
as a linguist and Indologist – his Sanskrit dictionary of 1873 is still in use today! However, his mathematical
work was not appreciated for a long time due to his idiosyncratic style and terminology. For instance, the
princeps mathematicorum C.F. Gauss simply refused to even take a look at Grassmann’s Opus Magnum,
the “Ausdehnungslehre”, while the famous mathematician Eduard Kummer wrote of it

“ ... this work will be ignored by mathematicians in the future as it has been until now; for, the effort it
demands to understand it appears too great in comparison with the gain in knowledge that one would hope
to get from it.”

[“... dass diese Schrift von den Mathematikern ferner ignoriert werden wird wie bisher; denn die Mühe,
sich in dieselbe einzuarbeiten, erscheint zu gross in Beziehung auf den wirklichen Gewinn an Erkenntnis,
welchen man aus derselben schöpfen zu können vermutet.”]

As a consequence all his applications for university professorships were turned down and he remained
in Stettin/Szczecin as a “Gymnasium” teacher. It is hard to believe how hard he must have worked until
the end of his life in order to accomplish all the things he did. His total dedication to his scientific work is
perhaps best illustrated by a little anecdote: when the famous physician R. Virchow came from Berlin to
Stettin for a ‘Naturforscher’ meeting, and afterwards wanted to chat with Grassmann over a beer, Grass-
mann did not even know where in his home town one could go for a beer! For us, who live in a time when it
is common to expect instant recognition and gratification for whatever we do (also in theoretical physics!),
it is quite amazing how Grassmann nevertheless kept up his spirits and persevered with his work in spite of
all the negative reactions of his contemporaries. Perhaps it was the deep belief in the truth and importance
of his work, beautifully expressed in the following sentences (from the Foreword of Die Ausdehnungslehre:
Vollständig und in strenger Form bearbeitet”, second edition 1862):

“I remain completely confident that the labour I have expended on the science presented here and which
has demanded a significant part of my life as well as the most strenuous application of my powers, will
not be lost. It is true that I am aware that the form which I have given the science is imperfect and must
be imperfect. But I know and feel obliged to state (though I run the risk of seeming arrogant) that even if
this work should again remain unused for another seventeen years or even longer, without entering into
the actual development of science, still that time will come when it will be brought forth from the dust of
oblivion and when ideas now dormant will bring forth fruit. I know that if I also fail to gather around me
(as I have until now desired in vain) a circle of scholars, whom I could fructify with these ideas, and whom I
could stimulate to develop and enrich them further, yet there will come a time when these ideas, perhaps in
a new form, will arise anew and will enter into a living communication with contemporary developments.
For truth is eternal and divine and no phase of it ... can pass without a trace; it remains in existence even
if the cloth in which weak mortals dress it disintegrates into dust.”

In this contribution I would like to briefly discuss the impact of some of Grassmann’s ideas today and on
current developments in mathematics and physics. More specifically, we will concentrate on one specific
example – the development of supersymmetric (quantum) field theory, one of the most important develop-
ments in mathematical physics over the last 40 years [1–3].1 For sure, the discovery of supersymmetry at
the Large Hadron Collider (LHC) would open many new avenues and revolutionize particle physics. But
even if no supersymmetric particles are found, it appears that supersymmetry is here to stay: it has become
an integral part of mathematics, having inspired several Fields Medalists, and will surely continue to play
a key role in our search for a consistent (finite) theory of quantum gravity.

1 See also the textbooks [4, 5] for introductions.
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2 Grassmann algebras

Grassmann algebras are essential for understanding and formulating modern quantum field theory with
fermions. In particular, they are indispensable for supersymmetry and supergravity. They provide the math-
ematical framework for dealing with “anticommuting c-numbers”, which obey

θiθj + θjθi = 0 ⇒ θ2
i = 0 (2.1)

A finitely generated Grassmann algebra A = K
[
θ1, ..., θn

]
is spanned by elements of the form

x = a0 + ai θi + aij θiθj + · · · + a1...n θ1 · · · θn, a0, ai, · · · ∈ K (2.2)

with completely antisymmetric coefficients aij = −aji, and so on; K is some field (in practice always
K = R or C). Every Grassmann algebra splits into an even (‘bosonic’) and an odd (‘fermionic’) part:

A = A+ ⊕ A− with dim(A±) = 2n−1, (2.3)

Grassmann algebras can be regarded as classical limits of fermion systems, in the sense that the canonical
anticommution relations of fermionic creation and annihilation operators ψ†

i and ψi reduce to (2.1) in the
limit of vanishing Planck’s constant:

{ψi, ψ
†
j} = � δij → {ψi, ψj} = 0 for � → 0. (2.4)

For quantum field theory, one needs infinitely generated Grassmann algebras (with either a countable or an
uncountable infinity of basis elements), but this case is formally no different from (2.4):

{ψ(x), ψ†(y)} = � δ(x − y) → {ψ(x), ψ†(y)} = 0 for � → 0 (2.5)

Clearly, this is a formal device: anticommuting c-numbers are hard to ‘visualize’ (and impossible to ‘mea-
sure’), but still extremely useful for description of fermions (fermionic Lagrangians, fermionic path inte-
gral). But this is no different from the use of complex numbers in quantum mechanics. The only thing that
matters is that, at the end of the day, the formalism produces a real number that can be compared to the
reading of a meter in some experiment.

There is a huge body of literature on the mathematics of Grassmann algebras. As every quantum field
theorist knows2 one can generalize many notions and results from ‘commuting mathematics’, and in par-
ticular develop linear algebra and a calculus over anticommuting c-numbers: for instance, differentiation
and integration are defined as follows [6]:

∂

∂θi
(1) = 0 ,

∂

∂θi
θj = δi

j ,

∫
dθi = 0 ,

∫
dθi θj = δij . (2.6)

Note that these operations are defined algebraically, not via a limiting procedure as in real analysis. A
further curious feature is that differentiation and integration are effectively the same operation!

3 Supersymmetry

Supersymmetry relates bosons and fermions, or in physical terms, it relates forces (carried by vector and
tensor bosons) and matter (made up by spin- 1

2 fermions, quarks and leptons). The very simplest example
of a supersymmetric system is supersymmetric quantum mechanics [7, 8]: this is the bosonic harmonic (or

2 This was not so in the early 1980’s: when I moved to the University of Hamburg in 1988 I was told that one main reason why
they had picked me was that I ‘anticommute’.
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anharmonic) oscillator with variables q(t) augmented by a ‘spin’ (that is: a two state system), which is
classically described by the anticommuting variables ψ(t) , ψ̄(t) ≡ (ψ(t))∗. The Lagrangian is:

L =
1
2
q̇2 − 1

2
(W ′(q))2 + iψ̄ψ̇ − W ′′(q)ψ̄ψ, (3.1)

with some sufficiently differentiable function W (q) (for W (q) = 1
2 q2, we just recover the harmonic

oscillator). Under supersymmetry variations with Grassmann-valued (anticommuting) parameter ε

δq(t) = ε̄ψ(t) + ψ̄(t)ε, δψ(t) = −[
iq̇(t) + W ′(q(t))

]
ε, (3.2)

we can see that the Lagrangian L is invariant modulo a total derivative:

δL =
1
2

d

dt

[
(q̇ − iW ′(q))ε̄ψ + h.c.

]
⇒

∫
dt δL = 0. (3.3)

This is a characteristic feature: in supersymmetric theories we never get δL = 0, but always a total deriva-
tive (so one must pay attention to surface terms when looking at soliton-like solutions having a ‘tail’ at
infinity). The function W (q) is called the superpotential. The superpotential is a centerpiece of all super-
symmetric model building because its specification fixes a good part of any supersymmetric Lagrangian
and thus encapsulates most of its properties – this statement also applies to the latest version of the super-
symmetric Standard Model!

A canonical treatment (à la Dirac) yields the Hamiltonian

H =
1
2

p2 +
1
2
(
W ′(q)

)2 + W ′′(q)ψ̄ψ. (3.4)

which can now be quantized in the usual way by replacing Poisson (or Dirac) brackets by canonical com-
mutators (for the bosons) and anticommutators (for the fermions). In particular, one then sees easily that
the ψ and ψ̄ become fermionic annihilation and creation operators which can be represented by 2-by-2
matrices in the standard fashion. As a result one arrives at a quantized anharmonic oscillator coupled to a
spin- 1

2 system. The basic supersymmetry relations are

H =
1
2
{Q , Q†} ⇒ [Q, H] = [Q†, H ] = 0 (3.5)

where the ‘supercharge’ Q is the canonical generator of supersymmetry transformations. These relations
are at the heart of every supersymmetry algebra: a supersymmetric field theory simply consists of a (gen-
erally interacting) infinite assembly of such bosonic and fermionic oscillators. The second relation implies
a degeneracy of the energy levels: with the possible exception of the groundstate, every bosonic state has a
fermionic partner state of the same energy, and vice versa related to it by the action of the supercharge Q

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉 (3.6)

In supersymmetric field theories, this implies in particular that, if supersymmetry is unbroken, every
bosonic particle must have a fermionic partner of the same mass, and vice versa – a major headache for
our model builder friends when trying to make predictions for LHC!

Supersymmetry Ward identities for correlators can be derived from (with anti-commuting f )〈{Q , f(ψ, ψ̄, q)}〉 =
〈{Q† , f(ψ, ψ̄, q)}〉 = 0. (3.7)

Observe that these are relations between ordinary correlation functions (fermionic expectation values are
ordinary numbers, too!), so at this point the anticommuting variables have done their duty, and can be
dispensed with.
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4 Supersymmetric quantum field theory

For (semi-)realistic field theories that can be applied to particle physics, one needs to ‘marry’ supersym-
metry with other symmetries, to wit, the usual symmetries of relativistic quantum field theory, Lorentz and
Poincaré invariance, as well as internal symmetries (isospin, flavor, color, etc.). The most general super-
symmetric enlargement of these symmetries was found in [9]. Here we just quote the essential relations
involving the translation operator Pμ and the supercharges, neglecting central charges. They read:

[Pμ, Pν ] = 0 , [Pμ, Qi
α] = [Pμ, Q̄α̇i] = 0 ,

{Qi
α, Qj

β} = {Q̄α̇i, Q̄β̇j} = 0 , {Qi
α, Q̄β̇j} = 2δi

jσ
μ

αβ̇
Pμ

where α and α̇ are SL(2, C) ∼= SO(1, 3) spinor indices, cf. [4]. The indices i, j run between 1 and
N : when there are N supercharges one speaks of N -extended supersymmetry. This algebra generalizes
the usual notion of a Lie algebra to a Lie superalgebra (or graded Lie algebra) in that it contains both
commutators and anticommutators. For N > 1, the algebra admits U(N) (or SU(N)) as a group of
outer automorphisms; in this case, the algebra merges spacetime and internal symmetries, and this was
a main reason for the original excitement about supersymmetry in the early 1970s. Note, however, that
this unification of symmetries does not take place for the currently popular MSSM-type models with low
energy supersymmetry, which is the reason why in these models every known particle must come with a (so
far unobserved) supersymmetric partner of opposite statistics, but otherwise the same quantum numbers.

Irreducible representations of supersymmetry (that is: supersymmetric particle multiplets) can be con-
structed in the usual way by Wigner’s method of induced representations [10]. Let us just briefly sketch
how this is done for massless multiplets. In this case, one half of the supercharges generates zero norm
states, and we need only consider one supercharge (call them Qi) and its hermitean adjoint for each value
of i. Starting from the state of highest helicity |h〉 in the multiplet one generates states of lower helicity by
the successive application of the supercharge Qi

|h〉 , |h− 1
2 ; i〉 ≡ Qi|h〉 , |h−1; [ij]〉 ≡ QiQj |h〉 , · · · , |h− 1

2 N ; 1 · · ·N〉 = Q1 · · ·QN |h〉 (4.1)

where the lables i, j, . . . are always antisymmetrized. The CPT Theorem demands that these states must
be supplemented by the CPT conjugate states

CPT|h;R〉 = | − h, R̄〉 (4.2)

to make a full supermultiplet (where R denotes some representation of an internal symmetry group, and
R̄ its conjugate). It is now obvious that the range of spins covered in a multiplet is the bigger the more
supercharges there are. As a consequence, there is only a limited number of multiplets for any given
maximum spin. For globally (or ‘rigidly’) supersymmetric models, one can only have spin s ≤ 1 (that is,
scalars, spin- 1

2 fermions and vector bosons), and therefore rigidly supersymmetric models exists only for
up to N = 4 supercharges. Naturally, the models become more and more restricted with increasing N ,
such that for the maximal value N = 4 with the supermultiplet (spin is indicated as [s])

N = 4 multiplet: 1×[1] ⊕ 4×[
1
2

] ⊕ 6×[0] (4.3)

there is only one theory, the celebrated N = 4 super-Yang-Mills theory, a theory currently very popular in
connection with the so-called AdS/CFT correspondence.

If we want to go higher in spin, we must admit spin- 3
2 particles, which – as it turns out – is not possible

unless one also includes spin-2 (the graviton). Then the bound on the number of supercharges increases to
s ≤ 2 ↔ N ≤ 8, and the multiplet for the maximally supersymmetric theory is

N = 8 multiplet: 1×[2] ⊕ 8×[
3
2

] ⊕ 28×[1] ⊕ 56×[
1
2

] ⊕ 70×[0] (4.4)
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An important feature is that for the maximal theories the automorphism group U(N) is reduced to SU(N),
because the maximal supermultiplets are CPT self-conjugate, so the CPT conjugate states need not be
added ‘by hand’ as for non-maximal supermultiplets. The self-conjugacy is also necessary to get the right
number of fields; for instance, the 70 spin-0 degrees of freedom of N = 8 supergravity are described by
a complex antisymmetric four-index tensor φijkl with i, j, k, l = 1, . . . , 8, and to get the right count, we
must impose the complex self-duality constraint

φijkl ≡ (φijkl)∗ =
1
24

εijklmnpqφmnpq (4.5)

which is only compatible with SU(8), but not U(8).

5 N = 8 supergravity

N = 8 Supergravity is a unique theory (modulo ‘gauging’), and the most symmetric known field theo-
retic extension of the Einstein’s relativity theory in four dimensions. The original ‘ungauged’ version was
constructed in [11] while the gauged version with local SO(8) was obtained in [12] (see there also for
earlier references leading up to [11, 12]). It is a rather complicated theory! It therefore took a while to
work out its complete Lagrangian with all the non-polynomial interactions, a task that could finally only
be accomplished with the discovery by Cremmer and Julia of a hidden E7(7) invariance of its equations of
motion [11]. I will spare readers the full details (which can be found in [11, 12]) and simply show the for-
mula in a somewhat picturesque surrounding (cut out from a poster claiming a link with ‘Vedic Science’,
which I only mention here because it relates back to one of Grassmann’s research interests!).

Fig. 2 (online colour at: www.ann-phys.org).
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In the late 1970s N = 8 supergravity was thought to be a promising candidate for a unified theory of
quantum gravity and matter interactions, but then fell into disfavor, not so much because of its evident
complexity, but because it appeared that the two main hopes linked to this theory could not be fulfilled:

• The existence of supersymmetric counterterms suggested the appearance of non-renormalizable diver-
gences from three loops onwards, and thus appeared to thwart all hope that maximal supersymmetry
might cure the infinities of perturbatively quantized gravity; and

• the absence of chiral fermions and the appearance of a huge negative cosmological constant in the
gauged theory appear to be in obvious conflict with observations; any attempt to directly connect this
theory to particle physics thus appears doomed from the outset.

And not to forget: in the early 1980s superstring theory started to eclipse all other attempts to quantize
gravity, particularly those based on field theoretic extensions of Einstein’s theory. Indeed, it seemed to do
much better in both regards!

6 Finiteness: to be or not to be?

Einstein’s theory of gravity is perturbatively non-renormalizable. Although there were no concrete calcu-
lations available beyond one loop in the early 1980s, it was generally taken for granted that divergences that
can appear actually do appear. This expectation was borne out shortly after by Goroff and Sagnotti’s [13]
(and later Van de Ven’s [14]) calculation of the two-loop counterterm and the proof that its coefficient
indeed does not vanish

Γ(2)
div =

1
ε

209
2880

1
(16π2)2

∫
dV CμνρσCρσλτ Cλτ

μν , (6.1)

where Cμνρσ is the Weyl conformal tensor. This calculation was quite an achievement, because (at least
in the original way of doing it [13]) the determination of the coefficient 209

2880 required the consideration
of O(100 000) Feynman diagrams! Fortunately, this result was confirmed in [14], where the calculation
was done with a different regulator and in a different gauge (which incidentally also reduced the number
of Feynman diagrams considerably), and the coefficient still came out to be the same. Thus there was no
more question at this point that perturbatively quantized Einstein gravity is doomed.

However, a glimmer of hope remained for supergravity: the counterterm (6.1) does not admit a super-
symmetric extension. It therefore seemed reasonable to hypothesize that supersymmetry (for sufficiently
high N ) might actually exclude higher order counterterms, too. However, these hopes were soon shattered:
at three loops a supersymmetric invariant does exist which can be built from the Bel-Robinson tensor [15]

Γ(3)
div ∝

∫
dV TμνρσT μνρσ with Tμνρσ = Rμ

α
ν

βRρασβ + R̃μ
α

ν
βR̃ρασβ (6.2)

indicating that, generically, supergravity should be expected to be UV infinite from three loops onwards.
Of course, for N = 8 supergravity,things are a bit more complicated. In order to be able to say anything

concrete at all (beyond mere suppositions), one must rely on a superspace formulation of the theory. In
that formulation, all on-shell degrees of freedom can be packaged into ‘supervielbein’ EM

A(x, θ, θ̄) and a
(non-geometric) superfield Wijkl(x, θ, θ̄) [16–18] containing all the supergravity degrees of freedom

φijkl = Wijkl

∣∣
θ=θ̄=0

, χαjkl = Di
αWijkl

∣∣
θ=θ̄=0

, . . . , Cαβγδ = Di
αDj

βDk
γDl

δWijkl

∣∣
θ=θ̄=0

(6.3)

where Cαβγδ is a chiral half of the Weyl tensor in SL(2, C) spinor notation. Then
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L(3) ∝
(∫

d4xD[i1...i4] [j1...j4]D̄[k1...k4] [l1...l4]

×
(
Wi1...i4Wj1...j4Wk1...k4Wl1...l4

)∣∣∣
232848

)
θ=θ̄=0

, (6.4)

is a possible 3-loop counterterm, with

D[ijkl] [mnpq] ≡ Di
(α1

· · ·Dl
α4)D

m
(β1

· · ·Dq
β4)

εα1β1 · · · εα4β4 (6.5)

where Di
α is the usual superspace derivative, see [16]. The quartic product of the W ’s in (6.4) must be pro-

jected onto the 232848 representation of SU(8) (the box-like Young tableau with four rows and columns);
this projection is also needed in order to get the proper combination of Riemann (or Weyl) tensors ‘in the
middle’ of (6.4).

Although widely taken as an indication that N = 8 supergravity would inevitably diverge at three
loops, the above arguments were not entirely conclusive. The known superspace formulation of N = 8
supergravity, on which they are based, suffers from a severe drawback: it only works at the level of the
equations of motion, that is, on shell, and does not allow to set up a scheme for computing Feynman
diagrams. Furthermore the E7(7) symmetry of the equations of motion is realized only linearly by constant
shifts of the scalar fields:

δWijkl(x, θ, θ̄) = Σijkl (6.6)

Inconclusive as they were, these results appeared to leave the question of finiteness (or not) of N = 8
supergravity in the No Man’s Land of undecidable propositions. A rough estimate shows that the compu-
tation of a 3-loop counterterm coefficient for N = 8 supergravity would require consideration of O(1020)
(or even more) Feynman diagrams – an obviously hopeless task!

Or so it seemed for many years ... However, in a stunning development, Zvi Bern, Lance Dixon and
collaborators recently have shown that widely held expectations concerning the UV behavior of N = 8
supergravity may need to be revised [19]. What enabled this breakthrough was a completely new technol-
ogy for computing Feynman diagrams (see [19, 20] for a bibliography of earlier work leading up to this
computation). However, to understand it (as far as this is possible at all for an outsider) one better forget
just about everything one has learnt from quantum field theory textbook. Let me very briefly summarize
the main idea. The key difficulty with ordinary Feynman diagrams is that they carry a lot of ‘extra bag-
gage’. Not only are the particles circulating in loops off-shell, but one must in addition sum over lots of
unphysical polarizations. To compensate for the latter one must sum over extra ghost contributions. The
Gordic knot is cut by entirely working with on-shell objects [20], that is, by

• Constructing on-shell field theory amplitudes as limits of on-shell string amplitudes;

• Using methods from S-matrix theory: unitarity, analyticity, cutting rules, dispersion relations (this is
a concrete realization of the ‘bootstrap’ S-matrix program that never got anywhere in the 1960s!);

• Determining gravity amplitudes from ‘squaring’ Yang Mills amplitudes by means of KLT rules [21]

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3).

where Atree
4 is the 4-point open string amplitude, while M tree

4 is the corresponding amplitude for the closed
string. The method therefore puts some flesh on an old idea: Gravity = Yang-Mills × Yang-Mills. This
idea cannot work in any obvious way: no amount of fiddling with the Einstein-Hilbert action will reduce
it to a square of a Yang-Mills action. In terms of vertices this can be seen by simple inspection of the
3-graviton vertex [20]
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G
(3)
μα,νβ,σγ(k1, k2, k3)

= Sym
[
− 1

2
P3(k1 ·k2 ημαηνβησγ) − 1

2
P6(k1νk1βημαησγ)

+
1
2

P3(k1 ·k2 ημνηαβησγ) +
1
2
P6(k1 ·k2 ημαηνσηβγ) + 2P6(k1νk1γημαηβσ)

− P3(k1βk1μηανησγ) + P3(k1σk1γημνηαβ) + P6(k1σk1γημνηαβ)

− P3(k1νk2γηβμηασ) + 2P3(k1νk2μηβσηγα) − 2P3(k1 ·k2 ηανηβσηγμ)
]
. (6.7)

There is evidently no way to factorize this into a product of two Yang Mills vertices. However, putting
this expression on-shell (that is, putting momenta on-shell, and contracting the external legs with physical
polarizations), the expression becomes the same as the one obtained from

∝
[
ημν(k1 − k2)σ + cyclic

]
×

[
ηαβ(k1 − k2)γ + cyclic

]
, (6.8)

which is just the square of the color-stripped version of the Yang Mills amplitude [20]

∝ fabc
(
ημν(k1 − k2)σ + cyclic

)
(6.9)

To establish the four-loop finiteness of the 4-graviton amplitude of N = 8 supergravity, one goes
through the following steps [19]:

• Employ an on-shell formalism eliminating all higher point vertices so there remain only 3-point ver-
tices;

• Use unitarity based arguments to reduce all amplitudes to integrals over products of tree amplitudes.

Amazingly, the calculation then reduces to the computation of O(50) ‘Mondrian-like’ diagrams (as well
as some non-planar diagrams) schematically depicted in the middle diagram below (taken from [22]). This
picture beautifully illustrates how real physics can metamorphose via mathematics into pure art!

Fig. 3 (online colour at: www.ann-phys.org).

7 Outlook

The possible UV finiteness of N = 8 supergravity to all orders in perturbation theory remains a big
mystery. As physicists, we have been brought up not to believe in miracles: if the theory is really finite then
there must be a reason for it. Most plausibly, this reason has something to do with an as yet undiscovered
hidden symmetry of the theory (my personal favorite being the hyperbolic Kac–Moody group E10).

Concerning the present status of N = 8 supergravity, a poll some ten years ago would probably have
produced the following ‘majority opinion’
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• N = 8 supergravity is perturbatively divergent;

• N = 8 supergravity is not viable for phenomenology.

While many (even in the superstring camp) would now agree that the first of these claims has become
rather shaky, most would probably still subscribe to the second statement. Yet, there is one curious fact that
I would like to mention at the end, and which could turn out to be either a deep truth or a complete mirage.3

After breaking all eight supersymmetries of N = 8 supergravity one is left with 48 spin- 1
2 fermions (eight

of the 56 original fermions must be ‘eaten’ to render the eight gravitinos massive). This is just the right
number if one includes massive neutrinos! What is more, gauged N = 8 supergravity has one stationary
point with residual SU(3) × U(1) symmetry [23]. Then the assignments for the 48 = 3 × 16 quarks
and leptons at the stationary point agree with those of N = 8 supergravity if one introduces a ‘family
symmetry’ SU(3)family linking the three generations of quarks and leptons, and [24, 25]

• identifies SU(3) with the diagonal subgroup
[
SU(3)color × SU(3)family

]
diag

;

• shifts all U(1)em charges by a spurion charge 1
6 .

Of course, for this to work there would have to be new and very strange dynamics, where the weak in-
teractions would have to be dynamically generated with composite W and Z bosons, while the gluons
and the photon would be elementary. Furthermore, the family symmetry SU(3)family does not commute
with weak isospin SU(2)w in the above scheme. Looking at the diagonal subgroup may likewise appear
a strange thing to do, but according to [26] such ‘flavor color locking’ may actually occur, and not only
in strongly coupled QCD! So it is not completely excluded that an ‘obviously wrong’ theory (or some
extension of it) could turn out to be right after all – just like QCD would have been considered ‘obviously
wrong’ had it been proposed in 1950 as a theory of strong interactions, and without knowledge of its un-
derlying dynamics! Let us therefore stick with Grassmann’s attitude in the face of majority opinion: we are
probably still far from knowing the true answers to our questions.
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