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We consider the initial-boundary value problem for systems of quasilinear wave equations on do-
mains of the form [0, T ]×Σ, where Σ is a compact manifold with smooth boundaries ∂Σ. By using
an appropriate reduction to a first order symmetric hyperbolic system with maximal dissipative
boundary conditions, well posedness of such problems is established for a large class of boundary
conditions on ∂Σ. We show that our class of boundary conditions is sufficiently general to allow for
a well posed formulation for different wave problems in the presence of constraints and artificial,
nonreflecting boundaries, including Maxwell’s equations in the Lorentz gauge and Einstein’s gravi-
tational equations in harmonic coordinates. Our results should also be useful for obtaining stable
finite-difference discretizations for such problems.

I. INTRODUCTION AND MAIN RESULTS

Motivated in part by the numerical computation of spacetimes on a finite domain with artificial boundaries, the
initial-boundary value problem (IBVP) in general relativity has started to receive a lot of attention during the last few
years (see [1] for a review). A well posed IBVP for Einstein’s vacuum field equations was formulated for the first time
by Friedrich and Nagy [2] based on tetrad fields and the theory of quasilinear, symmetric hyperbolic systems with
maximal dissipative boundary conditions [3, 4, 5]. More recently, Kreiss and Winicour [6] formulated a well posed
IBVP for the harmonic gauge formulation of the Einstein vacuum equations which casts the field equations into a set
of ten coupled quasilinear wave equations subject to four constraints. There are two key ideas behind the result of
[6]. The first one is the realization that the wave equations, when viewed as first order pseudodifferential equations,
has a non-characteristic boundary matrix. This allows application of the boundary value theory for such systems
developed by Kreiss in the 1970’s [7]. Second, the formulation of boundary conditions for the frozen coefficient form
of the harmonic Einstein equations which ensure constraint propagation and satisfy the estimates required by the
Kreiss theory. The well posedness of the system and the generalization to the quasilinear case can then be established
using the theory of pseudodifferential operators (see, for instance, [8]).

In a subsequent paper [9], similar results were obtained via more mundane energy estimates which follow by
integration by parts, without resort to the pseudodifferential calculus. For this, a non-standard energy norm is
constructed which is based upon the choice of a particular time-like direction adapted to the boundary conditions
being imposed. With respect to this energy the Kreiss-Winicour boundary conditions are maximally dissipative and
so standard well posedness theorems apply even in the quasilinear case [5, 10]. Besides being a simpler proof, or
at least a proof that can be followed completely by a reader not familiar with the pseudodifferential techniques, it
implies similar results for the stability of finite difference approximations to Einstein’s equations in the harmonic
gauge. This follows from considering the semidiscrete system of ordinary differential equations in time obtained by
substituting finite differences for spatial derivatives. If the semidiscrete system is stable, then for appropriate time
discretizations the fully discrete system is guaranteed to be stable [11]. The stability of the semidiscrete system can be
established by the use of finite difference operators satisfying summation by parts [12], the counterpart of integration
by parts, by mimicking the steps leading to the continuum energy estimate. A summation by parts algorithm for
the harmonic Einstein IBVP was developed for homogeneous boundary conditions [13] and verified to be stable in
numerical tests [14]. The results of [9] provide a means to prove stability in the inhomogeneous case.

In this paper we present a more general and geometric version of the foregoing results which applies to coupled
systems of quasilinear wave equations with a certain class of boundary conditions. The well posedness of the resulting
IBVP is established by reducing the wave system to first order symmetric hyperbolic equations subject to maximally
dissipative boundary conditions. As we show, our class of boundary conditions is sufficiently flexible for obtaining well
posed IBVP formulations for different models of isolated systems in physics, including the wave equation, Maxwell’s
equations and the Einstein field equations.

In what follows we present the main results.

http://arXiv.org/abs/0807.3207v1
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A. Main theorem

Let T > 0, and denote by Σ a d-dimensional compact manifold with smooth boundaries ∂Σ. The type of system
our results apply to is a set of quasilinear wave equations on M = [0, T ]× Σ coupled both by lower order terms and
in the principal part, by a change in the characteristic directions via a metric which can depend on the local value
of the fields involved. More precisely, let π : E → M be a vector bundle over M with fibre R

N , let ∇a be a fixed,
given connection on E and let gab = gab(Φ) be a Lorentz metric on M with inverse gab(Φ) which depends pointwise
and smoothly on a set of fields Φ = {ΦA}A=1,2,...N parameterizing a local section of E. Our signature convention
for gab is (−, +, ..., +). We shall also assume that each time-slice Σt = {t} × Σ is space-like and that the boundary
T = [0, T ]×∂Σ is time-like with respect to gab(Φ). In the following, we will refer to local sections in E as vector-valued
functions over M . We will also assume the existence of a positive-definite fibre metric hAB on E. We consider a
system of quasilinear wave equations of the form

gab(Φ)∇a∇bΦ
A = SA(Φ,∇Φ), (1)

where SA(Φ,∇Φ) is a vector-valued function which depends pointwise and smoothly on its arguments. The wave
system (1) is subject to the initial conditions

ΦA
∣

∣

Σ0

= ΦA
0 , nb∇bΦ

A
∣

∣

Σ0

= ΠA
0 , (2)

where ΦA
0 and ΠA

0 are given vector-valued functions on Σ0, and where nb = nb(Φ) denotes the future-directed unit
normal to Σ0 with respect to gab. In order to describe the boundary conditions, let T a = T a(p, Φ) be a future-directed
vector field on T which is normalized with respect to gab and let Na = Na(p, Φ) be the unit outward normal to T
with respect to the metric gab. We consider boundary conditions on T of the following form1:

[

T b + αN b
]

∇bΦ
A
∣

∣

T
= ca A

B ∇aΦB
∣

∣

T
+ dA

B ΦB
∣

∣

T
+ GA, (3)

where α = α(p, Φ) > 0 is a strictly positive, smooth function, GA = GA(p) is a given, vector-valued function on
T and the matrix coefficients ca A

B = ca A
B(p, Φ) and dA

B = dA
B(p, Φ) are smooth functions of their arguments.

Furthermore, we assume that ca A
B can be made arbitrarily small in the following sense: Given a local trivialization

ϕ : U × R
N 7→ π−1(U) of E such that Ū ⊂ M is compact and contains a portion U of the boundary T , and given

ε > 0, there exists a smooth map J : U → GL(N, R), p 7→ (JA
B(p)) such that the transformed matrix coefficients

c̃a A
B := JA

Cca C
D

(

J−1
)D

B

satisfy the condition

hAB c̃a A
C(Φ)c̃b B

D(Φ)Va
CVb

D ≤ εhABeab(Φ)Va
AVb

B , (4)

for all vector-valued one-forms V A
a on U , where here and in the following, eab refers to the Euclidean metric eab =

gab + 2TaTb which is defined for points on T .
The main result of this paper is:

Theorem 1 The IBVP (1,2,3) is well posed. Given T > 0 and sufficiently small and smooth initial and boundary
data ΦA

0 , ΠA
0 and GA satisfying the usual compatibility conditions at ∂Σ0, there exists a unique smooth solution on

M satisfying the evolution equation (1), the initial condition (2) and the boundary condition (3). Furthermore, the
solution depends continuously on the initial and boundary data.

A common situation in which the condition (4) is automatically satisfied is given in the following

Lemma 1 Let U ⊂ T be an open subset of T such that Ū is compact. Assume there exists a smooth map J : U →
GL(N, R), p 7→ (JA

B(p)) over U such that the transformed matrix coefficients c̃a A
B := JA

Cca C
D

(

J−1
)D

B are in
upper triangular form with zeroes on the diagonal, that is

c̃a A
B = 0, B ≤ A.

Then, the condition (4) is satisfied on U .

1 We adopt the Einstein summation convention for the lower case Latin abstract spacetime indices a, b, c, ... as well as for the Capital
indices A, B, C, ... on the fibre of E.
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Proof. (cf. The proof of the Liapunov stability theorem) In order to simplify the notation we use a matrix notation
and write c̃a = JcaJ−1. Let δ > 0, and define Dδ := diag(1, δ, δ2, ..., δN−1) and Jδ := D−1

δ J . Then, ca
δ := Jδc

aJ−1
δ =

D−1
δ c̃aDδ has the components (ca

δ )A
B = δB−Ac̃a A

B, where here, δB−A refers to the (B − A)’th power of δ. Since
c̃a A

B = 0 for B ≤ A we have ca
δ = O(δ), and ca

δ satisfies the condition (4) provided δ > 0 is chosen small enough.

The proof of theorem 1 is given in sections II and III. In order to illustrate the ideas on a simpler example, we
start in Sect. II with the wave equation on a fixed background metric gab, and analyze the general case in Sect. III.

Since many physical systems can be described by systems of wave equations, theorem 1 should have many applica-
tions. In the following, we mention two such applications for the initial-boundary value formulation of isolated systems
with constraints. The physical motivation for the choice of nonreflecting boundary conditions in these examples is
described in detail in section IV.

B. Maxwell’s equations in the Lorentz gauge

The first application describes an electromagnetic field on the manifold M = [0, T ] × Σ with a fixed background
metric gab and corresponding Levi-Civita connection ∇a. As before, we assume that each time-slice Σt = {t} × Σ
is space-like and that the boundary T = [0, T ] × ∂Σ is time-like. In the Lorentz gauge C := ∇bA

b = 0, where Ab

denotes the 4-vector potential, Maxwell’s equations assume the form of a system of wave equations,

gab∇a∇bA
c = Rc

dA
c − Jc , (5)

where Rab denotes the Ricci tensor belonging to the metric gab and Jc is the four-current. (5) implies that the
constraint variable C obeys the following equation

gab∇a∇bC = −∇cJc . (6)

Therefore, the imposition of the boundary condition C|
T

= 0 and the satisfaction of the continuity equation ∇cJc = 0
imply that any smooth enough solution of (5) with initial data satisfying

C|Σ0
= 0, na∇aC|Σ0

= 0,

satisfies the constraint C = 0 on M since in this case the constraint propagation system (6) is homogeneous.
Asymptotically nonreflecting boundary conditions at T = [0, T ]× Σ, in the sense of IV, can be formulated by first

introducing a null tetrad {Ka, La, Qa, Q̄a} which is adapted to the boundary. Let T a be a future-directed time-like
vector field tangent to T normalized such that gabT

aT b = −1, let Na denote the unit outward normal to T with
respect to gab and complete T a and Na to an orthonormal basis {T a, Na, V a, W a} of TpM at each point p ∈ T . Then,
we define the null vectors

Ka := T a + Na, La := T a − Na, Qa := V a + i W a, Q̄a := V a − i W a,

where i =
√
−1. These vectors may be smoothly continued in a small region inside the domain, for example by parallel

transport along the normal direction to the boundary. In this way, one obtains a local null basis of TM . Finally, let
r denote the areal radius of the cross sections ∂Σt. This function can also be continued in a small region inside the
domain by parallel transporting ∂Σt along the normal direction. The following boundary conditions are derived in
section IVB

1

r2
KaKb∇a(r2Ab)

∣

∣

∣

∣

T

= qK , (7)

(KaQb − QaKb)∇aAb
∣

∣

T
= qQ , (8)

(

KaLb + LaKb∇aAb − QaQ̄b − Q̄aQb
)

∇aAb
∣

∣

T
= 0, (9)

where qK and qQ are given real and complex scalars on T . The first condition is a gauge condition, the second condition
controls the electromagnetic radiation through T and the third condition enforces the constraint C = gab∇aAb = 0
on T .

The evolution equation (5) has the form (1) where E is the tangent bundle over M , and the boundary conditions
(7,8,9) have the form (3) with

α = 1,

ca c
d =

1

2

[

2Q(aQ̄c)Kd + LaKcKd − Kc
(

QaQ̄d + Q̄aQd

)

]

, dc
d = (Kb∇b log r)LcKd ,

Gc =
1

2

[

−LcqK + Q̄cqQ + Qcq̄Q

]

.
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Since

ca c
dK

d = 0,

ca c
dQ

d = −QaKc,

ca c
dQ̄

d = −Q̄aKc,

ca c
dL

d = −LaKc − Q̄aQc − QaQ̄c,

the matrix elements ca c
d are in upper triangular form with zeroes in the diagonal when expressed in terms of the

basis {Ka, Qa, Q̄a, Ld}. Therefore, the assumptions of Lemma 1 are satisfied and we obtain a well posed IBVP.

C. Einstein’s equations in harmonic coordinates

As a second application of our theorem we consider Einstein’s field equations in (generalized) harmonic coordinates.
For this, we follow [15, 16] and choose a fixed background metric g̊ab on M = [0, T ]× Σ with the property that each
time-slice Σt = {t} × Σ is space-like and the boundary T = [0, T ] × ∂Σ is time-like with respect to g̊ab. We impose
the following gauge condition on the dynamical metric gab,

Cc := gab
(

Γc
ab − Γ̊c

ab

)

− Hc = 0. (10)

Here, Hc is a given vector field on M and Γc
ab and Γ̊c

ab are the Christoffel symbols corresponding to the dynamical
and background metrics, respectively. In the particular case where Hc = 0 and where the background metric is the

Minkowski metric in standard Cartesian coordinates, Γ̊c
ab vanishes, and the condition Cc = 0 reduces to the usual

condition for harmonic coordinates �xµ = 0 for µ = t, x, y, z. However, the advantage of the condition (10) is that it
maintains the covariance of the theory since Cc is the difference between the two Christoffel symbols,

Cc
ab ≡ Γc

ab − Γ̊c
ab =

1

2
gcd

(

∇̊ahbd + ∇̊bhad − ∇̊dhab

)

, (11)

where hab = gab − g̊ab denotes the difference between the dynamical and the background metric.
With the condition (10), Einstein’s field equations are equivalent to the wave system

gcd∇̊c∇̊dhab = 2 gefgcdCe
acC

f
bd + 4 Cc

d(agb)eC
e
cfgdf − 2 gcdR̊

e

cd(agb)e

+ 16πG

(

Tab −
1

2
gabg

cdTcd

)

+ 2∇(aHb) , (12)

where R̊
a

bcd denotes the curvature tensor with respect to g̊ab, Tab the stress-energy tensor and G denotes Newton’s
constant. Solutions of this equation which are smooth enough imply that the constraint variable Ca satisfies

gcd∇c∇dCa = −Ra
bCb − 16πG∇bTab . (13)

Therefore, the imposition of the boundary condition Ca|T = 0 implies that any smooth enough solution of (12) with
initial data satisfying

Ca|Σ0
= 0, na∇aCb|Σ0

= 0,

satisfies the constraint Ca = 0 on M provided the stress-energy tensor is divergence free, ∇bTab = 0.
In order to formulate asymptotically nonreflecting boundary conditions we first construct an adapted local null

tetrad {Ka, La, Qa, Q̄a} and a radial function r as in the electromagnetic case. Notice that here these quantities
are defined with respect to the dynamical metric gab and not the background metric g̊ab. The boundary conditions
derived in section IVC are the following:

1

r2
KaKbKc∇̊a(r2hbc)

∣

∣

∣

∣

T

= −qKK , (14)

1

r2
KaKbLc∇̊a(r2hbc) +

1

r
g̊bchbc

∣

∣

∣

∣

T

= −qQQ̄ , (15)

1

r2
KaKbQc∇̊a(r2hbc)

∣

∣

∣

∣

T

= −qKQ , (16)
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KaQbQc∇̊ahbc − QaQbKc∇̊ahbc

∣

∣

∣

T

= −qQQ , (17)

(

KaQbQ̄c + LaKbKc − QaKbQ̄c − Q̄aKbQc
)

∇̊ahbc

∣

∣

∣

T

= −2KaHa|T , (18)

(

KaLbQc + LaKbQc − QaKbLc + Q̄aQbQc
)

∇̊ahbc

∣

∣

∣

T

= −2QaHa|T , (19)

(

KaLbLc + LaQbQ̄c − QaQ̄bLc − Q̄aQbLc
)

∇̊ahbc

∣

∣

∣

T

= −2LaHa|T , (20)

where qKK and qQQ̄ are real-valued given functions on T and qKQ and qQQ are complex-valued given functions on T .
The first three equations (14),(15),(16) are related to the gauge freedom, the condition (17) controls the gravitational
radiation while the remaining conditions (18),(19),(20) enforce the constraint Ca = 0 on the boundary. The evolution
equation (12) has the form (1) where E is the vector bundle of symmetric, covariant tensor fields on M and the
boundary conditions (14–20) have the form (3) where α = 1 and ca bc

de is in upper triangular form when expressed in
terms of the basis {KbKc, K(bLc), K(bQc), QbQc, Q(bQ̄c), L(bQc), LbLc}.

II. THE WAVE EQUATION ON A CURVED BACKGROUND

In this section we prove Theorem 1 for the case of a single wave equation

gab∇a∇bφ = S (21)

on M = [0, T ]× Σ. For simplicity, we also assume that gab and S are independent of φ. In this case, it is convenient
to choose ∇a to be the Levi-Civita connection with respect to gab. The IBVP consists in finding solutions of (21)
subject to the initial conditions

φ|Σ0
= φ0 , nb∇bφ

∣

∣

Σ0

= π0 , (22)

where φ0 and π0 are given functions on Σ0, and the boundary conditions
[

T b∇bφ + αN b∇bφ
]

T
= G, (23)

where G is a given function on T . Here, nb and N b denote the future-directed unit vector field to the time-slices Σt

and the outward unit normal vector field to T , respectively, T b is an arbitrary future-directed time-like vector field
which is tangent to the boundary surface T and α is a strictly positive function on T . Without loss of generality, we
assume that T a is normalized such that gabT

aT b = −1. Furthermore, by redefining φ and S if necessary, we may also
assume that the boundary data G vanishes identically.

In order to show well posedness for this problem, we use a geometric reduction to a first order symmetric hyperbolic
system with maximal dissipative boundary conditions [3, 4, 17]. First, introducing the variables Va = ∇aφ, the wave
equation can be rewritten as the first order system

∇aφ = Va , (24)

gab∇aVb = S, (25)

∇aVb −∇bVa = 0. (26)

Next, we specify any future-directed time-like vector field ua and contract the first and the last equation with it. This
yields the evolution system

£uφ = uaVa ≡ Π, (27)

gab∇aVb = S, (28)

£uVb = ∇bΠ, (29)

where £u denotes the Lie derivative with respect to ua. This system is subject to the initial and boundary conditions

φ|Σ0
= φ0 , nbVb

∣

∣

Σ0

= π0 , ι∗0Vb = ι∗0∇bφ0 , (30)
[

T bVb + αN bVb

]

T
= 0, (31)

where ι0 : Σ0 → M is the inclusion map, and subject to the constraint Ca = 0, where the constraint variable Ca is
defined as Ca = Va −∇aφ. The evolution equations (27) and (29) imply that Ca is Lie-dragged by the time evolution
vector field ua,

£uCa = 0.
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In the following, we assume that ua is pointing away from the domain at the boundary. This implies that a solution
of (27,28,29) with constraint-satisfying initial data automatically satisfies the constraints everywhere on M , and no
extra boundary conditions are needed in order to ensure that the constraint Ca = 0 propagates.

Still, there is a huge freedom in choosing the evolution vector field ua; different choices lead to first order evolution
systems (27,28,29) which are inequivalent to each other if the solution is off the constraint surface Ca = 0. In this
work we exploit this freedom in order to obtain energy estimates which allow for an appropriate control of the fields
not only in the bulk but also on the boundary of the domain (see the estimate (36) below). In order to analyze this,
following [17] we rewrite the evolution system (28,29) in the form

Aa
bc∇aV c ≡ −ua(∇aVb −∇bVa) + ub∇aV a = ubS,

where the symbol is given by Aa
bc = −uagbc +2δa

(buc). Since Aa
bc is symmetric in bc and since uaAa

bc = −uauagbc +
2ubuc is positive definite, the evolution system is symmetric hyperbolic. In particular, the evolution equations imply
that

∇a(Aa
bcV

bV c) = (∇aAa
bc)V

bV c + 2(ubV
b)S.

Integrating both sides of this equation over the manifold M = [0, T ]× Σ and using Gauss’ theorem, one obtains2

∫

ΣT

naAa
bcV

bV c =

∫

Σ0

naAa
bcV

bV c +

∫

T

NaAa
bcV

bV c −
∫

M

[

(∇aAa
bc)V

bV c + 2(ubV
b)S

]

. (32)

The following two conditions (see [4]) guarantee that the IBVP (27,28,29,30,31) is well posed:

(i) naAa
bc is positive definite.

(ii) For each p ∈ T , the subspace N−(p) ⊂ TpM consisting of the vectors V b(p) satisfying the boundary condition
(31) at p is maximal non-positive. This means that NaAa

bc(p)V b(p)V c(p) ≤ 0 for all V b(p) ∈ N−(p) and that
N−(p) does not posses a proper extension with this property.

For the following, we choose the time evolution vector field ua such that ua is everywhere future-directed and
time-like on M and such that ua lies in the plane spanned by T a and Na at each point of the boundary, more
specifically,

ua|
T

= T a + δNa,

with 0 < δ < 1 a function on T . The following two lemmas imply the satisfaction of the conditions (i) and (ii) for an
appropriate choice of δ.

Lemma 2 naAa
bc(p) is positive definite for all p ∈ M .

Proof. Let hab = gab + nanb be the induced metric on Σt and expand ua = µ(na + ūa), where µ = −naua. Since ua

is future-directed and time-like, µ > 0 and ūaūa < 1. Therefore,

naAa
bc = µ

(

hbc + nbnc + 2n(būc)

)

is positive definite.

Lemma 3 Let 0 < δ ≤ α(1 + α2)−1. Then, the boundary spaces N−(p) are maximal non-positive for all p ∈ T .

Proof. (cf. appendix B in Ref. [9]) Fix a point p ∈ T , and let V b ∈ TpM . We have

NaAa
bcV

bV c =
[

δ TbTc + δ NbNc + 2T(bNc) − δ Hbc

]

V bV c

= −δ
[

(T bVb)
2 + (N bVb)

2 + HbcV
bV c

]

+ 2
[

δ(T bVb)
2 + δ(N bVb)

2 + (T bVb)(N
cVc)

]

,

2 Notice that since na is future directed, its flow increases t; hence in coordinates (t, xi) where t parametrizes [0, T ] and xi are local
coordinates on Σ, we have nt > 0 and nt < 0.
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where Hbc = gbc + TbTc −NbNc is the induced metric on the orthogonal complement of the plane spanned by T b and
N b. Eliminating the terms (T bVb) in the second square bracket on the right-hand side using the boundary condition
(31) we obtain

NaAa
bcV

bV c = −δ
[

(T bVb)
2 + (N bVb)

2 + HbcV
bV c

]

+ 2
[

δ(α2 + 1) − α
]

(N bVb)
2. (33)

The last term on the right-hand side is non-positive by the assumption of the lemma. Therefore, NaAa
bc is negative-

definite on the subspace of vectors V a satisfying the boundary condition. Finally, we observe that N−(p) is maximal
since its dimension is d = dimTpM − 1 while the symmetric bilinear form NaAa

bc has signature (1, d).

If we relax the assumption of homogeneous boundary data and replace the condition (31) by the condition
[

T bVb + αN bVb

]

T
= G, (34)

we obtain, instead of (33),

NaAa
bcV

bV c = −δ
[

(T bVb)
2 + (N bVb)

2 + HbcV
bV c

]

+ 2
[

δ(α2 + 1) − α
]

(N bVb)
2 + 2(1 − 2δα)(N bVb)G + 2δ G2.

Let 0 < ρ < 1 and set δ = (1 − ρ)α(1 + α2)−1. Then, we have (cf. appendix B in Ref. [9])

NaAa
bcV

bV c ≤ −δ
[

(T bVb)
2 + (N bVb)

2 + HbcV
bV c

]

+

[

2δ +
(1 − 2δα)2

2αρ

]

G2. (35)

Using this and the positivity of naAa
bc in the identity (32) we obtain the estimate

∫

Σt

naAa
bcV

bV c ≤
∫

Σ0

naAa
bcV

bV c − C1

∫

Tt

naAa
bcV

bV c + C2

∫

Tt

G2 + C3

t
∫

0





∫

Σs

naAa
bcV

bV c +

∫

Σs

S2



 ds

for all 0 ≤ t ≤ T , where C1, C2 and C3 are strictly positive constants which are independent of V b, and Tt := [0, t]×∂Σ.

Applying Gronwall’s lemma3 to the function y(t) :=
t
∫

0

∫

Σs

naAa
bcV

bV cds we obtain from this

Lemma 4 Let T > 0. There is a constant C = C(T ) ≥ 1 such that all smooth enough solutions to the IBVP
(28,29,30,34) satisfy the inequality

∫

Σt

naAa
bcV

bV c +

∫

Tt

naAa
bcV

bV c ≤ C





∫

Σ0

naAa
bcV

bV c +

∫

Tt

G2 +

t
∫

0





∫

Σs

S2



 ds



 , (36)

for all 0 ≤ t ≤ T , where Tt := [0, t] × ∂Σ.

Since any solution of this problem also satisfies uaCa = uaVa −£uφ = 0, £uCa = 0 and ι∗0Ca = ι∗0(Va −∇aφ) = 0,
and since ua points outward from the domain at T , the constraint Ca = 0 is satisfied everywhere on M . From this
and the previous lemma, we have established:

Theorem 2 The second order problem (21,22,23) is strongly well posed: given smooth initial and boundary data φ0,
π0 and G satisfying the usual compatibility conditions at ∂Σ0, there exists a unique smooth solution satisfying the
estimate (36) with V a replaced by ∇aφ.

Remark 1 The important feature of the estimate (36) is the second term on the left-hand side which yields a L2

boundary estimate for the gradient of φ. This estimate is obtained by choosing the time evolution vector field ua in
such a way that the boundary matrix NaAa

bc is negative definite on the subspace of vectors satisfying the boundary
conditions. As we will see (Lemma 6 in the next section), this property is important for systems of wave equations
since it allows the coupling of the boundary conditions through small enough terms involving first derivatives of the
fields. If, on the other hand, ua is chosen to be tangent to the boundary, the boundary matrix has a nontrivial kernel
and one does not obtain an estimate for the gradient of φ on the boundary from the first order system. However, this
does not affect the strong well posedness of the second order system which is independent of ua.

3 See, for instance, Lemma 3.1.1 in Ref. [18]
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As an example, consider the wave equation on the half-plane Σ = R+ × R
2 with the flat metric g = −dt2 + dx2 +

dy2 + dz2. In this case, we have

na∂a = ∂t , Na∂a = −∂x T a∂a =
1

p
(∂t − βy∂y − βz∂z) ,

with (βy)2 + (βz)2 < 1 and p :=
√

1 − (βy)2 − (βz)2, and the boundary condition (23) reduces to

[φt + pαφx − βyφy − βzφz]x=0 = pG, (37)

where φt := ∂tφ etc. Choosing ua = p(T a + δNa) with 0 < δ < 1 the energy norm for this problem reads

∫

Σt

naAa
bcV

bV c =

∞
∫

0

∞
∫

−∞

∞
∫

−∞

[

φ2
t + φ2

x + φ2
y + φ2

z + 2φt (δpφx + βyφy + βzφz)
]

dy dz dx.

This is similar to the norm we used in Ref. [9] for obtaining an a priori energy estimates for the second order wave
equation with boundary condition (37).

III. SYSTEMS OF WAVE EQUATIONS AND PROOF OF MAIN THEOREM

In order to show that the system (1,2,3) yields a well posed IBVP, we follow the arguments given in Sect. II
and reduce it to a first order symmetric hyperbolic system with maximal dissipative boundary conditions. Let
Va

A := ∇aΦA, and let ua(p, Φ) denote a future-directed time-like vector field on M such that

ua|
T

= T a + δNa,

with 0 < δ < 1 a function on T to be determined. Then (1) can be rewritten as the first order evolution system

ua∇aΦA = uaVa
A, (38)

gab(Φ)∇aVb
A = SA(Φ, V ), (39)

ua
(

∇aVb
A −∇bVa

A
)

= uaRA
BabΦ

B, (40)

where RA
Bab denotes the curvature belonging to the connection ∇a. At this point, we stress that the connection ∇a

is a fixed background connection on the vector bundle E, and not the Levi-Civita connection belonging to the metric
gab(Φ), so that RA

Bab does not depend on Φ nor its derivatives. The system (38,39,40) is subject to the constraint
Cb

A = 0, where Cb
A := ∇bΦ

A − Vb
A. Eqs. (38,40) imply that the constraint variable Cb

A is Lie-dragged by ua:

£uCb
A ≡ ua∇aCb

A + (∇bu
a)Ca

A = 0.

Therefore, any smooth enough solution of the first order problem (38,39,40) belonging to initial data with Cb
A = 0

satisfies the constraint Cb
A = 0 everywhere it is defined. The initial condition is

ΦA
∣

∣

Σ0

= ΦA
0 , nbV A

b

∣

∣

Σ0

= ΠA
0 , ι∗0V

A
b = ι∗0∇bΦ

A
0 , (41)

and the boundary condition (3) reads

[

T bVb + αN bVb

]

T
= ca A

B Va
B

∣

∣

T
+ dA

B ΦB
∣

∣

T
+ GA. (42)

In order to analyze the well posedness of the first order IBVP (38,39, 40,41,42) we first linearize the system by
replacing the coefficients gab(Φ), SA(Φ,∇Φ), T b(Φ), N b(Φ), α(Φ), ca A

B(Φ), dA
B(Φ) by smooth functions gab, SA, T b,

N b, α, ca A
B, dA

B, respectively. Local in time well posedness for the original quasilinear system follows by iteration
from the well posedness result for the linear system with enough differentiability4. Next, we use a partition of unity in
order to localize the problem. With this, it is sufficient to consider a local trivialization ϕ : U×R

N 7→ π−1(U) of E such
that Ū ⊂ M is compact and contains a portion U of the boundary T . Let ε > 0. According to the assumption there

4 See, for instance, [10, 18].
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exists a smooth map Jε : U → GL(N, R), p 7→ (Jε(p)) such that the transformed matrix coefficients c̃a := Jεc
aJ−1

ε

satisfy the condition (4) for all vector-valued one-forms Va on U . Setting hAB(ε) := (JT
ε hJε)AB = hCD(Jε)

C
A(Jε)

D
B,

we can reformulate this condition by stating that

hAB(ε)ca A
C(Φ)cb B

D(Φ)Va
CVb

D ≤ εhAB(ε)eab(Φ)Va
AVb

B , (43)

for all vector-valued one-forms V A
a on U . The system (38,39,40) can be written in the form

(

−ΛhAB(ε)ua∇a 0
0 hAB(ε)Aa

bc∇a

) (

ΦB

V c B

)

= S(Φ, V ), (44)

where Λ > 0 is to be determined, Aa
bc = −uagbc + 2δa

(buc) and

S(Φ, V ) =

(

−ΛhAB(ε)uaVa
B

−hAB(ε)RB
CabΦ

Cua + hAB(ε)ubS
B(Φ, V )

)

.

Let B(na; (Ψ, W ), (Φ, V )) denote the bilinear form belonging to the principal symbol of (44), that is, for an arbitrary
one-form wa on M define

B(wa; (Ψ, W ), (Φ, V )) := −ΛuawahAB(ε)ΨAΦB + hAB(ε)waAa
bcW

b AV c B.

We have

Lemma 5 Let Λ > 0. Then, B(na; (Ψ, W ), (Φ, V )) is symmetric in (Ψ, W ), (Φ, V ) and positive definite for wa = ua

and wa = na. Therefore, the system (44) is symmetric hyperbolic.

Proof. The symmetry property follows immediately from the symmetry of hAB(ε) and the symmetry of Aa
bc in bc. In

order to check the positivity statements, let wa = ua, γ :=
√−uaua and ûa := γ−1ua. Since Aa

bcua = γ2 [gbc + 2ûbûc],
we find

B(ua; (Φ, V ), (Φ, V )) = γ2
[

ΛhAB(ε)ΦAΦB + (gab + 2ûaûb)hAB(ε)Va AV b B
]

which is manifestly positive definite. The proof that B(na; (Φ, V ), (Φ, V )) is positive definite is similar to the proof
of Lemma 2.

As in the previous section we obtain well posedness of the linearized system provided we can show that each
boundary space

N−(p) := {(Φ, V ) ∈ R
N × R

(d+1)N :
[

T b(p) + α(p)N b(p)
]

Vb
A = ca A

B(p)Va
B + dA

B(p)ΦB}, p ∈ U ,

is maximal non-positive with respect to B(Na; (Φ, V ), (Φ, V )). This is the statement of the next lemma.

Lemma 6 Set δ := α(1 + α2)−1/2 and κ := 2[2δ + (1 − 2δα)2/α]2. Choose ε > 0 small enough such that κε < δ and
Λ > 0 large enough such that 2κhAB(ε)dA

CdB
DΦCΦD ≤ δΛhAB(ε)ΦAΦB for all Φ ∈ R

N . Then, the boundary space
N−(p) is maximal non-positive for all p ∈ U .

Proof. Let p ∈ U . We have, as in the proof of Lemma 3,

B(Na; (Φ, V ), (Φ, V )) = −ΛuaNahAB(ε)ΦAΦB + hAB(ε)NaAa
bcV

b AV c B

= −δhAB(ε)
[

(T aT b + NaN b + Hab)Va
AVb

B + ΛΦAΦB
]

+ 2
[

δ T aT b + δ NaN b + T aN b
]

hAB(ε)Va
AVb

B. (45)

Let (ΦA, Va
A) ∈ N (p). Then, T aVa

A = −αNaVa
A + G̃A with G̃A := ca A

BVa
B + dA

BΦB, and we may use this
equation in order to eliminate the terms (T aVa

A) in the second bracket on the right-hand side of (45). This yields

B(Na; (Φ, V ), (Φ, V )) ≤ −δhAB(ε)
[

(T aT b + NaN b + Hab)Va
AVb

B + ΛΦAΦB
]

+

[

2δ +
(1 − 2δα)2

α

]

hAB(ε)G̃AG̃B ,

where we have set δ := α(1 + α2)−1/2 and used the boundary estimate (35) with ρ = 1/2. Now,

hAB(ε)G̃AG̃B ≤ 2hAB(ε)ca A
CVa

Ccb B
DVb

D + 2hAB(ε)dA
CΦCdB

DΦD

≤ 2εhAB(ε)eabVa
AVb

B + 2hAB(ε)dA
CdB

DΦCΦD, (46)
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where we have used the estimate (43) in the last step. Recalling that eab = gab + 2T aT b = T aT b + NaN b + Hab and
the definition of κ in the assumption of the lemma we find

B(Na; (Φ, V ), (Φ, V )) ≤ −δhAB(ε)
[

eabVa
AVb

B + ΛΦAΦB
]

+ κ
[

εhAB(ε)eabVa
AVb

B + hAB(ε)dA
CdB

DΦCΦD
]

.

The non-positivity of N−(p) now follows from the assumptions on ε and Λ. Finally, we observe that an element in
N−(p) is characterized by N conditions in a (d + 2)N -dimensional space which implies that dimN−(p) ≥ (d + 1)N .
On the other hand, from Eq. (45) we see that the signature of B(Na; ., .) is given by (N, (d + 1)N). Therefore,
dimN−(p) = (d + 1)N and the maximality of N−(p) follows.

IV. BOUNDARY CONDITIONS FOR ISOLATED SYSTEMS

We consider here boundary conditions for an isolated system emitting radiation. If, for computational purposes,
the evolution domain of such a system has a finite (artificial) boundary, some artificial boundary condition must
be imposed. If one knew the correct boundary data for the analytic problem, then in principle one could use any
boundary condition corresponding to a well posed IBVP. However, the determination of the correct boundary data
is in general a global problem, in which the boundary data must be determined by extending the solution to infinity
either by matching to an exterior (linearized or nonlinear) solution obtained by some other means. The matching
approach has been reviewed elsewhere [19]. Here we consider an alternative approach in which homogeneous boundary
data can be assigned in such a way that the accuracy of the boundary condition becomes exact in the limit that the
boundary is extended to infinity. (Such boundary conditions would also be beneficial to the matching approach
because the corresponding boundary data would be small so that numerical or other error would also have a small
effect.) Artificial boundary conditions for an isolated radiating system for which homogeneous data is approximately
valid are commonly called absorbing boundary conditions (see e.g. [20, 21, 22, 23, 24, 25]), or nonreflecting boundary
conditions (see e.g. [26, 27, 28]) or radiation boundary conditions (see e.g. [29]). Such boundary conditions are
advantageous for computational use. However, local artificial boundary condition are not perfectly nonreflecting in
general. Here, to be more precise, we consider nonreflecting boundary conditions in the sense of boundary conditions
for a well posed problem for which homogeneous data produces no spurious reflection in the limit that the boundary
approaches an infinite sphere. The extensive literature on improved versions of nonreflecting boundary conditions
involves higher order and nonlocal methods. Our interest here is to investigate the optimal choice of local first
order homogeneous boundary conditions on a spherical boundary for the constrained Maxwell and linearized Einstein
problems expressed in terms of the gauge dependent variables Aµ and γµν . See [30, 31, 32] for the construction of
higher-order and higher-accurate boundary conditions for Einstein’s equations.

We base our discussion on waves from an isolated system satisfying a system of flat space wave equations. We
use Greek indices to denote standard inertial coordinates xµ = (t, x, y, z) in which the components of the Minkowski
metric ηµν are diag(−1, 1, 1, 1). In the case of a scalar field Φ, we thus consider the wave equation

ηαβ∂α∂βΦ =
(

−∂2
t + ∂2

x + ∂2
y + ∂2

z

)

Φ = S,

where the source S has compact support. Outside the source, we assume that the solution has the form

Φ =
f(t − r, θ, φ)

r
+

g(t − r, θ, φ)

r2
+

h(t, r, θ, φ)

r3
, (47)

where (r, θ, φ) are standard spherical coordinates and f , g and h and their derivatives are smooth bounded functions.
These assumptions determine the exterior retarded field of a system emitting outgoing radiation. The simplest case
is the monopole radiation

Φ =
f(t − r)

r

which satisfies (∂t + ∂r)(rΦ) = 0. This motivates the use of a Sommerfeld condition

1

r
(∂t + ∂r)(rΦ)|R = q(t, R, θ, φ)

on a finite boundary r = R.
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The resulting Sommerfeld boundary data q in the general case (47) falls off as 1/R3, so that a homogeneous
Sommerfeld condition introduces an error which is vanishingly small for increasing R. As an example, for the dipole
solution

ΦDipole = ∂z

f(t − r)

r
= −

(

f ′(t − r)

r
+

f(t − r)

r2

)

cos θ

we have

q =
f(t − r) cos θ

R3
.

A homogeneous Sommerfeld condition at r = R would lead to a solution Φ̃Dipole containing a reflected ingoing wave.
For large R,

Φ̃Dipole ∼ ΦDipole + κ
F (t + r − 2R) cos θ

r
,

where ∂tf(t) = F (t) and the reflection coefficient has asymptotic behavior κ = O(1/R2). More precisely, the Fourier
mode

Φ̃Dipole(ω) = ∂z

(

eiω(t−r)

r
+ κω

eiω(t+r−2R)

r

)

,

satisfies the homogeneous boundary condition (∂t + ∂r)(rΦ̃Dipole(ω)|R = 0 with reflection coefficient

κω =
1

2ω2R2 + 2iωR− 1
∼ 1

2ω2R2
. (48)

Note that (59) and (62) satisfy

κ ∼ qR. (49)

In the case of a system of equations κ will have N components corresponding to the number of modes generated in
the reflected wave. The boundary conditions lead to a system of simultaneous equations relating κ to the components
of the Sommerfeld data q. If these equations are nondegenerate then (49) continues to hold. However, degeneracies
could conceivably lead to weaker asymptotic falloff of κ. (It would be interesting to determine whether such cases
exist.) In any case, (49) gives the optimum allowable behavior of the reflection coefficients so that the asymptotic
behavior of the Sommerfeld data q is a good indicator of the quality of the boundary condition. This forms the basis
of our investigation of the Maxwell and linearized Einstein equations with a spherical boundary in sections IVB and
IVC.

A. A plane boundary

The key ideas in the above example are that (i) the Sommerfeld condition is only satisfied exactly by waves traveling
in the radial direction and (ii) in the asymptotic limit r → ∞ all waves from an isolated system propagate in the
radial direction. This allows us to reformulate our discussion of the Sommerfeld condition by considering a wave Φ
propagating in the domain x < 0, which is incident on a plane boundary at x = 0 with the boundary condition

Kα∂αΦ|x=0 = 0,

where Kα∂α = ∂t + ∂x is the characteristic direction determined by the outward normal to the boundary ∂x and the
time direction ∂t. This homogeneous condition is satisfied for plane waves Φ = G(t + kxx + kyy + kzz) incident on
the boundary only for the single case (kx, ky, kz) = (1, 0, 0), i.e. a plane wave propagating in the outgoing normal
direction. Plane waves in the normal direction pass through the boundary whereas plane waves incident in other
directions on the boundary give rise to a reflected wave. We will take advantage of this simplification of the plane
wave case in discussing boundary conditions for electromagnetic and gravitational waves. The results then suggest how
to formulate boundary conditions for an isolated electromagnetic or gravitational system with a spherical boundary
of radius R, where in the limit R → ∞ all radiation is incident normally.
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For the electromagnetic case, we describe the field by means of a vector potential Aµ satisfying the Lorentz gauge
condition. Maxwell’s equations in a flat spacetime with Minkowski metric ηµν then reduce to the wave equations

ηαβ∂α∂βAµ = 0

subject to the constraint

C := ∂µAµ = 0

introduced by the Lorentz gauge condition. This constraint keeps us from requiring that each component of Aµ satisfy
a homogeneous Sommerfeld condition, in contrast to the scalar example. The electromagnetic case also differs from
the scalar case because of the remaining gauge freedom allowed by the Lorentz condition.

An electromagnetic plane wave incident in the outgoing normal direction can be described by the real part of the
vector potential

Aµ = F (t − x)Qµ + G(t − x)Kµ ,

where F (t − x) is complex, Qµ = Y µ + iZµ is a complex null polarization vector, G(t − x) represents gauge freedom
and Kµ = T µ + Xµ, in terms of the orthonormal tetrad (T µ, Xµ, Y µ, Zµ) aligned with the coordinate axes satisfying

ηµν = −TµTν + XµXν + YµYν + ZµZν .

In order to formulate a gauge invariant boundary condition we consider the corresponding electromagnetic field
tensor

Fµν = ∂µAν − ∂νAµ = −F ′(t − x)(KµQν − QµKν).

Here we adopt the notation ∂uF (u) = F ′(u). For this plane wave, all components of Fµν satisfy

KµFµν = 0.

However, this condition rules out the possibility of a static electric field oriented normal to the boundary. For the
purpose of formulating a boundary condition which only restricts propagating waves it suffices to consider the weaker
condition

KµQνFµν = 0. (50)

In terms of the electric and magnetic field components tangential to the boundary, (50) corresponds to the plane
wave relations Etan · Btan = 0 and |Etan| = |Btan|, with the corresponding Poynting vector in the outward normal
direction.

We can incorporate (50) into the following homogeneous Sommerfeld boundary conditions for the vector potential:

KνKµ∂µAν = 0, (51)

QνKµ∂µAν = KνQµ∂µAν . (52)

The remaining boundary condition can be expressed in Sommerfeld form by rewriting the constraint as

C =
1

2

(

−LνKµ − KνLµ + QνQ̄µ + Q̄νQµ
)

∂µAν = 0, (53)

where Lµ = T µ − Xµ. Here (Kµ, Lµ, Qµ) form a null tetrad according to the conventions

ηµν = −K(µLν) + Q(µQ̄ν). (54)

We assume throughout the following that the spin transformation freedom Qµ → eiαQµ has been restricted according
to Kµ∂µα = 0. The Sommerfeld boundary conditions (51), (52) and (53) have the required hierarchical, upper
triangular form for a well posed IBVP, see Lemma 1.

For the purpose of extending this approach to the gravitational case, we write the linearized Einstein vacuum
equations in the form

ηαβ∂α∂βγµν = 0 (55)
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subject to the harmonic constraints

Cν := −∂µγµν = 0. (56)

Here, to linearized accuracy, we set
√−ggµν = ηµν + γµν so that γµν represents the perturbation of the densitized

metric. (Indices of linearized objects are raised and lowered with the Minkowski metric.)
A plane gravitational wave incident on the boundary in the outgoing normal direction is given by

γµν = F (t − x)QµQν + K(µξν)(t − x) − 1

2
ηµνKαξα(t − x),

where ξν(t − x) describes the gauge freedom.
In order to formulate a boundary condition with gauge invariant meaning analogous to (50) in the Maxwell case,

we consider the linearized curvature tensor

− 2Rµνρσ = ∂ρ∂νγµσ − ∂σ∂νγµρ − ∂ρ∂µγνσ + ∂σ∂µγνρ − 1

2
(ηµσ∂ρ∂νγ − ηµρ∂σ∂νγ − ηνσ∂ρ∂µγ + ηνρ∂σ∂µγ)

= 4F ′′(t − x)K[µQν]Q[ρKσ] . (57)

Plane wave boundary conditions on the curvature tensor could be imposed by requiring that the Newman-Penrose
component Ψ0 = KµQνQρKσRµνρσ vanish on the boundary. (See [2] for a discussion of the appropriateness of this
boundary condition.) However, this requirement involves second derivatives in the normal direction when expressed
in terms of γµν . Instead, we require Ψ := KµQνQρT σRµνρσ = 0 on the boundary. The condition Ψ = 0 is equivalent
to Ψ0 = 0 if the Ricci component RµνQµQν = 0, e.g. if the vacuum Einstein equations are satisfied.

A straightforward calculation leads to

− 2Ψ = KµQνQρT σ(∂ρ∂νγµσ − ∂σ∂νγµρ − ∂ρ∂µγνσ + ∂σ∂µγνρ) +
1

2
QνQρ∂ν∂ργ

= KµQνQρT σ(−∂σ∂νγµρ − ∂ρ∂µγνσ + ∂σ∂µγνρ) +
1

2
(KµKσ + QµQ̄σ)QνQρ∂ν∂ργµσ

= Qν∂ν

(

1

2
(KµKσ + QµQ̄σ)Qρ∂ργµσ − KµQρT σ∂µγσρ

)

+ T σ∂σ

(

− KµQνQρ∂νγµρ + KµQνQρ∂µγνρ

)

. (58)

Thus, besides containing no second derivatives normal to the boundary, the condition Ψ = 0 can be reduced to two
first order conditions by factoring out the Qν∂ν and T σ∂σ derivatives in (58) which are tangential to the boundary.
There are many ways this can be done. In order to obtain first order conditions which fit into a hierarchy of Sommerfeld
conditions, we modify (58) according to the steps

− 2Ψ = Qν∂ν

(

1

2
(KµKσ + QµQ̄σ)Qρ∂ργµσ − 1

2
KρQµLσ∂ργµσ − 1

2
KµQρKσ∂µγσρ

)

+ T σ∂σ

(

− KµQνQρ∂νγµρ + KµQνQρ∂µγνρ

)

(59)

=
1

2
Qν∂ν

(

(KµKσQρ + QµKσLρ − QµQσQ̄ρ)∂ργµσ − 2QµCµ − KµQρKσ∂µγσρ

)

+ T σ∂σ

(

− KµQνQρ∂νγµρ + KµQνQρ∂µγνρ

)

(60)

=
1

2
Qν∂ν

(

(KµKσQρ − QµQσQ̄ρ)∂ργµσ − 2KµQρKσ∂µγσρ − 2QµCµ

)

+ T σ∂σ

(

KµQνQρ∂µγνρ

)

. (61)

Thus since the derivatives Qν∂ν and T ν∂ν are tangential to the boundary, we can enforce Ψ = 0 on the boundary
through the first order boundary conditions

QαQβKµ∂µγαβ = 0, (62)

KαQβKµ∂µγαβ − 1
2KαKβQµ∂µγαβ + 1

2QαQβQ̄µ∂µγαβ = 0. (63)
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These two boundary conditions can then be included in a hierarchical set of Sommerfeld boundary conditions, ac-
cording to the example

KαKβKµ∂µγαβ = 0, (64)

QαQβKµ∂µγαβ = 0, (65)

QαQ̄βKµ∂µγαβ = 0, (66)

KαQβKµ∂µγαβ − 1
2KαKβQµ∂µγαβ + 1

2QαQβQ̄µ∂µγαβ = 0. (67)

The constraints Cρ = 0, which determine the remaining boundary conditions, can be cast in the Sommerfeld form

Cρ =
1

2

(

LνKµ + KνLµ − Q̄νQµ − QνQ̄µ

)

∂µγνρ = 0,

which can also be incorporated into the hierarchy.
However, there are many alternative possibilities to (64) - (67) which preserve the hierarchical Sommerfeld structure

and lead to a well posed IBVP. In the absence of a clear geometric approach, we next examine the boundary conditions
appropriate to an isolated system by considering the resulting reflection off a spherical boundary.

B. Application to Maxwell fields with a spherical boundary

In the case of a general retarded solution for a massless scalar wave equation, we found that a Sommerfeld boundary
condition on a spherical boundary of radius R required data q = O(1/R3). Homogeneous Sommerfeld data gave rise
to an ingoing wave with reflection coefficient κ = O(1/R2), as in (48). This is the best that can be achieved with
a local first order homogeneous boundary condition on a spherical boundary. We now investigate the corresponding
result for the constrained Maxwell equations expressed in terms of a vector potential Aµ.

In doing so, we associate spherical coordinates (r, xA), xA = (θ, φ), in a standard way with the Cartesian coordinates
xi = (x, y, z), e.g. z = r cos θ. As in (54) we introduce a null tetrad (Kµ, Lµ, Qµ) adapted to the boundary, where now
Kµ∂µ = ∂t + ∂r, Lµ∂µ = ∂t − ∂r and we fix the spin-rotation freedom in the complex null vector vector Qµ = (0, Qi)
by setting

Qi =
∂xi

∂xA
QA, (68)

where

QA =
(

Qθ, Qφ
)

=
1

r

(

1,
i

sin θ

)

.

We describe outgoing waves in terms of the retarded time u = t − r.
In order to investigate the vector potential describing the exterior radiation field emitted by an isolated system we

introduce a Hertz potential with the symmetry

Hµν = H [µν] +
1

4
ηµνH.

Then the vector potential

Aµ = ∂νHµν

satisfies the Lorentz gauge condition and generates a solution of Maxwell’s equations provided the Hertz potential
satisfies the wave equation. The trace H represents pure gauge freedom.

We consider outgoing dipole waves oriented with the z-axis. Other dipole waves can be generated by a rotation.
Higher multipole waves can be generated by taking spatial derivatives.

The choice H = Zα∂α
F (u)

r
, H [µν] = 0 gives rise to the dipole gauge wave

Aµ =

(

F ′′(u)

r
+

F ′(u)

r2

)

cos θKµ +

(

2F ′(u)

r2
+

3F (u)

r3

)

cos θ∂µr −
(

F ′(u)

r2
+

F (u)

r3

)

Zµ
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with components

KµAµ =

(

F ′(u)

r2
+

2F (u)

r3

)

cosθ,

QµAµ =

(

F ′(u)

r2
+

F (u)

r3

)

sin θ. (69)

In appendix A we give some useful formulae underlying the calculation leading to (69) and the following results.

The choice Hµν = (T µZν − ZµT ν)f(u)
r

gives rise to a dipole electromagnetic wave

Aµ = −
(

f ′(u)

r
+

f(u)

r2

)

Tµ cos θ − f ′(u)

r
Zµ

with components

AµKµ =
f(u)

r2
cosθ,

AµQµ =
f ′(u)

r
sin θ. (70)

The choice Hµν = (XµY ν − Y µXν)f(u)
r

gives rise to a dipole electromagnetic wave with the dual polarization

Aµ = −
(

f ′(u)

r
+

f(u)

r2

)(

yXµ

r
− xYµ

r

)

with components

AµKµ = 0,

AµQµ = i

(

f ′(u)

r
+

f(u)

r2

)

sin θ. (71)

We wish to formulate boundary conditions which generalize the Sommerfeld hierarchy (51) and (52) to a spherical
boundary of radius R in a way which minimizes reflection. By inspection of (69), (70) and (71), we consider the choice

1

r2
Kµ∂µ(r2KνAν) = qK , (72)

1

r
Kµ∂µ(rQνAν) − Qµ∂µ(KνAν) = qQ, (73)

chosen to minimize the asymptotic behavior of the Sommerfeld data. As before, the constraint determines the
remaining boundary condition as part of the Sommerfeld hierarchy.

For the dipole gauge wave (69),

qK = −2F (u) cos θ

R4
, qQ = 0;

for the dipole electromagnetic wave (70),

qK = 0, qQ =
f(u)

R3
sin θ;

and for the dual dipole electromagnetic wave (71)

qK = 0, qQ =
−if(u)

R3
sin θ.

Overall this implies qK = O(1/R4) and qQ = O(1/R3). We have checked that homogeneous Sommerfeld data leads
to reflection coefficients with overall behavior κ = O(1/R2) in accordance with (49).

Note that the relations (A1) and (A8) allow us to express (72) and (73) in the form

1

r2
KνKµ∂µ(r2Aν) = qK , (74)

QνKµ∂µAν − KνQµ∂µAν = qQ, (75)

which correspond to (7) and (8) when ∂µ is generalized to the connection ∇a in a curved space background. Here
(75) is equivalent to the gauge invariant condition

QνKµFµν = qQ. (76)
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C. Application to linearized gravitational fields with a spherical boundary

The gravitational case is more complicated than the electromagnetic case because the geometry of the boundary is
coupled with the boundary condition. Additionally, there are no gauge invariant quantities, analogous to (76) in the
electromagnetic case, on which to base first order boundary conditions. We begin with a discussion of how to adapt
to a curved boundary the first order version of the Ψ boundary condition given in Sect. IV A for a plane boundary.

In the nonlinear treatment of a curved boundary with unit outer normal Na we can decompose the metric according
to

gab = τab + NaNb ,

where τab is the metric intrinsic to the time-like boundary. Let Da denote the covariant derivative associated with
τab. The extrinsic curvature of the boundary is

Nab = τa
c∇cNb .

We complete an orthonormal basis by setting

τab = −TaTb + Q(aQ̄b)

in terms of a time-like vector T a and complex null vector Qa tangent to the boundary.
We decompose Ψ := KaQbQcT dRabcd = ΨT + ΨN and the Weyl component Ψ0 = KaQbQcKdRabcd = ΨT + ΨN +

2ΨTN , where Ka = T a + Na and

ΨT = T aQbQcT dRabcd , (77)

ΨN = NaQbQcT dRabcd , (78)

ΨTN = T aQbQcNdRabcd . (79)

When the vacuum Einstein equations are satisfied the Riemann curvature tensor may be replaced by the Weyl tensor
whose symmetry implies ΨTN = 0. Therefore, in this case, Ψ = 0 implies the vanishing of the Newman-Penrose Weyl
component Ψ0 = 0.

A short calculation gives the embedding formulae

ΨN = QbQcT d(DdNbc − DbNcd)

and

ΨT = T aQbQcT d
(

(3)Rabcd − NacNbd + NbcNad

)

,

where (3)Rabcd is the intrinsic curvature to the boundary, i.e.

T aQbQcT d(3)Rabcd = QbQcT d(DdDc − DcDd)Tb .

(These are the embedding equations for the Cauchy problem corrected for the space-like character of the normal to
the boundary.)

We now apply these results to a spherical boundary r = R in linearized theory off a Minkowski background, i.e
gµν = ηµν +ǫhµν in standard inertial coordinates xµ, where ǫ is the linearization parameter. We choose Tµ = ∂µt+O(ǫ)
and Nµ = ∂µr+O(ǫ). Then DµTν = O(ǫ) and Nµν = R−1Qµν +O(ǫ), where Qµν = Q(µQ̄ν) is the metric of a 2-sphere
of radius R. We choose the basis to satisfy T µDµTν = 0 and T µDµQν = 0, so that

ΨT = T µQνQρT σ(3)Rµνρσ + O(ǫ2) = T σDσ(QνQρDρTν) + O(ǫ2)

and

ΨN = T σDσ(QνQρNρν) − QρDρ(Q
νT σNσν) +

1

2
Qρ(DρQµ)Q̄µQνT σNσν +

1

R
QνQρDρTν + O(ǫ2).

Thus the boundary conditions

QνQρ(Nρν + DρTν) = 0,

QνT ρNρν = 0, (80)
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imply to linearized accuracy that

Ψ =
1

R
QνQρDρTν . (81)

This gives a geometric formulation of the first differential order version of the requirement that Ψ → 0 in the asymptotic
limit R → ∞. However, Ψ0 = O(1/R5) in an asymptotically flat space-time, whereas (81) leads to Ψ = O(1/R2).
This is an indication that the boundary conditions (80) might lead to more reflection than desirable. Can this be
remedied by the introduction of, say, lower order terms in the boundary conditions? We investigate this question in
the context of a well posed IBVP based upon the harmonic version of the linearized Einstein equations (55) and (56),
where γµν = −hµν + 1

2ηµνh.
For this purpose, we now consider linearized outgoing waves in the harmonic gauge which are incident on a spherical

boundary. We model our discussion on the Maxwell case by using the gravitational analogue of a Hertz potential
Hµανβ [33, 34], which has the symmetries

Hµανβ = H [µα]νβ = Hµα[νβ] = Hνβµα

and satisfies the flat space wave equation

∂σ∂σHµανβ = 0.

Then the densitized metric perturbation

γµν = ∂α∂βHµανβ .

satisfies the linearized Einstein equations in the harmonic gauge. Outgoing waves can be generated from the potential

Hµανβ =
fµανβ(u)

r
,

and its spatial derivatives.
The incidence of such an outgoing wave on a boundary r = R leads to reflection, with the asymptotic falloff of

the reflection coefficients depending upon the choice of boundary conditions. We limit our calculation of reflection
coefficients to the case of outgoing quadrupole waves, which can be obtained from the Hertz potential

Hµανβ = Kµανβ f(u)

r
, (82)

where Kµανβ is a constant tensor. (All higher multipoles can be constructed by taking spatial derivatives.) Kµανβ has
21 independent components. However, the choice Kµανβ = ǫµανβ leads to γµν = 0 so there are only 20 independent
waves. These can be further reduced to pure gauge waves, corresponding to the trace terms in Kµανβ , e.g. Kµανβ =
ηανηβµ − ηµνηαβ leads to a monopole gauge wave. Linearized gravitational waves arise from the trace-free part
of Kµανβ . There are ten independent quadrupole gravitational waves, corresponding to spherical harmonics with
(ℓ = 2,−2 ≤ m ≤ 2) in the two independent polarization states. The other ten independent potentials comprise two
monopole gauge waves, three dipole gauge waves and five quadrupole gauge waves, for which the linearized Riemann
tensor vanishes. It suffices to consider the following examples of waves with quadrupole dependence aligned with
the z-axis. Other quadrupole waves can be obtained by rotation and have similar asymptotic behavior. Reflection
coefficients from the other monopole and dipole gauge waves are smaller and provide no further useful information.
The Hertz potential (82) gives rise to the perturbation

γµν = Kµανβ∂α∂β

f(u)

r
.

Appendix A lists useful formula for the calculations underlying the following results.

1. Quadrupole-monopole gauge wave

The Hertz potential

Hµανβ =

(

ZµηανZβ + ZνηβµZα − ZµηαβZν − ZβηνµZα

)

f(u)

r
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gives rise to a combination monopole-quadrupole gauge wave with components

QαQβγαβ = −2

(

f ′(u)

r2
+

f(u)

r3

)

sin2 θ,

QαQ̄βγαβ = −2

(

f ′′(u)

r
+

2f ′(u)

r2
+

2f(u)

r3

)

cos2 θ,

KαQβγαβ = −f(u)

r3
sin θ cos θ, (83)

KαKβγαβ = 2

(

f ′(u)

r2
+

2f(u)

r3

)

cos2 θ,

γ = −2f ′′(u)

r
cos2 θ + 2

(

f ′(u)

r2
+

f(u)

r3

)

(1 − 3 cos2 θ).

Here the sin2 θ dependence of the spin-weight 2 component QαQβγαβ is a pure 2Y20 spin-weighted spherical harmonic;
the sin θ cos θ dependence of the spin-weight 1 component KαQβγαβ is a pure 1Y20 harmonic; and the remaining spin-
weight 0 components are mixtures of Y00 and Y20.

2. Quadrupole gravitational wave

The trace-free Hertz potential

Hµανβ =

(

(T µZα − ZµT α)(XνY β − Y νXβ) + (XµY α − Y µXα)(T νZβ − ZνT β)

)

f(u)

r
(84)

gives rise to a perturbation with γ = 0 and components

QαQβγαβ = 2i sin2 θ

(

f ′′(u)

r
+

f ′(u)

r2

)

,

QαQ̄βγαβ = 0, (85)

KαQβγαβ = i cos θ sin θ

(

2f ′(u)

r2
+

3f(u)

r3

)

,

KαKβγαβ = 0,

which have spin-weighted ℓ = 2, m = 0 dependence.

3. Dual quadrupole gravitational wave

The trace-free Hertz potential

Hµανβ =

(

(T µZα − ZµT α)(T νZβ − ZνT β) − (XµY α − Y µXα)(XνY β − Y νXβ) +
1

3
(ηµνηαβ − ηµβηνα)

)

f(u)

r
,

obtained from the dual of (84), gives gives rise to a perturbation with γ = 0 and components

QαQβγαβ = 2 sin2 θ

(

f ′′(u)

r
+

f ′(u)

r2
+

f(u)

r3

)

,

QαQ̄βγαβ = 4(cos2 θ − 1

3
)

(

f ′(u)

r2
+

f(u)

r3

)

, (86)

KαQβγαβ = cos θ sin θ

(

2f ′(u)

r2
+

f(u)

r3

)

,

KαKβγαβ = 2(cos2 θ − 1

3
)
f(u)

r3
,

which have spin-weighted ℓ = 2, m = 0 dependence.
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4. Sommerfeld-type boundary conditions

Sommerfeld boundary conditions consistent with a well posed harmonic IBVP have wide freedom regarding (i)
partial derivative terms consistent with the hierarchical upper triangular structure of the boundary condition and (ii)
lower differential order terms. Here we consider three choices of of boundary conditions and compare their reflection
coefficients. One basic idea common to these choices has already be used in the scalar and Maxwell cases, i.e by
inspecting the asymptotic behavior of the waves (83), (85) and (86) we use the property Kα∂αf(u) = 0 to introduce
the appropriate powers of r that lead to the smallest asymptotic behavior in the resulting Sommerfeld data.

Our first choice of boundary conditions is the mathematically simplest choice

1

r2
KαKβKµ∂µ(r2γαβ) = qKK , (87)

1

r
QαQβKµ∂µ(rγαβ) = qQQ , (88)

1

r
QαQ̄βKµ∂µ(rγαβ) = qQQ̄ , (89)

1

r2
KαQβKµ∂µ(r2γαβ) = qKQ . (90)

This was the choice adopted in numerical tests verifying the stability of the harmonic IBVP with a plane boundary
[14]. The powers of r in (87)-(90) are based upon the leading asymptotic behavior of the components for the gauge
wave (83) and the gravitational waves (85) and (86). These choices lead to boundary data with the asymptotic
behavior

qKK ∼ f(u)

R4
,

qQQ ∼ f ′(u)

R3
,

qQQ̄ ∼ f ′(u)

R3
,

qKQ ∼ f(u)

R4
.

Thus the behavior of qQQ and qQQ̄ imply that the resulting reflection coefficients have overall asymptotic dependence

no weaker than κ = O(1/R2).
Our second choice, which is partially suggested by the electromagnetic case (73) and leads to weaker reflection,

consists of the modifications

1

r2
KαKβKµ∂µ(r2γαβ) = qKK , (91)

1

r2
KαQβKµ∂µ(r2γαβ) = qKQ , (92)

1

r2
QαQ̄βKµ∂µ(r2γαβ) − γ

r
= qQQ̄ , (93)

QαQβKµ∂µγαβ − QαKβQµ∂µγαβ = qQQ . (94)

Now q.. ∼ f(u)/R4 for both gravitational quadrupole waves. For the gauge waves, qQQ̄ ∼ f ′(u)/R3. Using the Regge-
Wheeler-Zerilli perturbative formulation and the metric reconstruction method described in [35] we have independently
checked that this leads to reflection coefficients κ = O(1/R3) for the gravitational waves and κ = O(1/R2) for the

gauge waves in accord with (49). After replacing γµν = −hµν + h
2 ηµν and identifying ∂µ with the connection ∇̊a of

the background metric g̊ab, (91)-(94) correspond to the boundary conditions (14)-(17) discussed in Sect. I C.
Our third choice of boundary conditions, motivated by the first order version of the Ψ0 boundary condition (67), is

Kµ∂µ(r2KαKβγαβ) = qKK , (95)

Kµ∂µ(rQαQβγαβ) = qQQ , (96)

Kµ∂µ(rQαQ̄βγαβ) = qQQ̄ , (97)

1

r2
Kµ∂µ(r2KαQβγαβ) − 1

2
Qµ∂µKαKβγαβ +

1

2
Q̄µQαQβ∂µγαβ = qKQ . (98)
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However, for the gravitational quadrupole wave (85), this leads to qKQ ∼ f ′′(u)/R2 and so it results in much stronger
reflection than the first two choices. Thus, as might have been anticipated by the discussion following (81), the first
order version of the Ψ boundary condition is not as effective as (94)-(91) in the case of a spherical boundary.

V. CONCLUSION

We have considered the IBVP for a coupled system of quasilinear wave equations and established (local in time) well
posedness for a large class of boundary conditions. In particular, this allows for the formulation of a well posed IBVP
for quasilinear wave systems in the presence of constraints on finite domains with artificial, nonreflecting boundaries.
Therefore, we anticipate that our results will have application to a wide range of problems in computational physics.
Furthermore, since our proof is based on a reduction to a symmetric hyperbolic system with maximal dissipative
boundary conditions, it also lays the path for constructing stable finite difference discretizations for such systems.

Our work has been motivated by the importance of the computation of gravitational waves from the inspiral and
merger of binary black holes, which has enjoyed some recent success [36, 37, 38, 39, 40]. At present, however, none of
the simulations of the binary black hole problem have been based upon a well posed IBVP. The closest example is the
harmonic approach of the Caltech-Cornell group [41, 42, 43] which incorporates the freezing Ψ0 boundary condition
in second order form and has been shown to be well posed in the generalized sense in the high frequency limit [15].

Our results have potential application to improving the binary black hole simulations. However, many of these
simulations are carried out using the BSSN formulation [44, 45] of Einstein’s equations, which differs appreciably
from the harmonic formulation considered here. Although our results constitute a complete analytic treatment of the
IBVP for the harmonic formulation of Einstein’s equations, the extension to the BSSN formulation is not immediately
evident. For this purpose, it would be useful to reformulate the boundary data for the harmonic problem in terms of
the intrinsic geometry and extrinsic curvature of the boundary, as has been done for the initial data for the Cauchy
problem. Such a geometric reformulation remains an outstanding problem.
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APPENDIX A: SOME USEFUL FORMULAE

Here we give a short summary of the formulae and conventions underlying the calculational results of Sec’s. IVB
and IV C. We have

∂αf(u) = −f ′(u)Kα, u = t − r, Kα∂αKβ = 0. (A1)

so that

∂α∂β

f(u)

r
=

f ′′(u)

r
KαKβ +

f ′(u)

r2
(Kαrβ + rαKβ) +

2f(u)

r3
rαrβ − (

f ′(u)

r
+

f(u)

r2
)rαβ (A2)

and

Kµ∂µ∂α∂β

f(u)

r
= −f ′′(u)

r2
KαKβ − 2f ′(u)

r3
(Kαrβ + rαKβ) − 6f(u)

r4
rαrβ + (

2f ′(u)

r2
+

3f(u)

r3
)rαβ , (A3)

where rα := ∂αr and rαβ := ∂α∂βr. The spatial components are

ri =
xi

r
= (sin θ cosφ, sin θ sinφ, cosθ), rij =

δij

r
− xixj

r3
. (A4)

Our conventions for the polarization dyad give rise to the Cartesian components

(Qx, Qy, Qz) = (cos θ cosφ − i sinφ, cos θ sin φ + i cosφ,− sin θ), (A5)
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which satisfy

(Qx)2+(Qy)2 = − sin2 θ, Qx y

r
−Qy x

r
= −i sin θ, Qx y

r
+Qy x

r
= sin θ

(

2 cos θ cosφ sin φ+i(cos2 φ−sin2 φ)

)

(A6)

and

Qjrij =
Qi

r
, Qj∂jQ

i =
cot θ

r
Qi, Qj∂jQ̄

i = −cot θ

r
Q̄i − 2rj

r
. (A7)

From these follow the necessary commutation relations such as

[rQµ∂µ, Kν∂ν ] = 0. (A8)
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