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Abstract
We identify classical solutions of a generalized group field theory (GFT) model
in three dimensions and study the corresponding perturbations, deriving their
effective dynamics. We discuss their interpretation as emergent matter fields.
This allows us on the one hand to test the proposed mechanism for emergence
of matter as a phase of GFT, and on the other hand to expose some limitations
of the generalized GFT formalism.

PACS numbers: 04.60.−m, 04.60.Pp, 11.15.−q

1. Introduction

In recent years several approaches to quantum gravity have been developed, with important
results [1]. Among them, group field theories (GFTs) [2–4] are, in our opinion, particularly
promising. GFTs are quantum field theories defined over a group manifold, representing a
‘meta-space’ of discrete spacetime geometries and not spacetime itself, as a new algebraic and
combinatorial realization of the ‘third quantization’ idea [5]. Moreover, GFTs bring together
most of the ingredients entering in other non-perturbative and background-independent
approaches (such as loop quantum gravity, spin foam models and simplicial quantum gravity
approaches) [2, 3]. Very little is known, still, about GFT models for quantum gravity, in
both three and four dimensions, and a lot of technical work should go into their analysis, for
example their classical solutions, which will be one focus of the present work, and their purely
field theoretic aspects, which are the subject of attention at present [6–9].

An important issue in many (non-perturbative) quantum gravity formalisms is the
inclusion and the correct description of matter fields. In the literature, we can distinguish two
different strategies. One approach is to start from a model describing a quantum spacetime
without matter and then add degrees of freedom describing matter, such as fields, point particles
or extended objects. This is the standard route both in loop quantum gravity [10, 11], spin foam
models [12–16] and simplicial quantum gravity [17, 18]. In a GFT context this means, for
example, writing down a coupled GFT action [19] for both gravity and matter fields that would
produce, in perturbative expansion, a sum over simplicial complexes with dynamical geometry
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together with Feynman graphs for the matter fields living on the simplicial complexes. Or
it means [20] defining a GFT model whose Feynman amplitudes can be understood as state
sum models for gravity with appropriate matter field observables. An alternative approach is
to think of matter degrees of freedom as a subset of the same degrees of freedom defining the
microstructure of quantum spacetime itself and emerge as fluctuations around a background
configuration of the same. This idea, pursued for example (in different ways) in [21–24],
shares some similarities with analog gravity models in condensed matter systems, in which
quasi-particles with an effective description as matter fields propagating on curved geometries
emerge as fluctuations around stable vacua of the underlying many-body system (e.g. a Bose
condensate), but are of course collective excitations of the same microscopic degrees of
freedom just as well. A strategy for emergent matter within the GFT framework, in particular,
first studied in [23–25], is based on the following idea: starting from a fundamental GFT
action, one looks for solutions of the corresponding equation of motion; then, one considers
perturbations around these solutions, obtaining an effective dynamics for the perturbation field.
The task is to identify a class of solutions and of perturbations, such that the effective dynamics
for these perturbations takes the form of a matter field theory on an effective spacetime.

It turns out [25] that the effective matter field theories emerging from GFTs following
this procedure are non-commutative quantum field theories on non-commutative spacetimes
with a Lie algebra structure, and with a curved momentum (group) manifold. This only
makes this strategy all the more interesting. In fact, non-commutative geometry has been
often advocated as the appropriate language to describe a quantum spacetime, i.e. a regime
which, already far from the full non-perturbative quantum gravity dynamics at the (ultra-
)Planckian scales, is still semi-classical in that it incorporates somehow the quantum gravity
corrections to continuum physics at the effective level. This can take the form of an effective
minimal (Planck) length scale in matter field theories of a non-trivial commutation relation
between position operators in quantum mechanics (so that the notion of spacetime point, and
of spacetime continuum, becomes meaningless) or of a generalized uncertainty principle, or
of a form of co-gravity, i.e. curvature in momentum space [26, 27]. It is actually this sort of
effect, a curved momentum sector for particle (and field) kinematics, which shows up most
naturally in a GFT context. Moreover, in recent years, much work in the context of quantum
gravity phenomenology [28] was developed. On the one hand, this starts from the simple
idea that several astrophysical systems could work as a magnifying lens to amplify quantum
gravity effects even if Planck scale suppressed, and make them accessible to experiments.
On the other hand, much of this work relies on effective models of quantum gravity, rather
than on the tentative fundamental formalisms currently available, and in particular on effective
non-commutative models for matter kinematics and dynamics, one important example being
the so-called deformed (or doubly) special relativity [29]. This means that the recent results on
the emergence of effective non-commutative matter field theories from GFT have the potential
to help bridging the gap between the microscopic dynamics they define for quantum space
and macroscopic physics and quantum gravity phenomenology.

In this paper we thus follow this strategy and apply it to a generalized class of GFT
models introduced in [30–32], focusing on the 3D case. This generalized GFT formalism has
been introduced as an attempt to formulate GFT models, which on the one hand depended
explicitly on metric-related variables, thus allowing a more manifest encoding of simplicial
geometry at the level of the GFT action, and on the other hand possessed Feynman amplitudes
with the explicit form of a simplicial gravity path integral, thus clarifying the relation between
spin foam and simplicial gravity structures. Obviously, the viability and correctness of such a
generalized GFT formalism is something to be tested. Therefore, we understand the results of
this paper in two dual ways: (1) as a test of the strategy for the emergence matter from GFTs
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as perturbations around classical GFT solutions; in fact, we check here whether this strategy
works nicely also for (much) less trivial models than those it has been applied to so far, and
under which assumptions and conditions; (2) as a test of the generalized GFT formalism itself;
in fact, we will see that some difficulties encountered in applying this procedure, and some
unsatisfactory features of the resulting effective actions for perturbations, can naturally be
understood as stemming from limitations of the generalized GFT formalism itself, rather than
as failures of the ‘emergent matter strategy’. Let us also stress that the same identification
of classical solutions of the model and of the corresponding perturbative dynamics will be an
interesting and highly non-trivial result, from a purely technical perspective.

The outline of the paper is as follows. In the remaining sections of the introduction,
we recall how a non-commutative matter field theory for a scalar field emerges from the
perturbations around classical GFT solutions in a simple 3D model, and then we introduce
the 3D generalized GFT model. In section 2, we consider a simplified version of the latter,
identify a class of solutions of the classical GFT equations, and then study the corresponding
perturbations; we will see that the basic elements of the complete analysis of perturbations to
be done on the full model are already evident, together with the limitations of the same model
in this respect. In section 3, we move on to the complete model; we find some exact and
approximate classical solutions of its equations of motion, and extract the effective dynamics
for the corresponding perturbations, focusing on the approximate case. We conclude with a
discussion of the results obtained and an outlook on further developments, as suggested also
by our results.

1.1. Non-commutative matter from GFT

In this section we briefly review some results about the emergence of an effective non-
commutative field theory in the 3D case [23]. We start from the following GFT action
(Boulatov model), based on a group manifold being either SO(3) or SU(2):

S[φ] = 1

2

∫
dg1 dg2 dg3 φ(g1, g2, g3)φ(g3, g2, g1)

− λ

4!

∫
dg1 . . . dg6φ(g1, g2, g3)φ(g3, g4, g5)φ(g5, g2, g6)φ(g6, g4, g1), (1)

where φ is a real field that we suppose invariant under diagonal action of the group
φ(g1, g2, g3) = φ(g1h, g2h, g3h). The corresponding classical equation of motion is

φ(g3, g2, g1) = λ

3!

∫
dg4 dg5 dg6 φ(g3, g4, g5)φ(g5, g2, g6)φ(g6, g4, g1) (2)

and a class of solutions of the same equation is parametrized by a function f : G → R,
satisfying

∫
G

dgf 2(g) = 1 and given by

φf (g1, g2, g3) =
√

3!

λ

∫
G

dh δ(g1h)f (g2h)δ(g3h). (3)

Since the Boulatov model defines a (third) quantization of BF theory, whose only
configurations are locally flat geometries on arbitrary topology, such solutions can be
interpreted as describing a quantum flat space. Now we want to study classical perturbations
around these solutions, in particular those of the form ψ(g1, g2, g3) ≡ ψ(g1, g3) = ψ

(
g1g

−1
3

)
.
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For them we obtain the following effective action:

S(f )[ψ] ≡ S[φf + ψ] − S[φf ] =
∫

dgψ(g)Kf (g)ψ(g−1)

− μ

3!

∫
dg1 dg2 dg3δ(g1g2g3)ψ(g1)ψ(g2)ψ(g3)

− λ

4!

∫
dg1 dg2 dg3 dg4δ(g1 . . . g4)ψ(g1)ψ(g2)ψ(g3)ψ(g4), (4)

with the kinetic term given by

Kf (g) = 1

2

[
1 − 2

(∫
dhf (h)

)2

−
∫

dhf (h)f (hg)

]
. (5)

The nature of this action as an effective scalar field theory on a non-commutative space is
evident once we interpret the group manifold on which it is defined as momentum space, so
that the constraints δ(g1g2g3) and δ(g1 . . . g4) represent the momentum conservation. As a
curved space, this momentum space is dual to a non-commutative configuration space with a
Lie algebra structure (given by the su(2)). This duality can be made explicit by introducing
a Fourier transform mapping functions over the group to functions over the corresponding
algebra [33, 34], using which we can rewrite the above action in terms of functions on R

3

endowed with a non-commutative �-product [33, 34], which can then be shown to be invariant
under the quantum double of SU(2), a deformation of the Euclidean 3D Poincaré group.

Similar results have been obtained also in the 4D case and in Lorentzian signature [24],
where it has been shown that, starting from a GFT model for the SO(4, 1) BF theory, one can
obtain an effective non-commutative field theory of the DSR type, i.e. for a scalar field living
on the κ-Minkowski spacetime and with a de Sitter space of momenta. Obviously, this is a
model of a more direct interest for quantum gravity phenomenology.

We can conclude that perturbations around a non-trivial quantum geometric background,
defined by a solution of the GFT equations, follow the dynamics of an effective scalar field
theory of a non-commutative type. So we can interpret matter as a phase of quantum geometry,
therefore already contained in our quantum gravity models. Moreover, this type of analysis
of GFT perturbations is useful to expose the deep link between the GFT formalism and
non-commutative geometry.

1.2. Generalized GFT model

A generalized GFT formalism has been introduced in [30] and further developed in both 3D
and 4D in [31, 32], its purpose being encoding and controlling in a more explicit way simplicial
geometry at the level of the GFT action, and obtaining Feynman amplitude with the manifest
form of a simplicial gravity path integral. In turn, this should serve as a complete definition
of the quantum dynamics of simplicial structures, to obtain a spin foam model with a clear
underlying geometry and to strengthen the links between spin foam and simplicial gravity
approaches.

In the 3D case, the fundamental variable is a real function of three group variables and
three algebra variables: φ : G3 × g3 → R, which satisfies φ(g1, g2, g3;B1, . . . , B3) =
φ(g1h, g2h, g3h;hB1h

−1, hB2h
−1, hB3h

−1). The group and Lie algebra variables are
interpreted as the discrete triad and connection variables of simplicial BF theory or,
equivalently, of discrete 3D gravity. Its classical action is as follows:

4
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S = 1

2

1

(2π)9

∫
G3

dg1 dg2 dg3

∫
g3

d �B1 d �B2 d �B3φ123Ô1Ô2Ô3φ
∗
123

− λ

4!(2π)36

∫
G6

dg1 . . . dg6

∫
g6

d �B1 . . . d �B6φ123φ345φ526φ641, (6)

where we have introduced the operator Ô = �G+B2+ m2

8 , with �G being the Laplace–Beltrami
operator on the group manifold G, and the notation φ123 = φ(g1, g2, g3;B1, B2, B3).

Note that even though the field is a function of Lie algebra triad variables, it is treated in
this formalism as an ordinary function, and the Lie algebra itself is considered in its vector
space aspects only, so that integrations are performed by means of the Lebesgue measure
and no star product is introduced when multiplying more than one GFT field. This will
have important consequences when studying the corresponding perturbations around classical
solutions.

For the achievements and limitations of this formalism concerning its original goals
mentioned above, we refer to the literature. Here we will only try to see whether the results
on perturbations obtained for the Boulatov model extend to this more complicated case, and
at the same time use this analysis of perturbations as a test for the formalism, trying to expose
further its limitations by making them explicit at the level of the resulting effective dynamics.

2. The static-ultralocal case

Let us begin from the analysis of the simpler ‘static-ultralocal’ truncation of the model. It
corresponds to the case in which the kinetic operator is ‘freezed’ to the identity, imposing
Ô = I in (6):

S = 1

2

1

(2π)9

∫
G3

dg1 dg2 dg3

∫
g3

d �B1 d �B2 d �B3φ123φ321

− λ

4!(2π)36

∫
G6

dg1 . . . dg6

∫
g6

d �B1 . . . d �B6φ123φ345φ526φ641. (7)

In the following we always assume that solutions depend on the moduli of the vectors B, and
not from its direction, so that the invariance property of the field under the diagonal group
action on the Lie algebra arguments hBh−1 is trivialized. Moreover, to simplify the notation,
we define B = | �B|. Anyway we use the notation

∫
d �B to distinguish integration over all

algebra with integration over only the module
∫

dB.

2.1. Solutions of the equations of motion

The equation of motion corresponding to the above action is

φ123 = λ

3!

1

(2π)27

∫
G3

dg4 dg5 dg6

∫
g3

d �B4 d �B5 d �B6φ345φ526φ641 (8)

and it is easy to verify that the following class of functions, a simple generalization of (3),
define classical solutions:

ϕ123 =
√

3!(2π)27

λ

∫
G

dh δ(g1h)ψ1(B1)f (g2h;B2)ψ3(B3)δ(g3h), (9)

where the functions f , ψ1 and ψ3 have to fulfill the following relations:∫
G

dg

∫
g

d �Bf 2(g, B) = 1
∫

g

d �Bψ1(B)ψ3(B) = 1. (10)

We also require, for simplicity, the function f (g, B) to be separable in its variables:
f (g, B) = f1(g)f2(B).

5
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2.2. Perturbations

Let us consider a generic perturbation ε(g1, g2, g3;B1, B2, B3) and compute the effective
action

S[ε] ≡ S[ϕ + ε] − S[ϕ]

= 1

2

∫
[dg]

∫
[d �B]ε123ε321 −

∫
[dg] dh1

∫
[d �B]ψ1(B5)f1(g2h1)f2(B2)f1(g4h1)

× f2(B4)ψ3(B1) ε
(
h−1

1 , g2, g3;B1, B2, B3
)
ε
(
g3, g4, h

−1
1 ;B3, B4, B5

)
− 1

2

∫
[dg] dh1 dh2

∫
[d �B]ψ1(B3)f1(g4h1)f2(B4)ψ3(B1)ψ3(B5)ψ1(B6)

× f1(g4h2)f2(B4)ψ3(B6)ε
(
h−1

2 , g2, h
−1
1 ;B1, B2, B3

)
ε
(
h−1

1 , g2, h
−1
2 ;B5, B2, B6

)
− λ

4!(2π)27

∫
[dg]

∫
[d �B]ε123ε345ε526ε641 −

√
λ

3!(2π)27

∫
[dg] dh

∫
[d �B]ψ1(B6)

× f1(g4h)f2(B4)ψ3(B1)ε(h
−1, g2, g3;B1, B2, B3)ε345ε(g5, g2, h

−1;B5, B2, B6),

where we used the notation ε123 = ε(g1, g2, g3;B1, B2, B3), where convenient.
This is the action for a generic perturbation, only assumed to have the same diagonal

invariance of the fundamental GFT field, but it simplifies considerably and can then be
interpreted physically, by appropriate simplified choices on the perturbation field. In particular,
having in mind the possible interpretation of the B and g variables as configuration and
momentum variables, respectively, we try to reduce the dependence of the perturbation field
to either of the two sectors.

Case 1: dynamical group sector. Now we show how one can recover the same effective action
in [23] with a particular choice of the perturbation field. We assume a separable dependence
on g and B variables (this is suggested also by the fact that neither the kinetic term nor the
interaction term couples the two sectors), and the dependence on a single group variable via
the combination g1g

−1
3 : ε(g1, g2, g3;B1, B2, B3) = φ

(
g1g

−1
3

)
ξ(B1, B2, B3). Factoring out

the integration over the B variables, we get the following effective action for the perturbation
field φ(g):

S[φ] =
∫

dgφ(g)K(g)φ(g−1) − η

3!

∫
[dg]3δ(g1 . . . g3)ψ(g1) . . . ψ(g3)

− μ

4!

∫
[dg]δ(g1 . . . g4)ψ(g1) . . . ψ(g4). (11)

Here, the kinetic term is given by

Kf (g) = 1

2

[
α − 2β

(∫
dhf (h)

)2

− γ

∫
dhf (h)f (hg)

]
, (12)

which is the same as that of action (4), with up to some appropriate redefinition of coupling
constants:

α =
∫

d �B1 d �B2 d �B3ξ(B1, B2, B3)ξ(B3, B2, B1),

β =
∫

d �B1 . . . d �B5ψ1(B5)f2(B2)f2(B4)ξ(B1, B2, B3)ξ(B3, B4, B5),

γ =
∫

d �B1 . . . d �B6ψ1(B3)f2(B4)ψ3(B5)ψ1(B6)f2(B4)ψ3(B6)ξ(B1, B2, B3)ξ(B3, B4, B5),

6
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η =
√

6λ

∫
dgf1(g)

∫
d �B1 . . . d �B6ψ1(B6)ψ3(B1)f2(B4)ξ(B1, B2, B3)

× ξ(B3, B4, B5)ξ(B5, B2, B6)

μ =
∫

d �B1 . . . d �B6ξ(B1, B2, B3)ξ(B3, B4, B5)ξ(B5, B2, B6)ξ(B6, B4, B1).

Of course the perturbation field must be chosen such that this new set of coupling constants
does not diverge, with the functional dependence on the B sector to be considered as fixed,
with no variation allowed in the classical theory and no fluctuations (functional integration)
in the quantum theory. We see that we have recovered, even from the more complicated
GFT formalism, the expected effective action for the perturbations that can be interpreted
as a non-commutative scalar field theory written in momentum space. Even in this drastic
simplification of the formalism, we also see, however, that the way we could obtain it was to
completely decouple the B and g sector and to leave only this last one as dynamical.

Case 2: dynamical Lie algebra sector. Now we focus instead on the B sector, and treat
the group sector as non-dynamical. The idea is then to reproduce the same action as above,
or a modification thereof, but written now in configuration space, according to the standard
interpretation of the effective theory and of the variables appearing in the GFT outlined above.

As a regularization, we introduce a cut-off Bmax in the B integration, and the constant
VB = 4π

∫ Bmax

0 dBB2, that is the (truncated) volume of R
3. We then consider a perturbation

of the form

ε123 = 1√
VB

δ( �B1 − �B2) ψ( �B2 + �B3) (13)

with no dependence on group variables (note that this does not lead to any divergence because
of the compact nature of the group manifold). The dependence on the three variables Bi has
been chosen to be what would have followed from a Fourier transform from g to B variables
of the function we used as perturbation in the previous case. Moreover we introduce a new
condition on the solution imposing that

∫
dgf (g) = 0. With this condition the integration

over the group variables kills the cubic interaction and some quadratic terms. The resulting
effective action for this perturbation field is

S[ψ] = 1

2

∫
d �Bψ2(B) +

λ

4!

∫
d �Bψ4(B), (14)

that is, an ordinary local λφ4 theory with a trivial kinetic term (i.e. again a static-ultralocal
field theory).

We can interpret this as a scalar field theory written in configuration space (given by R
3).

The triviality of the kinetic term arises directly from the initial ultra-locality restriction, but
could possibly be lifted by some more involved choice of classical solution or perturbation
field, at the cost of introducing derivatives in the same. The point to note, however, is that
we find no sign of the expected underlying non-commutativity in this field theory. That is,
while we find the expected local dependence on B variables that matches their interpretation
as configuration variables in some sense dual to the group variables, and while we could try
to modify our construction to obtain a more complicated (and interesting) kinetic term or
interaction, it is evident that the conjugate nature of B and g sectors is lost and cannot be
recovered. Due to the simplicity of the underlying model, it is also clear that this conjugate
nature fails to be present in the effective action because it fails to be correctly implemented in
the original generalized GFT formalism. We will come back to this point in the following.

7
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3. Full generalized model

In this section we consider the complete action (6) and the corresponding integro-differential
equation of motion:

Ô1Ô2Ô3φ321 = λ

3!(2π)27

∫
G3

dg4 dg5 dg6

∫
g3

d �B4 d �B5 d �B6φ345φ526φ641. (15)

3.1. Exact solution of the equation and perturbations

We first try to find an exact solution of this equation and to obtain an effective field theory
for the perturbations. As it is apparent, the integro-differential equation (15) presents a very
complicated structure and there is no standard or general procedure to solve it. For simplicity
we look for solutions that are separable in the three sets of variables, i.e. of the type

φ123 =
∫

dhψ1(g1h,B1)f (g2h,B2)ψ(g3h,B3), (16)

where we have imposed the usual invariance under diagonal right action of the group, by
explicit projection. It should be clear that this is a choice and that the equation could have
solutions which do not fulfill the requirement of separability1, and that more general type of
functions can be considered. Unfortunately, we have not been able to identify any solution
outside this simpler class of functions, despite intense efforts. Therefore, while we cannot
exclude the existence of more general solutions, we are forced to work within this simpler
class.

Now it is easy to show that any function φ123 of the above form is an exact solution of the
GFT equation of motion if the following conditions are satisfied:

(1) the functions ψ1, f, ψ3 are solutions of the equation

(� + B2)φ(g, B) = 0, (17)

so they are eigenfunctions of the operator Ô with the eigenvalue −m2

8 .
(2) ψ1, ψ3 and f satisfy∫

d �B
∫

dgψ3(gh1, B)ψ1(gh2, B) = δ
(
h−1

1 h2
) ∫

d �B
∫

dgf 2(g, B) = 1. (18)

We now look for such functions, starting from condition (1). We now prove the following.

Proposition 1. Let I be the set of functions defined on the Cartesian product G × g and
square integrable with respect to the group variable (so that we can apply the Peter Weyl
theorem to decompose them in irreducible representations j of G). The most general solution,
in the set I, of the equation (17) is of the form

φ(g, B) =
∑
j,n,m

φ̃nm
j (B)Dj

nm(g) with

{
φ

j
mn(B) arbitrary ∀B : B2 = j (j + 1)

φ
j
mn(B) = 0 elsewhere.

(19)

Proof. The proof is straightforward. Because of the Peter–Weyl theorem, every solution of
the equation, belonging to the set I, can be written as φ(g, B) = ∑

j,n,m φ̃nm
j (B)D

j
nm(g), for

some coefficient functions φ
j
mn(B). Being a solution, it has to satisfy:

∑∞
j=0

∑
n,m

{
[−j (j +

1 Note also that the requirement of a right group invariance couples the arguments of the functions, away from
separability.

8
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1) + B2]φ̃nm
j (B)

}
D

j
nm(g) = 0, which implies, since the D

j
mn(g) is a complete orthonormal

basis in I, that [−j (j + 1) + B2]φ̃nm
j (B) = 0 ∀j, n,m. This equation can be satisfied only

if the coefficient functions φ
j
mn(B) are null for all values such that B2 	= j (j + 1), while they

can be arbitrary otherwise. �

Therefore, the functions (19), considered as a function of �B are non-null only on spheres
of radius

√
j (j + 1). Thus the integral over the algebra of these eigenfunctions is obviously

zero, because each sphere is a set of null measure. Therefore, conditions (2) and (3) cannot
be satisfied unless the functions φ̃nm

j (B) are actually distributions on R
3. The idea is then to

define a three-dimensional delta-like function, i.e. null everywhere, except on the origin and
on the spheres of radius

√
j (j + 1), with j ∈ N

+, where it goes to infinity, and multiply it by a
regular function of B to define completely the functions φ̃nm

j (B). There are many possibilities
to define this distribution with a limit procedure, and we do it in the appendix, providing
explicit examples. In the following we call that distribution α( �B). Its only property we need
is ∫

d �B α2( �B)f (B) =
∞∑

j=0

(2j + 1)2f (
√

j (j + 1))), (20)

where both integral and sum have to converge. Let ψ1(g, B) and ψ3(g, B) be solutions of
(17). We also introduce the following distributions:

ϕ1(g, B) = α( �B)ψ1(g, B) ϕ3(g, B) = α( �B)ψ3(g, B). (21)

These define solutions too, as they satisfy condition (1), as it can be easily checked. Now we
consider condition (2) and compute the following integral:∫

dg

∫
d �Bϕ1(gh1, B)ϕ3(gh2, B)

=
∫

dg

∫
dBα2( �B)ψ1(gh1, B)ψ3(gh2, B)

=
∞∑

j=0

(2j + 1)2
∫

dgψ1

(
gh1,

√
j (j + 1)

)
ψ3

(
gh2,

√
j (j + 1)

)
= δ

(
h1h

−1
2

)
.

Using the above theorem, we know that

ψ
(
g,

√
j (j + 1)

)
=

∑
nm

(
ψ̃(

√
j (j + 1))

)nm

j
Dj

nm(g), (22)

which results in the condition

(ψ̃1)
nm1
j (ψ̃3)

nm3
j = δm1m3 ∀j ∈ N, (23)

which characterizes functions satisfying condition (2).
Using the same distribution α( �B), we can define a function satisfying condition (3) too.

Let f be a function of the type 19; we define the distribution F(g, B) = α( �B)f (g, B) and
impose condition (3) to find∫

dg

∫
d �BF 2(g, B) =

∫
dg

∫
d �Bα2( �B)f 2(g, B) =

∞∑
j=0

(2j + 1)2
∫

dgf 2(g,
√

j (j + 1)).

(24)

If this sum is convergent then we can normalize f so that the result is 1 and condition (3) is
satisfied.
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Therefore, using functions satisfying the above conditions, we have found an exact
solution of equation (15):

φ123 =
∫

dhϕ1(g1h,B1)F (g2h,B2)ϕ(g3h,B3)

=
∫

dhα( �B1)ψ1(g1h,B1)α( �B2)f (g2h,B2)α( �B3)ψ3(g3h,B3).

Now we write down the effective action for a generic perturbation around such solution:

S[ε] = 1

2

1

(2π)9

∫
[dg]

∫
[d �B] ε123Ô1Ô2Ô3ε321 − λ

4!(2π)36

∫
[dg]

∫
[d �B]ε123ε345ε526ε641

− 1

(2π)9

∫
[dg]dh1 dh2

∫
[d �B] ψ1(g1h1, B1)f (g2h1, B2)f (g4h2, B4)

× ψ3(g5h2, B5)�
(
h−1

1 h2
)
ε526ε641 − 1

2

1

(2π)9

∫
[dg] dh1 dh2

×
∫

[d �B] ψ1(g1h1, B1)ψ3(g3h1, B3)ψ1(g5h2, B5)ψ3(g6h2, B6)ξ
(
h−1

1 h2
)
ε345ε641

−
√

λ

3!(2π)45

∫
[dg]

∫
[d �B]ψ1(g1h,B1)f (g2h,B2)ψ3(g3h,B3)ε345ε526ε641, (25)

where we have defined

�
(
h−1

1 h2
) ≡

∫
dg

∫
d �Bψ3(gh1, B)ψ1(gh2, B)

ξ
(
h−1

1 h3
) ≡

∫
dg

∫
d �Bf (gh1, B)f (gh3, B).

(26)

This is a very general result, holding for any solution and any perturbation. Now we would
obtain, starting from 25, an action with a kinetic term of the type

∫
dxφ(x)K(x)φ(x), either

in group or in Lie algebra variables, imposing some particular form of the perturbation field.
This turns out to be very difficult, and we have not been able to identify any simple form of the
perturbations that would give such simplification. Roughly speaking, it is due to the presence
of the terms ε526ε641 and ε345ε641, which are not equivalent, because we have not assumed any
invariance of the GFT field, nor of the corresponding perturbation, under permutations of its
arguments. There is no simple choice of the perturbation field that gives a product of the type
ε(x)ε(x), for example, no field with a dependence on the B variables only through the linear
combination aB1 + bB2 + cB3 or the analog in the G variables. This is true, unless we assume
that the fundamental GFT field as well as the classical solution chosen and the corresponding
perturbation field are invariant under permutations of their group and Lie algebra arguments.
Imposing this property, however, would complicate the analysis considerably. Leaving aside
the issue of perturbations, the problem can be seen as due to the non-separability of the solution
chosen, in particular, the functions f and �. We cannot exclude that a different solution or
a more involved choice of perturbation would lead to a nicer effective action. However, we
also note that even if one solves somehow this first problem, another trouble comes from the
distribution α( �B), which appears in the effective action for the perturbations with different
powers, leading to additional technical complications.

This suggests us to leave aside for the moment the issue of perturbations around exact
solutions of the generalized model. We turn our attention, instead, to approximate solutions
and their corresponding perturbations.

10
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3.2. Approximate solutions and perturbations

The basic idea here is to look for eigenfunctions of the Laplace–Beltrami operator and, at the
same time, good approximations of the delta function on the group. We note that every good
approximation of the delta function on the group has to be sharply peaked on the identity.
Therefore, the Laplace–Beltrami operator applied to such a function will be close to zero
everywhere but in a neighborhood of the identity element. For this reason we study now the
behavior of the Laplace–Beltrami operator on the group SU(2) which is isomorphic to the
3-sphere S3, very close to the identity element, which we identify with the north pole. Now
we fix a chart in a neighborhood of the identity element, and we use polar coordinates. The
Laplace–Beltrami operator becomes

� = 1√
g

∂μ(
√

ggμν∂ν) ≈ 1

θ2

∂

∂θ

(
θ2 ∂

∂θ

)
+

1

θ2 sin φ

∂

∂φ

(
sin φ

∂

∂φ

)
+

1

θ2 sin2 φ

∂2

∂φ2
.

If we apply this operator to functions f only dependent on the θ variable, we can consider
only the first term in the previous formula, so we can use the operator

�Af = 1

θ2

∂

∂θ

(
θ2 ∂f

∂θ

)
= 1

θ

∂2

∂θ2
(θf ), (27)

where the A indicates both the approximation in the operator and that we can apply it just on
the function of θ considerably different from zero only in a small neighborhood of θ = 0.

Now we consider the eigenvalue problem for this operator: �Af (θ) = λf (θ). Among

the solutions of this equation, one is particularly interesting for our purposes f (θ) = e− θ
a

θ
,

where λ = 1
a2 . Indeed we note that in the limit a → 0+ the function f (θ) goes to zero

everywhere but in θ = 0 where it goes to infinity. Therefore, with appropriate normalization,
this is a good representation of the Dirac delta function. Thus, we define the function

δa(θ) = e− θ
a

a2θ
(28)

that satisfies the following properties:

�δa(θ) ≈ �Aδa(θ) = 1

a2
δa(θ) lim

a→0+
δa(θ) = δ(θ). (29)

Of course we can rewrite the δa function in terms of the group variable, using the
parametrization: g = cos θI + i sin θn̂ · �σ , with Tr(g) = 2 cos(θ) and n̂ ∈ S2. Through
this relation, we can interpret the δa(θ) as a δa(g) on SU(2). Now we apply the operator Ô on
δa(g), with a ≈ 0+, to find(

� + B2 − m2

8

)
δa(g) ≈

(
1

a2
+ B2 − m2

8

)
δa(g) ≈ 1

a2
δa(g). (30)

Of course the approximation improves as a tends to zero. Indeed we have supposed that
1
a2 � ∣∣B2 − m2

8

∣∣. In order for our solution of the equations of motion to satisfy this condition
for all relevant values of B, we then assume that it is a function with compact support (i.e.
identically zero outside of some bounded set) with respect to the B variables.

Another important point is that we can handle δa(g) like a true δ(g) function, as it satisfies∫
dgδa(gh−1)f (g) ≈ f (h). The last step is to introduce another function �a(θ) on the sphere

S3. It is defined, for 0 � θ < π/2 (i.e. for the the half-sphere corresponding to SO(3)), as

�a(θ) = 1

2

1√
πa

e− θ
a

θ
= 1

2
√

π
a

3
2 δa(θ) (31)

11
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and it is extended to the whole S3 ≈ SU(2) (i.e. to 0 � θ < π ), by requiring
�a(g) = −�a(−g), again for a ≈ 0. This function is almost vanishing everywhere but
for g = I,−I and satisfies

��a(θ) ≈ 1

a2
�a(θ)

∫
dg�a(g) = 0

∫
dg�2

a(g) = 1. (32)

In the last two properties the integration is over SU(2). If we restricted the integration only
over SO(3), the first integral gives 2

√
πa3/2 and the second one gives 1/2.

Finally using all the above, it is easy to verify that the following function is an approximate
solution of (15):

φ123 =
√

3!(2π)27

λa6

∫
dh δa(g1h)ψ1(B1)�a(g2h)f (B2)δa(g3h)ψ3(B3), (33)

where ψ1, f, ψ3 are functions with compact support, dependent only on the module of �B, and
satisfy the conditions∫

d �Bf 2(B) = 1
∫

d �Bψ1(B)ψ3(B) = 1. (34)

Next we study perturbations around this new approximate solutions. The effective action for
a generic perturbation field ε(g1, g2, g3;B1, B2, B3) is

S[ε] ∝ 1

2

∫
[dg]

∫
[d �B] ε123Ô1Ô2Ô3ε321 − λ

4!(2π)27

∫
[dg]

∫
[d �B] ε123ε345ε526ε641

− 1

a6

∫
[dg] dh

∫
[d �B] ψ1(B5)�a(g2h)f (B2)�a(g4h)f (B4)ψ3(B1)

× ε(h−1, g2, g3;B1, B2, B3)ε(g3, g4, h
−1;B3, B4, B5)

− 1

2

1

a6

∫
[dg] dh1 dh2

∫
[d �B] ψ1(B3)�a(g4h1)ψ3(B5)ψ1(B6)�a(g4h2)

×ψ3(B1)ε
(
h−1

2 , g2, h
−1
1 ;B1, B2, B3

)
ε
(
h−1

1 , g2, h
−1
2 ;B5, B2, B6

)
−

√
λ

3!(2π)27a6

∫
[dg] dh

∫
[d �B] ψ1(B6)�a(g4h)f (B4)ψ3(B1)

× ε(h−1, g2, g3;B1, B2, B3)ε345ε(g5, g2, h
−1;B5, B2, B6). (35)

Here there is a first difference with respect to the previous case: due to the approximation, the
linear terms, which would cancel exactly when perturbing around exact extrema of the action,
do not cancel exactly but are nevertheless suppressed with a and we have not written them for
this reason.

In order to get a ‘good’ effective theory we need again to impose some special conditions
on the perturbation field. As in the static-ultralocal theory, we have two sets of variables,
group and algebra; therefore, we have more room for maneuvering with respect to previous
models. The goal is again to obtain a field theory with a kinetic term written in the usual form∫

dx φ(x)K(x)φ(x), and thus with a field depending on a single (group or algebra) argument.
Moreover we recall that the group and algebra variables have the interpretation of momentum
and configuration variables in the usual matter field theory of non-commutative type.

The first assumption is the separability of the perturbation field

ε(g1, g2, g3;B1, B2, B3) = ϕ(g1, g2, g3)φ(B1, B2, B3). (36)

Next, having again in mind the possible interpretation of the B and g variables as
configuration and momentum variables, respectively, we try to reduce the dependence of the

12
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perturbation field to either of the two sectors, by treating the other sector as non-dynamical,
as in the static-ultralocal case.

Case 1: dynamical group sector. We recall that we have fixed the value of a very close to
zero. Thus we notice immediately that in action (35) we have two dominant quadratic terms.
We restrict our attention to them, i.e. to the free field theory sector. The dominant terms,
comparing powers of 1/a, are

S[ε] = − 1

(2π)9

1

a6

∫
dg2 dg3 dg4 dh1

∫
d �B1 . . . d �B5ψ1(B5)�a(g2h1)f (B2)�a(g4h1)

× f (B4)ψ3(B1)ε
(
h−1

1 , g2, g3;B1, B2, B3
)
ε
(
g3, g4, h

−1
1 ;B3, B4, B5

)
− 1

2

1

(2π)9

1

a6

∫
dg2 dg4 dh1 dh2

∫
d �B1 d �B2 d �B3 d �B5 d �B6ψ1(B3)�a(g4h1)ψ3(B5)

× ψ1(B6)�a(g4h2)ψ3(B6)ε
(
h−1

2 , g2, h
−1
1 ;B1, B2, B3

)
ε
(
h−1

1 , g2, h
−1
2 ;B5, B2, B6

)
.

Now we separate the variables like in (36) and we impose the usual condition
ϕ(g1, g2, g3) = ϕ

(
g1g

−1
3

)
. After integrating out B variables, treating the part of the

perturbation field depending on them as non-dynamical, we get

S[ϕ] = 1

2

1

(2π)9

C

a6

∫
dg ϕ(g)K(g)ϕ(g−1), (37)

where the kinetic operator is

K(g) =
∫

dh�a(h)�a(hg), (38)

and we have defined the constant

C =
∫

d �B1 �B2 �B3 �B5 �B6ψ1(B3)ψ3(B5)ψ1(B6)ψ3(B1)φ123φ526.

We see that we obtain once more a nice field theory on a single group manifold, interpreted as
(curved) momentum space, whose dynamics is again entirely determined by the classical GFT
solution chosen, thus by the quantum spacetime we choose when selecting the solution itself,
and on which the effective scalar field propagates. Once more, we could Fourier transform
from group to Lie algebra space, playing the role of effective spacetime, introducing the
appropriate star product.

Case 2: dynamical Lie algebra sector. Here we restrict to the SU(2) case. Without this
restriction our choice of perturbation field gives a non-local effective action. This case, from a
technical point of view, is very similar to the static-ultralocal limit. Indeed we choose exactly
the same type of perturbation field:

ε123 = 1√
VB

δ( �B1 − �B2)ψ( �B2 + �B3), (39)

where VB is again the (truncated) volume of R
3. After a straightforward calculation, we get

S[ψ] = 1

128

∫
d �Bψ( �B)K(B)ψ( �B) +

λ

4!

∫
d �Bψ4( �B), (40)

where K(B) = (
B2 − m2

2

)3
. This is a nice local effective action with a rather unusual

kinematical term, with an algebraic dependence on the configuration space Lie algebra
variable. Once more, the specific form of the kinetic term could possibly be modified by
different choices of classical (approximate) solution or perturbation field, even though it is not
straightforward to envisage how to do so. What cannot be modified easily is again the fact that

13
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we find no sign of the expected underlying non-commutativity in this field theory, and that the
conjugate nature of B and g sectors is lost. This confirms that something is dubious in the way
the original GFT model, i.e. the generalized GFT formalism, because we can once more trace
back the origin of this limitation in the effective field theory to the way the generalized GFT
formalism deals with the dependence on the GFT field on the Lie algebra B variables.

4. Discussion and conclusions

Let us summarize the results we have obtained. We have studied the issue of classical solutions
of the generalized 3D GFT model proposed in [30–32], and of the effective dynamics of the
corresponding perturbations, trying to identify specific solutions and perturbations such that
the dynamics of the latter can be understood as that of a scalar field on an effective (non-
commutative) spacetime.

The motivations were as follows. First of all, to improve our understanding of such models,
at a more technical level. Second, to show that indeed effective matter field theories could be
extracted as phases of such generalized models. This means on the one hand again solving the
technical difficulties coming from the more involved structure of this model, as compared to
the easier ones which have been dealt with up to now, but on the other hand showing that the
idea of matter as emerging from the collective dynamics of the micro-constituents of quantum
spacetime is more solid than could be originally thought, holding for a wider class of GFT
models. Third, and conversely, to use this procedure for extracting effective matter theory
from GFT as a test for the generalized GFT formalism itself. This means learning from the
way this strategy for emergent matter is made to succeed or from the way it fails, in this
context, what are the weak and dubious points of the formalism.

Our results are indeed mixed. We have managed to identify exact solutions of the GFT
equations of motion both in the simpler static-ultralocal truncation of the model and in the
full, more complicated, one. In the truncated model we could extract rather straightforwardly
an effective scalar field theory for the perturbations. When only the group sector of the model
is treated as dynamical, the effective field theory takes indeed the expected form of a non-
commutative field theory written in momentum space. One could then use a non-commutative
Fourier transform to rewrite the theory in configuration space, given by the su(2) Lie algebra.
Because of the presence of both Lie algebra and group variables in the fundamental GFT
model, one could also expect that it should be possible to obtain directly a non-commutative
field theory for the perturbations in configuration space, by treating directly the only Lie
algebra sector of the perturbations as dynamical. This turns out not to be the case. One
obtains indeed an effective scalar field theory on the same Lie algebra, but without the wanted
and expected non-commutative structure. This turn out to be the result both in the truncated
model and in the full model, for which we have been able to extract a nice(r) effective dynamics
for perturbations, i.e. one that could be interpreted as a scalar field theory on an emergent 3D
spacetime, only within a certain approximation, that is only around approximate solutions of
the equations of motion. Moreover, a closer look at the way the solutions of the equations of
motions could be found and the effective dynamics for perturbations extracted shows that it
has been necessary, also when dealing with the full model, to basically trivialize the kinetic
term of the theory to the level of the corresponding equations, i.e. look for solutions for which
the non-trivial part of the kinetic term gives a basically trivial contribution to the equations.
While this last point, although somehow disappointing, could be argued to be solvable with
more work and some more clever analysis of the same equations, the first point appears to
us to be more fundamental, i.e. to suggest a fundamental limitation of the generalized GFT
formalism itself. Moreover, we have worked with special types of classical solutions of the
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GFT equations, separable in the three pairs of group+algebra variables. Again, we cannot
exclude that some of the difficulties we encountered in deriving satisfactory effective non-
commutative field theories for matter are due to this restriction. While this is true, however,
it also true that, again, the first point, i.e. the lack of non-commutative structure in the B
variables, seems still more fundamental than this somewhat practical limitation.

Let us be more precise. The generalized GFT formalism of [30–32] is based on the idea
of enlarging the set of variables on which the GFT field depends from group elements alone
to include Lie algebra elements as well, interpreted as discrete connection and B field of a
BF-based description of simplicial geometry, which should become manifest at the level of
the Feynman amplitudes. The two sets of variables are treated on equal footing and in parallel,
while maintaining the GFT an ordinary, even if non-local with respect to the combinatorics of
arguments, field theory. This implies two choices: first, treating su(2) as an ordinary vector
space, thus neglecting its non-commutative nature, and second, relaxing the conjugate nature
(at the classical level) of B and g variables in the definition of the model (which characterizes
the BF theory), and more specifically in the choice of kinetic term. Some consequences of these
choices from the point of view of simplicial geometry are discussed in [31, 32]. The results
we have presented concerning the effective dynamics of GFT perturbations, in particular the
‘negative’ ones, suggest that the way the Lie algebra B variables are introduced and treated in
the generalized GFT formalism is not correct. The apparent need to trivialize the kinetic term
in the choice of classical solution suggests that only when the conjugate nature of the B and
g variables is implemented, and thus a BF kinematics is chosen, the corresponding classical
solutions define an effective (quantum) flat spacetime as desired. The lack of non-commutative
structure in the effective action in the Lie algebra sector suggests instead that the correct way
of introducing the B variables in the formalism is not to enlarge the domain space of the GFT
field, but to use from the start a non-commutative Fourier transform (in particular, the one
introduced and studied in [13, 34, 35] to go from group space to Lie algebra space, turning the
original formulation of GFTs into a non-commutative (and combinatorially non-local) one).
All these suggestions are indeed taken into account in the new non-commutative formulation
of GFTs developed in [36], which, on top of solving several difficulties we encountered here
in the study of perturbations, brings many additional bonuses and further insights from the
point of view of simplicial geometry and fundamental quantum gravity proper.

Appendix. The distribution α( �B)

In this appendix, we introduce in a geometrical way the distribution α( �B). The geometric idea
is shown in figure 1 where we have suppressed one dimension. Over each corona, we build
a cylindrical one such that each one is built around a 2-sphere of radius

√
j (j + 1) and has

thickness 2b. Just like the Dirac delta function, we then send b to zero keeping the volume of
each corona fixed. Let us define a set of functions

fj ( �B; b) =

⎧⎪⎪⎨
⎪⎪⎩

(2j + 1)2

Vb(j)

√
j (j + 1) − b � | �B| �

√
j (j + 1) + b

0 elsewhere,

(A.1)

where b is a positive, but ‘small’, number and Vb(j) = 4π
3 [2b3 + 6j (j + 1)b] is the 3-volume

of the j th spherical corona for j ∈ N and j > 0. Moreover, we define Vb(0) = 4π
3 b3 and
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Figure 1. Geometric idea of the distribution α( �B).

f0( �B; b) =

⎧⎪⎪⎨
⎪⎪⎩

1

Vb(0)
0 � | �B| � b

0 elsewhere.

(A.2)

Each fj represents a cylindrical corona, while f 0 is the central cylinder. So we have our
distribution

α( �B) = lim
b→0+

√√√√ ∞∑
j=0

fj ( �B, b). (A.3)

Of course it is possible to define our distribution through smoother functions, e.g. Gaussian-
like functions centered in | �B| = √

j (j + 1), and then follow the same procedure shown above,
with the same result.

Now, suppose we need to calculate an integral of the type∫
d �Bα2( �B)f (| �B|). (A.4)

From a geometric point of view, the height of the j th cylinder, of volume (2j +1)2, is multiplied
by f (

√
j (j + 1)). Therefore, the resulting volume is (with f having spherical symmetry):∫

d �B α2( �B)f (B) =
∞∑

j=0

(2j + 1)2f (
√

j (j + 1)). (A.5)
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