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FOUR-MANIFOLDS WITH 1/4-PINCHED FLAG CURVATURES∗

BEN ANDREWS† AND HUY NGUYEN‡

Abstract. The Ricci flow on a compact four-manifold preserves the condition of pointwise 1/4-
pinching of flag curvatures. Any compact Riemannian four-manifold with 1/4-pinched flag curvatures
is either isometric to CP2 or diffeomorphic to a space-form.
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1. Introduction. It is well known that various conditions of positive curva-
ture imply topological restrictions on a Riemannian manifold. A famous example
is the 1/4-pinching theorem of Klingenberg, Berger and Rauch, which states that a
simply-connected manifold with globally 1/4-pinched sectional curvatures is necessar-
ily homeomorphic to a sphere. An intriguing aspect of this result is that the result
gives only topological equivalence and not diffeomorphism equivalence, leaving open
the possibility that the manifold could in fact be an exotic sphere. The question of
whether such exotic spheres can exist is made more interesting by examples of exotic
spheres with non-negative sectional curvatures, or even strictly positive sectional cur-
vatures almost everywhere (though there are no examples known which are close to
having 1/4-pinched sectional curvatures).

In this paper our aim is to provide an alternative condition, that of pointwise
1/4-pinched flag curvatures, which is preserved by the Ricci flow and which avoids all
but the trivial singularity asymptotic to a shrinking spaceform. The required analysis
follows the model introduced by Hamilton in his groundbreaking work on compact
three-manifolds with positive Ricci curvature. The condition of pointwise 1/4-pinched
flag curvatures is weaker than 1/4-pinched sectional curvatures since only a subset of
sectional curvatures are compared.

Let (M, g) be a compact Riemannian 4-manifold, with curvature tensor R. The
condition we consider is as follows: We suppose that M has positive sectional curva-
tures and that for every x ∈ M and every orthonormal basis {e1, . . . , e4} for TxM ,
we have

R(e2, e1, e2, e1) ≥ λR(e3, e1, e3, e1). (1)

To put this in a more geometric way, for each e1 in TxM there is an associated bilinear
form Re1 on the orthogonal subspace, the flag curvature in direction e1, defined by
Re1(v, v) = R(e1, v, e1, v). The condition (1) says precisely that the ratio of any two
eigenvalues of Re1 is bounded below by λ. That is, each of the flag curvatures of M
is λ-pinched.

Theorem 1. Let M be a compact four-manifold, and g0 a Riemannian metric on
M with λ-pinched flag curvatures, where λ ≥ 1/4. Then either λ = 1/4 and (M, g0) is
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isometric to a multiple of the Fubini-Study metric on CP2, or (M, g0) is diffeomorphic
to a spherical space form.

In outline, the proof follows approximately the stages of the proof used by Hamil-
ton in [H1] and [H2]: After introducing some notation and acquainting the reader
with some preliminary results in Section 2, we show that λ-pinching of flag curvatures
is preserved by the Ricci flow (in Section 3), and also show that if the pinching ratio
is initially equal to 1/4 then it becomes strictly greater than 1/4 unless the initial
metric is isometric to the standard one on CP2 modulo scaling. It is perhaps im-
portant that the methods we use in this analysis do not rely heavily on the special
algebraic structure of the curvature operator in four dimensions, and so seem likely to
generalise in some way to higher dimensions. In Section 3, we show that lower bounds
on the flag curvature pinching are also preserved. In Section 5 we deduce that the
pinching ratio approaches one in regions of high curvature. Unlike in earlier works
[H1], [H2], [Hu] we reduce this to the computation showing that quarter pinched flag
curvature is preserved and so eliminate some of the detailed computations required in
those works. In Section 6 we prove the convergence result, mostly drawing on existing
results and methods. In Section 7 we show that for weak pinching, the manifold is
isometric to CP2 or diffeomorphic to a spherical space form. We note that H. Chen
has proved that four-manifolds with 2-positive curvature operator, and so in particu-
lar four-manifolds with 1/4-pinched sectional curvature, deform to constant curvature
under Ricci flow [C]. We also note as this paper was being written up, the authors
learnt that the quarter pinching diffeomorphism sphere theorem in all dimensions was
proven in the preprint [BS1] by Brendle and Schoen. The key step there is to prove
that positive isotropic curvature is preserved by the Ricci flow. This was also proved
by the second author in his PhD dissertation [N]. It is not clear whether 1/4-pinched
flag curvature for four-manifolds implies the conditions in [C] or [BS1] or more recent
work of Brendle [B]1.

2. Notation and preliminary results.

2.1. Short time existence. The following theorem was originally proved in
[H1] using the Nash-Moser implicit function theorem. However a considerably simpler
proof was discovered by DeTurck [D]. Subsequently, other simpler proofs were also
discovered [CK].

Theorem 2. [CK]*Theorem 3.13 Let (M, gij(0)) be a connected compact Rie-
mannian manifold, then there exists ǫ > 0 such that

∂

∂t
gij = −2Rij, gij(0, x) = gij(x)|t=0

has a unique solution for x ∈ M and t ∈ [0, ǫ).

2.2. Existence until curvature blowup.

Theorem 3. [H3, Theorem 7.1] [CK]*Theorem 7.1 There exist constants Ck for
k ≥ 1 such that if for 0 ≤ T < 1

K

sup
M

|Rm | ≤ K

1Added in proof: Recently Ni-Wilking has shown that 1/4-pinched flag curvature implies positive
isotropic curvature on M × R2.
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then the covariant derivatives of the curvature are bounded:

|∇Rm | ≤ C1K
2

t1/2
,

for each x ∈ M and 0 < t ≤ K, and for each k ∈ N we also have

|∇k Rm(x, t)| ≤ CkK1+k

tk/2
.

A consequence of the global derivative estimates is the following:

Corollary 4. [H3]*Theorem 8.1, [CK]*Corollary 7.2 If gij(0) is a smooth
metric on a compact manifold M , then there is a unique solution gij(t) to the Ricci
flow which exists on a maximal time interval 0 ≤ t ≤ T ≤ ∞. Furthermore if T ≤ ∞
then

lim
t→T−

(

sup
x∈Mn

|Rm(x, t)|
)

= ∞.

2.3. Hamilton’s maximum principle. In the following, we state an advanced
maximum principle for tensors which we will use in this paper. We note that there
is a more general maximum principle for time dependents sets with an avoidance set.
We refer to [CL]. The original tensor maximum principle was proved by Hamilton
[H1]*Theorem 9.1. A version of the advanced maximum principle was proved in
[H2]*Lemmas 4.1, 8.1.

Let Mn be a closed manifold with a one-parameter family of metrics g(t) | t ∈
[0, T ) and associated Levi-Civita connection. Let π : ξ → M be a vector bundle over
M , with a connection ∇̄, and let ∇̂ be the connection induced on ξ ⊗T ∗M by ∇ and
∇̄, so that

∇̄(t) : C∞(ξ) → C∞(ξ ⊗ T ∗M), ∇̂(t) : C∞(ξ ⊗ T ∗M) → C∞(ξ ⊗ T ∗M ⊗ T ∗M).

We define the Laplacian with respect to g and ∇̄ by

△̂ϕ = trg(t)∇̂∇̄ϕ, where ϕ ∈ C∞(ξ).

Let F (·, x, t) : ξx → ξx be a continuous map such that F (·, ·, t) : ξ → ξ is a fibre
preserving map for all t ∈ [0, T ).

Proposition 5. [CK]*Theorem 4.8 Let z(t), t ∈ [0, T ] be a solution of the non-
linear system of partial differential equations

∂

∂t
z = △̂z + Φ(z)

such that z(x, 0) ∈ C for all x ∈ M where C satisfies
1. C is invariant under parallel translation by ∇(t) for all t ∈ [0, T ],
2. Cx ≡ C ∩ π−1(x) is a closed convex subset of π−1(x) for all x ∈ Mn.

If every solution of the ODE

d

dt
Z = Φ(Z), Z(0) ∈ Cx

defined in the fibre π−1(x) remains in Cx for each x ∈ M and t ≥ 0, then z(x, t) ∈ C
for all x ∈ M and t ≥ 0.
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2.4. Evolution of curvature, finite time existence. By applying the evolu-
tion equation for the scalar curvature, we can show finite time existence.

Lemma 6. If R ≥ ρ at t = 0 then T ≤ 3
2ρ .

3. Preserving flag pinching. In this section we analyze the reaction ODE
for the evolution of curvature in the Ricci flow, and show that the condition of λ-
pinched flag curvatures is preserved for λ ≥ 1/4. The argument we employ should be
applicable to the analysis of many other situations involving Ricci flow and related
equations. In a subsequent paper we will apply similar ideas to the preservation of
positive curvature on isotropic 2-planes in higher dimensions.

We consider a function defined on the frame bundle OM = {(x, e1, . . . , e4) : x ∈
M, ei ∈ TxM, gx(ei, ej) = δij} by

Z(x, e1, . . . , e4) =
1

λ
Rx(e2, e1, e2, e1) − λRx(e3, e1, e3, e1). (2)

Our goal is to prove that positivity of Z is preserved if λ ≥ 1
2 .

Denote by Ωx the set of algebraic curvature operators at x, i.e. the set of symmet-
ric bilinear forms R defined on the space of antisymmetric (0, 2)-tensors and satisfying
the Bianchi identity. We observe that the set of curvature operators {Z ≥ 0} ⊂ Ωx

is an O(4)-invariant, convex set for each x ∈ M , and is invariant under parallel
transport, and so by Proposition 5 the Ricci flow preserves the positivity of Z if the
reaction ODE does. To analyse this we consider any curvature operator Ωx for which
Z ≥ 0 for all frames in Ox, and suppose there exists some frame e1, . . . , e4 for which
Z = 0. We will use the first and second order conditions for minimality within Ox

to deduce inequalities for components of the curvature, which in turn will imply that
the reaction ODE points into {Z ≥ 0}.

Let Γ(s) denote a curve in O(n) such that Γ(0) = Id. Then locally, Γ(s) =
expId(γ(s)) where γ(s) is curve in so(n). Hence dΓ

ds = d expId(γ
′(s)). We compute

the first and second derivatives of Z along the curves in Ox defined by

d

ds
ei(s) = Λijej(s);

ei(0) = ei,

where Λ is an arbitrary antisymmetric 2-tensor. Since Z = 0 we have

1

λ
R2121 = λR3131.

The first order condition then gives

d

ds
Z =

2

λ
Λ2kRk121 +

2

λ
Λ1kR2k21 − 2λΛ3kRk131 − 2λΛ1kR3k31

= −2λΛ12R3231 +
2

λ
Λ13R2321 + 2Λ14

(

1

λ
R2421 − λR3431

)

+ 2Λ23

(

1

λ
R3121 + 2λR2131

)

+
2

λ
Λ24R4121 − 2λΛ34R4131.
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The various choices of Λ then imply the following identities:

R1323 = 0;

R1223 = 0;

R1214 = 0; (3)

R1314 = 0;

R1213 = 0;

1

λ
R1224 = λR1334.

For convenience we denote the quantities on each side of the last identity by F . We also
define S = R1324 = R1423 + R1234 and T = R1423 − R1234, so that R1423 = (T + S)/2
and R1234 = (S − T )/2.

Next we consider the second order conditions: The second derivative along the
curve above is given by

1

2

d2

ds2
Z =

1

λ
Λ2kΛklRl121 +

1

λ
Λ2kΛ1lRkl21 +

1

λ
Λ2kΛ2lRk1l1 +

1

λ
Λ2kΛ1lRk12l

+
1

λ
Λ1kΛ2lRlk21 +

1

λ
Λ1kΛklR2l21 +

1

λ
Λ1kΛ2lR2kl1 +

1

λ
Λ1kΛ1lR2k2l

− λΛ3kΛklRl131 − λΛ3kΛ1lRkl31 − λΛ3kΛ3lRk1l1 − λΛ3kΛ1lRk13l

− λΛ1kΛ3lRlk31 − λΛ1kΛklR3l31 − λΛ1kΛ3lR3kl1 − λΛ1kΛ1lR3k3l

= ΛMΛt

where Λ =
[

Λ12 Λ13 Λ14 Λ23 Λ24 Λ34

]

, and M is the 6 × 6 matrix given by266666664 1
λ
R1212−λR2323 0 λR2334 0 F −

λ

2
(T +3S)

0 1
λ
R2323−λR1313

1
λ
R2324 0 −

T

λ
−F

λR2334
1
λ
R2324

1
λ
R2424−λR3434

1+λ
2

2λ
(3S−T ) −

1
λ
R1424 λR1434

0 0 1+λ
2

2λ
(3S−T ) 1

λ
R1313−λR1212 0 0

F −

T

λ
−

1
λ
R1424 0 1

λ
R1414−λR1313 0

−

λ

2
(T +3S) −F λR1434 0 0 1

λ
R1212−λR1414

377777775
It follows that this matrix is positive semidefinite. Note that we have used the iden-
tities derived above in deriving this form.

Next we compute the evolution of Z under the reaction ODE for evolution of
curvature under the Ricci flow: Using the formula derived by Richard Hamilton [H1]

1

2

d

dt
Rijkl = RipjqRkplq − RipjqRlpkq + RipkqRjplq − RiplqRjpkq (4)

and noting the identities (3), we arrive at the following equation for the rate of change
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of Z at its minimum point:

1

2

d

dt
Z =

1

λ

(

R2
1p2q + R1p1qR2p2q − 2R1p2qR2p1q

)

− λ
(

R2
1p3q + R1p1qR3p3q − 2R1p3qR3p1q

)

=
1

λ

(

R2
1212+R2

1224+R2
1324+R2

1423+R2
1424+R1313R2323

+R1414R2424−4R1324R2314−2R2
1424

)

−λ
(

R2
1313+R2

1334+R2
1234+R2

1432+R2
1434+R1212R2323

+R1414R3434−4R1234R3214−2R2
1434

)

=
1

λ

(

R2
1212 + R1313R2323 + R1414R2424 − R2

1424

)

− λ
(

R2
1313 + R1212R2323 + R1414R3434 − R2

1434

)

+

(

λ− 1

λ

)

F 2+
1 + 2λ2

4λ
T 2− 3(1 + 2λ2)

4λ
S2− 3

2λ
TS.

We wish to show that the right-hand side is non-negative at the minimum point, by
making use of the non-negativity of the matrix M. The components of M are linear
in the components of the curvature tensor, while the quantity we wish to estimate is
quadratic, so we proceed by using the non-negativity of the matrix M ⊗ M induced
by M on the space of 2-tensors on the space of 2-planes, which is defined by

(M ⊗ M)αβ,γδ = MαγMβδ

where the indices range over an orthonormal basis for Λ2. Diagonal elements of this
matrix are products of diagonal elements of M. We observe first that certain of the
terms arising in dZ

dt can be expressed naturally in terms of diagonal elements of M:

1

λ

(

R2
1212 + R1313R2323 + R1414R2424

)

− λ
(

R2
1313 + R1212R2323 + R1414R3434

)

= R1212

(

1

λ
R1212 − λR2323

)

+ R1313

(

1

λ
R2323 − λR1313

)

+ R1414

(

1

λ
R2424 − λR3434

)

= R1212M1212 + R1313M1313 + R1414M1414.

In order to write this in terms of M⊗M, we observe that the coefficients R1212, R1313

and R1414 can be written as diagonal elements of M, in various different ways: In
particular, for any α, β, γ we can write

1

λ

(

R2
1212 + R1313R2323 + R1414R2424

)

− λ
(

R2
1313 + R1212R2323 + R1414R3434

)

=
λ3 cos2 α

1 − λ2
M1212M2424 +

λ cos2 α

1 − λ2
M1212M3434 +

λ3 sin2 α

1 − λ4
M1212M2323

+
λ cos2 β

1 − λ2
M1313M2424 +

cos2 β

λ(1 − λ2)
M1313M3434 +

λ sin2 β

1 − λ4
M1313M2323

+
λ(1 − λ2 sin2 γ)

1 − λ2
M1414M2424 +

λ cos2 γ

1 − λ2
M1414M3434 +

λ3 sin2 γ

1 − λ4
M1414M2323.

We will apply M⊗M to particular vectors chosen to produce useful off-diagonal terms.
First define the operation ∧̂ to be the wedge product on the space Λ2, so that

(ei ∧ ej)∧̂(ek ∧ el) =
1√
2

[(ei ∧ ej) ⊗ (ek ∧ el) − (ek ∧ el) ⊗ (ei ∧ ej)] .
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The vectors of interest are then

V ±
1 =

√

λ3

1 − λ2
cosα(e1 ∧ e2)∧̂(e2 ∧ e4) ±

√

1

λ(1 − λ2)
cosβ(e1 ∧ e3)∧̂(e3 ∧ e4);

V ±
2 =

√

λ

1 − λ2
cosα(e1 ∧ e2)∧̂(e3 ∧ e4) ±

√

λ

1 − λ2
cosβ(e1 ∧ e3)∧̂(e2 ∧ e4);

V ±
3 =

√

λ3

1 − λ4
sin α(e1 ∧ e2)∧̂(e2 ∧ e3) ±

√

λ

1 − λ2
cos γ(e1 ∧ e4)∧̂(e3 ∧ e4);

V ±
4 =

√

λ

1 − λ4
sin β(e1 ∧ e3)∧̂(e2 ∧ e3) ±

√

λ(1 − λ2 sin2 γ)

1 − λ2
(e1 ∧ e4)∧̂(e2 ∧ e4);

V5 =

√

λ3

1 − λ4
sin γ(e1 ∧ e4)∧̂(e2 ∧ e3).

The inequality ε1M ⊗ M(V +
1 , V +

1 ) + (1 − ε1)M ⊗ M(V −
1 , V −

1 ) ≥ 0 can be written as

λ3 cos2 α

1 − λ2
M1212M2424 +

cos2 β

λ(1 − λ2)
M1313M3434 ≥

(

λ3 cos2 α

1 − λ2
+

cos2 β

λ(1 − λ2)

)

F 2

+ (1 − 2ε1)
λ cos α cosβ

1 − λ2
T (T + 3S).

(5)

The inequality M ⊗ M(V +
2 , V +

2 ) ≥ 0 yields

λ cos2 α

1 − λ2
M1212M3434 +

λ cos2 β

1 − λ2
M1313M2424 ≥ λ3 cos2 α

4(1 − λ2)
(T + 3S)2 +

cos2 β

λ(1 − λ2)
T 2

+ 2
λ cosα cosβ

1 − λ2
F 2. (6)

From M ⊗ M(V ±
3 , V ±

3 ) ≥ 0 we obtain

λ3

1 − λ4
sin2 αM1212M2323 +

λ

1 − λ2
cos2 γM1414M3434 ≥ λ3

1 − λ2
cos2 γR2

1434

± λ2
√

1 + λ2

2(1 − λ2)
sinα cos γ

(

9S2 − T 2
)

. (7)

From ε4M ⊗ M(V +
4 , V +

4 ) + (1 − ε4)M ⊗ M(V −
4 , V −

4 ) ≥ 0 we obtain

λ

1 − λ4
sin2 βM1313M2323+

λ(1 − λ2 sin2 γ)

1 − λ2
M1414M2424 ≥ 1 − λ2 sin2 γ

λ(1 − λ2)
R2

1424

+ (1 − 2ε4)

√

1 − λ2 sin2 γ
√

1 + λ2

λ(1 − λ2)
sin βT (T − 3S).

(8)

Finally, from M ⊗ M(V5, V5) ≥ 0 we have

λ3

1 − λ4
sin2 γM1414M2323 ≥ λ(1 + λ2)

4(1 − λ2)
sin2 γ(3S − T )2. (9)
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These identities give the following for the time evolution of Z:

1

2

d

dt
Z ≥

(

− 1

λ
+

1 − λ2 sin2 γ

λ(1 − λ2)

)

R2
1424 +

(

λ +
λ3 cos2 γ

1 − λ2

)

R2
1434

+

(

λ − 1

λ
+

λ3 cos2 α

1 − λ2
+

cos2 β

λ(1 − λ2)
+

2λ cosα cosβ

1 − λ2

)

F 2

+
1 + 4λ2

4λ
T 2 − 3(1 + 2λ2)

4λ
S2 − 3

2λ
TS + (1 − 2ε1)

λ cosα cosβ

1 − λ2
T (T + 3S)

+
λ3 cos2 α

4(1 − λ2)
(T + 3S)2 +

cos2 β

λ(1 − λ2)
T 2 ± λ2

√
1 + λ2 sin α cos γ

2(1 − λ2)

(

9S2 − T 2
)

+ (1 − 2ε4)

√

1 − λ2 sin2 γ
√

1 + λ2

λ(1 − λ2)
sin β T (T − 3S)

+
λ(1 + λ2)

4(1 − λ2)
sin2 γ(3S − T )2.

The coefficient of R2
1434 is positive, while that of R2

1424 is non-negative (positive
if sin γ < 1). The coefficient of F 2 can be rearranged to give

(

λ2 cosα + cosβ
)2

λ(1 − λ2)
− 1 − λ2

λ
,

which is non-negative provided
∣

∣λ2 cosα + cosβ
∣

∣ ≥ 1 − λ2. (10)

We observe that the curvature operator of CP2 evolves by simply scaling under
the Ricci flow reaction ODE, and has 1/4-pinched flag curvatures. That is, in this
case we have Z = 0 for λ = 1

2 , and dZ
dt = 0. For this case we have T = 0 but S 6= 0,

while F = 0. It follows that there can be no way to produce a positive coefficient for
S2 in dZ

dt . Clearly, however, to preserve 1/4-pinching we must be able to achieve at
least a non-negative coefficient for S2. We consider this coefficient in more detail: It
can be written as follows, choosing the inequality for V +

3 rather than that for V −
3 :

3(1 + 2λ2)(4λ2 − 1)

4λ(1 − λ2)
− 9λ

4(1 − λ2)

(

λ sin α −
√

1 + λ2 cos γ
)2

.

In particular, for λ = 1
2 this is non-positive, with equality precisely when

cos γ =
λ√

1 + λ2
sin α. (11)

We make this choice (for all λ ≥ 1
2 ) to achieve a positive coefficient for S2. Next

we consider the coefficient of ST : In the case λ = 1
2 this must be made to vanish to

obtain a sign on dZ/dt, and we opt to produce this in all cases. This coefficient is
given by

− 3

2λ(1 − λ2)
+

3

λ(1 − λ2)

(

(1 − 2ε1)λ
2 cosα cosβ − (1 − 2ε4)

√

1 − λ4 cos2 α sin β
)

.

This can be made to vanish in many different ways, for example by choosing cosα = 1,
cosβ = 1

2 (note that the previous requirement is then satisfied since λ ≥ 1
2 ), and ε1 = 0
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and ε4 = 1
2

(

1 +
√

1−λ2

1+λ2

)

(the latter lies in the range
(

1
2 , 1

2

[

1 +
√

3
5

])

and so is an

admissible choice). It remains to check the coefficient of T 2, which is then

λ(4 − λ2)

2(1 − λ2)
> 0.

4. Lower bound. In this section we show that if at time t = 0, Zλ ≥ m̄R1212

then this inequality is preserved. By compactness of the frame bundle, if (M, gij)
is strictly quarter pinched such an estimate always exists. As in the above case we
consider the case where Zλ attains its minimum that is Zλ = m̄R1212 or ( 1

λ−m̄)R1212−
λR1313 = 0. Let us consider the following quantity,

Zλ,m̄ =
1

λm̄
R1212 − λR1313,

where λm̄ = λ
1−m̄λ and let Zm̄ be the set of algebraic curvature tensors such that

Zλ,m ≥ 0. This a closed convex subset of Ωx. The inequality follows from the
computation in the previous section, note that

R1212 − λmλR1313 ≥ 0. (12)

Define µm =
√

λmλ, then (12) becomes

1

µm
R1212 − µmR1313 ≥ 0.

Hence this inequality holds as long as µm ≥ 1/4.

5. Improving flag pinching. In this section, we will show that in regions of
high curvature, the ratio sectional curvatures approaches unity. Let us consider the
following quantity, let

Qǫ,λ =

(

R1313 − R1212

R1212

)

Rǫ =

(

Zλ

λR1212
+

1

λ2
− 1

)

Rǫ.

Note that Qλ,ǫ has no explicit dependence on λ, we use this notation merely to remind
us that λ will be used in the estimate. Furthermore let us also consider, Cx, a convex
closed subset of the bundle of algebraic curvature tensors,

C = {P | ∃K ∈ R, ǫ ∈ (0, 1] | P1212 − P1313 ≤ K tr(P)ǫ
P1212} ⊂ Ωx. (13)

We will show that the Ricci flow preserves the set Cx. If we consider a frame maximum
of Qǫ,λ, this is equivalent to a frame minimum of Zλ

R1212
and the reaction ODE is

d

dt
Qλ,ǫ = Rǫ

(

− d

dt

Zλ

λR1212
− 2ǫ

|Rc|2
R

(

− Zλ

λR1212
+

1

λ2
− 1

))

. (14)

Theorem 7. Assume that there exists a m ≥ m̄ such that minO∈Ox

Zλ

R1212
= m,

then at a minimal frame O = {e1, e2, . . . , e4}, we have that

d

dt

(

Zλ

R1212

)

≥ δ

(

2

√

λm

1 − λλm
− δ

)

1

R1212

(

R2424

λm
− λR3434

)(

R1414

λm
− λR1313

)

.

(15)
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where

δ ≤ min

{

2

√

λm̄

1 − λλm̄
,
3

4

√
λ(4 − λλm̄)√

1 − λλm̄

}

Consider the following equations,

d

dt

(

Zλ

R1212

)

=
1

R1212

dZλ

dt
− Zλ

R2
1212

dR1212

dt
=

1

R1212

d

dt

((

1

λ
− m

)

R1212 − λR1313

)

.

Furthermore note that if we have d
dsei(s) = Λijej(s), then at a minimum of Zλ,

d

ds

(

Zλ

R1212

)

=
1

R1212

d

ds
Zλ,m = 0,

and

d2

ds2

(

Zλ

R1212

)

=
1

R2
1212

d2

ds2
Zλ,m.

Hence it suffices to prove the following proposition,

Proposition 8. Assume that there exists a m ≥ m̄ such that minO∈Ox

Zλ

R1212
=

m, then at a minimal frame O = {e1, e2, . . . , e4}, we have that

d

dt
Zλ,m ≥ δ

(

2

√

λm

1 − λλm
− δ

)

(

R2424

λm
− λR3434

)(

R1414

λm
− λR1313

)

(16)

where

δ ≤ min

{

2

√

λm̄

1 − λλm̄
,
3

4

√
λ(4 − λλm̄)√

1 − λλm̄

}

Proof. We replace the vector V ±
2 , with the vector,

V ±
2,m,δ =

√

λm

1 − λλm
cosα(e1∧e2)∧̂(e3∧e4)±

(

√

λm

1 − λλm
− δ

)

cosβ(e1∧e3)∧̂(e2∧e4)

As a consequence, the inequality (6) becomes,

λm cos2 α

1 − λλm
M1313M2424 +

λm cos2 β

1 − λλm
M1313M2424 ≥ δ

(

2

√

λm

1 − λλm
− δ

)

M1212M3434

+
λmλ2 cos2 α

4(1 − λλm)
(T + 3S)2 +

1

λ2
m

(

√

λm

1 − λλm
− δ

)2

cos2 βT 2

+ 2

(

λm

1 − λλm
− δ

√

λm

1 − λλm

)

cosα cosβF 2.
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To ensure that we have a non-negative coefficient on M1313M2424 on the right hand

side we require that δ < 2
√

λm

1−λλm
. Choosing cosα=1, cosβ=1

2 , the coefficient of F 2
m

then becomes,

−1 − λλm

λm
+

(λλm + 1
2 )2

λ(1 − λλm)
− δ

√

λm

1 − λλm
,

which is then non-negative if

δ <
3

4

4λλm − 1

λ
√

λm(1 − λλm)
.

Finally we must check the coefficient of the T 2 term,

λ(4 − λλm)

2(1 − λλm)
+

1

4λ2
m

(

δ2−2δ

√

λm

1 − λλm

)

=
1

4λ2
m

[

δ2−2δ

√

λm

1 − λλm
+

2λλm(4 − λλm)

1 − λλm

]

.

(17)

We compute the discriminant of this polynomial,

disc =
4λm

1 − λλm

[

1 + 2λλm − 8λ2λ2
m

]

,

The zeroes of this polynomial are given by λλm = 2 ±
√

7
2 and as 2 +

√

7
2 ≥ 1 ≥

λλm ≥ 1
4 ≥ 2 −

√

7
2 , disc < 0, and the polynomial (17) is positive for δ ≥ 0. Hence if

we choose

δ < min

{

2

√

λm

1 − λλm
,
3

4

4λλm − 1

λ
√

λm(1 − λλm)

}

.

then

d

dt
Zλ ≥ δ

(

2

√

λm

1 − λλm
− δ

)

(
1

λm
R2424 − λR3434)(

1

λm
R1414 − λR1313). (18)

It remains to show that we can choose δ independent of m, this follows from the
following two inequalities

√

λm̄

1 − λλm̄
≤
√

λm

1 − λλm
,

3

4

√
λ(4 − λλm̄)√

1 − λλm̄

≤ 3

4

4λλm − 1

λ
√

λm

√
1 − λλm

.

Finally, let us note a trivial consequence of λ pinching

Lemma 9. Let (M, g) be a Riemannian manifold such that 1
λRijij − λRklkl ≥ 0

for all frames O = {ei, ej, ek, el}, then for any sectional curvature Rmnmn

1 ≤ R

Rmnmn
≤ n(n − 1)

λ4
.
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Returning to the equation (14), applying the estimate (15) we get

d

dt
Qλ,ǫ ≤ Rǫ

[

−δ

(

2

√

λm

1 − λλm
− δ

)

1

R1212

(

R2424

λm
− λR3434

)(

R1414

λm
− λR1313

)

+2ǫ
|Rc|2

R

(

−m +
1

λ2
− 1

)]

≤ Rǫ

[

−δ

(

2

√

λm̄

1 − λλm̄
− δ

)

m2R2424R1414

R1212
+ 2ǫR

(

−m̄ +
1

λ2
− 1

)

]

≤ Rǫ

[

−δ

(

2

√

λm̄

1 − λλm̄
− δ

)

m̄2R2424 + 2ǫ
n(n − 1)

λ4
R2424

(

−m̄+
1

λ2
−1

)

]

Hence if we choose

ǫ ≤







δλ4
(

2
√

λm̄

1−λλm̄
− δ
)

2n(n− 1)
(

−m̄ + 1
λ2 − 1

)







we get that

d

dt
Qλ,ǫ ≤ 0

at a maximal frame O ∈ Ox which shows that Q(t) ∈ C. This implies that we have
an estimate of the form, Qλ,ǫ(t) ≤ C(n, λ, m̄, Qλ,ǫ(0)).

6. Convergence. Using Hamilton’s compactness theorem, we can prove that
M is diffeomorphic to either S4 or RP

4. In this case we show that after rescaling a
sequence of metrics, g(ti) → g, where g is a spherical space form.

We gather the necessary theorems from [P] and [CCG+].

Theorem 10 (No local Collapsing). Let gij(t), t ∈ [0, T ] be a smooth solution to
the Ricci Flow on a closed manifold Mn. If T < ∞, then for any ρ > 0 there exists
κ = κ(gij(0), T, ρ) such that g(t) is κ-collapsed below the scale ρ for all t ∈ [0, T ).

This is equivalent to the following local injectivity radius

Theorem 11 (Local Injectivity Radius). Let (Mn, gij(t)) be a solution to the
Ricci flow on a closed manifold. Then for every constant C, there exists a constant
a > 0 depending only on C, g(0) and T such that if (xi, ti) is a sequence of points and
times such that

|Rm[g(ti]| ≤ CKi,

in Bgti
(xi, (CKi)

− 1
2 ) then

injg(ti)(xi) ≥
a√
Ki

.

Theorem 12. There exists a subsequence which converges in C∞ to a complete
Riemannian manifold (Mn

∞, g∞,O∞) with |Rm[g∞]| ≤ C on Mn
∞, inj(g∞,O∞) ≥ c

and |∇k Rm[g∞] ≤ Ck on Mn
∞.
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Theorem 13 (Compactness theorem-local). Let (Mn
i , gi(t),Oi)i∈N, t ∈ [O, T ]

with T > 0 be a sequence of complete pointed solutions to the Ricci flow. Let p0 > 4
be an integer and s0 > 0. Suppose that we have:

1. the uniform derivative of curvature bounds

sup
Bgi(0)(Oi ,s0)×[0,T ]

|∇q Rm[gi(t)]| ≤ Cq,s0 < ∞

2. an injectivity radius bound

injgi(0)(Oi) ≥ δ > 0∀i ∈ N.

Then there exists c(n) < ∞ and a subsequence of
{(

Bgi(0)

(

Oi, e
−c(n)TC0,s0

)

, gi(t),Oi

)}

i∈N
, t ∈ [0, T ]

which converges to an evolving pointed Riemannian manifold, {Bn
∞, g∞(t),Oi}, t ∈

[0, T ] in the Cp0−2(g∞(0))-topology and g∞(t) is a solution of the Ricci flow. Fur-
thermore, if we assume the global bounds

sup
Mn

i ×[0,T ]

|∇q Rm[gi(t)]| ≤ Cq < ∞

for all 0 ≤ q ≤ p0 then there exists a subsequence of {(Mn
i , gi(t),Oi}i∈N , t ∈ [0, T ]

which converges to an evolving complete Riemannian manifold {(Mn
∞, g∞(t),O∞}, t ∈

[0, T ] in the Cp0−2(g∞(0)) topology and g∞(t) is a solution of the Ricci flow.

The proof of the diffeomorphism results then follows standard convergence argu-
ments, which we include for the sake of completeness. The argument for positive Ricci
curvature in dimension 3 is given in [CCG+]*Section 4.2, we modify the argument
where necessary.

Theorem 14. Let (M4, gij) be a closed 4-manifold with strictly quarter pinched
flag curvature, then M4 is diffeomorphic to S

4 or RP
2.

Proof. By the above theorems , we know that there exists a sequence of points
and times, (xi, ti) such that ti → T where

Ki = sup
x∈M4

|Rm[x, ti]|

and the rescaled solutions gi(t) = Kig(ti + ti

Ki
) converge in C∞ on compact subsets

to a complete ancient solution, (M, g∞), t ∈ (−∞, ω) | ω > 0 with quarter pinched
flag curvature and |Rm(x∞, 0)| = 1. This implies that R[g∞(x∞, 0)] ≥ 0. By the
maximum principle we then have R[g∞(t)] ≥ 0 and R[g∞] and hence we have a
positive lower bound R[g∞(t)] ≥ c > 0 in Bg∞

(x∞, ρ). We recall the flag difference
pinching result,

(

R1313

R1213
− 1

)

≤ C(n, λ, m̄)Rǫ.

Now gi(0) = Kig(ti) converges to g∞(0) in C∞ on compact sets. Hence for sufficiently
large i, we have

R[gi](x∞, 0) ≥ 1

2
inf

x∈Bg∞(0)(x∞,ρ)
R[g∞](x) ≥ c

2
,
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for x ∈ Bgi(0)(xi, ρ − 1). This implies that

R[g(ti)] = KiR[gi(0)] ≥ c

2
Ki

in Bgi(0)(xi, ρ − 1). Hence we have that
(

R1313

R1212
− 1

)

[gi(0)] =

(

R1313

R1212
− 1

)

[g(ti]

≤ CR[g(ti)]
−ǫ ≤ C

( c

2
Ki

)−ǫ

in Bgi(0)(xi, ρ − 1). Since gi(0) → g∞(0) we see that
(

R1313

R1212
− 1

)

[g∞(0)] ≤ 2C
( c

2
Ki

)−ǫ

,

in Bg∞(0)(x∞, ρ − 2) for all i sufficiently large. Since limi→∞ Ki = ∞, we have that
Rijij − Rklkl ≤ f(λ)(R1313 − R1212) → 0 in Bg∞(0)(x∞, ρ − 2). As ρ is arbitrary we
conclude that (M4, g∞) has pointwise constant positive sectional curvature on M4 for
the metric g∞(0). Hence by Schur’s lemma, the metric g∞(0) has constant sectional
curvature and by the Bonnet-Myer’s theorem, M4

∞ is compact and furthermore as
M4

∞ is compact and admits a metric which is the limit of metrics on M4 we conclude
that M4

∞ is diffeomorphic to M4. This proves that that M4 with quarter pinched flag
curvature admits a C∞ metric which has constant positive sectional curvature.

7. Weak quarter pinched flag curvature. In this section, we consider the
case of weakly quarter pinched flag curvature. To this end we use a degenerate
maximum principle first introduced by Bony. We use a form introduced by Brendle
and Schoen [BS2].

Theorem 15 (Bony’s Maximum Principle, [BS2] ). Let M be a compact manifold
and let E be a vector bundle over M with a fixed bundle metric h. Let P be the bundle
whose fiber over p ∈ M consists of all orthonormal k-frames {e1, . . . , ek} ⊂ Ep. Let
g(t), t ∈ [0, δ] be a smooth family of Riemannian metrics on M and let D(t), t ∈ [0, δ]
be a smooth family of connections on E that are compatible with the metric h. Assume
that u is a non-negative smooth function on P × (0, δ) satisfying

∂

∂t
u ≥ Lu + α

{

0, inf
ξ∈V,|ξ|=1

D2u(ξ, ξ)

}

− α sup
ξ∈V,|ξ|=1

Du(ξ) − αu,

where L is the horizontal Laplacian on P, V denotes the vertical subspace and α is a
positive constant. Then the set F = {u = 0,⊂ P × (0, δ) is invariant under parallel
translation.

The evolution equation for the term Zλ without simplifications, is given by

dZ

dt
=

1

λ

(

R2
1212 + R1313R2323 + R1414R2424 − R2

1424

)

− λ
(

R2
1313 + R1212R2323 + R1414R3434 − R2

1434

)

(19)

+ λR2
1242 −

1

λ
R2

1343+
1 + 2λ2

4λ
T 2− 3(1 + 2λ2)

4λ
S2− 3

2λ
TS (20)

+
2

λ
R1413R2342 − 2λR1412R2343 + (λ − 1

λ
)R2

1323 + (
1

λ
− λ)R2

1242 (21)

+
1

λ
R2

1412 − λR2
1413 + (

1

λ
− λ)R2

1213. (22)
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We compute the first and second derivatives of the flag pinching in the frame bundle,

1

2

∂Zλ

∂Λ12
= −λR1323,

1

2

∂Zλ

∂Λ13
=

1

λ
R1232,

1

2

∂Zλ

∂Λ14
= (

1

λ
R1242 − λR1343) = F,

1

2

∂Zλ

∂Λ23
=

(1 + λ2)

λ
R1213,

1

2

∂Zλ

∂Λ24
=

1

λ
R1214,

1

2

∂Zλ

∂Λ34
= −λR1314,

where we let F = 1
λR1242 − λR1343 and266666666664λR1313−λR2323

λ

2(1+λ2)

∂Zλ
∂Λ23

λR2334
−λ2

2

∂Zλ
∂Λ13

−λR1343 −λ
2(T +3S)

∗ 1
λ
R2323−1

λ
R1212

1
λ
R2324

1
2λ2

∂Zλ
∂Λ12

−T
λ

− 1
λ

R1242

λR2334
1
λ
R2324

1
λ
R2424−λR3434−Zλ

1+λ2

2λ
(3S−T ) − 1

λ
R1424 λR1434

∗ ∗ 1+λ2

2λ
(3S−T ) 1

λ
R1313−λR1212−Zλ − 1+λ2

2λ2
∂Zλ
∂Λ34

1+λ2

2

∂Zλ
∂Λ24

F −T
λ

− 1
λ
R1424 ∗ 1

λ
R1414−1

λ
R1212

−λ2

2

∂Zλ
∂Λ13

−λ
2(T +3S) −F λR1434 ∗ ∗ λR1313−λR1414

377777777775
The terms (19) in the nonlinearity in the evolution equation have the form,

1

λ

(

R2
1212 + R1313R2323 + R1414R2424

)

− λ
(

R2
1313 + R1212R2323 + R1414R3434

)

= R1212

(

1

λ
R1212 − λR2323

)

+ R1313

(

1

λ
R2323 − λR1313

)

+ R1414

(

1

λ
R2424 − λR3434

)

= R1212M1212 + R1313M1313 + R1414M1414 + (R1212 + R1313 + R1414)Zλ

As in the previous section we write this in terms of M ⊗ M, and we observe that
the coefficients R1212, R1313 and R1414 can be written as diagonal elements of M, in
various different ways: In particular, for any α, β, γ we can write

1

λ

(

R2
1212 + R1313R2323 + R1414R2424

)

− λ
(

R2
1313 + R1212R2323 + R1414R3434

)

=
λ3 cos2 α

1 − λ2
M1212M2424 +

λ cos2 α

1 − λ2
M1212M3434 +

λ3 sin2 α

1 − λ4
M1212M2323

+
λ cos2 β

1 − λ2
M1313M2424 +

cos2 β

λ(1 − λ2)
M1313M3434 +

λ sin2 β

1 − λ4
M1313M2323

+
λ(1 − λ2 sin2 γ)

1 − λ2
M1414M2424 +

λ cos2 γ

1 − λ2
M1414M3434 +

λ3 sin2 γ

1 − λ4
M1414M2323

+ (M1212 + M1313 + M1414)Zλ + (R1212 + R1313 + R1414)Zλ.

As in the previous section this gives us a collection of diagonal elements of M ⊗
M, that we can use to control the off diagonal elements. Using the same algebraic
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construction as the previous section we choose the same vectors,

V ±
1 =

√

λ3

1 − λ2
cosα(e1 ∧ e2)∧̂(e2 ∧ e4) ±

√

1

λ(1 − λ2)
cosβ(e1 ∧ e3)∧̂(e3 ∧ e4);

V ±
2 =

√

λ

1 − λ2
cosα(e1 ∧ e2)∧̂(e3 ∧ e4) ±

√

λ

1 − λ2
cosβ(e1 ∧ e3)∧̂(e2 ∧ e4);

V ±
3 =

√

λ3

1 − λ4
sin α(e1 ∧ e2)∧̂(e2 ∧ e3) ±

√

λ

1 − λ2
cos γ(e1 ∧ e4)∧̂(e3 ∧ e4);

V ±
4 =

√

λ

1 − λ4
sin β(e1 ∧ e3)∧̂(e2 ∧ e3) ±

√

λ(1 − λ2 sin2 γ)

1 − λ2
(e1 ∧ e4)∧̂(e2 ∧ e4);

V5 =

√

λ3

1 − λ4
sin γ(e1 ∧ e4)∧̂(e2 ∧ e3).

The term ε1M ⊗ M(V +
1 , V +

1 ) + (1 − ε1)M ⊗ M(V −
1 , V −

1 ) can be written as

λ3 cos2 α

1 − λ2
M1212M2424 +

cos2 β

λ(1 − λ2)
M1313M3434

=

(

λ3 cos2 α

1 − λ2
R2

1343 +
cos2 β

λ(1 − λ2)
R2

1242

)

+ (1 − 2ε1)
λ cosα cosβ

1 − λ2
T (T + 3S) (23)

+ (1 − 2ǫ1)
λ4 cosα cosβ

2(1 − λ4)

∂Zλ

∂Λ23

∂Zλ

∂Λ24
(24)

+ ε1M ⊗ M(V +
1 , V +

1 ) + (1 − ε1)M ⊗ M(V −
1 , V −

1 ). (25)

The term M ⊗ M(V +
2 , V +

2 ) yields

λ cos2 α

1 − λ2
M1212M3434 +

λ cos2 β

1 − λ2
M1313M2424 =

λ3 cos2 α

4(1 − λ2)
(T + 3S)2 +

cos2 β

λ(1 − λ2)
T 2

+ 2
λ cosα cosβ

1 − λ2
R1343R1242 (26)

+
λ4 cosα cosβ

2(1 − λ2)2
∂Zλ

∂Λ23

∂Zλ

∂Λ24
(27)

+ M ⊗ M(V +
2 , V +

2 ). (28)

From M ⊗ M(V ±
3 , V ±

3 ) we obtain

λ3

1 − λ4
sin2 αM1212M2323 +

λ

1 − λ2
cos2 γM1414M3434 =

λ3

1 − λ2
cos2 γR2

1434

± λ2
√

1 + λ2

2(1 − λ2)
sinα cos γ

(

9S2 − T 2
)

(29)

±
√

1 + λ2

λ(1 − λ2)
sin α cos γR2334

∂Zλ

∂Λ34
(30)

+ M ⊗ M(V ±
3 , V ±

3 ). (31)
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From ε4M ⊗ M(V +
4 , V +

4 ) + (1 − ε4)M ⊗ M(V −
4 , V −

4 ) we obtain

λ

1 − λ4
sin2 βM1313M2323+

λ(1 − λ2 sin2 γ)

1 − λ2
M1414M2424 =

1 − λ2 sin2 γ

λ(1 − λ2)
R2

1424

+ (1 − 2ε4)

√

1 − λ2 sin2 γ
√

1 + λ2

λ(1 − λ2)
sin βT (T − 3S)

(32)

+ (1 − 2ǫ4)

√

1 − λ2 sin2 γ(1 + λ2)

λ3
R2324

∂Zλ

∂Λ34
(33)

+ ε4M ⊗ M(V +
4 , V +

4 ) + (1 − ε4)M ⊗ M(V −
4 , V −

4 ) (34)

Finally, from M ⊗ M(V5, V5) we have

λ3

1 − λ4
sin2 γM1414M2323 =

λ(1 + λ2)

4(1 − λ2)
sin2 γ(3S − T )2 (35)

+ M ⊗ M(V5, V5). (36)

Proposition 16. At each point {(e1, e2, e3, e4), t} ∈ P × (0, δ) we have

1

λ
Q(R)1212 − λQ(R)1313 ≥ α min

{

0, inf
ξ∈V,|ξ|=1

D2Zλ(ξ, ξ)

}

− α sup
ξ∈V,|ξ|=1

DZλ(ξ) − αZλ.

(37)

Proof. As in the original proof and use the fact that before the singular time we
have that the curvature is bounded. Then the inequality above is simple to verify.
Applying Bony’s maximum principle, (Theorem 15), we obtain the desired result.
Consider the terms (21) and (22), then these clearly satisfy

2

λ
R1413R2342 − 2λR1412R2343 + (λ − 1

λ
)R2

1323+

(
1

λ
− λ)R2

1242 +
1

λ
R2

1412 − λR2
1413 + (

1

λ
− λ)R2

1213 ≥ −α sup
ξ∈V,|ξ|=1

DZλ(ξ). (38)

Furthermore, the terms (19) may be used to control the terms (20) in the same way
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as the previous section. Hence the terms in this equation become,

(

− 1

λ
+

1 − λ2 sin2 γ

λ(1 − λ2)

)

R2
1424 +

(

λ +
λ3 cos2 γ

1 − λ2

)

R2
1434

(

1

λ
+

cos2 β

λ3(1 − λ2)

)

R2
1242 +

(

λ5 cos2 α

1 − λ2
− λ

)

R2
1343 +

2λ cosα cosβ

1 − λ2
R1343R1242

+
1 + 4λ2

4λ
T 2 − 3(1 + 2λ2)

4λ
S2 − 3

2λ
TS + (1 − 2ε1)

λ cos α cosβ

1 − λ2
T (T + 3S)

+
λ3 cos2 α

4(1 − λ2)
(T + 3S)2 +

cos2 β

λ(1 − λ2)
T 2 ± λ2

√
1 + λ2 sin α cos γ

2(1 − λ2)

(

9S2 − T 2
)

+ (1 − 2ε4)

√

1 − λ2 sin2 γ
√

1 + λ2

λ(1 − λ2)
sin β T (T − 3S)

+
λ(1 + λ2)

4(1 − λ2)
sin2 γ(3S − T )2

+ ε1M ⊗ M(V +
1 , V +

1 ) + (1 − ε1)M ⊗ M(V −
1 , V −

1 ) + M ⊗ M(V +
2 , V +

2 )

+ M ⊗ M(V ±
3 , V ±

3 ) + ε4M ⊗ M(V +
4 , V +

4 ) + (1 − ε4)M ⊗ M(V −
4 , V −

4 )

+ M ⊗ M(V5, V5)

+ (1 − 2ǫ1)
λ4 cosα cosβ

2(1 − λ4)

∂Zλ

∂Λ23

∂Zλ

∂Λ24
+

λ4 cosα cosβ

2(1 − λ2)2
∂Zλ

∂Λ23

∂Zλ

∂Λ24

±
√

1 + λ2

λ(1 − λ2)
sinα cos γR2334

∂Zλ

∂Λ34
+ (1 − 2ǫ4)

√

1 − λ2 sin2 γ(1 + λ2)

λ3
R2324

∂Zλ

∂Λ34
.

We make exactly the same choices of cosα = 1, cosβ = 1
2 and cos γ =

λ√
1+λ2 sin α, ǫ1 = 1, ǫ4 = 1

2

(

1 +
√

1−λ2

1+λ2

)

then the coefficient of the terms S2 and

ST are zero and the coefficients of R2
1424, R

2
1434 and T 2 are positive. Finally, by

writing R1242 = λF + λ2R1343, we may estimate the following term,

(

1

λ
+

cos2 β

λ3(1 − λ2)

)

R2
1242 +

(

λ5 cos2 α

1 − λ2
− λ

)

R2
1343 +

2λ cosα cosβ

1 − λ2
R1343R1242 ≥

λ2R2
1343

(

(

λ2 cosα + cosβ
)2

λ(1 − λ2)
− 1 − λ2

λ

)

− α sup
ξ∈V,|ξ|=1

DZλ(ξ).

By the above choices, the term in the brackets is positive. Therefore, collecting all
the above estimates we have shown that (37) is true.

Let F = {(e1, e2, e3) ⊂ TpM} be the set of orthonormal 3-frames such that
Fλ(e1, e2, e3) = 0.

Corollary 17. The set F is invariant under parallel translation.

Proof. The corollary follows by Proposition 16 and Theorem 15.

Theorem 18. Let (M, g0) have weakly 1/4-pinched flag curvature. Further, let
us suppose that there exists a real number τ ∈ (O, T ) such that

Hol 0(M, g(τ)) = SO(n).

then (M, g0) is diffeomorphic to a spherical space form.
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Proof. As in the paper of [BS2], the theorem follows from Theorem 14 if

Fλ(e1, e2, e3) =
1

λ
R1212 − λR1313 > 0

for all orthonormal three-frames {e1, e2, e3}. Hence let us fix a point p ∈ M and
number λ ∈ [ 14 , 1] and suppose that {e1, e2, e3} ⊂ TpM is an orthonormal three frame
such that

1

λ
R1212 − λR1313 = 0.

Now the manifold M is not flat, hence we can find a q ∈ M and an orthonormal two
frame {v1, v2} ⊂ TqM such that

Rq(v1, v2, v1, v2) > 0.

Now we assume that the holonomy is O(n), this implies that there exists a piecewise
smooth path γ(t), γ(0) = p, γ(1) = q such that under parallel transport along γ we
have v1 = Pγ(e1) and v2 = Pγ(e2), v3 = Pγ(e3). Then by Corollary 17, we have that

1

λ
R(v1, v2, v1, v2) − λR(v1, v3, v1, v3) = 0.

By a similar argument we have that

1

λ
R(v1, v3, v1, v3) − λR(v1, v2, v1, v2) = 0.

This implies that R(v1, v2, v1, v2) = 0 which is a contradiction.

Proposition 19 (cf [BS2]*Proposition 11). Assume that (M, g0) is locally irre-
ducible. Then one of the following statements holds:

1. (M, g0) is diffeomorphic to a spherical space form,
2. The universal cover if (M, g0) is Kähler manifold biholomorphic to CP2.

Proof. The argument is similar to the argument in [BS2]. A (M, g0) is not locally
symmetric and has 1

4 pinched flag curvature then (M, g0) is not flat and is locally
irreducible. Then by Theorem 18, there are two possibilities,

1. The Ricci flow exists up to time T , and the manifold is diffeomorphic to a
spherical space form. Hence we are done.

2. The universal cover of (M, g0) is a Kähler manifold. As (M, g0) has quarter
pinched flag curvature so does the universal cover (M̃, g0). This implies that
(M̃, g0) has quarter pinched sectional curvature as follows, we only need to
check that

1

λ
R(v, w, v, w) − λR(Jv, Jw, Jv, Jw) ≥ 0. (39)

But (M, g0) is a Kähler manifold and the metric and the curvature operator
are J invariant, that is

g(JX, JY ) = g(X, Y ), R(X, Y )JZ = J(R(X, Y )Z).

In particular, using the symmetries of the curvature operator, we have that

R(Jv, Jw, Jv, Jw) = R(v, w, v, w).
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Hence (39) holds and (M̃, g0) has quarter pinched sectional curvature and
hence is a Kähler manifold of constant holomorphic sectional curvature [KN].
This implies that the universal cover is isometric to CP

2 up to scaling and
that (M, g0) is locally symmetric, which is a contradiction.
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