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Directional dominance on stature and cognition
in diverse human populations
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Homozygosity has long been associated with rare, often devastating,
Mendelian disorders1, and Darwin was one of the first to recognize
that inbreeding reduces evolutionary fitness2. However, the effect of
the more distant parental relatedness that is common in modern
human populations is less well understood. Genomic data now allow
us to investigate the effects of homozygosity on traits of public
health importance by observing contiguous homozygous segments
(runs of homozygosity), which are inferred to be homozygous along
their complete length. Given the low levels of genome-wide homo-
zygosity prevalent in most human populations, information is
required on very large numbers of people to provide sufficient
power3,4. Here we use runs of homozygosity to study 16 health-
related quantitative traits in 354,224 individuals from 102 cohorts,
and find statistically significant associations between summed
runs of homozygosity and four complex traits: height, forced expir-
atory lung volume in one second, general cognitive ability and
educational attainment (P , 1 3 102300, 2.1 3 1026, 2.5 3 10210

and 1.8 3 10210, respectively). In each case, increased homozygosity
was associated with decreased trait value, equivalent to the offspring
of first cousins being 1.2 cm shorter and having 10 months’ less
education. Similar effect sizes were found across four continental
groups and populations with different degrees of genome-wide
homozygosity, providing evidence that homozygosity, rather than
confounding, directly contributes to phenotypic variance. Contrary
to earlier reports in substantially smaller samples5,6, no evidence was
seen of an influence of genome-wide homozygosity on blood
pressure and low density lipoprotein cholesterol, or ten other car-
dio-metabolic traits. Since directional dominance is predicted for
traits under directional evolutionary selection7, this study provides
evidence that increased stature and cognitive function have been
positively selected in human evolution, whereas many important
risk factors for late-onset complex diseases may not have been.

Inbreeding influences complex traits through increases in homo-
zygosity and corresponding reductions in heterozygosity, most likely
resulting from the action of deleterious (partially) recessive muta-
tions8. For polygenic traits, a systematic association with genome-wide
homozygosity is not expected when dominant alleles at some loci
increase the trait value while others decrease it. Rather, dominance
must be biased in one direction on average over all causal loci, for
instance to decrease the trait. Such directional dominance is expected
to arise in evolutionary fitness-related traits due to directional selec-
tion8. Studies of genome-wide homozygosity thus have the potential to
reveal the non-additive allelic architecture of a trait and its evolution-
ary history. Historically, inbreeding has been measured using pedi-
grees9. However, such techniques cannot account for the stochastic
nature of inheritance, nor are they practical for the capture of the
distant parental relatedness present in most modern-day populations.
High-density genome-wide single nucleotide polymorphism (SNP)
array data can now be used to assess genome-wide homozygosity
directly, using genomic runs of homozygosity (ROH). Such runs are
inferred to be homozygous-by-descent and are common in human
populations10,11. Summed ROH (SROH) is the sum of the length of
these ROH, in megabases of DNA. FROH is the ratio of SROH to the

total length of the genome. Like pedigree-based F (with which it is
highly correlated3), FROH estimates the probability of being homo-
zygous at any site in the genome. FROH has been shown to vary widely
within and between populations12 and is a powerful method of detect-
ing genome-wide homozygosity effects13.

We found marked differences by geography and demographic his-
tory in both the population mean SROH and the relationship between
SROH and NROH (the numbers of separate runs of homozygosity)
(Fig. 1). As observed previously3,12,14, isolated populations have a
higher burden of ROH, whereas African heritage populations have
the least homozygosity.

We studied bFROH
, defined as the effect of FROH on 16 complex traits

of biomedical importance (Fig. 2). For height, FEV1 (forced expiratory
volume in one second, a measure of lung function), educational attain-
ment, and g (a measure of general cognitive ability derived from scores
on several diverse cognitive tests), we found the effect sizes were
greater than two intra-sex standard deviations, with P values all less
than 1025. Thus the associations could not plausibly be explained by
chance alone (Table 1; see Extended Data Figs 1–4 for Forest plots of
individual traits; Supplementary Table 1 for s.d.). To ensure that the
results were not driven by a few outliers, we repeated the analysis
excluding extreme sub-cohort trait results. In all cases the effect
sizes and their significance remained similar or increased (see
Supplementary Table 2 for comparisons with and without outliers).
After exclusion of outliers, these effect sizes translate into a reduction
of 1.2 cm in height and 137 ml in FEV1 for the offspring of first
cousins, and into a decrease of 0.3 s.d. in g and 10 months’ less edu-
cational attainment.

We performed a number of analyses to exclude confounding. While
SROH is wholly a genetic effect, its inheritance is entirely non-additive.
Therefore, unlike in genome-wide association, an association with
population genetic structure or co-segregation of additive genome-
wide polygenic effects and SROH (as opposed to SNPs in a genome-
wide association study) are not expected as a matter of course, except
in the case of siblings. However, confounding could still theoretically
arise, as discussed below. We therefore assessed this by conducting
stratified and covariate analyses. We found effects of similar mag-
nitude and in the same direction for all four traits across isolated
and non-isolated European, Finnish, African, Hispanic, East Asian
and South and Central Asian populations (Extended Data Fig. 5a
and Supplementary Table 3). We further tested whether the effect sizes
were similar when cohorts were split into more and less homozygous
groups. The effect sizes were very similar, even though the degree of
homozygosity (and variation in homozygosity) varied 3–10-fold
between the two strata (depending on which cohorts contributed to
the trait; Extended Data Fig. 5b). This suggests a broadly linear rela-
tionship with SROH. In general, confidence intervals overlap for strati-
fied estimates, suggesting that differences arose due to sampling
variance. Larger confidence intervals for some estimates reflect the
lower power of some strata, in turn reflecting the sample size and
degree of homozygosity of those strata (for example, the wider con-
fidence intervals for estimates of educational attainment bFROH

for
Finnish and African strata). Finally, we fitted educational attainment
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as a proxy for potential confounding by socio-economic status; this
covariate was available in sufficient (47) cohorts to maintain power.
The estimated effect sizes for height, FEV1 and g all reduced (17%, 18%
and 35%, respectively, Extended Data Fig. 5c), but this might have been
expected given the known covariance between these three traits and
educational attainment, and the association we found between edu-
cational attainment and FROH. We found very small differences (3–
11% reductions) in estimated bFROH

(Extended Data Fig. 6 and
Supplementary Table 4), when comparing the fitting of polygenic
mixed models as opposed to fixed-effect-only models, again suggesting
that confounding (in this case due to polygenic effects arising from
recent common ancestry) did not substantially affect the results.

Despite the observed 17–35% reductions in estimated effect sizes
for FROH on height, FEV1 and g, when fitting educational attainment
as a covariate, the persistence of an effect suggests that most of the
signals we observe are genetic. The consistency of effects with and
without fitting relatedness and in particular in populations with very
different degrees of homozygosity, all appear inconsistent with con-
founding as a result of environmental or additive genetic effects. As
does the broad similarity in effect sizes across continents, although
the relatively smaller numbers of cohorts of non-European descent
meant we had limited power to detect intercontinental differences in
effect sizes.

It is also interesting to consider the potential influence of assortative
mating, which is commonly observed for human stature, cognition
and education. The phenotypic extremes could be more genetically
similar to each other and hence the offspring more homozygous, even
if the highly polygenic trait architectures reduce this effect. However, at

least in its simplest balanced form, the increase in genetic similarity
would be equal at both ends of the phenotypic distribution, leading to
no linear association between such genetic similarity and the trait; both
tall and short people would be more homozygous. Furthermore,
humans also mate assortatively on the basis of body mass index, for
which we see no effect. A more complex possibility, a form of reverse
causality, could arise when subjects from one trait extreme (for
example, people with high educational attainment) are on average
more geographically mobile, and thus have less homozygous offspring,
with those offspring in turn inheriting the trait extreme concerned15.
We do not think that this mechanism can account for our results, since
it does not readily explain the constancy of our results under different
models, especially the similarity in bFROH

for either more or less homo-
zygous populations. Moreover, we observe similar effects in multiple
single-village cohorts, and the Amish and Hutterites, where there is no
geographic structure and/or no sampling of immigrants, hence such
confounding by differential migration cannot occur.
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Figure 1 | Runs of homozygosity by cohort. The sum of runs of
homozygosity (SROH) and the number of runs of homozygosity (NROH) are
shown by sub-cohort. Populations differ by an order of magnitude in their
mean burden of ROH. There are clear differences by continent and population
type both in the mean SROH, and the relationship between SROH and NROH.
S.C. Asian, South and Central Asian; E. Asian, East Asian; Eur. Isolate,
European isolates. The ten most homozygous cohorts are labelled: AMISH, Old
Order Amish from Lancaster County, Pennsylvania; HUTT, Schmiedeleut
Hutterites from South Dakota; NSPHS, northern Swedish population health
study, 06 and 09 suffixes are different sampling years from different counties in
northern Sweden; OGP, Ogliastra genetic park, Sardinia, Italy; Talana is a
particular village in the region; FVG, Friuli-Venezia-Giulia genetic park, Italy,
omni and 370 suffixes refer to subsets genotyped with the Illumina OmniX and
370CNV arrays; HELIC, Hellenic isolates, Greece, from Pomak villages in
Thrace, and CLHNS, Cebu Longitudinal Health and Nutrition Survey in
the Philippines.
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Figure 2 | Effects of genome-wide homozygosity, bFROH
, on 16 traits. Four

phenotypes show a significant effect of burden of ROH: height (145 sub-
cohorts), FEV1 (34), educational attainment (47) and general cognitive
ability, g (23). HDL and total cholesterol are not significantly different from
zero after correcting for 16 tests and no effect is observed for the other traits.
To account for the different numbers of males and females in cohorts and
marked effect of sex on some traits, trait units are intra-sex standard
deviations. bFROH

is the estimated effect of FROH on the trait, where FROH is the
ratio of the SROH to the total length of the genome. 95% confidence
intervals are also plotted. Plus signs indicate that the phenotype was rank
transformed, asterisks indicate that the phenotype was log transformed.
BMI, body mass index; BP, blood pressure; FP fasting plasma; HbA1c,
haemoglobin A1c (glycated haemoglobin); FEV1, forced expiratory volume
in one second; FVC, forced vital capacity; HDL, high density lipoprotein;
LDL, low density lipoprotein.
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Our estimate for the effect of homozygosity in height is consistent
with previous work: genomic4 and pedigree16 studies have shown
genome-wide homozygosity effects on stature with similar effect
sizes (a 0.01 increase in F decreases height by 0.037 s.d.16 versus
0.029 s.d. in the present study). We speculate that homozygosity is
acting on a shared endophenotype of torso size which we detect in
the height and FEV1 traits. The fact that the FEV1:FVC (forced vital
capacity) ratio is not associated with ROH points to the effect acting
on lung/chest size rather than airway calibre. The cognition effects
cannot be wholly generated by height as an intermediate cause,
given the greater proportion of variance explained for cognition,
although we note that the correlation between height and cognition
has been estimated as 0.16 (standard error, s.e. 5 0.01), and the
genetic correlation (the correlation in additive genetic values) as
0.28 (s.e. 5 0.09; ref. 17).

Height is the canonical human complex trait, highly heritable and
polygenic, with 697 genome-wide significant variants in 423 loci
explaining 20% of the heritability and all common variants predicted
to explain 60% of the heritability18. Most of the genetic architecture
appears to be additive in nature, however ROH analysis reveals a
distinct directional dominance component.

Our genomic confirmation of directional dominance for g and dis-
covery of genome-wide homozygosity effects on educational attain-
ment in a wide range of human populations adds to our knowledge of
the genetic underpinnings of cognitive differences, which are currently
thought to be largely due to additive genetic effects19. Our findings go
beyond earlier pedigree-based analyses of recent consanguinity to
demonstrate that the observed effect of genome-wide homozygosity
is not a result of confounding and influences demographically diverse
populations across the globe. The estimated effect size is consistent
with pedigree data (a 0.01 increase in F decreases g by 0.046 s.d. in our
analysis and 0.029–0.048 s.d. in pedigree-based studies)20. It is ger-
mane to note that one extreme of cognitive function, early onset cog-
nitive impairment, is strongly influenced by deleterious recessive loci21,
so we can speculate that an accumulation of recessive variants of
weaker effect may influence normal variation in cognitive function.
Although increasing migration and panmixia have generated a
secular trend in decreasing homozygosity22, the Flynn effect, wherein
succeeding generations perform better on cognitive tests than their
predecessors23, this cannot be explained by our findings, because the
intergenerational change in cognitive scores is much larger than the
differences in homozygosity would predict. Likewise, the genome-
wide homozygosity effect on height cannot explain a significant pro-
portion of the observed intergenerational increases24.

Inbreeding depression, which arises from the effect of genome-wide
homozygosity, is ubiquitous in plants and is seen for numerous fitness-
related traits in animals25, but we observed no effect for the 12 other
mainly cardio-metabolic traits in which variation is strongly related
to age. This suggests that previous reports in ecological studies or

substantively smaller studies using pedigrees or relatively small num-
bers of genetic markers may have been false positives5,6. The lack of
directional dominance on these traits does not, however, rule out a
recessive component, as recessive variants acting in different direc-
tions will cancel out. Dominance variance is predicted to be greater for
late-onset fitness traits26, so the lack of genome-wide homozygosity
effects in the cardio-metabolic traits may be due to lack of directional
dominance. ROH analyses within specific genomic regions are war-
ranted to map recessive effects even when there is no genome-wide
directional dominance. Such recessive effects have been observed for a
subset of cardiovascular risk factors27 and expression traits28.

We have demonstrated the existence of directional dominance on
four complex traits (stature, lung function, cognitive ability and
educational attainment), while showing any effect on another 12
health-related traits is at least almost an order of magnitude smaller,
non-linear or non-existent. This directional dominance implies that
size and cognition (like schizophrenia protective alleles29) have been
positively selected in human history – or at least that some variants
increasing these traits contribute to fitness. However, the lack of any
evidence for an association between many late-onset cardiovascular
disease risk factors and ROH is perhaps surprising and suggests
testing directly for an association between ROH and disease out-
come. The magnitude of genome-wide homozygosity effects is rela-
tively small in all cases, thus Darwin’s supposition30 of ‘‘any evil [of
inbreeding] being very small’’ is substantiated.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Outline. Our aim was to look for an association between a genetic effect (SROH)
and 16 complex traits. Our approach followed best practice genome-wide asso-
ciation meta-analysis (GWAMA) protocols, where applicable, except we had only
one genetic effect to test.

Cohorts were invited to join based on known previous participation in
GWAMA and willingness to participate. 159 sub-cohorts were created from 102
population-based or case-control genetic studies, by separating different genotyp-
ing arrays, cases and controls or ethnic sub-groups to ensure each sub-cohort was
homogeneous. Within each of the 159 sub-cohorts we measured the association
between SROH and trait using the following model. Where a sub-cohort had been
ascertained on the basis of a disease status associated with a particular trait, that
sub-cohort was excluded from the corresponding trait analysis.

Phenotype was regressed on genetic effect and known relevant covariates within
each cohort, under the model specified in equation (1). The estimated genetic
effect of SROH was then meta-analysed using inverse variance meta-analysis.

Y~mzb1 SROHzb2 agezb3 sexzb4 PC1zb5 PC2zb6 PC3ze ð1Þ
Where Y is the vector of trait values, m the intercept, b1 the effect of SROH and b2-6
the effect of covariates. PC1–PC3, the post quality control within-cohort principal
components of the cohort’s relationship matrix and e the residual. Relationship
matrices were determined genomically by each cohort using genome-wide array
data. In addition, any other cohort-specific covariates known to be associated with
the trait, including further principal components, and any trait-specific covariates
and stratifications, such as medication and smoking status, were fitted as specified
below. SROH was the sum of ROH called, with a length of at least 1.5 Mb using
PLINK31.

As is routine in GWAMA, for family-based studies only, we also fitted an
additional term to account for additive genetic values and relatedness, using
grammar1 type residuals and full hierarchical mixed modelling using
GenABEL32 and hglm33, as specified in equation (2).

Y~mzb1 SROHzb2 agezb3 sexzb4 PC1zb5 PC2zb6 PC3zZa ð2Þ
Where a is the additive genetic value of each individual. Var(a) is assumed to be
proportionate to the genomic relationship matrix (GRM) (a pedigree relationship
matrix was used in the Framingham Heart Study). Z is the identity matrix.

We then meta-analysed the regression coefficients (b1) of traits on SROH for the
159 sub-cohorts.
Cohort recruitment. Data from 102 independent genetic epidemiology studies of
adults were included. All subjects gave written informed consent and studies were
approved by the relevant research ethics committees. Homogeneous sub-cohorts
were created for analysis on the basis of ethnicity, genotyping array or other
factors. Where a cohort had multiple ethnicities, sub-cohorts for each separate
ethnicity were created and analysed separately. In all cases individuals of
European, African, South or Central Asian, East Asian and Hispanic heritage
individuals were separated. In some cases sub-categories, such as Ashkenazi
Jews, were also distinguished. Ethnic outliers were excluded, as were the second
of any monozygotic twins and pregnant subjects. Continental ancestry of cohorts
participating in each trait study is presented in Extended Data Table 1. Cohort
genotyping and summary information are shown in Supplementary Table 6, with
age, sex, trait and homozygosity summary statistics given in Supplementary Tables
9, 10 and 11. For case-control and trait-extreme studies, patients or extreme-only
sub-cohorts were analysed separately to controls. Where case status was associated
with the trait under analysis the sub-cohort was excluded from that study
(see below).

Subjects within a sub-cohort were genotyped using the same SNP array, or,
where two very similar arrays were used (for example, Illumina OmniExpress and
IlluminaOmni1), the intersection of SNPs on both arrays, provided the intersec-
tion exceeded 250,000 SNPs. Where a study used two different genotyping arrays,
separate sub-cohorts were created for each array, and analysis was done separately.
Paediatric cohorts were not included.
Genotyping. All subjects were genotyped using high-density genome-wide
(.250,000 SNP) arrays, from Illumina, Affymetrix or Perlegen. Custom arrays
were not included. Each study’s usual array-specific genotype quality control stan-
dards for genome-wide association were used and are shown in Supplementary
Table 6. Only autosomal data were analysed.
Phenotyping. We studied 16 quantitative traits which are widely available and
represent different domains related to health, morbidity and mortality: height,
body mass index (BMI), waist:hip ratio (WHR), diastolic and systolic blood pres-
sure (DBP, SBP), fasting plasma glucose (FPG), fasting insulin (FI), haemoglobin
A1c (HbA1c), total cholesterol, HDL and LDL cholesterol levels, triglycerides,
forced expiratory volume in one second (FEV1), ratio of FEV1 to forced vital

capacity (FVC), general cognitive ability (g) and years of educational attainment.
Phenotypic quality control was performed locally to assess the accuracy and
distribution of phenotypes and covariates. Further covariates were included when
the relevant genome-wide association study consortium also included them. The
trait categories were anthropometry, blood pressure, glycaemic traits, classical
lipids, lung function, cognitive function and educational attainment, following
models in the GIANT34, ICBP35, MAGIC36, CHARGE37, Spirometa38 and
SSGAC39 consortia. The model for FEV1 did not include height as a covariate.
Effect sizes for FEV1 therefore include size effects that also underpin height.
Studies assembled files containing study traits and the following covariates: sex,
age, first three principal components of ancestry, lipid-lowering medication, ever-
smoker status, anti-hypertensive medication, diabetes status and year of birth.
Educational attainment was defined in accordance with the ISCED 1997 classifica-
tion (UNESCO), leading to seven categories of educational attainment that
are internationally comparable39. LDL values estimated using Friedewald’s equa-
tion were accepted. Cohorts without fasting samples did not participate in the
LDL-cholesterol, triglycerides, fasting insulin or fasting plasma glucose analyses.
Cohorts with semi-fasting samples fitted a categorical or quantitative fasting time
variable as a covariate. Subjects with less than 4 h fasting were not included.

Where subjects were ascertained, for example, on the basis of hypertension, that
sub-cohort was excluded from analysis of traits associated with the disorder, for
example blood pressure. The traits excluded from meta-analysis are as follows:
ascertainment on type 2 diabetes, thus fasting insulin, HbA1c and fasting plasma
glucose excluded; ascertainment on hypertension, thus blood pressures excluded;
ascertainment on venous thrombosis or coronary artery disease, thus blood lipids
excluded; ascertainment on obesity or the metabolic syndrome, thus blood lipids,
body mass index, waist-hip ratio, fasting insulin and fasting plasma glucose
excluded.

Somewhat unusually for a large consortium meta-analysis, the majority of the
analysis after initial genotype and phenotype quality control was performed by a
pipeline of standardised R and shell scripts, to ensure uniformity and reduce the
risk of errors and ambiguities (available at https://www.wiki.ed.ac.uk/display/
ROHgen/Analysis1Plan1production1release13.0). The pipeline was used for
all stages from this point onwards.
Calling runs of homozygosity. SNPs with more than 3% missingness across
individuals or with a minor allele frequency less than 5% were removed. ROH
were defined as runs of at least 50 consecutive homozygous SNPs spanning at least
1,500 kb, with less than a 1,000 kb gap between adjacent ROH and a density of SNP
coverage within the ROH of no more than 50 kb/SNP, with one heterozygote and
five no calls allowed per window, and were called using PLINK31, with the follow-
ing settings: homozyg-window-snp 50; homozyg-snp 50; homozyg-kb 1500;
homozyg-gap 1000; homozyg-density 50; homozyg-window-missing 5; homo-
zyg-window-het 1. The same criteria were used by McQuillan et al.3, except
SNP density has been relaxed to avoid regions of sparser coverage (still including
50 SNPs) being missed. The sum of runs of homozygosity (SROH) was then
calculated. FROH was calculated as SROH/(3 3 109) reflecting the length of the
autosomal genome. Copy number variants (CNV) are known to influence cog-
nition40; however, prior calling of CNV and ROH in one of our cohorts reduced the
SROH by only 0.3%3, making it implausible that deletions called as ROH influence
our findings.
ROH called from different genotyping arrays. We show that SROH called with
these parameters is relatively insensitive to the density and type of array used
(Extended Data Fig. 7). We used 2.5 million SNPs available for 851 HapMap
and 1000 Genomes Project41 samples from multiple continents to investigate
the effect of array when using our ROH-calling parameters in PLINK. The data
set included samples of African, European, admixed American, South and East
Asian heritage. By subsampling SNPs from the 2.5 million we created array data
for the commonly used Illumina CNV370 and OmniExpress beadchips and the
Affymetrix6 array for each individual (see Supplementary Table 7 for details of the
SNP numbers). The correlation in SROH using different arrays on the same
individuals was 0.93–0.94 for all pairwise chip comparisons.
Trait association with SROH. The association between trait and SROH was
calculated using a linear model in accordance with equation (1). Additional cov-
ariates were fitted for some analyses (shown below) or for some cohorts where
analysts were aware of study specific effects (for example, study centre). For BMI,
WHR, FEV1, FEV1/FVC and g, trait residuals were calculated for the model
excluding SROH, these residuals were then rank-normalized and the effect of
SROH on these rank-normalized residuals estimated. Triglycerides and fasting
insulin were ln-transformed. Additional covariates were as follows: age2 was
included as a covariate for all traits apart from height and g. BMI was included
as a covariate for WHR, SBP, DBP, FPG, FI and HbA1c. Year of birth was included
as a covariate for educational attainment and ever-smoking for FEV1 and FEV1/
FVC. Where a subject was known to be taking lipid-lowering medication, total
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cholesterol was adjusted by dividing by 0.8. Similarly, where a subject was known
to be taking anti-hypertensive medication, SBP and DBP measurements were
increased by 15 and 10 mm Hg, respectively.

Where the cohort was known to have significant kinship, genetic relatedness
was also fitted, using the mixed model, in accordance with equation (2). The
polygenic model was fitted in GenABEL using the fixed covariates and the geno-
mic relationship matrix32. GRAMMAR1 (GR1) (ref. 42) residuals were then
fitted to SROH as well as the full mixed model being fitted simultaneously,
using GenABEL’s hierarchical generalized linear model (HGLM) function33.
Populations with kinship thus potentially had three estimates of bFROH

: using fixed
effects only, and using the mixed model approaches, (GR1 and HGLM) for
SROH.

To investigate potential confounding, where available, educational attainment
was added as an ordinal covariate and all models rerun, giving revised estimates of
bFROH

. This is potentially an over adjustment for g due to the phenotypic and
genetic correlations with educational attainment43. However it must be recognized
that educational attainment does not capture all potential environmental con-
founding.

Cohort phenotypic means and standard deviations were checked visually
for inter-cohort consistency, with apparent outliers then being corrected (for
example, due to units or incorrectly specified missing values), explained (for
example, due to different population characteristics) or excluded. Individual
sub-cohort trait means and standard deviations are tabulated in Supplementary
Table 9 and age and gender information is in Supplementary Table 10.
Meta-analysis. As is routine in genome-wide association meta-analyses, analysis
was performed within homogeneous sub-populations and only meta-analysis of
the estimated (within-population) effect sizes was used to combine results between
populations, avoiding any confounding effects of inter-population differences in
trait or genetic effect distributions. Inverse-variance meta-analysis of all sub-
cohorts’ effect estimates was performed using Rmeta, on a fixed-effect basis
(Supplementary Table 5 compares random effects meta-analysis). In the principal
analyses, for cohorts with relatedness, HGLM estimates of bFROH

were preferred;
however, where HGLM had failed to converge, results using GRAMMAR1 were
included. These results were combined with those for unrelated cohorts on a fixed-
model-only basis. Result outliers were defined as individual cohort by trait results,
which failed the hypothesis, cohort (bFROH

) 5 pre-quality-control meta-analysis
(bFROH

), with a t-test statistic .3. Analyses were performed with and without
outliers for bFROH

in phenotypic units and in intra-sex phenotypic standard devia-
tions (Supplementary Table 8). The principal results we present are for FROH

with outliers included for the hypothesis tests (which turns out to be more
conservative), but with outliers excluded when estimating bFROH

(ref. 44). Meta-
analysis was performed using inverse variance meta-analysis in the R package
Rmeta, with bFROH

taken as a fixed effect and alternatively as a random effect.
The principal results are on a fixed-effects basis, with Supplementary Table 5
showing comparison with the random-effects analysis.

Meta-analyses were re-run for various subsets, according to geographic and
demographic features of the cohorts. Cohorts were divided into more homozygous
and less homozygous strata with the boundary being set so each within-stratum
meta-analysis had equal statistical power.
Data reporting. Randomization and blind allocation were not applicable to this
study.
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Extended Data Figure 1 | Forest plot for cognitive ability (g). Individual
sub-cohort estimates of effect size and the 95% confidence interval are plotted.
Sub-cohorts are ordered from top to bottom according to their weight in the
meta-analysis, so larger or more homozygous cohorts appear towards the top.
The scale of bFROH

is in intra-sex standard deviations. The meta-analytical
estimate is displayed at the bottom. Sub-cohort names follow the conventions
detailed in Supplementary Table 6 and the Supplementary Table 11 legend.
Sample sizes, effect sizes and P values for association are given in Table 1. This
trait was rank-transformed.
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Extended Data Figure 2 | Forest plot for educational attainment. Individual
sub-cohort estimates of effect size and the 95% confidence interval are plotted.
Sub-cohorts are ordered from top to bottom according to their weight in the
meta-analysis, so larger or more homozygous cohorts appear towards the top.
The scale of bFROH

is in intra-sex standard deviations. The meta-analytical
estimate is displayed at the bottom. Sub-cohort names follow the conventions
detailed in Supplementary Table 6 and the Supplementary Table 11 legend.
Sample sizes, effect sizes and P values for association are given in Table 1.
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Extended Data Figure 3 | Forest plot for height. Individual sub-cohort
estimates of effect size and the 95% confidence interval are plotted. Sub-cohorts
are ordered from top to bottom according to their weight in the meta-analysis,
so larger or more homozygous cohorts appear towards the top. The scale of

bFROH
is in intra-sex standard deviations. The meta-analytical estimate is

displayed at the bottom. Sub-cohort names follow the conventions detailed in
Supplementary Table 6 and the Supplementary Table 11 legend. Sample sizes,
effect sizes and P values for association are given in Table 1.
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Extended Data Figure 4 | Forest plot for forced expiratory lung volume in
one second. Individual sub-cohort estimates of effect size and the 95%
confidence interval are plotted. Sub-cohorts are ordered from top to bottom
according to their weight in the meta-analysis, so larger or more homozygous
cohorts appear towards the top. The scale of bFROH

is in intra-sex standard
deviations. The meta-analytical estimate is displayed at the bottom. Sub-cohort
names follow the conventions detailed in Supplementary Table 6 and the
Supplementary Table 11 legend. Sample sizes, effect sizes and P values for
association are given in Table 1. This trait was rank-transformed.
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Extended Data Figure 5 | Signals of directional dominance are robust to
stratification by geography or demographic history or inclusion of
educational attainment as covariate. a, Cohorts are divided by continental
biogeographic ancestry (African (15 sub-cohorts), East Asian (5), South and
Central Asian (SC Asian; 10), Hispanic (3)), with Europeans being divided into
Finns (13), other European isolates (self-declared, 23), and (non-isolated)
Europeans (90). Meta-analysis was carried out for all subsets with 2,000 or more
samples available. Sample numbers are as follows: cognitive g, Eur isolate, 6,638;
European, 44,153; educational attainment, African 4,811; Eur isolate, 8,032;
European, 55,549; Finland 9,068; height, African, 21,500; E Asian, 30,011; Eur
isolate, 23,116; European, 228,813, Finland, 30,427, Hispanic, 5,469, SC Asian,
13,523; FEV1, African, 6,604, Eur isolate, 4,837, European, 49,223, Finland,
2,340. bFROH

is consistent across geography and in both isolates and more
cosmopolitan populations. b, Cohorts were divided into high and low ROH
strata of equal power and meta-analysis repeated – the effects are consistent

across strata for all four traits. The mean SROH for the high and low strata,
respectively, are 13.4 and 4.3 Mb for cognitive g; 28.1 and 5.1 Mb for
educational attainment; 31.9 and 10.8 Mb for height; and 41.4 and 4.5 Mb for
FEV1. c, To assess the potential for socio-economic confounding, where
available, educational attainment was included in the regression model (edu)
and compared to a model without educational attainment (none) in the
same subset of cohorts. The signals reduce slightly when the education
covariate is included; the analysis is not possible for educational attainment as a
trait. For cognitive g, numbers of subjects are 36,847 and 36,023; for height
131,614 and 120,945; and for FEV1, 15,717 and 15,425, for edu and none,
respectively. The numbers differ because of missing individual educational data
within cohorts. Plus signs indicate that the phenotype was rank-transformed.
Trait units are intra-sex standard deviations and the genomic measure is
unpruned SROH. Subset estimates of effect size for FROH and the 95%
confidence are plotted.
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Extended Data Figure 6 | Signals of directional dominance are robust to
model choice. Meta-analytical estimates of effect size and standard errors are
plotted for various models. Fixed, no mixed modelling was used; gr res,
GRAMMAR1 residuals were fitted; hglm, full hierarchical generalized linear
mixed model was used. Plus signs indicate that the phenotype was rank-
transformed. 15,355 subjects were used for cognitive g, 36,060 for educational
attainment, 89,112 for height and 15,262 for FEV1.
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Extended Data Figure 7 | Correlation in SROH for different genotyping
arrays using HapMap populations. a–c, x and y axes show SROH from
0–30 Mb. ill370, Illumina CNV370; aff6, Affymetrix6; illomni, Illumina
OmniExpress. The graphs are shown for the specific PLINK call parameters
used. d, Sample numbers per continent are presented in a bar chart. AFR,
African; AMR, mixed American; ASN, East Asian; EUR, European; SAN, South
Asian. Only samples with SROH below 30 Mb are plotted, to be conservative
to the effect of outliers, which have very strongly correlated estimates of
SROH (r 5 0.96–0.97 for comparisons including such very homozygous
individuals). In these plots, the correlation between SROH called by the
two arrays, r 5 0.93–0.94.
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Extended Data Table 1 | Continental ancestry of cohorts participating in each trait study.

The first number in each cell is the number of participants with that continental ancestry. The second number is the number of sub-cohorts. S/C Asian, South and Central Asian.

LETTER RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved


	Title
	Authors
	Abstract
	Figure 1 Runs of homozygosity by cohort.
	Figure 2 Effects of genome-wide homozygosity, ${\bibeta _{{\bi F}_{{\tf=
	References
	Table 1 Effects of genome-wide burden of runs of homozygosity on four traits
	Methods
	Outline
	Cohort recruitment
	Genotyping
	Phenotyping
	Calling runs of homozygosity
	ROH called from different genotyping arrays
	Trait association with SROH
	Meta-analysis
	Data reporting

	Methods References
	Extended Data Figure 1 Forest plot for cognitive ability (g).
	Extended Data Figure 2 Forest plot for educational attainment.
	Extended Data Figure 3 Forest plot for height.
	Extended Data Figure 4 Forest plot for forced expiratory lung volume in one second.
	Extended Data Figure 5 Signals of directional dominance are robust to stratification by geography or demographic history or inclusion of educational attainment as covariate.
	Extended Data Figure 6 Signals of directional dominance are robust to model choice.
	Extended Data Figure 7 Correlation in SROH for different genotyping arrays using HapMap populations.
	Extended Data Table 1 Continental ancestry of cohorts participating in each trait study.


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


