
manuscripta math. 129, 137–168 (2009)

Lorenzo Mazzieri

Generalized connected sum construction for scalar
flat metrics

Received: 10 December 2007 / Accepted: 13 December 2008
Published online: 10 February 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract. In this paper we construct constant scalar curvature metrics on the generalized
connected sum M = M1 �K M2 of two compact Riemannian scalar flat manifolds (M1, g1)

and (M2, g2) along a common Riemannian submanifold (K , gK )whose codimension is ≥3.
Here we present two constructions: the first one produces a family of “small” (in general
nonzero) constant scalar curvature metrics on the generalized connected sum of M1 and M2.
It yields an extension of Joyce’s result for point-wise connected sums in the spirit of our
previous issues for nonzero constant scalar curvature metrics. When the initial manifolds
are not Ricci flat, and in particular they belong to the (1+) class in the Kazdan–Warner clas-
sification, we refine the first construction in order to produce a family of scalar flat metrics
on M . As a consequence we get new solutions to the Einstein constraint equations on the
generalized connected sum of two compact time symmetric initial data sets, extending the
Isenberg–Mazzeo–Pollack gluing construction.

1. Introduction and statement of the results

This last two decades gluing techniques for solutions of nonlinear problems have
been successfully applied in several situations. They have been used to understand
solutions to problems arising from the geometry (minimal and constant mean cur-
vature surfaces [13,14], constant scalar curvature metrics [9,12,15], and recently
even Einstein metrics [1]) and from the physic (Einstein constraint equations [7]
and [8]). However most of the results are concerned with the connected sum at
points (point-wise connected sum), whereas the case of connected sum along a
submanifold (generalized connected sum or fiber sum) has received less attention.
This kind of construction is clearly less flexible than the first one, nevertheless it
has revealed to be a very powerful tool in studying for example the structure of the
manifolds with positive scalar curvature (see [6,17]).

In this paper we will show how the generalized connected sum construction for
nonzero constant scalar curvature metrics introduced in [16] can be extended to the
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case where the initial manifolds carry scalar flat metrics. In other words we produce
a family of new solutions to the Yamabe equation by gluing together two compact
scalar flat Riemannian manifolds (M1, g1) and (M2, g2), along a common submani-
fold (K , gK ) of codimension ≥3. The reason to requiring high codimension lies in
the geometry of the construction. In fact in order to produce the generalized con-
nected sum M = M1 �K M2 we assume that the normal bundles of K in M1 and M2
are diffeomorphic, then we remove from both the initial manifolds a tubular neigh-
borhood of K of size ε > 0 and we perform a fiber-wise identification between
the left over boundaries (fiber sum). This way we obtain a sort of polyneck which
glues together the differential structures of M1 and M2, but we still need to identify
the Riemannian structures. If m is the dimension of the starting manifolds, k is the
dimension of K and n := m − k its codimension in Mi , i = 1, 2, it turns out (see
[9,16]) that a good choice is to model the metric of the polyneck fiber-wise around an
n-dimensional Schwarzschild metric, whose existence requires that n has to be ≥3.

The reason why we treat the scalar flat case independently from the nonzero
constant scalar curvature case (i.e. when the initial manifolds have the same con-
stant scalar curvature S �= 0) is that the analysis is rather different. In fact the
assumption that the linearized Yamabe operators �gi + S/(m − 1) of the initial
metrics gi , i = 1, 2 are injective, is crucial to carry out the proof in the nonzero
case. In the scalar flat situation, the linearized operator reduces to the Laplacian for
which this assumption is not fulfilled and this will force us to work orthogonally
with respect to the kernel of the Laplacian (namely the space of constant functions).
In addition, it turns out that, on the generalized connected sum, the first nonzero
eigenvalue of the Laplacian is very small and actually tends to zero as ε → 0. This
fact will make the search of suitable a priori estimates for the linearized operator
harder. Because of this, when we will perform the nonlinear analysis, we will have
to take some care in estimating the projection of the error terms over the eigen-
function associated to the small eigenvalue. We will show that, if the construction
is done with care, such a projection can be chosen to be zero.

We present in this paper two kinds of construction. The first one is more general
than the second one but it has a major drawback. In fact following this method we
are not allowed to choose a scalar flat metric on the generalized connected sum,
although the error can be chosen as small as we want (notice that similar phenomena
happen in the point-wise connected sum case [9]). The second construction is an
improvement of the first one and enables us to obtain scalar flat metrics on the final
manifold, but it requires the hypothesis that the summands are non Ricci flat. In
particular, in order to obtain a scalar flat generalized connected sum, it is necessary
that both the manifolds M1 and M2 belong to the (1+) class in the Kazdan–Warner
classification [10,11]. An important corollary of the second construction is that it
provides a gluing construction for time symmetric initial data sets in the context of
the Einstein Constraint equations. In this sense our result partially completes the
work of Isenberg et al. [8], which treats the point-wise connected sum of nontime
symmetric Cauchy data.

In Sects. 2–5 we present the first method. As in the non scalar flat case, we
write down a family of approximate solution metrics (gε)ε∈(0,1) (where the param-
eter ε > 0 represents the size of the tubular neighborhood we excise from each
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manifold in order to perform the generalized connected sum) and then we find out a

conformal factor uε such that for sufficiently small ε > 0 the metrics g̃ε = u
4

m−2
ε gε,

ε ∈ (0, 1), are (small) constant scalar curvature metrics. As mentioned before, by
this method it is not possible to ensure that the scalar curvature S = Sg̃ε of the
final metrics is exactly zero. However we will show that the scalar curvature of the
metrics we obtain are as close to zero as we want, namely S = O (

εn−2
)
. Let us

now describe this result more precisely.
Let (M1, g1) and (M2, g2) be two m-dimensional compact Riemannian mani-

folds with scalar flat metric, and suppose that there exists a k-dimensional
Riemannian manifold (K , gK ) which is isometrically embedded in both (M1, g1)

and (M2, g2), m ≥ 3, n := m − k ≥ 3. We also assume that the normal bundles of
K in (Mi , gi ) can be diffeomorphically identified (this is necessary to perform the
fiber sum, see [17]). Another natural assumption is that the starting manifolds have
the same volume and in particular we assume that volg1(M1) = 1 = volg2(M2).
Notice that this condition turns out to be necessary also in the case of point-wise
connected sum of two scalar flat metrics [9].

Let Mε = M1 �K ,ε M2 (briefly M) be the generalized connected sum of (M1, g1)

and (M2, g2) along K which is obtained by removing an ε-tubular neighborhood
of K from each Mi and identifying the two left over boundaries. Our main result
reads:

Theorem 1. Under the above assumptions, there exists a real number ε0 > 0 such
that for every ε ∈ (0, ε0) it is possible to endow M with a constant scalar curvature
metric ḡε, whose scalar curvature Sḡε is a O (

εn−2
)
. In addition the metric ḡε is

conformal to the metrics gi away from a fixed (small) tubular neighborhood of K
in Mi , i = 1, 2 for a conformal factor uε which can be chosen so that

‖uε − 1‖L∞(M) ≤ C · εγ (1)

where C > 0 and γ ∈ (0, 1/4). Moreover the new metrics tend to the old ones on
the compact sets of Mi\K , i = 1, 2 in the C2 topology, as ε → 0.

Section 6 is devoted to the description of the second construction, which works in
the non Ricci flat case. In this situation we will be able to improve the construction
of the approximate solution metrics in order to obtain a scalar flat metric on the
generalized connected sum. In fact, if the starting manifolds are non Ricci flat,
we are allowed to create two correction terms by means of slight non conformal
modifications of the initial metrics away from the gluing locus, what enable us to
ensure that the error terms are orthogonal to the space generated by the constant
functions and—roughly speaking—to the first nonconstant eigenfunction (the one
whose eigenvalue tends to zero in the limit for ε → 0). This is enough to carry
out the analysis and to construct on the generalized connected sum a solution of
the Yamabe equation with prescribed zero scalar curvature. As already mentioned,
the non Ricci flat condition on a scalar flat manifold implies that such a manifold
belongs to the (1+) class in the Kazdan–Warner classification. This seems to be
quite natural since these manifolds are in some sense the most flexible ones, con-
cerning the prescription of the scalar curvature. In other words, if a manifold M is
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in class (1+), any smooth function on it can be viewed as the scalar curvature of
some Riemannian metric [10,11].

The statement of our second result is the following:

Theorem 2. Let M be the generalized connected sum of two Riemannian scalar
flat, non Ricci flat manifolds (M1, g1) and (M2, g2) of dimension m ≥ 3 along a
common isometrically embedded submanifold (K , gK ) of codimension at least 3
(recall that in order to perform the generalized connected sum it is necessary that
the normal bundles of K in M1 and M2 are diffeomorphic). Under these assump-
tions, there exists a real number ε0 > 0 such that, for every ε ∈ (0, ε0), it is possible
to endow M with a scalar flat metrics ḡε. Moreover the new metrics tend to the old
ones on the compact sets of Mi\K , i = 1, 2 in the C2 topology, as ε → 0.

In Sect. 7 we will show how the Theorem 2 applies to a problem of physical
interest. It is well known [4] that a solution to the hyperbolic Einstein system in
general relativity can be found by evolving a suitable initial data set (or Cauchy
data set). More precisely a space-like m-dimensional hypersurface M in a (m +1)-
dimensional Lorentzian manifold (Z , γ ) do evolve to a solution of Ricγ = 0 if and
only if the following Einstein constraint equations are satisfied

divg �− d
(
trg �

) = 0 (2)

Sg − |�|2g + (
trg �

)2 = 0 (3)

where g and � represent the induced Riemannian metric and the second funda-
mental form of M respectively, whereas Sg is the scalar curvature of (M, g,�). In
the case where � ≡ 0 the Cauchy data set is said to be time symmetric and the
system above reduces to the vanishing of the scalar curvature. Therefore Theorem 2
automatically provides a generalized gluing construction for non Ricci flat initial
data sets, in the spirit of [8].

2. Geometric construction

The geometric construction we use here is essentially the same we used in [16],
but in order to fix the notation it is useful to transfer it, paying attention to the
appropriate adjustments which are needed in our construction.

Let (K , gK ) be a k-dimensional Riemannian manifold isometrically embedded
in both the n-dimensional Riemannian manifolds (M1, g1) and (M2, g2), through
the maps

ιi : K ↪→ Mi i = 1, 2.

We assume that the isometric map ι−1
1 ◦ ι2 : ι1(K ) → ι2(K ) extends to a diffeo-

morphism between the normal bundles of ιi (K ) in (Mi , gi ), i = 1, 2. We further
assume that both the metrics g1 and g2 have zero constant scalar curvature. In this
section our aim is to perform a generalized connected sum (or fiber sum) of the
differentiable structures of M1 and M2 along the submanifold K . At the same time
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we construct on the new manifold M = M1 �K M2 a family of metrics (gε)ε∈(0,1),
whose scalar curvature is close to zero in a suitable sense.

For a fixed ε ∈ (0, 1), we describe the generalized connected sum construction
and the definition of the metric gε in a local coordinate system, the fact that this
construction yields a globally defined metric will follow at once.

Let U k be an open set of R
k , Bm−k the (m−k)-dimensional open ball (m−k ≥3).

For i = 1, 2, Fi : U k × Bm−k → Wi ⊂ Mi given by

Fi (z, x) := expMi
(z, 0)(x)

defines local Fermi coordinates near the coordinate patches Fi (·, 0) (U ) ⊂ ιi (K ) ⊂
Mi . In these coordinates, the metric gi can be decomposed as

gi (z, x) = g
(i)
j l dz j ⊗ dzl + g

(i)
αβ dxα ⊗ dxβ + g

(i)
jα dz j ⊗ dxα

and it is well known that, in this coordinate system,

g
(i)
αβ = δαβ + O (|x |2) and g

(i)
jα = O (|x |)

In order to perform the identification between W1 and W2 and in order to glue
the metrics together and define gε, we partially change the coordinate system, by
setting

x = ε e−t · θ on F−1
1 (W1)

x = ε et · θ on F−1
2 (W2)

for ε ∈ (0, 1), log ε < t < − log ε, θ ∈ Sm−k−1.
Using these changes of coordinates the expressions of the two metrics g1 and

g2 on U k × A(ε2, 1), where A(ε2, 1) is the annulus {ε2 < |x | < 1} become
respectively

g1(z, t, θ) = g
(1)
i j dzi ⊗ dz j

+ u(1)ε
4

n−2

[(
dt ⊗ dt + g

(1)
λµdθλ ⊗ dθµ

)
+ g

(1)
tθ dt � dθ

]

+ g
(1)
i t dzi ⊗ dt + g

(1)
iλ dzi ⊗ dθλ

and

g2(z, t, θ) = g(2)i j dzi ⊗ dz j

+ u(2)ε
4

n−2

[(
dt ⊗ dt + g

(2)
λµdθλ ⊗ dθµ

)
+ g

(2)
tθ dt � dθ

]

+ g
(2)
i t dzi ⊗ dt + g

(2)
iλ dzi ⊗ dθλ

where by the compact notation gtθ dt � dθ we indicate the general component of
the normal metric tensor (that is, it involves dt ⊗ dt , dθλ ⊗ dθµ and dt ⊗ dθλ

components).
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Observe that for j = 1, 2 we have

g
( j)
λµ = O (1) g

( j)
tθ = O (|x |2)

g
( j)
i t = O (|x |2) g

( j)
iλ = O (|x |2)

and

u(1)ε (t) = ε
n−2

2 e− n−2
2 t and u(2)ε (t) = ε

n−2
2 e

n−2
2 t

We choose a cut-off function ζ : (log ε,− log ε) → [0, 1] to be a nonincreasing
smooth function which is identically equal to 1 in (log ε,−1] and 0 in [1,− log ε)
and we choose another cut-off function η : (log ε,− log ε) → [0, 1] to be a non-
increasing smooth function which is identically equal to 1 in (log ε,− log ε − 1]
and which satisfies limt→− log ε η = 0. Using these two cut-off functions, we can
define a new normal conformal factor uε by

uε(t) := η(t) u(1)ε (t)+ η(−t) u(2)ε (t) (4)

and the metric gε by

gε(z, t, θ) :=
(
ζg(1)i j + (1 − ζ )g(2)i j

)
dzi ⊗ dz j

+ u
4

n−2
ε

[
dt ⊗ dt +

(
ζg(1)λµ + (1 − ζ )g(2)λµ

)
dθλ ⊗ dθµ

+
(
ζg

(1)
tθ + (1 − ζ )g

(2)
tθ

)
dt � dθ

]

+
(
ζg

(1)
i t + (1 − ζ )g

(2)
i t

)
dzi ⊗ dt

+
(
ζg(1)iλ + (1 − ζ )g(2)iλ

)
dzi ⊗ dθλ (5)

Closer inspection of this expression shows that the metric gε (whose definition can
be obviously completed by setting gε ≡ g1 and gε ≡ g2 out of the polyneck) is a
Riemannian metric which is globally defined on the manifold M .

In the following we also need to consider some slight conformal (Sect. 5) and
non conformal (Sect. 6) perturbations of the approximate solution metrics gε’s away
from the gluing locus. However, since such adjustments do not modify at all the
linear analysis, we prefer to introduce them later, for sake of simplicity.

Following [16] it is easy to obtain the estimate for the scalar curvature of the
approximate solution metric.

Proposition 3. (Estimate of the scalar curvature) There exists a constant C > 0
independent of ε ∈ (0, 1) such that

|Sgε | ≤ C · ε−1 (ch t)1−n (6)

for |t | ≤ | log ε|.
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Another useful tool we can recover from [16] is the expression for the
gε-Laplacian on the polyneck

�gε = u
− 4

n−2
ε

[
∂2

t + (n − 2) th
( n−2

2 t
)
∂t +�

(θ)

Sn−1

+ u
4

n−2
ε �

(z)
K + O (|x |)�(∇,∇2)

]

where �(∇,∇2) is a nonlinear differential operator involving first order and sec-
ond order partial derivatives with respect to t , θλ and z j and whose coefficients are
bounded uniformly on the polyneck, as ε ∈ (0, 1).

3. Analysis of a linear operator

Our aim is now to solve the Yamabe equation

�gε u + cm Sgε u = cm S u
m+2
m−2 (7)

where cm = −(m − 2)/4(m − 1) and S = S(ε) is a suitable constant. If u is a
solution to this equation, then the metric ḡε = u4/(m−2) gε has constant scalar cur-
vature equal to S. Therefore, when we solve the Eq. (7), we also want to guarantee
that S tends to zero as ε goes to zero, in order to prove the Theorem 1.

Since we want to preserve the structure of the two initial metrics far away from
the gluing locus, we are looking for a conformal factor u which is as close to 1 as
we want. For this reason it is natural to set u = 1 + v and to consider the equation

�gε v = cm
(
S − Sgε

) + cm
(
S − Sgε

)
v + 4 cm

m − 2
S v + cm S f (v)

=: Fε(v) (8)

where f (v) = (1 + v)
m+2
m−2 − 1 − m+2

m−2 v.
As already mentioned, the natural linearized operator to consider in a scalar

flat context turns out to be the Lapalcian �gε . Since we want to invert it, we are
forced to work orthogonally to the space of constant functions. Another problem
is that on the generalized connected sum the first nonzero eigenvalue of �gε tends
to zero as ε tends to zero. Roughly speaking, such an eigenvalue is produced by
a function which takes approximately the value 1 on M1 and −1 on M2 (since
volg1(M1) = 1 = volg2(M2) ) and interpolates smoothly between these two values
on the polyneck. As ε tends to zero, the generalized connected sum degenerates
into the two initial manifolds and the eigenfunction described above converges to
a function which is the constant 1 on M1 and the constant −1 on M2. The corre-
sponding eigenvalue is forced to tend to 0 in the limit. Notice that this reasoning
can be made precise by adapting the argument presented in the appendix of [9].
Because of this fact it is not possible to provide (in natural function spaces) an
a priori estimate which is uniformly bounded with respect to the parameter ε for
solutions of the linearized equation �gε u = f . Therefore we will adopt the fol-
lowing strategy: we first produce an approximate nonconstant eigenfunction βε as
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explained above, then we obtain an ε-uniform a priori estimate for solutions to the
projected linearized equation

�gεu = f − λβε (9)

where f is a function such that
∫

M f dvolgε = 0. Here we are looking for a suitable
constant λ (which roughly speaking is the projection of f along βε) and a solution
u which, up to a constant, can be chosen such that

∫
M u dvolgε = 0.

Combining the a priori estimate for Eq. (9) and the estimate of the scalar cur-
vature Sgε obtained in Proposition 3 we will then be able to solve the (nonlinear)
fixed point problem

�gε v = Fε(v)− λFε(v) βε (10)

The final step is then to discuss the conditions which ensure the vanishing of the
rough projection of the error term λFε(v), providing a solution to Eq. (8).

As suggested by the title, this section is devoted to the solution of the linear
problem (9). To begin with, let us fix the functional setting by recalling the following
result from [16]:

Proposition 4. (Local a priori estimate) Given γ ∈ (0, n −2), there exist real num-
bers α1 = α1(n, γ ) > 0, α2 = α2(n, γ ) > 0 and a constant Cn,γ ≥ 0 such that
for all ε ∈ (0, e− max{α1,α2}) and all v, f ∈ C0(T ε(α1, α2)) satisfying �gε v = f ,
the following estimate holds

sup
T ε(α1,α2)

∣∣ψγε v
∣∣ ≤ Cn,γ

[

sup
T ε(α1,α2)

∣
∣∣ψγ+2
ε f

∣
∣∣ + sup

∂T ε(α1,α2)

∣∣ψγε v
∣∣
]

(11)

where T ε(ρ, σ ) := {log ε + ρ ≤ t ≤ − log ε − σ }, for ρ, σ > 0 and ψε is the
distance function defined as

ψε :=
{
εcht in T ε(1, 1)
1 in M\T ε(0, 0)

which interpolates smoothly between these two definitions.
(Observe that the statement is true for any couple of sufficiently large real numbers
(α1, α2)).

Having at hand this result and working orthogonally to the kernel of �gε , it
becomes natural to consider the weighted Banach spaces of continuous functions
defined by:

C0
δ (M) :=

⎧
⎨

⎩
v ∈ C0(M) : ‖v‖C0

δ (M)
< +∞ and

∫

M

v dvolgε = 0

⎫
⎬

⎭

where ‖v‖C0
δ (M)

:= supM |ψδε v|, and δ ∈ R is the weight. In our context we con-

sider functions f ∈ C0
γ+2(M) and we look for solutions u ∈ C0

γ (M), γ ∈ (0, n−2).
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Let us describe now more precisely the function βε. For the reasons explained
above it is useful to think of it as an approximation of the degenerate eigenfunction
of �gε , whose associated eigenvalue tends to 0 as ε → 0. We simply define βε as

βε := χ1 − χ2 (12)

where χ1 and χ2 are smooth monotone functions which verify

χ1 =
{

1 on M1\T ε(α1, 0)
0 on M2\T ε(0,−2 log ε − α1 − 1)

χ2 :=
{

1 on M2\T ε(0, α2)

0 on M1\T ε(−2 log ε − α2 − 1, 0)

Since by hypothesis vol(M1) = 1 = vol(M2), it is always possible to choose two
real numbers α1 and α2 such that

∫

M

χ1 − χ2 dvolgε = 0

This implies that the approximate eigenfunction βε is orthogonal to the constants.
As a first step towards the solution of the problem (9) we will prove the follow-

ing:

Lemma 1. Given a function f ∈ C0
γ+2(M), it is possible to find a real number

λ = λ( f ), an approximate solution u ∈ C0
γ (M) and an error term R ∈ C0

γ+2(M)
that verify

�gεu = f − λβε + R (13)

Moreover u, f and R enjoy the following estimates:

‖u‖C0
γ (M)

≤ A · ‖ f ‖C0
γ+2(M)

(14)

|λ| ≤ B · ‖ f ‖C0
γ+2(M)

(15)

‖R‖C0
γ+2(M)

≤ C · ‖ f ‖C0
γ+2(M)

· εβ·γ (16)

where the positive constants A, B and C depend on K , n, γ, α1 and α2, the weight
γ lies in (0, n − 2) and the real parameter β can be chosen in (0, 1).

The proof of Lemma 1 consists in building an approximate solution u to Eq. (9)
and in estimating the remaining terms, collected in the error R. In order to do so,
let us consider a non-negative smooth function χP such that the triple {χ1, χP , χ2}
is a partition of the unity. It is useful to split f into

f = f χ1 + f χP + f χ2 = f1 + fP + f2

As a first step we want to build a good approximate solution on the polyneck. It is
well known that the problem

⎧
⎨

⎩

�gε v = fP on T ε(α1, α2)

v = 0 on ∂T ε(α1, α2)
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admits a solution and we call it ũ P . Moreover, if fP is continuous, so does ũ P and
thanks to Proposition 4, if we choose large enough α1 and α2, we get immediately
the estimate

‖ũ P‖C0
γ (T

ε(α1,α2))
≤ AP · ‖ fP‖C0

γ+2(T
ε(α1,α2))

(17)

In fact the boundary conditions allow us to drop out the term ‖ũ P‖C0
γ (∂T ε(α1,α2))

in the estimate (11). Also notice that the positive constant AP only depends on
n, γ, α1 and α2, so that the bound is uniform with respect to the parameter ε.

Let us smooth the polyneck solution just obtained, by defining u P := χP ũ P .
As a consequence we have

�gεu P = �gε ũ P −�gε (1 − χP )ũ P

= fP −�gε (χ1ũ P )−�gε (χ2ũ P )

= fP − q1 − q2

where qi := �gε (χi ũ P ), i = 1, 2.
As a second step we want now to construct approximate solutions on the pieces

of M coming from M1 and M2. To this purpose, let us consider, for i = 1, 2, the
functions f̃i := fi + qi and f̃ := f̃1 + f̃2. Since

∫
M f dvolgε = 0, it is easy to

check that
∫

M f̃ dvolgε = 0. We also set hi := f̃i + (−1)i λχi for i = 1, 2 and
h := h1 +h2 = f̃ −λ βε. Obviously we have

∫
M h dvolgε = 0 and

∫
M h1 dvolgε =

− ∫
M h2 dvolgε .
Moreover
∫

M

h1 dvolgε −
∫

M

h2 dvolgε =
∫

M

f̃1 − f̃2 dvolgε − λ

∫

M

χ1 + χ2 dvolgε

Hence, by setting

λ :=
∫

M f̃1 − f̃2 dvolgε∫
M χ1 + χ2 dvolgε

(18)

it follows at once that
∫

M hi dvolgε = 0, i = 1, 2. Notice that the definition (18)
allows us to think of λ as the rough projection of f along βε.

By slight modifications of very classical results (see [2]) we are allowed to
consider solutions ũi , i = 1, 2 to the problems

�gi ũi = hi − bi δK (19)

where δK is the Dirac distribution supported on the submanifold K and the constants
bi , i = 1, 2 are forced to be

bi =
∫

Mi
hi dvolgi

volgK (K )
(20)

It is rather simple to describe how for example the function ũ1 approximately looks
like, in fact we can write (notice that the following remarks still hold for i = 2)
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�g1 ũ1 = h1 + 1

V1

∫

M

h1 dvolg1 − 1

V1

∫

M

h1 dvolg1 − b1δK

where V1 is the short notation for volg1(M1). To proceed it is useful to consider the
splitting ũ1 = ū1 + û1 where

⎧
⎨

⎩

�g1 ū1 = h1 − 1
V1

∫
M h1 dvolg1

�g1 û1 = 1
V1

∫
M h1 dvolg1 − b1δK

We can think of ū1 as the finite part and of û1 as the pure Green function part of
ũ1. In particular û1 has the following shape in a neighborhood of K :

û1 = �n,K ·
∫

M

h1 dvolg1 ·
[
|x |2−n + O

(
|x |3−n

)]
(21)

where �n,K := [
volgK (K ) · (n − 2) · ωn−1

]−1.
In order to estimate û1 it is useful to remember that, on the region T ε(0, 0)\

T ε(α1, 0), the definition of the metric gε implies that:

√
gε = √

g1 + O
(

e(n−2) t
)

Hence, thanks to the fact that
∫

M h1 dvolgε = 0, we can write
∫

M1

h1 dvolg1 =
∫

M1

h1 dvolg1 −
∫

M1

h1 dvolgε

=
∫

T ε(0,0)\T ε(α1,0)

h1 (
√

g1 − √
gε) dz1 . . . dzk dt dθ1 . . . dθn−1

In the following, to keep short the notations, we will set

ρ1,ε :=
√

g1 − √
gε√

g1

and we will indicate the volume element (
√

g1 −√
gε) dz1 . . . dzk dt dθ1 . . . dθn−1

by ρ1,ε dvolg1 .
Let us recall that we have by definition h1 = f1 + q1 − λχ1. Concerning

the piece coming from f1 it is straightforward to check that there exists a positive
constant Â′

K ,n,γ,α1
such that

∫

T ε(0,0)\T ε(α1+1,0)

f1 ρ1,ε dvolg1 ≤ Â′
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

· εn−2

To analyze the contribution of q1 := �gε (χ1 ũ P ) it is convenient to write explicitly

q1 = (�gεχ1) ũ P + 2gε(dχ1, dũ P )+ χ1 (�gε ũ P )
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Thanks to Proposition 4 and using the fact that �gε ũ P = fP , it is easy to see that
there exists a positive constant Â′′

K ,n,γ,α1
such that

∫

T ε(α1,0)\T ε(α1+1,0)

(�gεχ1) ũ P + χ1(�gε ũ P ) ρ1,ε dvolg1

≤ Â′′
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

· εn−2

To treat the remaining term it is convenient to integrate by parts, then using the
fact that ∂t χ1 vanish on ∂ [T ε(α1, 0)\T ε(α1 + 1, 0)] and Proposition 4 again, we
deduce that

∫

T ε(α1,0)\T ε(α1+1,0)

2 gε(dχ1, dũ P ) ρ1,ε dvolg1 ≤ Â′′′
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

· εn−2

for some positive constant Â′′′
K ,n,γ,α1

. Notice that a similar estimate also follows
from the fact that, up to a careful choice of the cut off χ1, the term gε(dχ1, dũ P )

enjoys the following inequality

|gε(dχ1, dũ P )| ≤ Cm,γ,α1 · ‖ fP‖C0
γ+2(T

ε(α1,α2))
(22)

In fact, adapting to the Riemannian setting the very classical gradient estimate for
bounded solutions of the Poisson equation [5] and recalling that ũ P is a bounded
solution of �gε ũ P = fP on the domain Dα1 := T ε(α1, 0)\T ε(α1 + 1, 0), we get
the bound

dist(y, ∂Dα1) · |dũ P | (y) ≤ Cn,α1 ·
[
‖ũ P‖C0(Dα1 )

+ ‖ fP‖C0(Dα1 )

]

where y is a point in Dα1 and dist(y, ∂Dα1) represents the distance from y to the
boundary of Dα1 . Having this at hand we immediately get

|gε(dχ1, dũ P )|(y) ≤ Cm,γ,α1 ·
[
‖ũ P‖C0

γ (Dα1 )
+ ‖ fP‖C0

γ+2(Dα1 )

]
· |dχ1| (y)

dist(y, ∂Dα1)

If χ1 is sufficiently smooth, then the last factor in the right hand side is bounded in
Dα1 and Proposition 4 yields the estimate (22).

The definition of the rough projection λ (18) obviously implies (modulo the
same computation on M2) the estimate (15) in the statement of Lemma 1 and, as a
consequence, an analog of the estimates above for the term −λχ1 which appears
in the expression of

∫
M1

h1 dvolg1 .
Hence, recalling the expression (21) of û1, we conclude that there exists a

positive constant Â1
K ,n,γ,α1

such that

|û1| ≤ Â1
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

· e(n−2) t (23)

Also notice that formula (21) implies at once analogous estimates for the derivatives
of û1 with respect to the variables t, θλ, zi , for λ = 1, . . . , n − 1 and i = 1, . . . , k.
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Let us look now to the finite part of ũ1, namely ū1. If we define h̄1 as

h̄1 := h1 − 1

V1

∫

M1

h1 dvolg1

then �g1 ū1 = h̄1 and the classical Green representation formula (see for example
[2]) for ū1 automatically yields the estimate

‖ū1‖C1(M1)
≤ ‖h̄1‖C0(M1)

(24)

Applying the remark (22) and Proposition 4, we deduce that there exists a positive
constant Ā′

K ,n,γ,α1
such that

|q1| ≤ Ā′
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

Hence, also the C0 norm of h̄1 is bounded by

‖h̄1‖C0(M1)
≤ Ā′′

K ,n,γ,α1
· ‖ f ‖C0

γ+2(M)

for some positive constant Ā′′
K ,n,γ,α1

. This implies that there exists Ā1
K ,n,γ,α1

> 0
such that

|ū1| ≤ Ā1
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

(25)

and the same is true for the derivatives of ū1 with respect to the variables t, θλ, zi ,
for λ = 1, . . . , n − 1 and i = 1, . . . , k.

To summarize, we obtain from (25) and (23) that there exists a positive constant
A1

K ,n,γ,α1
such that the function ũ1 = ū1 + û1 is bounded by

|ũ1| ≤ A1
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

(26)

and the same is true for its derivatives with respect to the variables t, θλ, zi , for
λ = 1, . . . , n − 1 and i = 1, . . . , k.

Following the same strategy it is straightforward to obtain a similar result for
a function ũ2, which is the analog of ũ1 on M2. Now, using ũ1, ũ2 and u P (which
is nothing but the polyneck solution ũ P smoothed down), we are ready to produce
the approximate solution u of Lemma 1. To do that, we introduce, for β ∈ (0, 1),
the smooth monotone cut off functions φ1 and φ2 which verify

φ1 =
{

1 on M1\T ε(−β log ε, 0)

0 on M2\T ε(0,−(2 − β) log ε − 1)

φ2 =
{

1 on M2\T ε(0,−β log ε)

0 on M1\T ε(−(2 − β) log ε − 1, 0)

To complete the description of the cut-offs we assume that φ1 interpolates smoothly
between (1 − β) log ε and (1 − β) log ε + 1 and φ2 does the same between
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−(1 − β) log ε − 1 and −(1 − β) log ε. Notice that for small enough ε, we have
that supp (dφi)⊂ T ε(α1, α2), for i = 1, 2 (in the following we will always assume
that).

Let us define now the approximate solution as

u := φ1ũ1 + u P + φ2ũ2 (27)

Notice that the estimate (17) and the estimate (26), with its analog for ũ2, imply at
once the estimate (14) in the statement of Lemma 1, namely there exists a positive
constant AK ,n,γ,α1,α2 such that

‖u‖C0
γ (M)

≤ AK ,n,γ,α1,α2 · ‖ f ‖C0
γ+2(M)

(28)

To define the error term R of Lemma 1, we compute

�gεu = �gεu P +�gε (φ1ũ1)+�gε (φ2ũ2)

= fP − q1 − q2

+φ1 (h1 − b1δK )+ (�gεφ1) ũ1 + gε (dφ1, dũ1)

+φ2 (h2 − b2δK )+ (�gεφ2) ũ2 + gε (dφ2, dũ2)

= f − λβε

+ (�gεφ1) ũ1 + gε (dφ1, dũ1)

+ (�gεφ2) ũ2 + gε (dφ2, dũ2)

At this point it is quite natural to define Ei := (�gεφi )ũi + gε(∇φi ,∇ũi ), i = 1, 2
and R := E1 + E2, so that u, λ and R satisfy the Eq. (13)

�gεu = f − λβε + R (29)

The last task in order to complete the proof of the Lemma 1 is to provide R with
the estimate (16). Without loss of generality, let us look for example at the error
term E1.

First notice that since supp (�gεφ1) and supp (dφ1) are both included in [(1−β)
log ε, (1 − β) log ε + 1], the term E1 is supported here as well. Considering this
fact and the estimates obtained for ũ1 and its derivatives, it is straightforward to
deduce that, for a suitable positive constant C1

K ,n,γ,α1
,

‖E1‖C0
γ+2(M)

≤ C1
K ,n,γ,α1

· ‖ f ‖C0
γ+2(M)

· εβ γ (30)

This estimate and its counterpart for E2 imply the estimate (16) for R and this
completes the proof of Lemma 1.

Now we want to look at the Eq. (9). The idea is to solve it by means of an
iteration process. We start by setting f (0) := f and thanks to Lemma 1 we obtain
a triple (λ(0), u(0), R(0)) satisfying

�gεu
(0) = f (0) − λ(0)βε + R(0)

and the estimates (14), (15) and (16). Then, setting f (1) := −R(0), we find another
triple (λ(1), u(1), R(1))with the same properties as the first one and so on. In general,
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for every j ∈ N, we have f ( j) := −R( j−1) and a triple (λ( j), u( j), R( j)) satisfying
the equation

�gεu
( j) = f ( j) − λ( j)βε + R( j) (31)

and the estimates (14), (15) and (16) of Lemma 1.
Taking the sum of the Eq. (31) we have that, for every N ∈ N

�gε

N∑

j=0

u( j) =
N∑

j=0

f ( j) − βε

N∑

j=0

λ( j) +
N∑

j=0

R( j)

= f − βε

N∑

j=0

λ( j) + R(N )

We can rephrase this by saying

�gε v
(N ) = f − µ(N )βε + R(N )

where

v(N ) :=
N∑

j=0

u( j) and µ(N ) :=
N∑

j=0

λ( j)

From the estimates of Lemma 1 it easily follows that

‖ f ( j)‖C0
γ+2(M)

= ‖R( j−1)‖C0
γ+2(M)

≤ C · ‖ f ( j−1)‖C0
γ+2(M)

· εβ γ

≤ (C εβ γ ) j · ‖ f ‖C0
γ+2(M)

‖u( j)‖C0
γ (M)

≤ A · ‖ f ( j)‖C0
γ+2(M)

≤ A · (
C εβ γ

) j · ‖ f ‖C0
γ+2(M)

|λ( j)| ≤ B · ‖ f ( j)‖C0
γ+2(M)

≤ B · (
C εβ γ

) j · ‖ f ‖C0
γ+2(M)

It is clear that, for sufficiently small ε > 0, there exist a real number λ ∈ R and
function u ∈ C0

γ such that

R(N )
C 0
γ+2−→ 0, v(N )

C 0
γ−→ u, µ(N ) −→ λ

Moreover there exist positive constants A′ and B ′ depending on K , n, γ, α1 and α2
such that

‖u‖C0
γ (M)

≤ A′‖ f ‖C0
γ+2(M)

and |λ| ≤ B ′‖ f ‖C0
γ+2(M)
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Hence

�gε v
(N )

C 0
γ+2−→ f − λβε and v(N )

C 0
γ−→ u

On the other hand we have that, for every N ∈ N and for every φ ∈ C∞(M)
∫

M

v(N ) �gεφ dvolgε =
∫

M

( f − µ(N )βε + R(N )) φ dvolgε

Hence, by taking the limit for N → +∞ we find, for every φ ∈ C∞(M), the
expression

∫

M

u�gεφ dvolgε =
∫

M

( f − λβε) φ dvolgε

In other words the following identity

�gεu = f − λβε

holds in the sense of the distributions.
Thanks to the elliptic regularity, if we suppose f ∈ C0,α(M), then u ∈ C2,α

and the expression above is a point-wise identity.
To conclude this section we summarize our results in the following

Proposition 5. Given a function f ∈ C0
γ+2(M), it is possible to find a real number

λ and a function u ∈ C0
γ (M) such that the equation

�gεu = f − λβε (32)

is satisfied in the sense of the distributions and the following estimates hold

‖u‖C0
γ (M)

≤ A′ · ‖ f ‖C0
γ+2(M)

(33)

|λ| ≤ B ′ · ‖ f ‖C0
γ+2(M)

(34)

for suitable positive constants A′ and B ′ depending on K , n, γ, α1 and α2.
Moreover, if f ∈ C0,α(M), then u ∈ C2,α(M) and the identity above holds

point-wise.

4. Nonlinear analysis: a fixed point argument

The aim of this section is to solve the fixed point problem (10), namely

�gε v = Fε(v)− λFε(v)βε

We will be able to do this using a fixed point theorem for contracting mappings,
provided the C0

γ (M)-norm of v is small enough.



Generalized connected sum construction for scalar flat metrics 153

Before starting, let us remark that in the expression of Fε(v) (8) it is always
possible to choose S = S(ε, v) in such a way that

∫
M Fε dvolgε = 0, in fact it is

sufficient to set

S :=
∫

M Sgε (1 + v) dvolgε∫
M 1 + m+2

m−2v + f (v) dvolgε
(35)

Using the estimate of the scalar curvature (6) of Proposition 3 it is not hard to check
that S = O (

εn−2
)
.

Observe that in Sects. 5 and 6, we will need to introduce some slight
modifications of the approximate solution metrics gε away from the gluing locus,
in order to kill the rough projection λFε(v). This will induce some small changes in
the expression of Sgε and consequently, at a first time, we will find an estimate for
S which is strictly worse than the one we claimed in the statement of Theorem 1.
More precisely, it will turn out that S is roughly estimated as S = O (

ε(n−2)/2
)

instead of S = O (
εn−2

)
. However, the fixed point argument which we are going

to describe now, will still hold in the modified context of Sects. 5 and 6, modulo a
small adjustment which is explained below. Using then this fixed point result, we
will obtain a solution vε to the Eq. (10) in the new setting. Next, using the perturba-
tions introduced in the approximate solution metrics and the fact that the Eq. (10)
is verified in this new context, it will be possible to kill the rough projection λFε(vε)

improving at the same time the estimate for S, getting S = O (
εn−2

)
, as claimed.

Having this in mind, we prefer, for sake of simplicity, to prove the existence of a
fixed point for the problem above in the current situation.

To begin with, let us introduce the maps

Fε : C0
γ (M) −→ C0

γ+2(M)

v �−→ Fε(v)

Gε : C0
γ+2(M) −→ C0

γ (M)

w �−→ Gε(w)

where Gε(w) is the unique solution to the equation�gε Gε(w) = w− λwβε, with
λw given as in Proposition 5. Notice that λw is also unique in reason of the estimates
contained in Proposition 5.

At this point it is quite natural to define the map

Pε : C0
γ (M) −→ C0

γ (M)

v �−→ Gε ◦ Fε(v)

Now we can state the following:

Lemma 2. For γ ∈ (0, 1/2) and for sufficiently small ε > 0 there exists a radius
rε := ε2γ such that Pε

(
Bγ (rε)

) ⊂ Bγ (rε), where Bγ (rε) := {
u ∈ C0

γ (M) :
‖u‖C0

γ (M)
≤ rε

}
. In other words:

‖v‖C0
γ (M)

≤ rε �⇒ ‖Pε(v)‖C0
γ (M)

≤ rε (36)
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In order to prove the statement, we start by observing that the choice of S and
the estimate of Sgε obtained in Proposition 3 imply at once that Fε(v) ∈ C0

γ+2, for
v ∈ Bγ (rε). Then, using the estimate (33) of Proposition 5 we immediately get

‖Pε(v)‖C0
γ (M)

≤ D · ‖Fε(v)‖C0
γ+2(M)

for a suitable positive constant D.
Now, we have to estimate the right hand side of the above expression. Recalling

the definition of rε and the estimate (6), we compute

|Fε(v)ψγ+2
ε | ≤ c1|S|ψγ+2

ε + c2|Sgε |ψγ+2
ε + c3|S|ψγ+2

ε |v|
+ c4 |Sgε |ψγ+2

ε |v| + c5 |S|| f (v)|ψγ+2
ε

≤ c6 ε
n−2 + c7

[
εn−2 + ε1+γ ]

+ c8 ε
n−2+γ

+ c9

[
εn−2 + ε1+γ ]

εγ + c10 ε
n−2+2γ

≤ c11 ε
n−2 + c12 ε

1+γ

≤
[
c13 ε

n−2−2γ + ε1−γ ]
rε

for suitable positive constants c j ’s. Therefore, the Lemma is proved, provided
γ ∈ (0, 1/ 2).

Let us insist on the fact that in the following sections we will consider slight
modifications of the approximate solutions. As anticipated, this will forces us to
modify the choice of S. This new S can only be estimated, at a first time as a
O (
ε(n−2)/2

)
. Nevertheless, up to choose γ in a smaller range (γ ∈ (0, 1/4)), the

statement of the Lemma 2 and its consequences remain true.
At this point, our aim is to prove that the sequence defined as

v j := P j
ε (0) (37)

for every j ∈ N, converges to a function vε ∈ Bγ (rε) with respect to the norm
‖·‖C0

γ (M)
.

Since we want to use a contraction mapping argument, we need to provide an
estimate for ‖Pε(u)− Pε(v)‖C0

γ (M)
in terms of‖u − v‖C0

γ (M)
, where u, v ∈ Bγ (rε).

In fact, since 0 ∈ Bγ (rε), all the terms belong to Bγ (rε), because of Lemma 2.
First notice that

�gε (Pε(u)− Pε(v)) = Fε(u)− Fε(v)− (
λFε(u) − λFε(v)

)
βε

Next we observe that f �→ λ f , where λ f is the rough projection defined in Prop-
osition 5, is a linear map, hence

λFε(u) − λFε(v) = λFε(u)−Fε(v) (38)

As a consequence of the estimate (33) we obtain

‖Pε(u)− Pε(v)‖C0
γ (M)

≤ C0 · ‖Fε(u)− Fε(v)‖C0
γ+2(M)

for some suitable positive constant C0.
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Since the function f which appears in the definition of Fε(v) satisfies the fol-
lowing inequality

| f (u)− f (v)| ≤
[

C1 (|u| + |v|)+ C2

(
|u| 4

m−2 − |v| 4
m−2

) ]
|u − v|

for suitable positive constants C1 and C2, we can proceed with the estimate of the
term Fε(u)− Fε(v). The condition γ ∈ (0, 1/2) is a sufficient condition to ensure
that

ψγ+2
ε |Fε(u)−Fε(v)| ≤ ψγ+2

ε

[
cm |S| |u − v| + cm |Sgε | |u − v| + |S|

m−1
|u − v|

]

+ψγ+2
ε cm |S| [ C1 (|u| + |v|)

+ C2

(
|u| 4

m−2 − |v| 4
m−2

)]
|u − v|

≤ C3 ε · ‖u − v‖C0
γ (M)

+ C4 ε
n−2 ·

[
‖u‖C0

γ (M)
+ ‖v‖C0

γ (M)

]
· ‖u − v‖C0

γ (M)

+ C5 ε
n−2 ·

[
‖u‖

4
m−2

C0
γ (M)

+ ‖v‖
4

m−2

C0
γ (M)

]
· ‖u − v‖C0

γ (M)

for suitable positive C j ’s. (Again, the condition on γ becomes slightly different for
the metrics we will consider in the next sections, namely γ ∈ (0, 1/4)).

Hence, for u, v ∈ Bγ (rε) and ε > 0 small enough, we obtain the inequality

‖Pε(u)− Pε(v)‖C0
γ (M)

≤ C6 ε · ‖u − v‖C0
γ (M)

(39)

Therefore, if we choose two integers p ≤ q, we have that

‖vq − v p‖C0
γ (M)

≤
p−q∑

j=1

‖v p+ j − v p+ j−1‖C0
γ (M)

≤ (C6 ε)
p ·

+∞∑

j=0

(C6 ε)
j · ‖v1 − v0‖C0

γ (M)

Therefore, the sequence (v j ) is a Cauchy sequence and it must converge to a func-
tion vε ∈ Bγ (rε) which is the fixed point of Pε in Bγ (rε), namely

Pε(vε) = vε (40)

Recalling the definition of Pε, it is straightforward to see that vε is a solution to the
problem (10)

�gε vε = Fε(vε)− λFε(vε) βε (41)

Notice that by means of a classical boot strap argument one can prove that vε is
actually a smooth function.

To conclude this section, let us remark that since vε has been found by means
of a contraction mapping argument, it also depends continuously on the data of our
problem.
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5. Vanishing of the rough projection λFε(vε)

In this section we want to discuss the vanishing of λFε(vε). This is the last step
needed to complete the proof of Theorem 1. In fact we recall that our main purpose
is to produce a solution to the Eq. (8). We also recall that Fε(v) represents the error
term in this equation, and that we can think of λFε(v) as the rough projection of the
error term along the first nonconstant eigenfunction βε of the linearized operator
�gε . At the moment we have produced a solution vε to the Eq. (10), if we are able to
ensure the vanishing of λFε(vε), then we have finished. To do so, we consider some
slight conformal modifications of the initial metrics g1 and g2 supported away from
the gluing locus.

More precisely let w̄1 and w̄2 be two smooth functions supported on M1\W1
and M2\W2 respectively (with the notation introduced in Sect. 2). Then, we set

w1 := a ε(n−2)/2 · w̄1 (42)

w2 := b ε(n−2)/2 · w̄2 (43)

where a and b are real parameters. Having defined w1 and w2, we introduce the
modified metrics

g̃1 := (1 + w1)
4

m−2 g1 (44)

g̃2 := (1 + w2)
4

m−2 g2 (45)

Using g̃1 and g̃2 instead of g1 and g2 in the geometric construction presented in
Sect. 2 we obtain a family of modified approximate solution metrics (g̃ε)ε∈(0,1) and
it is easy to check that the linear analysis remains unchanged for these new met-
rics. Namely Proposition 5 still holds with g̃ε instead of gε (because of the support
of wi , i = 1, 2). Also observe that, because of the smallness of the modification
introduced, it is always possible to chose α1 and α2 in the definition of χ1 and χ2
such that

∫

M

χ1 − χ2 dvolg̃ε = 0

It turns out that the scalar curvature of g̃i is supported on supp (w̄i ), and that it is
given by

Sg̃i = (1 + wi )
− m+2

m−2 ·�giwi (46)

for i = 1, 2, then Sg̃i = O (
ε(n−2)/2

)
. From this it is easy to deduce an analog of

Proposition 3 for the scalar curvature Sg̃ε . More precisely Sg̃ε enjoys an estimate
similar to the one of Sgε (namely the estimate (6)) on the polyneck, whereas it turns
out to be a O (

ε(n−2)/2
)

on the supports of the wi ’s. As a consequence, we also
deduce a rough estimate for S, namely S = O (

ε(n−2)/2
)
. In the following, once a

new fixed point is found in the modified setting, we will also improve this estimate,
in order to get S = O (

εn−2
)
, as required in the statement of Theorem 1.
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As already mentioned, up to choose γ ∈ (0, 1/4), we can reproduce with slight
modifications the fixed point argument of Sect. 4, in order to obtain a solution to
the equation

�g̃ε vε = F̃ε(vε)− λF̃ε(vε)
βε (47)

where the explicit expression for F̃ε(vε) is

F̃ε(vε) = cm S

[
1 + m + 2

m − 2
vε + f (vε)

]
− cm Sg̃ε [ 1 + vε ] (48)

and S is now given by

S =
∫

M Sg̃ε (1 + vε) dvolg̃ε∫
M 1 + m+2

m−2 vε + f (vε) dvolg̃ε
(49)

=
∫

M (Sg̃1 + Sg̃ε + Sg̃2) (1 + vε) dvolg̃ε
volg̃ε (M)

+ O
(
ε(n−2)/2+γ )

(50)

Also notice that the fact that vε lies in Bγ (rε) implies at once the estimate (1) which
appears in the statement of Theorem 1.

The task is now to show that λF̃ε(vε)
can be chosen to be zero. Since all the

quantities which appear in the expression (47) depend smoothly on the real param-
eters a and b introduced in the definitions of the wi ’s, our goal is achieved if we
prove that we can control the sign of the rough projection λF̃ε(vε)

by means of a
and b.

Following the proof of Proposition 5, we can think of λF̃ε(vε)
as a sum of the

series

λF̃ε(vε)
=

∞∑

j=0

λ
( j)

F̃ε(vε)
(51)

where the real numbers λ( j)

F̃ε(vε)
are built on as in the mentioned proposition and

consequently enjoy the estimate

|λ( j)

F̃ε(vε)
| ≤ B · (

C εβ γ
) j · ‖F̃ε(vε)‖C0

γ+2(M)
(52)

where B and C are positive constants depending on K , n, γ, α1 and α2 and the
real parameter β lies in (0, 1). As indicated by this estimate, the leading term in
the expression for λF̃ε(vε)

is given by the first summand. More precisely, using the

explicit definition of the λ( j)

F̃ε(vε)
’s, it is not hard to show that, for a suitable choice of

the parameter β, all these terms are o(εn−2), for j ≥ 1. We deduce that the sign of

the rough projection is determined by the one of λ(0)
F̃ε(vε)

, which is explicitly given

by

λ
(0)
F̃ε(vε)

= 1
∫

M χ1 + χ2 dvolg̃ε

∫

M

F̃ε(vε) (χ1 − χ2) dvolg̃ε

+ 1
∫

M χ1 + χ2 dvolg̃ε

∫

M

�gε (χ1ũεP )−�gε (χ2ũεP ) dvolg̃ε (53)
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where ũεP is the solution of the problem
⎧
⎨

⎩

�gε ũ
ε
P = χP · F̃ε(vε) on T ε(α1, α2)

ũεP = 0 on ∂T ε(α1, α2)

Let us focus now on the term
∫

M F̃ε(vε) (χ1 − χ2) dvolgε which appears in (53).
Recalling the expression for F̃ε(vε), it becomes

cm S
∫

M

m + 2

m − 2
vε (χ1 − χ2)+ f (vε) (χ1 − χ2) dvolg̃ε

− cm

∫

M

(Sg̃1 + Sgε + Sg̃2 ) (1 + vε) (χ1 − χ2) dvolg̃ε

It is not hard to show that
∫

M

Sgε (1 + vε) χ1 dvolg̃ε = − 4n volgK (K ) ωn−1 · εn−2 + O
(

e−α1 εn−2
)

∫

M

Sgε (1 + vε) χ2 dvolg̃ε = − 4n volgK (K ) ωn−1 · εn−2 + O
(

e−α2 εn−2
)

Moreover it is also straightforward to see that
∫

M

Sg̃1 χ1 dvolg̃ε = −
∫

M1

|dw1|2g1
dvolg1 + O

(
ε

3(n−2)
2

)

∫

M

Sg̃2 χ2 dvolg̃ε = −
∫

M2

|dw2|2g2
dvolg2 + O

(
ε

3(n−2)
2

)

The estimate of the term
∫

M (Sg̃1 χ1 + Sg̃2 χ2) vε dvolg̃ε is more delicate. Let us
look for example at the term

∫
M Sg̃1 vε dvolg̃ε . A direct computation shows that

∫

M

Sg̃1 vε dvolg̃ε =
∫

M1

w1
(
�g1vε

)
dvolg1 + O

(
εn−2+γ )

(54)

Using simple Taylor expansions we obtain (on the support of w1)

�g1vε =
[

1 + 4

m − 2
w1 + O

(
εn−2

) ]
·�g̃ε vε

− 2 g1 (dw1, dvε)+ 2w1 g1 (dw1, dvε)+ O
(
ε

3(n−2)
2

)

Integrating against w1 gives
∫

M

Sg̃1 vε dvolg̃ε =
∫

M1

w1 F̃ε(vε) dvolg1 − λF̃ε(vε)
·
∫

M1

w1 dvolg1 + O
(
εn−2+γ )
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Performing a rough estimate one can easily see that F̃ε(vε) = O (
ε(n−2)/2

)
on

the support of w1 and also λF̃ε(vε)
= O (

ε(n−2)/2
)
. Combining these facts with

the computation above, we improve the rough estimate for S and we immediately
obtain S = O (

εn−2
)
.

Again, using the explicit formula for F̃ε, one can refine (54) obtaining
∫

M

Sg̃1 vε dvolg̃ε = cm

∫

M1

|dw1|2g1
dvolg1 + λF̃ε(vε)

· O
(
ε

n−2
2

)
+ O

(
ε

3(n−2)
2

)

Collecting all the information obtained we deduce that
∫

M

F̃ε(vε) · (χ1 − χ2) dvolg̃ε = (c2
m − cm) ·

∫

M

|dw2|2g2
dvolg2

− (c2
m − cm) ·

∫

M

|dw1|2g1
dvolg1

+ λF̃ε(vε)
· O

(
ε(n−2)/2)

)

+O
(

e−α1 εn−2
)

+ O
(

e−α2 εn−2
)

(55)

If we write �gε

(
χi ũεP

) = χi
(
�gε ũ

ε
P

) + 2
[
gε

(
dχi , dũεP

) + ũεP
(
�gεχi

) ] − ũεP(
�gεχi

)
, then Green’s formula implies, for i = 1, 2

∫

M

�gε

(
χi ũ

ε
P

)
dvolg̃ε =

∫

M

χ1 χP F̃ε(vε) dvolgε −
∫

M

ũεP
(
�gεχi

)
dvolgε

Following the proof of Proposition 4 contained in [16] and taking into account the
shape of F̃ε(vε), one gets the following bound for ũεP

|ũεP | ≤ C · εn−2 · ψγ−(n−2)
ε

where the positive constant C , does not depend on ε.
Using this fact it is straightforward to deduce that

∫

M

�gε

(
χ1ũεP

)
dvolg̃ε = O

(
e−α1 εn−2

)

∫

M

�gε

(
χi ũ

ε
P

)
dvolg̃ε = O

(
e−α2 εn−2

)

These estimates and the expression (55) imply that the sign of λF̃ε(vε)
is determined,

for small ε and sufficiently large α1 and α2, by the term

(c2
m − cm) ·

∫

M

|dw2|2g2
dvolg2 − (c2

m − cm) ·
∫

M

|dw1|2g1
dvolg1 (56)
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Hence it is clear that if we move the real parameters a and b in the definition of the
wi ’s, the sign of the rough projection changes. Since the solution depends contin-
uously on these parameters, we conclude that for a suitable choice of a and b the
rough projection λF̃ε(vε)

of the error term F̃ε(vε) along βε is zero and Theorem 1
is proved.

6. Getting S = 0: the non Ricci flat case

In this section we will prove Theorem 2. As claimed in the statement, when both
the initial metrics are scalar flat but non Ricci flat it is possible to construct a zero
scalar curvature metrics on the generalized connected sum. The idea consists in
doing slight non conformal modifications of the approximate solution metrics gε’s
away from the gluing locus. By means of these modifications it is possible to obtain
at once the orthogonality to the constant functions of the new error term F̃ε(vε) and
the vanishing of its rough projection along the approximate degenerate eigenfunc-
tion βε of the linearized operator�g̃ε . Remember that in the proof of Theorem 1, we
used the nonzero constant scalar curvature S = S(ε, vε) to insure the first condition
and slight conformal modifications of the gε’s to get the second one.

Let us describe the construction. Instead of the metrics gε’s let us consider the
new approximate solution metric

g̃ε(r, s) = gε + r h1 + s h2 (57)

where h1 and h2 are positive definite symmetric tensors supported respectively on
the manifolds M1 and M2 away from the polyneck, and r and s are real parameters.
Also remark that the hi ’s are non conformal to gi ’s, i = 1, 2.

The equation we need to solve as a first step is the following

�g̃ε v = F̃ε(v, r, s)− λF̃ε(v,r,s)
· βε (58)

where the new error term is given by F̃ε(v, r, s) := −cm Sg̃ε (1+v). Notice that this
definition automatically imposes that the scalar curvature we are going to achieve
is constant and equal to zero. Again we assume that

∫
M βε dvolg̃ε = 0.

Once a solution vε(r, s) is obtained, we will discuss the vanishing of the rough
projection λF̃ε(vε,r,s)

. This will complete the proof of Theorem 2.
As in the previous case, we will be able to find a solution to the nonlinear prob-

lem (58) using a fixed point argument for contraction mapping which will produce
a fixed point for the Eq. (58) as a solution of an iteration scheme.

Concerning the linear analysis, notice that the construction above allows us to
use the results of Proposition 5, once the orthogonality of the error term F̃ε(v, r, s)
to the constant functions is provided.

Let us therefore focus on the condition
∫

M

F̃ε(v, r, s) dvolg̃ε = 0 (59)

Since
∫

M Sgε dvolg̃ε = O (
εn−2

)
, we are allowed to choose the correction param-

eters of the same size, namely r, s = O (
εn−2

)
.
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Before starting the calculation, let us make some remarks about the scalar cur-
vature of the metric g̃ε, in order to get more information on F̃ε. Since the supports
of Sgε , h1 and h2 are disjoint and Sg1 = 0 = Sg2 , we can write, following [3]

Sg̃ε = Sgε + Sg1+rh1 + Sg2+sh2

= Sgε + r K1 + O
(

r2
)

+ s K2 + O
(

s2
)

where

Ki = �gi (trgi hi )+ δgi (δgi hi )+ gi (Ricgi , hi ) i = 1, 2 (60)

In the formula above δgi denotes the divergence of a symmetric tensor with respect
to the metric gi , and Ricgi is the Ricci tensor of the metric gi , for i = 1, 2.

Integrating the Ki ’s over M , we obtain
∫

M

Ki dvolg̃ε =
∫

Mi

Ki dvolg̃i

=
∫

Mi

gi (Ricgi , hi ) dvolgi + O
(
εn−2

)

where g̃1 = g1 +r h1 and g̃2 = g2 +s h2. Notice that, in the Ricci flat case, the inte-
gral above is zero and there is no chance to correct the term

∫
M Sgε (1 + v) dvolgε

in order to get the right orthogonality condition.
For v ∈ Bγ (rε) (where rε = ε2γ , as in Sect. 4), let us define the map Gε,v(r, s)

as follows:

Gε,v(r, s) :=
∫

M

Sg̃ε (1 + v) dvolg̃ε

=
∫

M

Sgε dvolgε + r
∫

M1

K1 dvolg1 + s
∫

M2

K2 dvolg2

+ Lv (r, s)+ Qv (r, s)

where

Lv(r, s) :=
∫

M

Sgε v dvolgε + r
∫

M1

K1 v dvolg1 + s
∫

M2

K2 v dvolg2

Qv(r, s) :=
∫

M1

Sg1+rh1 (1 + v) dvolg1 − r
∫

M1

K1 (1 + v) dvolg1

+
∫

M2

Sg2+sh2 (1 + v) dvolg2 − s
∫

M2

K2 (1 + v) dvolg2 + O
(
ε2(n−2)

)

Our next task is to describe the set where Gε,v(r, s) is zero.
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To proceed, let us consider the map

Hε(r, s) := Gε,v(r, s)− Lv(r, s)− Qv(r, s) (61)

In order to simplify the following computation, we can assume that the symmetric
tensors h1 and h2 are chosen so that

∫
M1

K1 dvolg1 = 1 = ∫
M2

K2 dvolg2 . We
can further assume, without loss of generality, that

∫
M Sgε dvolgε < 0 and since∫

M Sgε dvolgε = O (
εn−2

)
we can set, up to normalize,

∫
M Sgε dvolgε = −εn−2.

With these assumption, the expression for Hε becomes then the following

Hε(r, s) = −εn−2 + r + s

The set where Hε vanishes is given by {(r, s) ∈ R
2 | r + s = εn−2}. We will

show that the set where Gε,v vanishes is uniformly close to the set {Hε = 0}, for
v ∈ Bγ (rε).

Since r, s = O (
εn−2

)
it is easy to see that there exist two positive constants

CL and CQ such that, for all v ∈ Bγ (rε)

Lv(r, s) ≤ CL · εn−2+γ

Qv(r, s) ≤ CQ · ε2(n−2)+γ

In particular, for an arbitrarily small fixed constant c > 0 and sufficiently small
ε > 0 we have

|Lv(r, s)| ≤ (c/2) εn−2

|Qv(r, s)| ≤ (c/2) εn−2

At this point, it is immediate to check that for all v ∈ Bγ (rε)

{Gε,v(r, s) = 0 } =
{
(r, s) ∈ R

2 | r + s = εn−2 − Lv(r, s)− Qv(r, s)
}

⊆
{
(r, s) ∈ R

2 | (1 − c) εn−2 ≤ r + s ≤ (1 + c) εn−2
}

=: Zε

If we set r0 := εn−2/2 for every v ∈ Bγ (rε), there must exist a real number s0(v)

such that (r0, s0(v)) ∈ Zε and Gε,v(r0, s0(v)) = 0.
Obviously the functions Gε,v depend smoothly on variables r and s and it is not

hard to show that their partial derivatives at the origin are uniformly bounded with
respect to v ∈ Bγ (rε). We can also provide the partial derivatives ∂r · Gε,v (0, 0)
with a uniform lower bound. In fact, for sufficiently small ε, we can compute

∣∣∂r · Gε,v j (0, 0)
∣∣ =

∣∣∣∣∣
∣∣

∫

M1

K1 · (1 + v j ) dvolg1

∣∣∣∣∣
∣∣

≥

∣∣∣∣∣
∣∣

∫

M1

K1 dvolg1

∣∣∣∣∣
∣∣
−

∫

M1

|K1||v j | dvolg1
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≥

∣∣∣∣
∣∣∣

∫

M1

K1 dvolg1

∣∣∣∣
∣∣∣
− ‖v j‖C0(M)

∫

M1

|K1| dvolg1

≥ 1

2

∣∣∣∣
∣∣∣

∫

M1

K1 dvolg1

∣∣∣∣
∣∣∣

Observe that the bound does not depend on v and that the same is true for ∂s · Gε,v .
Arguing by contradiction and using these estimates it is possible to deduce that

there exists a positive constant C > 0 and a positive real number R > 0 such
that both the first partial derivatives

∣∣∂r · Gε,v

∣∣ and
∣∣∂s · Gε,v

∣∣ are greater than C in
BR (0, 0), for every v ∈ Bγ (rε).

Provided ε is sufficiently small, we see that the set Zε ∩ {r, s ≥ 0} lies in the
ball of radius R centered at the origin, hence it is possible to apply the implicit
function Theorem to the functions Gε,v around the points (r0, s0(v)). As a conse-
quence, we obtain, for every v ∈ Bγ (rε), an open neighborhood U (v) of r0, an
open neighborhood V (v) of s0(v) and a smooth function fv : U (v) −→ V (v)
such that Gε,v(r, fv(r)) = 0 for every r ∈ U (v).

Since it is possible to extend each implicit function fv to the interval (0, (1 −
c) εn−2), we can suppose that there exists an open neighborhood U of r0 and an
open neighborhood V of every s0(v) such that it is possible to choose U (v) = U
and V (v) = V for every v ∈ Bγ (rε).

Let us fucus now on the family of functions { fv}v∈Bγ (rε). Since each fv is a
uniformly continuous function, we can extend all of them to the compact set U .
This way we have obtained a family of functions fv : U −→ V defined on the
same compact set U and all bounded by the same constant, namely (1 + c) εn−2.

Our aim is now to show that the fv’s admit the same Lipschitz’s constant. First
remember that the fv’s satisfy

fv(r) =
∫

M

Sgε dvolgε − r + Lv(r, fv(r))+ Qv(r, fv(r)) (62)

As a consequence, for r, r ′ ∈ U and suitable positive constants C1 and C2, we have

∣∣ f j (r)− f j (r
′)
∣∣ ≤ ∣∣r − r ′∣∣ + ∣∣Lv(r, fv(r))− Lv(r

′, fv(r
′))

∣∣

+ ∣∣Qv(r, fv(r))− Qv(r
′, fv(r

′))
∣∣

≤ |r − r ′| +
∫

M1

|K1| dvolg1 · ‖v‖C0(M) · |r − r ′|

+
∫

M2

|K2| dvolg2 · ‖v‖C0(M) · ∣∣ fv(r)− fv(r
′)
∣∣

+ C1 ε
n−2 · |r − r ′| + C2 ε

n−2 · ∣∣ f j (r)− f j (r
′)
∣∣
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It follows that for small enough ε

∣∣ f j (r)− f j (r
′)
∣∣ ≤ 1 + ‖v‖C0(M)

∫
M1

|K1| dvolg1 + C1 ε
n−2

1 − ‖v‖C0(M)

∫
M2

|K2| dvolg2 + C2 εn−2
· | r − r ′ |

≤ 4 · | r − r ′ |
Thanks to the Ascoli–Arzelà Theorem, any sequence of functions contained in the
family { fv}v∈Bγ (rε) converges (up to a subsequence) to a continuous function f
with respect to the norm ‖·‖C0(U ). Moreover f has the same bound and the same
Lipschitz’s constant as the fv’s. In the following we will use the continuity of f to
kill the rough projection of the error term in the Eq. (58).

We summarize the results obtained so far in this section: for all functions v ∈
Bγ (rε) we have found a smooth function fv defined on a neighborhood U of
r0 = εn−2/2 such that the condition

∫

M

F̃ε(v, r, fv(r)) dvolg̃ε = 0 (63)

is verified for all r ∈ U .
Having the orthogonality condition, we can define the operator P̃ε as in Sect. 4,

namely

P̃ε := G̃ε ◦ F̃ε (64)

For such an operator it is easy to obtain (modulo obvious modifications) the analog
of Lemma 2, with the same definition of the radius rε.

It is also immediate to prove that for sufficiently small ε > 0, P̃ε is a contraction
mapping and more precisely

‖P̃ε(u)− P̃ε(v)‖C0
γ (M)

≤ D ε · ‖u − v‖C0
γ (M)

(65)

for a suitable constant D > 0. In particular the sequence defined by v j := P̃ j
ε (0)

converges with respect to the norm ‖·‖C0
γ (M)

to a function vε ∈ Bγ (rε). Also notice
that at the same time (up to consider a subsequence of the v j ’s) the sequence of
functions fv j converges as well to a continuous function f . Hence, for every r ∈ U ,
vε verifies the identity

�g̃ε vε = F̃ε(vε, r, f (r))− λF̃ε(vε,r, f (r)) βε (66)

We are now ready to discuss the sign of the term λF̃ε(vε,r, f (r)) which appears in this
formula.

As in the general case, it turns out that the sign of the rough projection is
determined by the sign of

λ
(0)
F̃ε(vε,r, f (r))

= 1
∫

M χ1 + χ2 dvolg̃ε

∫

M

F̃ε(vε) (χ1 − χ2) dvolg̃ε

+ 1
∫

M χ1 + χ2 dvolg̃ε

∫

M

�gε (χ1ũεP )−�gε (χ2ũεP ) dvolg̃ε

(67)
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where F̃ε(vε) = − cm · (Sg1+r h1 + Sgε + Sg2+ f (r) h2) · (1 + vε) and ũεP is the same
as in Sect. 5.

As in the previous section we have

∫

M

�gε

(
χ1ũεP

)
dvolg̃ε = O

(
e−α1 εn−2

)

∫

M

�gε

(
χi ũ

ε
P

)
dvolg̃ε = O

(
e−α2 εn−2

)

Concerning the other summand, we compute

− 1

cm

∫

M

F̃ε(vε) (χ1 − χ2) dvolg̃ε = r
∫

M1

K1 dvolg1 − f (r)
∫

M2

K2 dvolg2

+
∫

M

Sgε (χ1 − χ2) dvolg̃ε + O
(
εn−2+γ )

= r − f (r)+ O
(

e−α1 εn−2
)

+ O
(

e−α2 εn−2
)

+O
(
εn−2+γ )

Hence it is clear that for small ε and large enough α1 and α2, the sign of the rough
projection is determined by the term r − f (r).

Since it is always possible to choose r either in a region where f (r) > r or in
a region where f (r) < r and f is a continuous function, we conclude that there
exist r̄ ∈ U such that

λF̃ε(vε,r̄ , f (r̄)) = 0 (68)

This completes the proof of Theorem 2.
To conclude this section, we would like to make some comment about the

non Ricci flat hypothesis. Following [10,11], the compact Riemannian manifolds
without boundary can be divided in the following three classes:

(1+) Manifolds admitting a Riemannian metric whose scalar curvature is non-
negative and not identically zero.

(10) Manifolds admitting a Riemannian metric with non-negative scalar curva-
ture, but not in class (1+).

(1−) Manifolds not in classes (1+) or (10).

This classification is justified by the following classical result

Theorem 6. (Trichotomy Theorem, [10,11]) Let M be a compact connected Rie-
mannian manifold without boundary, of dimension ≥3, then we have

1. If M belongs to class (1+), every smooth function is realized as the scalar
curvature of some Riemannian metric on M.
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2. If M belongs to class (10), then a function S ∈ C∞(M) is the scalar curvature
of some Riemannian metric on M if and only if either S(p) < 0 for some point
p ∈ M, or else S ≡ 0. Moreover, if the scalar curvature of some metric g
vanishes identically, then g is Ricci flat.

3. If M belongs to class (1−), then S ∈ C∞(M) is the scalar curvature of some
metric if and only if S(p) < 0 for some point p ∈ M.

In our situation, the initial manifolds M1 and M2 carry a scalar flat metric, then
a priori they might belong to class (1+) or to class (10). Because of the Trichotomy
Theorem the non Ricci flat hypothesis implies that they must belong to class (1+).
As it is stated in the Theorem above, the manifolds which are in the class (1+)
are the ones for which the prescribed scalar curvature problem has no obstructions.
This yields a philosophical justification of the non Ricci flat hypothesis. In other
word, if we want to construct a scalar flat metric on the generalized connected sum,
we need (so far) to handle manifolds which are very flexible concerning the scalar
curvature.

7. Generalized gluing for time symmetric initial data

In this section we will discuss an interesting physical application of Theorem 2.
To fix the setting, let (Z , γ ) be an (m + 1)-dimensional Lorentzian manifold. The
hyperbolic Einstein system for the vacuum spacetime is given by

Ricγ = 0 (69)

In the early 1950s Y. Choquet–Bruhat showed in a famous paper [4] that a solu-
tion to this system can be obtained from a suitable choice of initial data sets. An
initial data set for the Einstein problem consists of an m-dimensional space-like
hypersurface M ⊂ Z and two symmetric tensors g and� (which correspond to the
induced metric and to the second fundamental form of M , respectively) verifying
the following system, also known as the Einstein constraint equations

divg �− d
(
trg �

) = 0 (70)

Sg − |�|2g + (
trg �

)2 = 0 (71)

where Sg indicates the (intrinsic) scalar curvature of the Riemannian manifold
(M, g).

A natural idea is to produce new solutions to (69) by gluing together two suitable
initial data (or Cauchy data) sets. This has been done in the case of the connected
sum at points of two constant mean curvature (briefly CMC) solutions to the con-
straints, with second fundamental form � nonidentically zero (see [8]).

For physical reason, when the second fundamental form � is identically equal
to zero, the Cauchy data set (M, g,�) is said to be time symmetric (roughly, a time
symmetric slice). In this case, it is immediate to check that the system (70)–(71)
simply reduces to

Sg = 0 (72)
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Hence the (generalized) gluing of two time symmetric initial data set (M1, g1, �1)

and (M2, g2,�2) simply reduces as well to the construction of a scalar flat metric
on the (generalized) connected sum of two scalar flat Riemannian manifolds. In
fact the second fundamental form on the generalized connected sum can be defined
to be identically zero and this trivially yields a gluing when both �1 and �2 are
identically zero.

If we consider two time symmetric initial data which are non Ricci flat, then
Theorem 2 yields a (generalized) gluing construction for such Cauchy data sets.
Hence we can state the following

Corollary 7. Let (M1, g1,�1) and (M2, g2,�2) be two m-dimensional non Ricci
flat solutions to the system (70)–(71) with �1 ≡ 0 ≡ �2 and let (K , gK ) be a
common isometrically embedded Riemannian submanifold whose dimension k is
such that n := m − k ≥ 3. Moreover suppose that the normal bundles of K in
M1 and M2 are diffeomorphic, then there exists a real number ε0 such that, for
every ε ∈ (0, ε0), the generalized connected sum Mε = M1 �K ,ε M2 of M1 and M2
along K , obtained by excising a tubular neighborhood of K of size ε from both the
initial manifolds and identifying the left over boundaries, can be endowed with a
new metric ḡε and a new second fundamental forms �̄ε ≡ 0 such that (Mε, ḡε, �̄ε)
is still a solution of the Einstein constraints (70)–(71). Moreover the new metrics
tend to the old ones on the compact sets of Mi\K , i = 1, 2 in the C2 topology, as
ε → 0.

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.
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