Application of Compressed Sensing to Quantum Chemistry

Universidad Euskal Herriko
Unibertsitatea Jacob N. Sanders*, Alejandro Pérez Paz*, Alán Aspuru-Guzik, Angel Rubio*

* Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
* Nano-Bio Spectroscopy Group, University of the Basque Country UPV/EHU, San Sebastián, Spain.
\diamond Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
(A) Research Objective:

Use compressed sensing to calculate quantum chemistry matrices (Hamiltonian, Fockian, etc) cheaply without having to compute each matrix element.
(B) Recovering a Matrix with Compressed Sensing

- Step1: Cheaply locate a basis in which the matrix is sparse.

Example: cheaply approximate the eigenvectors.

- Step 2: Cheaply recover this sparse matrix using compressed sensing.

(E) The Kronig-Penney model

Physica B 406, 4373-4380 (2011)
$V(x)=V_{0}$ for $a-L<x<a ; 0$ for $0<x<a-L$.

$k(\pi / a)$ $V_{0}=0.459, a=3.779, L=2.834$ a.u. $H(\Gamma)$ vs. $H(X)$ errors in a.u.

(C) Compressed Sensing for Sparse Matrices

Apply Incoherent Change-of-Basis Matrix P (e.g. discrete cosine transform)

Sparse random matrix A to recover

Recover A via compressed sensing

$$
\min _{A}\|A\|_{1} \text { s.t. }\left\|P A P^{T}-B\right\|_{2}<\eta
$$

(F) $(14,0)$ carbon nanotube: tight-binding

Errors in eV
56 C atoms/unit cell, diameter 1.1065 nm . DFTB+ code: PRB 58, 7260 (1998).

Compressed Sensing recovers sparse matrices regardless where non-zeros are.
Publications:
-X. Andrade, J. N. Sanders, \& A. Aspuru-Guzik. Application of compressed sensing to the simulation of atomic systems. PNAS 109, 35 (2012). arXiv: 1205.6485

- J. N. Sanders, X. Andrade, \& A. Aspuru-Guzik. Compressed Sensing for the Fas Computation of Matrices: Application to Molecular Vibrations. ACS Cent. Sci. 1 (1) 24-32 (2015).

Acknowledgments:

A.P.P. thanks the support from "Ayuda para la Especialización de Personal Investigador del Vicerrectorado de Investigación UPV/EHU-2013" \& Duncan J. Mowbray for his help with Inkscape
(D) Approach for Electronic Structure Calculations

$$
H(X) \text { in PW/AO basis }
$$

$\mathrm{A}=\mathrm{H}(\mathrm{X})$ in basis of eigenvectors of $\mathrm{H}(\mathrm{G})$

H (hybrid) in PW/AO basis
A=H(hybrid) in basis of cheap KS orbitals
A is a sparse matrix that can be recovered with our procedure.
(G) Application to hybrid PBEO/B3LYP Fockians

We accurately recover all matrix elements
with as low as 40% of undersampling.

(H) Future Research Plan

- Investigate electron-phonon coupling matrix elements.
- Solving +Dyson Equation, Hubbard Hamiltonian?
- Application to other matrix problems in physics/chemistry.

