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Introduction

Many-body perturbation theory (MBPT) opens the possibility to construct approximations to every desired order of a 'weak’ inter-
acting system. The drawback is a in general non-local interaction in space and time and it is therefore a demanding task to apply it

to real” systems.

The optimized effective potential (OEP), derived by inversion of the Sham-Schliiter equation, is a natural connection between local
density-functional theory and MBPT. In principle, this variationally best local potential reduces the problem to solving a simple
system of Kohn-Sham equations combined with the solution of the OEP integral equation. However, converging the full set of OEP
equations is a quite challenging procedure and is in practice rarely tackled.

The Krieger-Li-lafrate (KLI) approximation reduces the integral equation to an analytically solvable one via a dominant orbital
approximation. It performs usually quite well for electronic systems.

In the present work, we extend the OEP and KLI approaches to the case of electron-photon interactions in quantum optics and
quantum electrodynamics. Here an effective electronic interaction is transmitted via transversal photons. We present first static
and time-dependent results for the OEP [1] and KLI approximations of the Rabi model and compare with the exact configuration-
interaction solution and the corresponding exact Kohn-Sham potentials. [2]

References: [1] C. Pellegrini et.al., arXiv 1412.4530 (2014).

2] M. Ruggenthaler et.al., Phys. Rev. A 90, 012508 (2014).

From many-body perturbation theory to density functional theory

One can derive the OEP in terms of the electronic Greens func-
tions on the Keldysh contour.
One particle Greens function on the Keldysh contour —
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Kadanoff-Baym equations for interacting and Kohn-Sham
Greens functions
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Gordon Baym and Leo P Kadanoff, Phys. Rev. 124, 287 (1961).

Assuming an adiabatic switch, therefore neglecting the
Matsubara-track, we arrive at the
Keldysh contour
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Sham-Schliiter equation

Using the Kubo-Martin-Schwinger boundary conditions and
the definition of the Kohn-Sham system n(1) = —iG=<(1,17) =
—iG$(1,17), one arrives at the Sham-Schliiter equation in the
following generalized form

/d2/d3Gs(1,2)Zxc(2,3)G(3, 1) = /d2G(1,2)ch(2)G3(2, 1)

The solution of this equation is the optimized effective
potential (OEP) v, that is local in time and space and mim-
ics all many-body exchange and correlation effects.

Robert van Leeuwen, Phys. Rev. Lett., 76(19):3610, (1996).

Hamiltonian - electron-photon coupling in dipole approximation

Hamiltonian
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where the electronic interaction is mediated by transversal
photons.
Interaction

The corresponding second-order interaction is given by

Z AT O/I"Q D(tl, tg) + (5(t1 — t2)>

with the transversal photon-propagator D(ty;ts).
The corresponding self-energy is approximated by the single-
shot-like GW, approximation, with T"— 0

Yo(152) = iG(1;2)Wy(2; 1)

C. Pellegrini et.al., arXiv 1412.4530 (2014).

Rabi model
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with coupling g, = 1/%*Aq and the Pauli-matrices

OEP over-screening

Fouriertransformation of the relative occupation

Comparison of full TDOEP integral
equation with TDCI

We encounter a beat frequency in
the resonant Rabi-solution — possible
consequence of G4W, over-screening.
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Static Krieger-Li-lafrate approximation

Static OEP equation in density functional theory for quantum-electrodynamics
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C. Pellegrini et.al., arXiv 1412.4530 (2014).
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Converging the above integral equation is quite challenging and we therefore try to isolate the potential from the integral.

Energy denominator approximation
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Where Ae can be interpreted as the dominant orbital or dipole
transition energy:.

— dependence on Ag, at least through rhs

not the case for Coulomb interaction

— different levels of approximation possible

e basic - just relevant part
e hybrid - complete left hand side

e full - all energy differences

Observables for the Rabi model
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e basic — unstable beyond weak coupling

e hybrid — performing well with (iterative) dominant
dipole

e full — performing well with linear response theory

Ae determination

Linear response - f-sum-rule

Using the f-sum-rule for one electron
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in the Kohn-Sham-representation with
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and applying the energy denominator approximation

[terative dominant dipole transition

Calculate Aeld;;] or Ae[d#™] within the self-consistent loop

Initialization
(e.g. DFT or HF)
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1D hydrogen atom

Comparison between exact diagonalization and KLI-basic

Implementation still in progress.

First results for KLI-basic in combination with f-sum-rule and
different dominant dipole transition methods.

Qualitative agreement for weak, A\, = 0.01, coupling —

but unstable beyond weak coupling.
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V- exact vs. KLI-basic
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Time-dependent KLI

We follow CA Ullrich, UJ Gossmann, EKU Gross, Phys. Rev. Lett., 74(6):872, (1995), however the physical motivation is limited, since the
static representation of the mean-value approximation to

p(rt G5(rat) > Gilrt)pu(rit)0(t — 1)
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holds no longer true. The time-dependent KLI potential is given by
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where just the last part remains for the Rabi-model and Uge; (r1t1) is given by
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Initial-state

Sudden switch in coupling A(t) = A@(t) with the initial-state |V (¢t = 0)) = (%\1) + @\2» ® |0) and an external potential ve,; = 0.

Off-resonant
A=01,w=1 t, =0.7

Time-propagation of the potential

Resonant
A=0.1 w=1,t, =05

Time-propagation of the potential
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Slight improvement compared to mean-field, especially in the vicinity of nodal points and maxima.

Summary and Outlook

The retarded interaction mediated by transversal photons increases the complexity for good approximations. The remaining depen-
dence on Ae and a more physical motivation has to be cleared.

The (TD)KLI approximation can be seen as a small correction beyond the mean-field approximation, including a smoother limit
Ao — 00 and a small correction in the vicinity of nodal-points and maxima, where the exchange-part is more relevant.

In future, we plan to apply the TDKLI approximation to a 1D-hydrogen model to check the relevance of the OEP/KLI concept for
quantum-electrodynamics beyond simple quantum-optical model systems.




