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Introduction

Many-body perturbation theory (MBPT) opens the possibility to construct approximations to every desired order of a ’weak’ inter-

acting system. The drawback is a in general non-local interaction in space and time and it is therefore a demanding task to apply it

to ’real’ systems.

The optimized effective potential (OEP), derived by inversion of the Sham-Schlüter equation, is a natural connection between local

density-functional theory and MBPT. In principle, this variationally best local potential reduces the problem to solving a simple

system of Kohn-Sham equations combined with the solution of the OEP integral equation. However, converging the full set of OEP

equations is a quite challenging procedure and is in practice rarely tackled.

The Krieger-Li-Iafrate (KLI) approximation reduces the integral equation to an analytically solvable one via a dominant orbital

approximation. It performs usually quite well for electronic systems.

In the present work, we extend the OEP and KLI approaches to the case of electron-photon interactions in quantum optics and

quantum electrodynamics. Here an effective electronic interaction is transmitted via transversal photons. We present first static

and time-dependent results for the OEP [1] and KLI approximations of the Rabi model and compare with the exact configuration-

interaction solution and the corresponding exact Kohn-Sham potentials. [2]

References: [1] C. Pellegrini et.al., arXiv 1412.4530 (2014). [2] M. Ruggenthaler et.al., Phys. Rev. A 90, 012508 (2014).

From many-body perturbation theory to density functional theory

One can derive the OEP in terms of the electronic Greens func-

tions on the Keldysh contour.

One particle Greens function on the Keldysh contour →

G(1; 1′) =
1

i

〈Ψ0|T̂
(

e
−i

∫

γ
dzĤ(z)

ψ̂(1)ψ̂†(1′)

)

|Ψ0〉

〈Ψ0|Ψ0〉

Kadanoff-Baym equations for interacting and Kohn-Sham

Greens functions

[

i
d

dz1
− h(1)

]

G(1; 1′) = δ(1; 1′)± i

∫

d2Σxc(1; 2)G(2; 1
′)

[

i
d

dz1
− hs(1)

]

Gs(1; 1
′) = δ(1; 1′)

Gordon Baym and Leo P Kadanoff, Phys. Rev. 124, 287 (1961).

Assuming an adiabatic switch, therefore neglecting the

Matsubara-track, we arrive at the
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Sham-Schlüter equation

Using the Kubo-Martin-Schwinger boundary conditions and

the definition of the Kohn-Sham system n(1) = −iG<(1, 1+) =

−iG<
s (1, 1

+), one arrives at the Sham-Schlüter equation in the

following generalized form
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d2G(1, 2)vxc(2)Gs(2, 1)

The solution of this equation is the optimized effective

potential (OEP) vxc that is local in time and space and mim-

ics all many-body exchange and correlation effects.

Robert van Leeuwen, Phys. Rev. Lett., 76(19):3610, (1996).

Hamiltonian - electron-photon coupling in dipole approximation

Hamiltonian
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where the electronic interaction is mediated by transversal

photons.

Interaction

The corresponding second-order interaction is given by

W (1; 2) =
∑

α

λαrrr1 · λαrrr2
(

ω2
αD(t1; t2) + δ(t1 − t2)

)

with the transversal photon-propagator D(t1; t2).

The corresponding self-energy is approximated by the single-

shot-like GsW0 approximation, with T → 0

Σx(1; 2) = iGs(1; 2)W0(2; 1)

C. Pellegrini et.al., arXiv 1412.4530 (2014).

Rabi model
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OEP over-screening

Comparison of full TDOEP integral

equation with TDCI

We encounter a beat frequency in

the resonant Rabi-solution→ possible

consequence ofGsW0 over-screening.

Improvable via the T-matrix approxima-

tion in orders of W0?
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Static Krieger-Li-Iafrate approximation

Static OEP equation in density functional theory for quantum-electrodynamics
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C. Pellegrini et.al., arXiv 1412.4530 (2014).

Converging the above integral equation is quite challenging and we therefore try to isolate the potential from the integral.

Energy denominator approximation

1

εi − εj
=

1

∓∆ε
∓ for i < / > NFermi

Where ∆ε can be interpreted as the dominant orbital or dipole

transition energy.

→ dependence on ∆ε, at least through rhs

not the case for Coulomb interaction

→ different levels of approximation possible

• basic - just relevant part

• hybrid - complete left hand side

• full - all energy differences

Observables for the Rabi model
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tkin = 0.7 vext = 0.2 ωα = 1.0 with ∆εhybrid = static

• basic → unstable beyond weak coupling

• hybrid → performing well with (iterative) dominant

dipole

• full → performing well with linear response theory

∆ε determination

Linear response - f-sum-rule

Using the f-sum-rule for one electron
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in the Kohn-Sham-representation with
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and applying the energy denominator approximation

Iterative dominant dipole transition

Calculate ∆ε[dij] or ∆ε[d
max
ij ] within the self-consistent loop

      'transition'
(dipole transition)

electronic
OEP, KLI, (LDA,...)

Initialization
(e.g. DFT or HF)

Kohn-Sham equation

until self-consistency 

 OEP equation
 (in KLI approx.)

CoulombPhotonic

1D hydrogen atom

Comparison between exact diagonalization and KLI-basic

Implementation still in progress.

First results for KLI-basic in combination with f-sum-rule and

different dominant dipole transition methods.

Qualitative agreement for weak, λα = 0.01, coupling →
but unstable beyond weak coupling.

ωα = ε2 − ε1

Position x [a.u.]
-4 -3 -2 -1 0 1 2 3 4

v
x
 [a

.u
.] 

×10 -3

0

1

2

3

4
v

x
 - exact vs. KLI-basic

 exact
 f-sum-rule
 mediated dipole

Time-dependent KLI

We follow CA Ullrich, UJ Gossmann, EKU Gross, Phys. Rev. Lett., 74(6):872, (1995), however the physical motivation is limited, since the

static representation of the mean-value approximation to
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holds no longer true. The time-dependent KLI potential is given by
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where just the last part remains for the Rabi-model and uxcj(rrr1t1) is given by
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Initial-state

Sudden switch in coupling λ(t) = λθ(t) with the initial-state |Ψ(t = 0)〉 =
(

1
2|1〉 +

√
3
2 |2〉

)

⊗ |0〉 and an external potential vext = 0.

Resonant
λ = 0.1, ω = 1, tkin = 0.5
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Slight improvement compared to mean-field, especially in the vicinity of nodal points and maxima.

Summary and Outlook

The retarded interaction mediated by transversal photons increases the complexity for good approximations. The remaining depen-

dence on ∆ε and a more physical motivation has to be cleared.

The (TD)KLI approximation can be seen as a small correction beyond the mean-field approximation, including a smoother limit

λα → ∞ and a small correction in the vicinity of nodal-points and maxima, where the exchange-part is more relevant.

In future, we plan to apply the TDKLI approximation to a 1D-hydrogen model to check the relevance of the OEP/KLI concept for

quantum-electrodynamics beyond simple quantum-optical model systems.


