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1 Introduction

The search for a consistent theory of quantum gravity is one of the main issues in the

present agenda of theoretical physics. Beside major efforts such as string theory and loop

quantum gravity, other independent lines of investigation have recently attracted some

attention. Among these, Hořava-Lifshitz (HL) gravity [1, 2] is a proposal for a power-

counting renormalizable model [3, 4] which is not Lorentz invariant. Coordinates scale

anisotropically, i.e., [t] = −z and [xi] = −1 in momentum units, where z ≥ 3 is a critical

exponent typically fixed at z = 3. Because of this, the total action can be engineered

so that the effective Newton constant becomes dimensionless in the ultraviolet (UV) and

higher-order spatial derivatives improve the short-scale behaviour of particle propagators.

Due to the presence of relevant operators, the system is conjectured to flow from the UV

fixed point to an infrared (IR) fixed point where, effectively, Lorentz and diffeomorphism

invariance is restored at classical level.

Another property of HL gravity stemming from the running of the couplings effective

dimension is that the spectral dimension dS [5–8] at short scales is dS ∼ 2 [2]. This is in

intriguing accordance with other proposals for quantum gravity such as causal dynamical

triangulations [9], asymptotically safe gravity [10] and spin-foam models [11] (see also [12]).

Systems whose effective dimensionality changes with the scale can show fractal behaviour,

even if they are defined on a smooth manifold.1 All the above examples incarnate the

popular notion that “the Universe is fractal” at quantum scales.

1HL gravity with detailed balance possesses a natural fractal structure also because of the appearance of

fractional pseudo-differential operators [13, 14]. This version of the theory, however, seems to be unviable.
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Despite the beautiful physics emerging from the HL picture, inspired by critical and

condensed-matter systems, it potentially suffers from at least one major problem. Lorentz

invariance, one of the best constrained symmetries of Nature, is surrendered at fundamental

level. As argued on general grounds [15, 16], even if deviations from Lorentz invariance

are classically negligible, loop corrections to the propagator of fields lead to violations

several orders of magnitude larger than the tree-level estimate, unless the bare parameters

of the model are fine tuned. This expectation [14] is indeed fulfilled for Lifshitz-type scalar

models [17]. Although supersymmetry might relax the fine tuning [18], the present version

of HL gravity is clearly under strong pressure, also for other independent reasons.

Motivated by the virtues and problems of HL gravity, it is the purpose of this paper to

formulate an effective quantum field theory with two key features. The first is that power-

counting renormalizability is obtained when the fractal behaviour is realized at structural

level, i.e., when it is implemented in the very definition of the action rather than as an

effective property. In other words, we will require not only the spectral dimension of

spacetime, but also its UV Hausdorff dimension [19] (which will coincide with dS in our

case) to be dH ∼ 2. Secondly, we wish to maintain Lorentz invariance.

Therefore, this proposal is (a) defined on a fractal (in a sense made precise below), (b)

Lorentz invariant, (c) power-counting renormalizable, (d) UV finite with no ghost or other

obvious instabilities, and (e) causal. A condensed overview of the model was given in [20].

Some of the ingredients we shall use are similar to those found in other recipes (e.g.,

scalar-tensor theories or models with fractional operators). Their present mixing, however,

will hopefully give fresh insight into some aspects of quantum gravity. For example, a

running cosmological constant naturally emerges from geometry as a consequence of a

deformation of the Poincaré algebra.

The plan of the paper is the following. The main idea is introduced in section 2. With

particular reference to a scalar field theory, a dimensional analysis of the coupling constants

is given in section 2.1. Section 3 is devoted to a scalar field on a Minkowski fractal: its

classical equation of motion and dynamics are presented in section 3.1, where the Hamilto-

nian formalism is shown to admit both a dissipative and conservative interpretation. The

causal propagator of the free field in configuration space is calculated in section 3.2, while

its Fourier-Stieltjes transform in momentum space is discussed in section 3.3. We outline

the gravitational sector in section 4. Einstein and cosmological equations are derived in

sections 4.1 and 4.2, respectively, where cosmological solutions are found and analyzed.

Section 5 contains concluding remarks and a discussion on open issues and future develop-

ments.

2 Fractal universe

In HL gravity, one requires that time and space coordinates scale anisotropically. On

one hand, this leads to a running scaling dimension of the couplings and an effective

two-dimensional phase in the UV. On the other hand, anisotropic scaling gives rise to

higher-order spatial operators and a non-Lorentz-invariant action. It turns out that we can
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achieve the first result (and avoid the second) by maintaining isotropic scaling,

[xµ] = −1 , µ = 0, 1, . . . ,D − 1 , (2.1)

while replacing the standard measure with a nontrivial Stieltjes measure,

dDx→ d̺(x) , [̺] = −Dα 6= −D . (2.2)

Here D is the topological (positive integer) dimension of embedding (abstract) spacetime

and α > 0 is a parameter.2 What kind of measure can we choose? A two-dimensional

small-scale structure is a desirable feature of renormalizable spacetime models of quantum

gravity, and the most näıve way to obtain it is to let the effective dimensionality of the

universe to change at different scales. A simple realization of this feature is via fractional

calculus and the definition of a fractional action.3

To begin with, we quote the following results in classical mechanics. In [26], empirical

evidence was given that the Hausdorff dimension of a random process (Brownian motion)

described by a fractional differintegral is proportional to the order α of the differintegral; the

same relation holds for deterministic fractals, and in general the fractional differintegration

of a curve changes its Hausdorff dimension as dH → dH + α (see also [27]). Moreover,

integrals on net fractals can be approximated by the left-sided Riemann-Liouville fractional

integral of a function L(t) [28–32],

∫ t̄

0
d̺(t)L(t) ∝ 0I

α
t̄ L(t) (2.3)

≡ 1

Γ(α)

∫ t̄

0
dt (t̄− t)α−1L(t) , (2.4)

̺(t) =
t̄α − (t̄− t)α

Γ(α+ 1)
, (2.5)

where t̄ is fixed and the order α is (related to) the Hausdorff dimension of the set [28, 33].

The approximation in eq. (2.3) is valid for large Laplace momenta and can be refined to

better describe the full structure of the Borel measure ̺ characterizing the fractal set. In

the latter case, integration on the set is approximated by a sum of fractional integrals [30].

Different values of 0 < α ≤ 1 mediate between full-memory (α = 1) and Markov

processes (α = 0), and in fact α roughly corresponds to the fraction of states preserved at

a given time t̄ during the evolution of the system [28, 32, 33]. Applications of fractional

integrals range from statistics, diffusing or dissipative processes with residual memory [32],

2The Hausdorff dimension of a set is greater than or equal to its topological dimension but the situation

one has in mind here is a physical spacetime (the fractal) embedded in an ambient D-dimensional manifold

M. All physics takes place in the fractal and there are no observers in the “bulk” M. Given this picture,

one can interpret the present model as “diffusion of spacetime” in an embedding manifold.
3Another route, which we shall not follow here, is to define particle physics directly on a fractal set with

general Borel probability measure ̺. This was done in [21] (and [22, 23] on Sierpinski carpets) for a quantum

field theory on sets with Hausdorff dimension 4 − ǫ very close to 4. The model in [21] has many aspects of

dimensional regularization [24, 25], one difference being that the parameter ǫ is taken to be physical.
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such as weather and stochastic financial models [34], to system modeling and control in

engineering [35].

Noticing that a change of variables t→ t̄− t transforms eq. (2.4) into the form

1

Γ(α)

∫ t̄

0
dt tα−1L(t̄− t) , (2.6)

the Riemann-Liouville integral can be mapped onto a Weyl integral [36] in the limit t̄ →
+∞. The limit is formal if the Lagrangian L in eq. (2.6) is not autonomous. We assume

otherwise, so that limt̄→∞L(t̄− t) ≡ L[q(t), q̇(t)].

This form will be the most convenient for defining a Stieltjes field theory action. When

t̄ → +∞, eq. (2.6) is proportional to the usual formula in α dimensions employed in

dimensional regularization. After constructing a “fractional phase space” [37–40], this

analogy confirms the interpretation of the order of the fractional integral as the Hausdorff

dimension of the underlying fractal [38].

All the above results in one dimension can be easily generalized to a D-dimensional

Euclidean space (e.g., [41, 42]), thus opening a possibility of applications in spacetime. We

entertain the possibility of formulating a scalar field theory with Stieltjes action, for the

purpose of controlling its properties in the ultraviolet.4 The scalar field model is interesting

in its own right but also as a simple example whereon to work out the physics. After that,

we shall explore the gravitational sector. In D dimensions, we consider the action

S =

∫

M

d̺(x)L(φ, ∂µφ) , (2.7)

where L is the Lagrangian density of the scalar field φ(x) and

d̺(x) =

D−1
∏

µ=0

f(µ)(x) dx
µ (2.8)

is some multi-dimensional Lebesgue-Stieltjes measure (actually a Lebesgue measure, if

̺ is absolutely continuous, which we assume to be the case) generalizing the trivial D-

dimensional measure dDx. We denote with (M, ̺) the metric spacetime M equipped with

measure ̺. We shall consider the situation where M is a manifold but this may not be the

case in general.

Equation (2.7) resembles a field theory with a dilaton or conformal rescaling v =
∏

µ f(µ) of the Minkowski determinant. As in these other models, one will obtain an extra

friction term in the equation of motion, although the physics will be radically different both

at microscopic and macroscopic level. This is because the measure weight must scale in a

certain way, while dilaton solutions in effective actions of string theory typically enjoy much

more freedom. We should stress at least two more reasons why the present model is not

just an exotic reformulation of dilaton scenarios.5 First, the dilaton of string theory couples

4Introductions on the Lebesgue-Stieltjes integral can be found in [43–45]. A neat geometrical inter-

pretation of the Riemann-Stieltjes one-dimensional integral as the projected “shadow of a fence” is given

in [46, 47]. Projection is a tool sometimes employed to determine the Hausdorff dimension of a fractal [19].
5These reasons do not forbid the fractal model to admit also a “dilaton-like” reformulation (see below).
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differently in different sectors, thus leading to a violation of the strong equivalence principle;

in our case, the scalar field v is still of geometric origin but appears as a global rescaling.

Second, a change in the measure is accompanied by a new definition of functional variations

and Dirac distributions, in turn leading to an unfamiliar propagator and the deformation

of the Poincaré algebra.

If ̺ is not invariant under the Lorentz group SO(D − 1, 1), the equipped manifold is

not isotropic even if M is the Minkowski flat manifold. If only global Poincaré invariance

is broken, as it typically happens in fractals, (M, ̺) is not homogeneous. Since we wish the

Lorentz group SO(D−1, 1) to be part of the symmetry group of the action, the Lagrangian

density L and the D weights f(µ) must be Lorentz scalars separately. The former can be

taken to be the usual scalar field Lagrangian,

L = −1

2
∂µφ∂

µφ− V (φ) , (2.9)

where V is a potential and contraction of Lorentz indices is done via the Minkowski metric

ηµν = (− + · · ·+)µν . As for the Stieltjes measure, we make the spacetime isotropic choice

f(µ) = f , µ = 0, 1, . . . ,D − 1 . (2.10)

This should eventually correspond to a fractal in time and space. There are many other

Ansätze, for instance an isotropic nontrivial measure

f(0) = 1 , f(i) = f , i = 1, . . . ,D − 1 , (2.11)

or an anisotropic measure of the form

f(µ) =

{

1 , µ = 0, . . . , i− 1

f , µ = i, . . . ,D − 1
. (2.12)

These measures will correspond to different dynamics but, by construction, to the same

UV Hausdorff dimension dH ∼ 2. We take eq. (2.10) with

v ≡ fD , [v] = D(1 − α) , (2.13)

which generalizes eq. (2.6).6 The scalar field action reads

S = −
∫

dDx v

[

1

2
∂µφ∂

µφ+ V (φ)

]

. (2.14)

We now pause and discuss the interpretation of the measure. Classically, one can boost

solutions of the equation of motion to a Lorentz frame where v = v(x) (spacelike fractal)

or v = v(t) (timelike fractal). These two cases will lead to different classical physics but

at quantum level all configurations should be taken into account, so there is no quantum

6v = v(x) is a coordinate-dependent Lorentz scalar. An alternative generalization of non-relativistic

fractals might have been to choose v to be also metric dependent, e.g., v = |gµνχµχν |
D(α−1)

2 for some

vector χµ. In this case, however, one does not obtain a consistent set of equations of motion.
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analogue of space- or timelike fractals.7 In any case, we shall see that the theory on the

Dα-dimensional fractal is expected to be dissipative, i.e., nonunitary. This conclusion is in

line with the known results of fractional mechanical systems. Fortunately this will not be a

problem because, from the point of view of the manifold M with D topological dimensions,

energy and momentum are indeed conserved.

2.1 Renormalization

The scaling dimension of φ is

[φ] =
Dα− 2

2
, (2.15)

which is zero if, and only if,

α =
2

D
. (2.16)

Then α = 1/2 in four dimensions. This value can change for the other measures defined

in eqs. (2.10) and (2.12). In the example (2.12) with [f ] = 1 − α, one has α = 2/(D − i),

and in order for the integral to be properly fractional (rather than multiple) it must be

i ≤ D − 3. In four dimensions, there can be at most one ordinary direction. If i = 1, then

α = 2/3. i = 0 corresponds to eq. (2.13), which we shall adopt from now on.

Let the scalar field potential be polynomial,

V =

N
∑

n=0

σnφ
n , (2.17)

and let N be the highest (positive) power. The coupling σN has engineering dimension

[σN ] = Dα− N(Dα− 2)

2
. (2.18)

For the theory to be power-counting renormalizable [σN ] ≥ 0, implying

N ≤ 2Dα

Dα− 2
if α >

2

D
, (2.19)

N ≤ +∞ if α ≤ 2

D
. (2.20)

When α = 1, one gets the standard results [φ] = (D − 2)/2, N ≤ 2D/(D − 2); in four

dimensions, the φ4 theory is renormalizable. In two dimensions, N is unconstrained.

These considerations lead us to try to have the parameters run from an ultraviolet

nontrivial fixed point where α = 2/D to an infrared fixed point where, effectively, α = αIR.

7We have seen that, approximately, fractional integrals can represent systems living on a certain class of

fractal sets. Since we will assume the existence of a nontrivial renormalization group flow entailing integrals

of different orders α1, α2, . . . , the complete all-scale picture beyond classical level will not be a fractal with

scale-independent Hausdorff dimension but a multifractal. For this and the reason stated in the text, the

fractal interpretation of fractional integrals is more involved in the quantum theory. To our purposes it

is not necessary to stick with it, although we shall do so with a slight abuse of terminology. We shall see

that the spectral dimension of the universe changes in a precise, α-dependent way, thus justifying the term

“fractal” a posteriori.
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The dimension of spacetime is well constrained to be 4 from particle physics to cosmological

scales and starting at least from the last scattering era [48–51]. Therefore, αIR = 1 if

D = 4. To actually realize this particular flow, one should add relevant operators to the

action corresponding to terms with trivial measure weight. The total scalar action then is

S =

∫

dDx
[

vL +MD(1−α)L̃
]

, (2.21)

where M is a constant mass term ([M ] = 1) and L̃ is L, eq. (2.9), with all different bare

couplings (σn → σ̃n). We symbolically represent this modification of the action as

v(x) → v(x) +MD(1−α) . (2.22)

The constant term is anyway expected in the most general Lorentz-invariant definition of

the measure weight.

A fractal structure must shortly evolve to a smooth configuration. Oscillations of

neutral B mesons can constrain the typical UV mass scale to be larger than about [52]

M > 300 ÷ 400 GeV. (2.23)

Here we do not attempt to place constraints on this scale with other high-energy observa-

tions.

As one will see in section 3.3, convergence of the Feynman diagrams is better than in

four dimensions, as one can check by looking at the superficial degree of divergence, which

is the same as for a Dα-dimensional theory [21]. In the case of gravity, in fact, the usual

configuration-space results in 2+ǫ dimensions should apply near the UV fixed point [53–59].

Needless to say, the above construction and remarks fall short of demonstrating the

existence and effectiveness of such a flow, which should be verified by explicit calculations.

Our attitude will be to introduce the model and first see its characteristic features and

possible advantages, leaving the issue of actual renormalizability for the future.

At any rate, classically the system will flow from a lower-dimensional fractal configura-

tion to a smooth D-dimensional one. This is clear from the definition (2.22) of the measure

weight and its scaling properties when α < 1. At small space-time scales, the weight

v ∼ |x|D(α−1) dominates over the constant term, while at large scales it is negligible. This

is true simply by construction, and independently from renormalization issues.

Therefore, the phenomenological valence of the model is guaranteed, at least. In our

framework both the Newton’s coupling and the cosmological constant will vary with time

already at classical level. On one hand, in minisuperspace models motivated by other

approaches to quantum gravity, the running of the couplings can be implemented at the

level of the equations of motion, thus obtaining a high-energy “improved” dynamics. This

strategy is adopted, for instance, in the Planckian cosmology of asymptotically safe gravity

thanks to its renormalization properties [60–62]. On the other hand, a phenomenological

time-varying dimension can be considered for constraining the transition scale from fractal

to four-dimensional physics [52]. The couplings running is then also obtained in fractal-

related cosmological toy models with variable dimension [63].8

8All these scenarios differ in philosophy with respect to [64], where the spacetime dimension is promoted

to a dynamical field.
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3 Scalar field theory

3.1 Equation of motion and Hamiltonian

The Euler-Lagrange and Hamilton equations of classical mechanical systems with (abso-

lutely continuous) Stieltjes measure have been discussed in [65–67] in the one-dimensional

case and [68–70] in many dimensions. The Euler-Lagrange equation of scalar field theory

can be found in [71].

We can easily adapt the same procedure in our case. From now on we consider only

the UV part of the action, setting M = 0. Any result in the infrared can then be obtained

by going to the effective limit α→ 1.

The metric space is equipped with a nontrivial measure and caution should be exercised

when performing functional variations. For instance, the correct Dirac distribution is

1 =

∫

d̺(x) δ(D)
v (x) , (3.1)

as was also noticed in [21]. Invariance of the action under the infinitesimal shift

φ→ φ+ δφ (3.2)

yields the equation of motion (for a generic weight v)

0 =
∂L
∂φ

−
(

∂µv

v
+

d

dxµ

)

∂L
∂(∂µφ)

. (3.3)

From eq. (2.14) we get

�φ+
∂µv

v
∂µφ− V ′ = 0 , (3.4)

where � = ∂µ∂
µ and a prime denotes differentiation with respect to φ.

The above friction term is characteristic of dissipative systems and one would expect

energy not to be conserved. In fact, the Hamiltonian is no longer an integral of motion.

Let us define the momentum

πφ ≡ δS

δφ̇
= φ̇ , (3.5)

where dots indicate (total) derivatives with respect to time and we have taken eq. (3.1)

into account.

Defining the Lagrangian

L ≡
∫

dx vL , (3.6)

the Hamiltonian is

H ≡
∫

dx v (πφφ̇) − L (3.7)

=

∫

dx v
(

1
2π

2
φ + 1

2∂iφ∂
iφ+ V

)

≡
∫

dx vH , (3.8)
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where dx = dx1 . . . dxD−1. The definition of the equal-time Poisson brackets (time depen-

dence implicit)

{A(x), B(x′)}v ≡
∫

d̺(y)

[

δA(x)

δφ(y)

δB(x′)

δπφ(y)
− δA(x)

δπφ(y)

δB(x′)

δφ(y)

]

(3.9)

yields the Hamilton equations

φ̇ = {φ,H}v , (3.10)

π̇φ = {πφ,H}v −
v̇

v
πφ , (3.11)

equivalent to eqs. (3.5) and (3.4), respectively. Therefore, time evolution of an observable

O(φ, πφ, x) is

Ȯ = ∂tO + {O,H}v −
v̇

v
πφ

∂O

∂πφ
. (3.12)

Equations (3.11) and (3.12) signal dissipation. Nonconservation of the Hamiltonian is

expected from the definition of the Lagrangian (3.6). The measure factor v is both time

and space dependent, so it was not possible to factorize it in order to write the action as

the correct Stieltjes time integral of L. However, one can exploit Lorentz invariance and

pick a frame where v = v(|x|). In this frame H would be restored as the generator of time

translations; for a timelike fractal it is not possible to pick this frame and there is always

energy dissipation. Conversely, physical momentum will be dissipated in a spacelike fractal.

Is there a problem with that? Whatever the choice of classical fractal model, one

would have to face the issue of unitarity at quantum level. Moreover, we need a physical

interpretation of dissipation. It turns out that the latter helps to address the above concern.

Consider a (D − 1)-dimensional box of size l and spatial volume lD−1. At the scale

l, particles live effectively in Dα spacetime dimensions. If α = 1, they occupy the whole

phase space in the box. Otherwise, they must dissipate energy, since the energy of the

configuration filling the entire topological volume is different from that of a configuration

limited to the effective Dα-dimensional world. The total energy of the system E in D

topological dimensions is conserved, but the energy H measured by a Dα-dimensional

observer is not (eq. (3.12) with O = Hv and integrated in space):

Ḣ = ∂tH −
∫

dx v̇π2
φ

= −
∫

dx v̇L . (3.13)

In fact, a conserved quantity is

E(t) = H(t) + Λ(t) , (3.14)

Λ(t) =

∫ t

dt

∫

dx v̇L , (3.15)

which we are going to obtain also from Noether’s theorem (see [67, 72] for a computation in

classical mechanics). It should be easy to see that Λ can be regarded as the complementary
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function of initialized fractional calculus [35, 73–75]. Physically, it is a running cosmological

constant of purely geometric origin. For this reason, dissipation might eventually prove to

be an asset rather than a liability of the theory.

Unlike standard scalar field theory, the Noether current associated with the usual

Lagrangian continuous symmetries is not covariantly conserved. On the other hand, one

can easily find generalized conserved currents. Take a generic infinitesimal transformation

of the field, eq. (3.2), and coordinates, xµ → xµ + δxµ. We consider symmetries of the

autonomous Lagrangian density L and define “quasi invariance” of the action as done

in [67, 71, 72]. Then δL is a total divergence,

L → L +
dJ µ

dxµ
. (3.16)

Combining this equation with

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

=
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ)

=

(

∂L
∂φ

− d

dxµ

∂L
∂∂µφ

)

δφ+
d

dxµ

(

∂L
∂∂µφ

δφ

)

,

(3.17)

one obtains on shell

− d

dxµ

[

v

(

J µ − ∂L
∂∂µφ

δφ

)]

+ J µ∂µv = 0 . (3.18)

Choose a coordinate translation

xµ′ = xµ + δxµ , δxν = −aν , (3.19)

so that δφ = aν∂νφ and δL = aνdL/dxν . Then

− d

dxµ
(vT µ

ν) + L∂νv = 0 , (3.20)

where

T µ
ν ≡ δµ

νL + ∂µφ∂νφ (3.21)

is the usual energy-momentum tensor. Integrating eq. (3.20) in space, one gets

Ṗν +

∫

dx ∂νv L = 0 , (3.22)

where

Pν ≡ −
∫

dx v T 0
ν . (3.23)

The ν = 0 component yields P0 = H and eq. (3.13) follows suit. The ν = i component

gives the physical momentum

Pi =

∫

dx v πφ∂iφ , (3.24)
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and its conservation law

Ṗi + Λ̇i ≡ Ṗi +

∫

dx ∂iv L = 0 . (3.25)

Pi generates spatial translations in the field but not in its conjugate momentum, since the

covariant counterparts of eqs. (3.10) and (3.11) are

∂µφ = {φ, Pµ}v , (3.26)

∂µπφ = {πφ, Pµ}v −
∂µv

v
πφ . (3.27)

The covariant version of eq. (3.12) is

dO

dxµ
= ∂µO + {O,Pµ}v −

∂µv

v
πφ

∂O

∂πφ
, (3.28)

yielding
dPν

dxµ
= {Pν , Pµ}v − δ0ν

∫

dx ∂µv L . (3.29)

The (µ, ν) components of this equation offer consistency checks and new commutation

relations. Component (0, 0) corresponds to eq. (3.13), while (i, j) gives

{Pi, Pj}v = 0 . (3.30)

Components (0, i) and (i, 0) and eq. (3.25) are consistent among each other if, and only if,

{H,Pi}v =

∫

dx ∂ivL , (3.31)

finally showing that the Poincaré algebra is now noncommutative unless v is only time

dependent (timelike fractal). One can check that also the Lorentz algebra is deformed.

Consider the Noether current associated with boost/rotation transformations

δφ = aνσ(xν∂σ − xσ∂ν)φ , (3.32)

δL = aνσ(xν∂σ − xσ∂ν)L = aνσ∂µ(gµσxνL − gµνxσL) = ∂µJ µ . (3.33)

Substituting in eq. (3.18), we get

− d

dxµ
(vMµνσ) + L(xν∂σv − xσ∂νv) = 0 , (3.34)

where

Mµνσ ≡ xνT µσ − xσT µν . (3.35)

The algebra of the Lorentz generators Jνσ ≡
∫

dxvM0νσ , which includes the Lorentz

boosts Ki ≡ J0i and the angular momenta Li ≡ 1
2ǫ

i
jkJ

jk (ǫijk is the Levi-Civita symbol),

is deformed because of the nontrivial weight v.

We have ended up with a classical field theory living on a Dα-dimensional fractal

breaking Poincaré invariance. Depending whether the fractal is “timelike” or “space-

like,” there will be a momentum or energy transfer between the world-fractal and the

D-dimensional embedding.
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The D-dimensional side of the picture can be actually made more precise. So far we

have interpreted the function v in the action (2.14) as (the derivative of) a Stieltjes measure

defined on a fractal of Hausdorff dimension Dα. Of course one can regard it as a “dilaton”

field coupled with the Lagrangian density L living on a D-dimensional manifold. Then it

is natural to consider the usual δ of Dirac,

1 =

∫

dDx δ(D)(x) . (3.36)

Consequently, the momentum conjugate to the field φ is

πv = vπφ . (3.37)

It is easy to convince oneself that the Poisson brackets are the usual

{ · , · }1 , (3.38)

and that all v dependence disappears in the D-momentum

Pµ = Pµ(φ, πv) . (3.39)

Poincaré (and Lorentz) invariance is preserved. This completes the proof that, at least

at classical level, dissipation occurs relatively between parts of a conservative system.

Quantization would follow through, although an UV observer would experience an effective

probability flow from or into his world-fractal (see also [76]).

To summarize, because the universe is associated with a “fractal” structure one typ-

ically expect to have breaking of Lorentz invariance at small scales. The geometry of the

problem is not standard and this modifies the usual definition of Dirac distribution and

Poisson brackets. As a result, from the point of view of an observer living in the fractal and

measuring geometry with weight v, Lorentz and translation invariance are broken inasmuch

as the action itself is Lorentz and Poincaré invariant, but the algebra of the Poincaré group

is deformed. In other words, when talking about fractals embedded in Minkowski spacetime

we mean the geometries defined by the deformed Poincaré group. However, from the point

of view of the ambient D-dimensional manifold Poisson brackets and functional variations

no longer feature the nontrivial measure weight, which is now regarded as an independent

matter field rescaling. In that case, the full Poincaré group is preserved. On the other

hand, the properties of nonrelativistic fractals are more intuitive: they break translation

invariance because the measure weight introduces explicit coordinate dependence and the

system is not autonomous.

3.2 Propagator: configuration space

The theory is Lorentz invariant, ghost free and causal at all scales. We can check this explic-

itly by computing the causal propagator G(x), which is (proportional to) the propagator

in two and D dimensions at the UV and IR fixed points, respectively.

As usual, we define the vacuum-to-vacuum amplitude (partition function)

Z[J ] =

∫

[dφ] ei
R

d̺(L+φJ) , (3.40)
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where J is a source and we have already integrated out momenta. Integration by parts in

the exponent allows us to write the Lagrangian density for a free field as

L =
1

2
φ

(

� +
∂µv

v
∂µ −m2

)

φ ≡ 1

2
φCφ . (3.41)

The propagator is the Green function solving

CG(x) = δ(D)
v (x) . (3.42)

By virtue of Lorentz covariance, the Green function G must depend only on the Lorentz

interval

s2 = xµx
µ = xix

i − t2 , (3.43)

where t = x0 and i = 1, . . . ,D−1. In particular, v = v(s) with the correct scaling property

is v(s) ∼ |s|D(α−1). This definition guarantees reality of the measure and avoids problems

with unitarity (in particular, the action is real).

One might be worried that the measure blows up on the light cone, but this is an

integrable singularity: the check that
∫

A d
Dx v < ∞ is done on a compact set A (for

instance, a D-ball of radius R) and in Euclidean signature. Below we will also see that there

is nothing pathological in the propagator on the light-cone, even if v is singular in s = 0.

Measures describing fractals may be very irregular and it would be worth investigating the

physical interpretation of their singularities, especially in Lorentzian signature. For the

time being, we notice that one can also define the measure weight to be

v(s) =

{

|s|D(α−1) , s 6= 0

1 , s = 0
. (3.44)

This definition may be in contrast with the original assumption that the measure be ab-

solutely continuous. This would mean that the simplified model with an overall measure

weight does not come from a most general fractal model with Lebesgue-Stieltjes measure

̺: in other words, d̺(x) 6= v(x) dDx. This is not a problem for two reasons. On one

hand, the simple model with measure weight v is still able to capture much of the physics

of the general Stieltjes model, by virtue of the scaling argument; as a matter of fact, one

could even take measures which are Lebesgue-Stieltjes only asymptotically, and yet obtain

a modelization of a fractal quantum field theory in certain regimes. On the other hand, one

can devise other measure profiles with the same scaling properties and regular behaviour.

As an example, instead of eq. (3.44) one could take

v(s) =
1

2ℓD(1−α)
+

1

|s|D(1−α) + 2ℓD(1−α)
, (3.45)

where ℓ = 1/M . At small s (near the light cone) or large space/time scales, v → const; at

intermediate scales, v has the power-law behaviour which we will assume from now on.

Without risk of confusion, we use the symbol ∂ to denote total derivatives. Noting

that

∂µ =
xµ

s
∂s , � = ∂2

s +
D − 1

s
∂s , (3.46)
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the inhomogeneous equation (3.42) reads

(

∂2
s +

Dα− 1

s
∂s −m2

)

G(s) = δ(D)
v (x) , (3.47)

where we added a mass term, [m] = 1, m2 > 0. We first consider the Euclidean propagator

and denote with r =
√

xixi + t2 the Wick-rotated Lorentz invariant.

In the massless case, the solution of the homogeneous equation is

G = C(r2)1−
Dα
2 , (3.48)

where C is a normalization constant. The right-hand side of eq. (3.47) is not the δ defined

in radial coordinates. To find the latter, one notices that

1 =

∫

dDx vδ(D)
v (x)

= ΩD

∫

dr v rD−1δ(D)
v (x)

=

∫

dr δ(r) ,

where ΩD = 2πD/2/Γ(D/2) is the volume of the unit D-ball. Therefore,

∫

d̺(x) δ(D)
v (x) =

∫

d̺(x)

[

r1−D

ΩDv(r)
δ(r)

]

. (3.49)

Hence, to find the propagator also for r = 0 one can take some test function ϕ and compute

ΩD〈KG,ϕ〉 = lim
ǫ→0

ΩD

∫ +∞

ǫ
drKG(r)ϕ(r) , (3.50)

where

K = v(r)rD−1C
= ∂r

(

rDα−1∂r

)

− rDα−1m2 . (3.51)

Therefore,

ΩD〈KG,ϕ〉 = ΩD〈G,Kϕ〉

= lim
ǫ→0

ΩD

∫ +∞

ǫ
dr G(r)∂r

(

rDα−1∂rϕ
)

= CΩD(2 −Dα)ϕ(0) ,

where we have used eq. (3.48) and integrated by parts once (boundary terms vanish). The

last line must be equal to 〈δ, ϕ〉, thus fixing C. Then, the Green function for m = 0 reads

G(r) =
1

ΩD(2 −Dα)
(r2)1−

Dα
2 . (3.52)
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This result enjoys several consistency checks. When α = 1, it is the usual Green function

GD for the Laplacian in D dimensions with standard Lebesgue measure:

lim
α→1

G(r) = GD(r) = −Γ
(

D
2 − 1

)

4πD/2
(r2)1−

D
2 .

In the UV limit α → 2/D, one can expand eq. (3.52) as rǫ/ǫ = 1/ǫ+ ln r +O(ǫ). Up to a

divergent constant, this is the logarithmic propagator in two dimensions, rescaled with a

volume ratio:

G∗(r) ≡ lim
α→2/D

G(r) =
Ω2

ΩD
G2(r) =

1

ΩD
ln r . (3.53)

As a side remark, notice that G can be written as

G(r) ∝ d−β

dr−β
GD(r) , (3.54)

where

β ≡ D(1 − α) , (3.55)

and the fractional derivative can be defined as the Liouville derivative:

d−β

dr−β
rγ =

Γ(γ + 1)

Γ(γ + β + 1)
rγ+β . (3.56)

The order of the derivative is negative, so that it is actually a fractional integral with clear

meaning: Starting from the problem �GD = δ(D) and inserting (heuristically) the identity

∂β∂−β, it replaces the second-order operator on GD with a fractional differentiation of

order 2 + β on G. We can conclude that

G(r) ∝ G(1+β/2)(r) , (3.57)

i.e., the (massless) propagator is proportional to the Green function solving the pseudod-

ifferential equation

�
1+β/2G(1+β/2) = δ(D) , (3.58)

which was calculated and discussed in [77–82] and reads

G(1+β/2) ∝ (s2 + iε)1+
β−D

2 . (3.59)

Indeed, after Wick rotation eqs. (3.48) and (3.59) agree up to the normalization. In this

sense, in configuration space our field theory on a fractal is equivalent to a certain class of

nonlocal models represented by eq. (3.58) [81–83].

We now consider the massive case (Helmholtz equation). The solution of the homoge-

neous equation CG = 0 is

G(r) =
(m

r

)
Dα
2

−1 [

C1KDα
2

−1(mr) + C2IDα
2

−1(mr)
]

, (3.60)
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where C1,2 are constants and K and I are the modified Bessel functions. Since for small

m the solution must agree with the massless case (3.48), we can set C2 = 0. In fact, this

is true only for α 6= 2/D, as one can see from the asymptotic formulæ

Kν(z) ≈











− ln
(

z
2

)

− γ if ν = 0

Γ(ν)
2

(

2
z

)ν
if ν > 0

, (3.61)

Iν(z) ≈ 1

Γ(ν + 1)

(z

2

)ν
, (3.62)

where γ is the Euler-Mascheroni constant. We shall discuss the case α = 2/D separately.9

To find the solution of the inhomogeneous equation, one exploits the fact that the mass

term does not contribute near the origin. Expanding eq. (3.60) at mr ∼ 0 when Dα > 2

(C2 = 0),

G(r) ∼ C12
Dα
2

−2Γ
(

Dα
2 − 1

)

(r2)1−
Dα
2 ,

which must coincide with eq. (3.52). This fixes the coefficient C1 and the propagator reads

G(r) = − 1

2π
D
2

Γ
(

D
2

)

Γ
(

Dα
2

)

(m

2r

)
Dα
2

−1
KDα

2
−1(mr) , (3.63)

in agreement with the Helmholtz propagator (α = 1).

Here an important remark is mandatory. In usual quantum field theory, the propagator

G(r) is defined up to an immaterial constant C. By “immaterial” we obviously mean that

�[G(r) +C] = �G(r). This is true in any dimension D and regardless the functional form

of G(r), being it just a property of ordinary differentiation, �C = 0. Our model is still

characterized by ordinary differential operators, so the set

{

G(r) + C
∣

∣ C = const
}

(3.64)

is an equivalence class defining the propagator. However, the nontrivial measure ̺ will

associate elements of this equivalence class with different Fourier transforms in momentum

space. In the critical case α = 2/D, the difference will be in unusual terms

B(C1, C2, C)
1

k2

which resemble massless poles. If the theory is well defined, these terms will have to

correspond to generalized Dirac distributions, and not to particle modes with arbitrarily

9The comparison with field theory with fractional powers of the d’Alembertian holds also when m 6= 0.

Recalling that
„

1

z

d

dz

«n

[z−ν
Kν(z)] = (−1)n

z
−ν−n

Kν+n(z) , n ∈ N ,

one can continue this formula to any n and write the propagator as

G(r) ∝

„

1

r

d

dr

«

−

β
2

GD(r) .
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chosen residue B(C1, C2, C). Keeping this in mind will prevent us to fall into a false

paradox when calculating the propagator in momentum space.

Taking this issue on board, the case α = 2/D, m 6= 0 is straightforward: it is safe to

just set α = 2/D in the noncritical propagator (3.63),

G∗(r) = − 1

ΩD
K0(mr) . (3.65)

Now to the Lorentzian theory. The fractal field models of [21] and [22] both meet the

Osterwalder-Schrader conditions. This encourages the expectation that a generic field the-

ory on a Euclidean fractal, if well defined, should admit an analytic continuation to a theory

in Lorentz spacetime. In fact, the Euclidean partition function eq. (3.40) is a Schwinger

function endowed with all the properties required by the Osterwalder-Schrader theorem:

it is analytic, symmetric under the permutation of arguments, Euclidean covariant, and

satisfies cluster decomposition and reflection positivity. Consequently, we can analytically

continue the Helmholtz propagator (3.63) to the Klein-Gordon propagator according to the

prescriptions: (i) multiply G times the imaginary unit i, due to Wick rotation of the time

direction; (ii) replace r2 with s2 + iε, where the positive sign of the extra infinitesimal term

corresponds to the causal Feynman propagator. Summarizing,

G(s) = − i

2
Dα
2 π

D
2

Γ
(

D
2

)

Γ
(

Dα
2

)

(

m2

s2 + iε

)

Dα
4

−
1
2

KDα
2

−1

(

m
√

s2 + iε
)

, s > 0 , (3.66)

while the massless propagator is

G(s) =
i

ΩD(2 −Dα)
(s2 + iε)1−

Dα
2 , (3.67)

in accordance with eq. (3.59). Equations (3.53) and (3.65) are continued similarly.

The propagator for timelike intervals is just the analytic continuation of the former.

In the massive case, it is proportional to the Hankel function of the first kind H
(1)
Dα/2−1.

One last thing to check is what happens on the light cone. The propagator for Dα = 2,

eq. (3.53), is (proportional to) the usual propagator in two dimensions, so nothing special

occurs. Taking instead the definition (3.44), setting α = 1 in eq. (3.67) (contribution of m

negligible), for even D = 4, 6, . . . one obtains ([84], p. 94)

G(s) ∝ 1

(s2 + iε)
D
2
−1

=
(−∂s2)

D
2
−2

(D/2 − 2)!

[

PV

(

1

s2

)

− iπδ(s2)

]

, (3.68)

where PV denotes the principal value. In D = 4 this reduces to the Plemelji-Sokhotski

formula. Translated into momentum space, the δ states, as usual, that massless particles

propagate at the speed of light on the light cone (Huygens’ principle [78, 80]).
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3.3 Propagator: momentum space

Since G has been argued to be proportional, in configuration space, to the Green func-

tion of another well-known problem (the functional inverse of a fractional power of the

d’Alembertian), we can already guess its pole structure in momentum space: in general, it

will exhibit a branch cut with branch point at k2 = −m2.

To calculate the propagator in momentum space, we can start from the Euclidean

one and then analytically continue the result as usual. In the Lorentzian propagators the

substitution k2 → |k|2 − (k0)2 − iε is understood.

In the presence of a Lebesgue-Stieltjes measure, the Fourier transform must be modified

so that it is consistent with the definition of the Dirac distribution eq. (3.1). The Fourier-

Stieltjes transform Fv of a function G(x) and its inverse are defined as [21]

G̃(k) =

∫

d̺(x)G(x) e−ik·x ≡ Fv[G(x)] , (3.69)

G(x) =
1

(2π)D

∫

d̺(k) G̃(k) eik·x . (3.70)

The measure in eq. (3.70) is such that momentum and configuration space have the same di-

mensionality. The Fourier-Stieltjes transform of a function G is the Fourier transform of vG:

Fv [G] = F [vG] = F [rD(α−1)G(r)] . (3.71)

In particular, the Fourier-Stieltjes transform of δ
(D)
v is 1. However, when α 6= 1 one has

Fv [1] = F [rD(α−1)]

= 2DαπD/2 Γ
(

Dα
2

)

Γ
[

D(1−α)
2

]

1

kDα

= (2π)Dδ(D)
v (k) , (3.72)

so δ
(D)
v , the source in eq. (3.42), is a power-law distribution.

Equation (3.71) tells us the form of the massless propagator when α 6= 2/D (transform

of eq. (3.52)) [84]:

G̃(k) =
1

ΩD(2 −Dα)
F [rD(α−1)r2−Dα]

= − D − 2

Dα− 2

1

k2
. (3.73)

Notice that:

• The (Lorentzian) propagator has a k2 = 0 pole in the (Re k0, Im k0) plane. From

the world-fractal point of view (that is to say, looking at the pole structure of G̃(k)

rather than of v(k)G̃(k)), the spectrum has the usual support at k2 = 0.

• When α = 1, one obtains G̃(k) = −1/k2 and the free wave solution.
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• For general α > 2/D, the sign of the residue is always negative, which ensures the

absence of ghosts. However, its value is not 1 but given by a geometric factor.

This is expected as the effective theory in the world-fractal is not unitary and some

probability is exchanged with the D-dimensional topological bulk.

In the critical case α = 2/D eq. (3.73) is ill-defined; this is not a problem, since one should

start from eq. (3.53):

G̃∗(k) =
1

ΩD
F [r2−D ln r]

?
=

(

D

2
− 1

)

B − ln k2

k2
, (3.74)

where B = ψ(D/2 − 1) − γ + ln 4 and ψ is the digamma function. Some remarks:

• For D 6= 2, the Lorentzian propagator has a branch point at k2 = 0.

• In the limit D → 2, the propagator is G ∼ −1/k2.

• The term B/k2 does not represent a particle mode. In fact, it is nothing but the

fractal Dirac distribution eq. (3.72) when α = 2/D. In other words, the Fourier-

Stieltjes transform of the equivalence class (3.64) is unique up to a δ
(D)
v (k) term. The

spectrum consists in a quasiparticle continuum of modes with momentum k2 ≤ 0.

In eq. (3.64) there exists a particular element such that B = 0 identically, which we typically

call the propagator. Equation (3.74) is then replaced by the unambiguous expression

G̃∗(k) = −
(

D

2
− 1

)

ln k2

k2
. (3.75)

The massive case is slightly more complicated and as an exercise we will calculate it ex-

plicitly. The transform of the propagator in radial coordinates is

G̃(k) =

∫

dΩDdr r
D−1 v(r)G(r) e−ik·x .

The integrand is not radial but one can choose a frame where kµx
µ = −kr cos θ, k ≡ |kµ|,

and the angular integral reads

∫

dΩD e
−ik·x = ΩD−1

∫ π

0
dθ(sin θ)D−2eikr cos θ

= ΩD−1

√
π Γ

(

D − 1

2

)(

2

kr

)
D
2
−1

JD
2
−1(kr) .

In the last line we used formula 3.915.5 of [85]. Then,

G̃(k) = Γ

(

D

2

)(

2

k

)
D
2
−1 ∫ +∞

0
dr rDα−D

2 [ΩDG(r)]JD
2
−1(kr) . (3.76)
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Now we take the massive propagator (3.63) (α 6= 2/D):

G̃(k) = − Γ
(

D
2

)

Γ
(

Dα
2

)

(

2

k

)
D
2
−1

(m

2

)
Dα
2

−1

×
∫ +∞

0
dr r

D(α−1)
2

+1KDα
2

−1(mr)JD
2
−1(kr)

= −
F

(

Dα
2 , 1; D

2 ;− k2

m2

)

m2
, (3.77)

where we used formula 6.576.3 of [85] and F is the hypergeometric function

F (a, b; c; z) =

∞
∑

n=0

Γ(a+ n)Γ(b+ n)

Γ(a)Γ(b)

Γ(c)

Γ(c+ n)

zn

n!
. (3.78)

When α = 1, one obtains the usual massive propagator in D dimensions (formula 9.121.1

of [85]):

G̃(k) = − 1

k2 +m2
. (3.79)

In the limit m→ 0 (which does commute with the analytic continuation of eq. (3.77)), one

recovers eq. (3.73) up to a term O(mDα−2), which is negligible by virtue of the no-ghost

condition α > 2/D.

When α = 2/D, the transform of the critical propagator eq. (3.65) is

G̃∗(k) = −
F

(

1, 1; D
2 ;− k2

m2

)

m2
(3.80)

= −
(

D

2
− 1

)

ln k2

k2
+O(m2 lnm2) , (3.81)

where in the second line we have dropped O(k−2) terms and considered the massless limit

for comparison with eq. (3.75). When D = 4, by virtue of formula 9.121.6 of [85], eq. (3.80)

gives exactly (i.e., no δv terms)

G̃∗(k) = − 1

k2
ln

(

1 +
k2

m2

)

, (3.82)

which is precisely the generalization of eq. (3.75). G∗(k) has a branch cut for Re k0 <

−
√

|k|2 +m2. Therefore, the spectrum of the theory has a continuum of modes with rest

mass ≥ m.

Interestingly, the convergence domain of eq. (3.77) gives a bound on the topological

dimension D. The propagator is a hypergeometric series with convergence in the unit circle

|z| < 1, where z = −k2/m2. Let

p ≡ Dα

2
− D

2
+ 1 . (3.83)

On the unit circle |z| = 1, there are three cases:
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• The series diverges if p ≥ 1. As a constraint on α it yields α ≥ 1. This case is

excluded by construction, although the limit case α = 1 is well-defined.

• The series converges absolutely if p < 0, corresponding to α < 1 − 2/D.

• The series converges except at z = 1 if 0 ≤ p < 1, giving 1 − 2/D ≤ α < 1.

• When α = 2/D, the series diverges if D ≤ 2, converges absolutely if D > 4, and

converges except at z = 1 if 2 < D ≤ 4. These bounds are basically unchanged if one

considers the analytic continuation of F to the massless case.

The standard physical setting (convergence of the propagator in the unit disk and on its

boundary except at the singularity on the real k0 axis) is naturally recovered only for

2 ≤ D ≤ 4, (3.84)

where we included both extrema of the interval by analytic continuation.

Before concluding the section, we reconsider the issue of the superficial degree of di-

vergence of Feynman graphs in the UV (see, e.g., [3, 4] for an introduction to the subject

and references). Consider a one-particle-irreducible subdiagram with L loops, I ≥ L in-

ternal propagators and V vertices. The superficial degree of divergence δ is the canonical

dimension of all these contributions.

Each loop integral gives [d̺(k)] = Dα, while the propagator, in any dimension and for

any value of α, has [G̃] = −2. For the scalar field theory, interaction vertices do not carry

dimensionality. Overall,

δ = L(Dα− 2) − 2(I − L) ≤ L(Dα− 2) . (3.85)

When α = 1, one gets the standard result in D dimensions. In the critical case α =

2/D, δ ≤ 0 and one has at most logarithmic divergences. When α < 2/D the theory

is superrenormalizable. In the case of gravity also vertices contribute [3, 4], each with a

factor of 2 (number of derivatives). Then, δ is bounded by the dimension of operators

which already appear in the bare action.

4 Gravity

Having studied the properties of a scalar field on an effective fractal spacetime, we turn to

gravity. Our conventions for the Levi-Civita connection, Riemann and Ricci tensors, and

Ricci scalar are

Γα
µν ≡ 1

2g
αβ [∂µgνβ + ∂νgµβ − ∂βgµν ] , (4.1)

Rα
µβν ≡ ∂βΓα

µν − ∂νΓα
µβ + Γσ

µνΓα
βσ − Γσ

µβΓα
νσ , (4.2)

Rµν ≡ Rα
µαν , R ≡ Rµνg

µν . (4.3)

The Ansatz for the gravitational action is

Sg =
1

2κ2

∫

d̺(x)
√−g (R− 2λ− ω∂µv∂

µv) , (4.4)
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where g is the determinant of the dimensionless metric gµν , κ2 = 8πG is Newton’s constant,

λ is a bare cosmological constant, and the term proportional to ω has been added because

v, like the other geometric field gµν , is now dynamical. The couplings have dimension

[κ2] = 2 −Dα , [λ] = 2 , [ω] = 2D(α− 1) + 4 . (4.5)

In spacetime with D = 2 topological dimensions and trivial measure weight v = 1, the

Einstein-Hilbert action is a topological invariant and there are no dynamical degrees of

freedom. This is not the case of eq. (4.4).

To describe the flow from the UV to the IR fixed point, we should add relevant oper-

ators also into the gravitational action. (The relevant operators in the matter sector are

minimally coupled with gravity and they would not be enough.) This is done in the same

way as for the matter sector, eqs. (2.21) and (2.22), with possibly different Mg 6= Mφ. The

effective Newton constant then runs from a UV bare dimensionless constant to an IR value

κ2
IR ∼ κ2

UVM
2−D
g . (4.6)

Note that κ2
IR is not necessarily the observed Newton constant κ2

obs, in which caseMg ∼ mPl

is the Planck mass. As one can see from the equations of motion, κ2
obs will depend on the

background as well as on the scale of the problem.

Those in eq. (2.21) are not all possible relevant operators. Higher-order Riemann

invariants Riemn ([Riemn] = 2n, n > 1) are irrelevant, but one could introduce lowest-

order terms of the form (1 + Riem)n with n < 1. These terms might be expected in the

context of fractal models, where fractional derivatives can (but not necessarily) find their

natural setting.10 Considering all these operators, one ends up with a term

∫ 1

0
dn c(n)

(

1 +
Riem

mass2

)n

, (4.7)

where c(n) are arbitrary dimensionless coefficients. In the unrealistic case where they are

all equal to 1 and Riem = R, the integral can be summed explicitly to a nonpolynomial

functional which admits Minkowski as a vacuum and yields the Einstein-Hilbert Lagrangian

with cosmological constant at small R (in mass units):

R

ln(1 +R)
= 1 +

R

2
− R2

12
+O(R3) .

This particular f(R) model might be of some cosmological interest. However, it is a toy

model and we shall not continue its discussion. In fact, we are interested in the equations

of motion near the UV fixed point, so we will ignore relevant operators from now on

(Mg = Mφ = 0).

10If they were regarded as necessary, all ∂β terms should make their appearance in any sector. This is a

different definition of the theory which we will not consider.

– 22 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
0

4.1 Einstein equations

Assuming that matter is minimally coupled with gravity, the total action is

S = Sg + Sm , (4.8)

where Sg is eq. (4.4) and Sm =
∫

d̺
√−gLm is the matter action. The derivation of the

Einstein equations is almost as in scalar-tensor models. We shall repeat it here to make

the presentation self-contained. To find the equations of motion we need the variations

δ
√−g = −1

2 gµν
√−g δgµν , (4.9)

δR = (Rµν + gµν � −∇µ∇ν) δg
µν , (4.10)

where ∇νVµ ≡ ∂νVµ − Γσ
µνVσ is the covariant derivative of a vector Vµ and the curved

d’Alembertian on a scalar φ is

�φ =
1√−g∂

µ(
√−g∂µφ) . (4.11)

The Einstein equations δS/δgµν = 0 read

Σµν = κ2Tµν , (4.12)

Σµν ≡ Rµν − 1

2
gµν(R− 2λ) + gµν

�v

v
− ∇µ∇νv

v

+ω

(

1

2
gµν∂σv∂

σv − ∂µv∂νv

)

, (4.13)

Tµν ≡ − 2√−g
δSm

δgµν
= −2

∂Lm

∂gµν
+ gµνLm . (4.14)

Taking the trace of eq. (4.12) gives

−
(

D

2
− 1

)

R+Dλ+ (D − 1)
�v

v
+

(

D

2
− 1

)

ω∂µv∂
µv = κ2T µ

µ . (4.15)

When taking into account the variation of the total action with respect to the scalar v,

R− 2λ = −2κ2Lm − ω (2v�v + ∂µv∂
µv) , (4.16)

eq. (4.15) becomes

R+ (D − 1)
�v

v
+ ω [Dv�v + (D − 1)∂µv∂

µv] = κ2
(

T µ
µ −DLm

)

= −2κ2 Tr
∂Lm

∂gµν
. (4.17)

Tµν is the stress-energy tensor of matter. Its definition determines the continuity

equation [86]. In fact, let

δSm =
1

2

∫

dDx v
√−g T µσδgµσ +

∫

dDx
√−gLmδv (4.18)
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be the infinitesimal variation of the matter action with respect to the external fields δgµσ

and δv. For the infinitesimal coordinate transformation (3.19), one has

δgµσ = gνσ∂µa
ν + gµν∂σa

ν + aν∂νgµσ , (4.19)

δv = aν∂νv , (4.20)

where we used the definition of the Lie derivative for rank-2 and rank-0 tensors. Plugging

eqs. (4.19) and (4.20) into (4.18) and integrating by parts, we get

δSm = −
∫

dDx aν

[

∂µ(v
√−gT µ

ν) − 1

2
v
√−gT µσ∂νgµσ − ∂νv

√−gLm

]

. (4.21)

δSm must vanish on shell (i.e., when the dynamical equations are satisfied). Using the

properties of the Levi-Civita connection (4.1) and the definition of the covariant derivative

of a rank-2 tensor,

∇µT
µ
ν = ∂µT

µ
ν + Γµ

µσT
σ
ν − Γσ

µνT
µ
σ

=
1√−g∂µ

(√−gT µ
ν

)

− 1

2
(∂νgµσ)T µσ ,

one finally obtains the continuity equation

∇µ(vT µ
ν) − ∂νv Lm = 0 , (4.22)

which generalizes eq. (3.20).

If matter is a scalar field, it is straightforward to see that its equation of motion

δSm/δφ = 0 is eq. (3.4) with � given by eq. (4.11), in agreement with eq. (4.22).

The continuity and Einstein equations are not independent because of the contracted

Bianchi identities 2∇µRµν = ∇νR and eq. (4.16). The divergence of (v times) eq. (4.12)

correctly reproduces eq. (4.22). The check takes into account that in the absence of tor-

sion the covariant derivative commutes on a scalar, [∇µ,∇ν ]v = 0, while on a vector

[∇µ,∇ν ]Vσ = R τ
µνσ Vτ .

4.2 Cosmology

With the notable difference that matter is nonminimally coupled with the scalar v, the

equations of motion are similar to those of Brans-Dicke theory [87], which is well constrained

by large-scale observations [88]. This fact and the foreign physical setting lead to an

altogether different dynamics.

In this section we specialize to a Friedmann-Robertson-Walker (FRW) line element

ds2 = gµνdx
µdxν = −dt2 + a(t)2g̃ijdx

idxj , (4.23)

where t is synchronous time, a(t) is the scale factor and

g̃ijdx
idxj =

dr2

1 − k r2
+ r2dΩ2

D−2 (4.24)
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is the line element of the maximally symmetric (D − 1)-dimensional space Σ̃ of constant

sectional curvature k (equal to −1 for an open universe, 0 for a flat universe and +1 for a

closed universe with radius a). In four dimensions, dΩ2
2 = dθ2 +sin2 θdϕ2. Quantities built

up with the spatial metric g̃ij will be decorated with a tilde. On this background, the only

nonvanishing Levi-Civita and Ricci components are

Γ0
ij = Hgij , Γj

i0 = Hδj
i , Γk

ij = Γ̃k
ij , (4.25)

and

R00 = −(D − 1)(H2 + Ḣ) , (4.26)

Rij = R̃ij + [(D − 1)H2 + Ḣ]gij , R̃ij =
2k

a2
gij , (4.27)

R = (D − 1)

(

2k

a2
+DH2 + 2Ḣ

)

, (4.28)

where

H ≡ ȧ

a
(4.29)

is the Hubble parameter (not to be confused with the Hamiltonian H of section 3.1) and

we have exploited the symmetries of Σ̃ [86].

For simplicity we consider a perfect fluid (zero heat flow and anisotropic stress) as the

only content of the universe:

Tµν = (ρ+ p)uµuν + p gµν , (4.30)

where ρ = T00 and p = T i
i /(D − 1) are the energy density and pressure of the fluid and

uµ = (1, 0, . . . , 0)µ is the unit timelike vector (uµu
µ = −1) tangent to a fluid element’s

worldline. We also take a timelike fractal v = v(t).

The 00 component of the Einstein equations (4.12) is

(

D

2
− 1

)

H2 +H
v̇

v
− 1

2

ω

D − 1
v̇2 =

κ2

D − 1
ρ+

λ

D − 1
− k

a2
, (4.31)

while combining that with the trace equation (4.15) one obtains

�v

v
− (D − 2)

(

H2 + Ḣ −H
v̇

v
+

ω

D − 1
v̇2

)

+
2λ

D − 1
=

κ2

D − 1
[(D − 3)ρ+ (D − 1)p] .

(4.32)

Other useful expressions can be found by suitable combinations of the dynamical equations.

From eq. (4.17),

R+ (D − 1)
�v

v
+ ω

[

Dv�v − (D − 1)v̇2
]

= −κ2(ρ+ p) , (4.33)

and eq. (4.16) one gets

2λ+ (D − 1)
�v

v
+ (D − 2)ω(v�v − v̇2) = −κ2(ρ− p) , (4.34)
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while from the 00 component of (4.12) and eq. (4.16),

H2 + Ḣ −H
v̇

v
+

ω

D − 1
v�v = − κ2

D − 1
(ρ+ p) . (4.35)

If ρ+p 6= 0, one can combine eqs. (4.33) and (4.35) to get a purely gravitational constraint:

Ḣ + (D − 1)H2 +
2k

a2
+

�v

v
+H

v̇

v
+ ω(v�v − v̇2) = 0 . (4.36)

The continuity equation (4.22) contracted with −uν is

ρ̇+

[

(D − 1)H +
v̇

v

]

(ρ+ p) = 0 , (4.37)

where we used the definition of proper-time derivative, uµ∇µ = ,̇ and the Hubble expansion

Θ ≡ ∇µuµ = (D − 1)H in covariant formalism [89–91]. Note that this is not the volume

expansion as in standard general relativity, as the latter is actually

Θ̃ =
d ln(aD−1v)

dt
, (4.38)

which is the square bracket in eq. (4.37). For a barotropic fluid p = wρ, the continuity

equation is solved by ρ ∼ (aD−1v)−(1+w), up to some dimensionful prefactor. In general w

is not a constant and we define the effective barotropic index

w(t) ≡ p

ρ
. (4.39)

The scalar field is a particular case of perfect fluid, with p = Lφ = φ̇2/2−V , ρ = φ̇2/2+V ,

and uµ = −∂µφ/φ̇ [92]. Equation (4.37) becomes eq. (3.4),

φ̈+

[

(D − 1)H +
v̇

v

]

φ̇+ V ′ = 0 . (4.40)

When v = 1 and D = 4, we recover the standard Friedmann equations in four dimen-

sions, eqs. (4.31) and (4.32) (no gravitational constraint):

H2 =
κ2

3
ρ+

λ

3
− k

a2
, (4.41)

H2 + Ḣ = −κ
2

6
(3p + ρ) +

λ

3
. (4.42)

On the other hand, for the measure weight

v = t−β , (4.43)

where β is given by eq. (3.55), the gravitational constraint is switched on. Then, the above

equations should be taken cum grano salis. The UV regime, in fact, describes short scales

at which inhomogeneities should play some role. If these are small, the modified Friedmann

equations define a background for perturbations rather than a self-consistent dynamics.

– 26 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
0

Modulo this caveat, we can look at flat (k = 0) background solutions in the deep

UV regime with no cosmological constant. The gravitational constraint (4.36) is a Riccati

equation in H which, together with the useful formulæ

H
v̇

v
= −Hβ

t
,

�v

v
=
β

t

[

(D − 1)H − 1 + β

t

]

, (4.44)

fixes almost completely the background expansion, regardless the matter content. A direct

consequence of this overdetermination of the dynamics is that there are no vacuum solutions

(ρ = 0 = p). This might not happen for other fractal profiles than eq. (4.43), but at early

times the measure must scale as eq. (4.43). This feature, therefore, is robust.

Let us consider the cases ω = 0 and ω 6= 0 separately. When β = D − 2 = 2 (UV

regime), the ω = 0 solution is

a(t) =
(t9 + c)1/3

t2
, (4.45a)

H(t) =
t9 − 2c

t(t9 + c)
, (4.45b)

ǫ ≡ − Ḣ

H2
=

[t9 − (14 + 3
√

22)c][t9 − (14 − 3
√

22)c]

(t9 − 2c)2
, (4.45c)

where c is an integration constant. The energy density and pressure which solve all the

equations simultaneously are

ρ = − 3

κ2

(t9 + 4c)(t9 − 2c)

t2(t9 + c)2
, (4.45d)

p = − 3

κ2

[t9 + (
√

10 − 3)
√

10c][t9 + (
√

10 + 3)
√

10c]

t2(t9 + c)2
. (4.45e)

These expressions are sufficient to characterize three cases:

• c > 0: The scale factor decreases (H < 0) from t = 0 until t = t∗ ≡ (2c)1/9,

where the universe bounces (H∗ = 0, a∗ = 31/32−2/9c1/9). From t = t∗ to t = t1 ≡
[(14 + 3

√
22)c]1/9, the universe expands in superacceleration (ǫ < 0), while for t > t1

the expansion is only accelerated. The energy density ρ is negative for t > t∗, while

the pressure p is always negative.

• c = 0: Linear (decelerating) expansion, a = t, while ρ = p < 0 always.

• c < 0: The universe expands in deceleration from a big bang event at t = t0 ≡
|c|1/9. The energy density and pressure are negative for t > |4c|1/9 and t > |(

√
10 +

3)
√

10c|1/9, respectively.

All these scenarios need a matter component with non-positive definite energy density, so

they are excluded if only ordinary matter is allowed. We envisage four simple modifications

of this result. One is to change the flat prescription k = 0. Another is to consider the

above formulæ only asymptotically, since the simple measure profile eq. (4.43) is certainly
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valid only at early times. The only case where the universe expands at small t with ρ > 0

is c < 0, for which one has superstiff matter (w(t) > 1). A third option is to allow for a

nonzero geometric contribution U(v), a potential for v.

A fourth possibility is that ω 6= 0, which does lead to interesting cosmology. There is

only one real solution to the gravitational constraint, namely,

a(t) =
1

t2
Φ

(

11

4
;
13

4
;
3ω

2t4

)1/3

, (4.46)

H(t) = −2

t
− 22ω

13t5
Φ

(

15
4 ; 17

4 ; 3ω
2t4

)

Φ
(

11
4 ; 13

4 ; 3ω
2t4

) , (4.47)

where Φ (also denoted as 1F1 or M) is Kummer’s confluent hypergeometric function of the

first kind:

Φ(a; b; z) ≡ Γ(b)

Γ(a)

+∞
∑

n=0

Γ(a+ n)

Γ(b+ n)

zn

n!
. (4.48)

The expressions for ρ and p are

ρ =
2(2ω + 3t4)(3ω + 4t4)

t10
+

48ω2

132t10
Φ

(

11
4 ; 17

4 ; 3ω
2t4

)2

Φ
(

11
4 ; 13

4 ; 3ω
2t4

)2

−24ω(2ω + 3t4)

13t10
Φ

(

11
4 ; 17

4 ; 3ω
2t4

)

Φ
(

11
4 ; 13

4 ; 3ω
2t4

) , (4.49)

p = −2(ω + 3t4)(6ω + 5t4)

t10
+

48ω2

132t10
Φ

(

11
4 ; 17

4 ; 3ω
2t4

)2

Φ
(

11
4 ; 13

4 ; 3ω
2t4

)2 . (4.50)

We can use the asymptotic forms of Φ to have some semi-analytic insight of the system.

When z → −∞,

Φ(a; b; z)
z→−∞∼ Γ(b)

Γ(b− a)
(−z)−a + (−z)−a

N
∑

n=1

Γ(a+ n)

Γ(a)

Γ(b)

Γ(b− a− n)

z−n

n!
, (4.51)

where N is some finite order. On the other hand,

Φ(a; b; z)
z→+∞∼ Γ(b)

Γ(a)
ezza−b + ezza−b

N
∑

n=1

Γ(b− a+ n)

Γ(b− a)

Γ(b)

Γ(a− n)

(−z)−n

n!
. (4.52)

At late times the scale factor decreases and the fluid behaves effectively as phantom matter

(w < −1):

a
t→+∞∼ 1

t2
, H ∼ −2

t
, (4.53a)

ǫ ∼ −1

2
, (4.53b)

ρ ∼ 24

t2
, p ∼ −30

t2
, (4.53c)

w ∼ −5

4
. (4.53d)
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Figure 1. The scale factor a, Hubble parameter H , slow-roll parameter ǫ, energy density ρ (thick

line) and pressure p (dashed line) for ω = +1.

At early times we must distinguish between positive and negative ω. For ω > 0, the

universe is contracting and the fluid behaves like an effective cosmological constant:

a
t→0∼ const × e

ω

2t4

t4/3
, H ∼ −2ω

t5
, (4.54a)

ǫ ∼ −5t4

2ω
, (4.54b)

ρ ∼ 12ω2

t10
, p ∼ −12ω2

t10
, (4.54c)

w ∼ −1 . (4.54d)

These quantities are plotted in figures 1 and 2 for ω = +1.

For ω < 0, at early times the universe expands and accelerates, even if the perfect fluid

is stiff:

a
t→0∼ const × t5/3 , H ∼ 5

3t
, (4.55a)

ǫ ∼ 3

5
, (4.55b)

ρ ∼ 2|ω|
t6

, p ∼ 2|ω|
t6

, (4.55c)

w ∼ 1 . (4.55d)
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Figure 2. The equation of state w = p/ρ for ω = +1.
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Figure 3. The scale factor a, Hubble parameter H , slow-roll parameter ǫ, energy density ρ (solid

line) and pressure p (dashed line) for ω = −1.

These are plotted in figures 3 and 4 for ω = −1.

The null energy condition is violated, so none of these scenarios can be realized by

an ordinary scalar field, for which ρ + p = φ̇2 ≥ 0. The system is invariant under time

reversal, so the model with ω > 0, run backwards in time, also describes an expanding

superaccelerating (ǫ < 0) universe filled with phantom matter. Contrary to standard

general relativity, the energy density increases. This can be explained by recalling that the
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Figure 4. The equation of state w = p/ρ for ω = −1. The maximum, which lies beyond the frame,

is w ≈ 17.383 at t ≈ 0.851.

fractal geometry causes dissipation. The observer, in this case, experiences an incoming

flux of energy from the four-dimensional bulk.

The model with ω < 0 is a universe which expands in acceleration. At some point the

expansion is quasi de Sitter (notice the small plateau of H in figure 3), and after a brief

period of superacceleration the cosmic expansion decelerates, stops, and reverts. Again, the

fluid behaves unusually: during the accelerated expansion the equation of state is between

dust and stiff matter (0 < w(t) < 1), while the energy density decreases. Then, after a non-

monotonic transitory period around the inversion point, the equation of state violates first

the strong and then the null energy condition. Eventually the energy density still decreases

even during the cosmic contraction, because the world-fractal dissipates into the bulk.

The overall cosmological picture may be regarded as problematic for any value of ω. On

one hand, there are no vacuum solutions. On the other hand, solutions with matter require

fluids violating most or all energy conditions, thus signalling an unstable or unrealistic field

(however, see below). The ω < 0 case does so explicitly, since v is a ghost.

This might be cured by allowing a nonzero intrinsic curvature, more complicated mat-

ter profiles, or a nontrivial potential for v.11 However, the most natural possibility is that

a classical FRW background, either exact or linearly perturbed, is not realistic. Then, one

would have to treat the UV limit as highly inhomogeneous. This is not at all unexpected,

as we are dealing with quantum scales where the minisuperspace equations (maximal sym-

metry) are likely to fail.

5 Conclusions and future developments

There are several avenues of investigation left to explore. Here we mention just three.

• Quantum field theory. Many aspects of the field theory have yet to be fully under-

stood: among the most important are renormalization, the hierarchy problem and the

11Different geometric profiles would not work. For ω > 0, the null energy condition is violated at early

times (|t| > 1 in the backwards model) where eq. (4.43) holds. For ω < 0, v is a ghost by definition.
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physical significance of the UV propagator and the “natural” bound eq. (3.84). Even

in the Minkowski embedding, the fractal structure may have interesting properties we

have not discussed here. For instance, because of violation of translation invariance

the Fermi frame does not exist and, as in general relativity, parity is strictly a local

symmetry.

Other formulations of the theory including fractional derivatives would modify the

propagator and dissipation properties and, pending a suitable definition of the ki-

netic terms, they could lead to a more transparent physics. Also, for simplicity we

have defined an action on an embedding spacetime without boundaries, but a very

interesting alternative is to consider scenarios with boundaries; for example, a field

theory defined on R
D
+ would be closer in spirit to the unilateral fractional and Weyl

integrals of fractal classical mechanics, eq. (2.6) with t̄ → +∞. The propagator and

several other features should change accordingly but, mutatis mutandis, the main

idea of a fractal universe would still be valid and maintain the same motivations.

• Cosmology. If the system quickly flows to the IR fixed point, dissipative effects might

be negligible on cosmological spacetime scales, with a notable exception. At late

times, an imprint of the nontrivial short-scale geometry might survive as a cosmolog-

ical constant of purely gravitational origin (pressureless matter does not contribute to

it). A detailed study may reveal whether the behaviour of the effective cosmological

constant (3.15) is compatible with observations.

On the other hand, the UV regime may be relevant in the early universe, especially

during inflation. We have seen that the flat background dynamics cannot be realized

by a scalar field. It would be interesting to study the consequences of a nonvanish-

ing intrinsic curvature or potential U(v). If, even in that case, ordinary matter (in

particular, a scalar field) were not allowed, then one would have to abandon max-

imal symmetry and standard perturbative techniques of inflationary cosmology.12

However, an appealing alternative is to assume that matter is actually a condensate

field stemming from a fermionic sector. It is known that a condensate violates the

null energy condition, its mass-gap effective energy density being negative in certain

regimes [93, 94]. The physics of condensation is far from being exotic and is under

good control. It would be interesting to see whether a Dirac sector with four-fermion

interaction is renormalizable on a fractal and undergoes a condensation phase.

• Extra dimensions. In applications of the model we assumed that the topological di-

mension of embedding spacetime is D = 4. An interesting alternative is a universe

with extra topological dimensions, D > 4. In this scenario the value of α would

change and the IR limit should be realized in combination with a suitable compact-

ification mechanism.

12That symmetry reduction may not be justified is also suggested by the fact that a purely homogeneous

power-law fractal measure v ∼ t−β blows up at a non-integrable singularity, if β > 1:
R T

ǫ
dtt−β ∝ T 1−β −

ǫ1−β , diverging in the limit ǫ → 0. One can of course consider toy models where β < 1, which however do

not address the renormalizability problem.
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